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A coupled phase-field and hydrodynamic model is introduced to describe a two-phase, weakly

compressible smectic (layered phase) in contact with an isotropic fluid of different density. A non-

conserved smectic order parameter is coupled to a conserved mass density in order to accommodate

non-solenoidal flows near the smectic-isotropic boundary arising from density contrast between the

two phases. The model aims to describe morphological transitions in smectic thin films under

heat treatment, in which arrays of focal conic defects lead to conical pyramids and concentric

rings through curvature dependent evaporation of smectic layers. The model leads to an extended

thermodynamic relation at a curved surface that includes its Gaussian curvature, non-classical

stresses at the boundary and flows arising from density gradients. The temporal evolution given

by the model conserves the overall mass of the liquid crystal while still allowing for the modulated

smectic structure to grow or shrink. A numerical solution of the governing equations reveals that

pyramidal domains are sculpted at the center of focal conics upon a temperature increase, which

display tangential flows at their surface. Other cases investigated include the possible coalescence

of two cylindrical stacks of smectic layers, formation of droplets, and the interactions between focal

conic domains through flow.

I. INTRODUCTION

Defect and texture engineering of soft matter [1, 2] are promising design approaches for tuning the properties

of materials by controlling the presence and spatial distribution of defects. Modulated soft phases, such as block

copolymers [3], smectic liquid crystals [4], active and living matter [5], are of particular interest in this context since

their broken translational symmetry is associated with lamellar patterns of uniaxial symmetry, which allows for a

variety of topological defects. We focus here on smectic thin films which are known, under appropriate boundary

conditions, to form focal conic domains: topological defects that arrange themselves in periodic arrays on the film’s

free surface.

The smectic phase of a liquid crystal is comprised of anisometric molecules that present collective orientational order

along with a director axis n, and are organized in periodically spaced molecular layers. When deposited on a substrate

that induces planar alignment, smectic films in contact with air (with homeotropic molecular alignment at the smectic-

air interface) may have their layers bend and form focal conic domains (FCDs). Arrays of these conical defects have

been long known to be the equilibrium structure of the film, since the work of Bragg in the 1930s [6]. Smectic films
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micropatterned with arrays of FCDs have been used as guides for colloidal dispersion [7, 8], soft lithography [9, 10],

and as templates for superhydrophobic surfaces [11]. Nevertheless, there are still open problems associated with the

formation and engineering uses of these defects. Recent findings have shown, for example, the existence of geometric

memory in the nematic-smectic transition [12, 13], connecting the presence of boojum defects in the nematic to the

nucleation of focal conics in the smectic, and have also shown that focal conics may even arise in the absence of

anchoring effects [14]. While the nucleation of defects in smectics has appealing functional applications, focal conics

and dislocations can strongly dictate the structure of easily deformable thin films [15], and interfere in optical and

conductivity properties [1]. Therefore, fine microstructural control is a key concern for soft material design.

A remarkable example is found in the experiments of Kim et al. [16, 17], who have shown that smectic thin films

presenting arrays of FCDs can undergo complex morphological transitions through sintering (i.e. reshaping of a

smectic film at elevated temperatures for a certain amount of amount, with subsequent cooling). For particular

sintering protocols, FCDs are sculpted through evaporation into unexpected patterns, which include conical pyramids

and concentric rings. The observed configurations are controlled not only by the local mean curvature of the film

surface (as classical thermodynamics would imply), but also by its Gaussian curvature [16]. This feature, together with

the fact that the film is constantly evaporating and reshaping at elevated temperatures, are the main motivations for

our study. We develop a three-dimensional phase-field framework that includes smectic elasticity in the film, interfacial

thermodynamics and kinetics accounting for the effects of Gaussian curvature, and material compressibility at the

smectic-air surface.

The Oseen-Frank theory [18, 19] of a bulk nematic phase naturally leads to incorporating the energy associated with

small layer distortions as a function of a layer displacement variable in a bulk smectic [4, 20]. Layer displacements

along their normal direction are assumed parallel to the nematic director since their difference is a higher energy

mode that relaxes quickly [20]. This approach has been successful in explaining equilibrium configurations of defects,

including FCDs in which layers are geometrically described as Dupin cyclides [21]. A nonlinear theory coupling the

director to hydrodynamic flow was formulated by Brand and Pleiner [22], which expanded on previous studies on flows

and viscosities in mesophases [23–25]. A complete hydrodynamic theory for studying the smectic-isotropic transition

was later proposed based on the Landau-de Gennes framework [26–28], written in terms of either the smectic layer

displacement, the smectic complex order parameter, or the nematic Q−tensor. Small perturbations in a smectic are

generally described by a scalar displacement normal to the layers. However, the layering can be also described by a

complex amplitude, the leading order term in a Fourier series of the order parameter, with a phase that is a function of

layer displacement, and a real amplitude that represents the strength of the local smectic order. Other coarse-grained

models along these lines have also been proposed, based either on density deviations or local composition [29–33].

We have introduced a phase-field model for a smectic-isotropic system [34, 35], with a real order parameter ψ that

describes a modulated smectic phase in contact with an isotropic phase, and the diffuse interface between the two.

By replacing discrete layers and describing two-phase interfaces by a smooth function, we allow tracking of arbitrarily

distorted smectic planes, even while layers are breaking up or forming, as well as allowing two phase interfaces with

cusps (such as in FCDs). We have chosen the energy of our phase-field model so that the Oseen-Frank energy

for a smectic is recovered for small distortions; that is, the energy penalizes both deviations from the equilibrium

layering spacing and bending of layers (splay of molecules). An asymptotic analysis of the model for a thin two

phase interface reproduces the classical Gibbs-Thomson relation of interfacial thermodynamics, as well as corrections

introduced by higher order curvatures and torsion. This extended thermodynamic relation at a distorted smectic-

isotropic interface yields modified kinetic equations that account for the role of the Gaussian curvature and layering

orientation on pattern formation, providing an explanation for the obervations by Kim et al. [16]. Numerical solutions

of the governing equations reveal transitions from a FCD towards conical pyramids slightly away from coexistence

(simulating a temperature increase in the experiments).

The model of [34] is limited by the assumption of incompressibility, and neglects advection of the order parameter.

That is, it strictly describes the diffusive evolution of an interface between a smectic and an isotropic phase of the

same, constant, density. As our goal is to model an isotropic phase of lower density than the smectic, that is, an

isotropic fluid (such as water or air) presenting small density of liquid crystal molecules, in [35] we presented a way



3

to incorporate a varying density field and hydrodynamics into the model. Smectic and isotropic phases of different

density were considered, and fluid flows modeled along the lines of Cahn-Hilliard fluids [36, 37] as extended by

Lowengrub and Truskinovsky’s to quasi-incompressible fluids [38] (see also [39–44]). This assumption led to a density

which smoothly varied from a uniform value inside the bulk of the smectic (ρs) to a uniform value in the bulk of the

isotropic phase (ρ0). However, the density and the smectic order parameter were not considered to be independent

variables, but rather the local density was assumed to be a constitutive function of the local amplitude of the order

parameter (quasi-incompressibility). In this scenario, the balance of mass presents a strong constraint on how much

the non-conserved order parameter can evolve. Therefore, the morphological transitions from FCDs we previously

discussed [16, 34] are unable to take place in a quasi-incompressible smectic-isotropic system, so that the range of

applicability of the model is limited.

In this work, we overcome these limitations by introducing a general model in which the smectic order parameter

and the density are treated as independent variables, with model parameters that control how constrained is the

smectic evolution, allowing for morphological transitions. We call it the weakly compressible smectic-isotropic model.

We add a coupling (or penalty) term to the energy that limits deviations of the local density from the expected

smectic and isotropic equilibrium densities in the bulk phases. The model enforces mass conservation, allows control

on how strongly the conserved density affects the motion of the non-conserved smectic order parameter, and is shown

to be numerically stable even in presence of a large density ratio between phases. This in sharp contrast with

previously studied modulated-isotropic dynamics [45, 46], in which the order parameter was (i) non-conserved and

free to evolve or (ii) conserved and restricted in its evolution. The weakly compressible smectic-isotropic model allows

for non-conserved order parameter dynamics with a conserved density, as is physically the case.

The paper is organized as follows. Section II contains the model derivation, including the equations for the order

parameter and balances of mass and momentum. We introduce a rotationally invariant energy which depends on a

real order parameter ψ and its gradients, with an additional penalty term for deviations from equilibrium density

values. In Sec. III we discuss our numerical implementation based on a pseudo-spectral method. Section IV presents

numerical results of growth and decay of planar smectic layers in order to show how the conserved density interacts

with the non-conserved order parameter. In Sec. V we reconsider the evolution of FCDs, and show that morphological

transitions from focal conics to conical pyramids or concentric rings can be obtained numerically from the weakly

compressible model as long as the density coupling coefficient is not large. We also examine the flow at the surface

of a FCD and a conical pyramid, and, based on the extended Gibbs-Thomson relation, we discuss how interfacial

flows and stresses depend not only on the mean curvature but on the Gaussian curvature and layering orientation as

well. Finally, in Sec. VI we consider additional applications of the weakly compressible model, namely the coalescence

of cylindrical stacks of smectic layers, formation of droplets from an initial smectic, and the interactions among

neighboring FCDs in a smectic film.

II. WEAKLY COMPRESSIBLE MODEL

In this section we derive a diffuse interface model for a weakly compressible smectic phase in contact with an

isotropic fluid when they have different equilibrium densities. A real order parameter representing the smectic layering

is introduced [47],

ψ =
∑

n

1

2
[Ān e

inq0·x + c.c.] , (1)

where q0 is a wave vector in the direction normal to the smectic layers, q0 = |q0| is its magnitude, λ0 = 2π/q0 is

the characteristic period, and Ān is a complex amplitude. The order parameter ψ is function of time t and space

x ∈ R
3. Near the transition, high harmonics are generally negligible, and smectic layering is well described by the

approximate representation ψ ≈ 1

2
[Ā eiq0·x + c.c.]. The complex amplitude has the form Ā = Ae−iq0u, where u(x, t)

represents the displacement away from planar smectic layers, and A is the real magnitude of the complex amplitude

(the order parameter strength).
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We write the internal energy U of the system in terms of the energy per unit mass u and the mass density ρ, where

u = u(s, ψ,∇ψ,∇2ψ) and s is the specific internal entropy. The functional dependence on ∇2ψ does not appear for

binary systems [37, 38], but it is fundamental to model the smectic phase, as it makes the energy sensitive to layer

distortions and curvatures. We also introduce in the energy an explicit coupling between the real amplitude A of

the modulated order parameter ψ, which is approximately constant in the bulk smectic and isotropic phases, and the

density of the corresponding phase. This internal energy is written as

U =

∫

Ω

{

ρu +
ζ

2

[

ρ− ρ0 − κA
]2
}

dx . (2)

The second term inside the integral penalizes density values that deviate from equilibrium values ρeq = ρ0 + κA in

the smectic and isotropic phases, where ζ, ρ0 (the equilibrium density for the isotropic phase) and κ are constants.

In the limit of ζ → ∞, the density becomes constitutively governed by A, as ρ = ρ0 + κA, and the energy reduces to

U =
∫

Ω
ρ u dx. This is a limit that we previously studied in [35], and it imposes a strict constraint on the evolution of

the non-conserved order parameter ψ. However, when ζ is finite, the density is an independent variable.

A. Energy and entropy balances

We first obtain the local form of the internal energy and entropy balances from the fist law of Thermodynamics, as

detailed in [35, 38]. The relations derived in this section are obtained in the absence of thermal radiation and heat

flux though the boundary. When deriving the governing equations, we set no-flux boundary conditions: Neumann

condition for the order parameter ψ and zero normal fluid velocity v on the boundary, such that

∇ψ(x) · n = ∇∇2ψ(x) · n = 0, v(x) · n = 0, x ∈ ∂Ω. (3)

Given the Neumann condition for ψ, the wave vector q0 is parallel to the boundaries, so that layers become perpen-

dicularly anchored in these regions, allowing for focal conics to be created.

We introduce T as the Cauchy stress tensor, and define the material time derivative of a vector g as ġ = ∂tg+v ·∇g.

The first law is then stated as

d

dt

∫

Ω

{

ρu +
ζ

2

[

ρ− ρ0 − κA
]2

+
ρ|v|2

2

}

dx =

∫

∂Ω

[

Tn · v + (ξ · n)ψ̇

]

dS , (4)

where the surface integral is the rate of work done on the surface of the system, and the volume integral includes both

internal energy and kinetic energy.

Given the balances of linear momentum and mass,

ρv̇ = ∇ ·T , ρ̇+ ρ∇ · v = 0 , (5)

the local form of the balance of internal energy [48] becomes

ρu̇− κζ
(

ρ− ρ0 − κA
)

Ȧ =

{

T+
ζ

2

[

ρ2 − (ρ0 + κA)2
]}

: ∇v +∇ · (ξ ψ̇) . (6)

Here ξ is a microstress (also known as a generalized force), whose origin lies in the theory of microforces [49, 50], a

generalization of order parameter theories such as Ginzburg-Landau and Cahn-Hilliard. Similarly to the balance of

linear momentum, we can write the balance of microforces in terms of the microforce π as

∇ · ξ + π = 0 . (7)

Since the energy density is of the form u = u(s, ψ,∇ψ,∇2ψ), from partial differentiation the local balance of entropy

can be derived from Eq. (6). Note that u is an energy per unit mass, independent of the density ρ. Therefore, by the

chain rule

u̇ =
∂u

∂s
ṡ+

∂u

∂ψ
ψ̇ +

∂u

∂∇ψ
· ∇̇ψ +

∂u

∂∇2ψ
˙

∇2ψ . (8)
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By accounting for the boundary conditions from Eq. (3), the gradient terms appearing in ρu̇ can be rewritten as

ρ
∂u

∂∇ψ
· ∇̇ψ = ρ

∂u

∂∇ψ
· ∇ψ̇ − ρ∇ψ ⊗

∂u

∂∇ψ
: ∇v , (9)

and also

ρ
∂u

∂∇2ψ
˙

∇2ψ = ρ
∂u

∂∇2ψ
∇2ψ̇ − ρ

∂u

∂∇2ψ
∇2v · ∇ψ − 2ρ

∂u

∂∇2ψ
∇v : Dψ

= −∇

(

ρ
∂u

∂∇2ψ

)

· ∇ψ̇ +

[

∇ψ ⊗∇

(

ρ
∂u

∂∇2ψ

)

− ρ
∂u

∂∇2ψ
Dψ

]

: ∇v , (10)

where D stands for ∇∇ (i.e. “∂i∂j”), so that Dψ is a second order tensor.

Given that the temperature θ = ∂u/∂s and that the real amplitude of the order parameter has a simple dependency

A = A(ψ), by substituting Eq. (8) into Eq. (6) we obtain the following local balance of entropy:

ρθṡ =

{

T+
ζ

2

[

ρ2 − (ρ0 + κA)2
]

I+ ρ∇ψ ⊗
∂u

∂∇ψ
−∇ψ ⊗∇

(

ρ
∂u

∂∇2ψ

)

+ ρ
∂u

∂∇2ψ
Dψ

}

: ∇v

+

[

ξ − ρ
∂u

∂∇ψ
+∇

(

ρ
∂u

∂∇2ψ

)]

· ∇ψ̇ +

[

κζ
(

ρ− ρ0 − κA
)∂A

∂ψ
− ρ

∂u

∂ψ
+∇ · ξ

]

ψ̇ . (11)

In equilibrium, we observe from Eq. (11) that the balance of microforces is satisfied for

ξ = ρ
∂u

∂∇ψ
−∇

(

ρ
∂u

∂∇2ψ

)

, (12)

π = κζ
(

ρ− ρ0 − κA
)∂A

∂ψ
− ρ

∂u

∂ψ
. (13)

The terms in square brackets proportional to ψ̇ and ∇ψ̇ in Eq. (11) are both related to variations of ψ and can be

grouped together. Accounting for the boundary conditions, we obtain the final form of the local entropy balance

ρθṡ =

{

T+
ζ

2

[

ρ2 − (ρ0 + κA)2
]

I+ ρ∇ψ ⊗
∂u

∂∇ψ
−∇ψ ⊗∇

(

ρ
∂u

∂∇2ψ

)

+ ρ
∂u

∂∇2ψ
Dψ

}

: ∇v

+

[

κζ
(

ρ− ρ0 − κA
)∂A

∂ψ
− ρ

∂e

∂ψ
+∇ ·

(

ρ
∂u

∂∇ψ

)

−∇2

(

ρ
∂u

∂∇2ψ

)]

ψ̇ . (14)

Note that the microstress is not explicit in this form of the entropy balance.

B. Governing equations

Constitutive relations and governing equations are now derived by imposing strict requirements on the entropy

production ṡ, as in the Coleman-Noll procedure [49, 51]. The Clausius-Duhem inequality states that every admissible

thermomechanical process must satisfy ṡ ≥ 0, which has direct implications for Eq. (14). We start by splitting the

stress into reversible and dissipative parts, T = TR+TD, so that the reversible part TR can be derived from Eq. (14)

in the limit of zero entropy production, while dissipative parts are obtained by enforcing positive entropy production.

The reversible stress TR, is obtained from the expression inside the brackets associated with the rate ∇v in the

limit ṡ = 0. We find

TR = −
ζ

2

[

ρ2 − (ρ0 + κA)2
]

I− ρ∇ψ ⊗
∂u

∂∇ψ
+∇ψ ⊗∇

(

ρ
∂u

∂∇2ψ

)

− ρ
∂u

∂∇2ψ
Dψ . (15)

Note that non-classical stress terms appear in Eq. (15), not only from the dependence of u on ∇2ψ, but also from the

density coupling through ζ. Generally, we will expect the latter to be zero for the bulk smectic and isotropic phases,
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since ρ will tend to approach ρ0 + κA in the bulk due to energy minimization. However, this term can potentially

become large for compressible flows near the smectic-isotropic interface.

The generalized chemical potential µ, which is the the thermodynamic conjugate to ψ, µ = δU/δψ, appears in

Eq. (15) inside the brackets multiplying ψ̇. That is,

µ = −κζ
(

ρ− ρ0 − κA
)∂A

∂ψ
+ ρ

∂u

∂ψ
−∇ ·

(

ρ
∂u

∂∇ψ

)

+∇2

(

ρ
∂u

∂∇2ψ

)

. (16)

For a slowly relaxing variable such as ψ, which is not a conserved quantity, the associated dynamic equation [52] is

given by a quasi-current Z, and takes the form

∂tψ + v · ∇ψ + Z = 0 . (17)

While reversible motion requires ṡ = 0 in Eq. (14), the generalized chemical potential µ from Eq. (16) is arbitrary,

and reversible motion has ψ̇ = 0. The implication is that Z has no reversible part, and is purely dissipative.

Irreversible currents are obtained by requiring a positive entropy production ṡ ≥ 0. From Eq. (14), ψ̇ must be

proportional to the chemical potential µ times a mobility constant Γ, so that

Z = Γµ . (18)

The irreversible stress TD when contracted with ∇v in Eq. 14 should result in a positive quantity to satisfy the

Clausius-Duhem inequality. This implies that TD = η : ∇v, where η is a fourth order viscosity tensor. For simplicity,

we will restrict our analysis for a Newtonian fluid, with a dissipative stress of the form

TD = η(∇v +∇v⊤) + λ(∇ · v)I , (19)

where η and λ are the first and second coefficient of viscosity, respectively. The coefficient λ is important for compress-

ibility effects, as it controls the magnitude of the longitudinal part of the flow. The dissipative stress for a general

uniaxial phase can be written in terms of five independent viscosity coefficients [4], as we argued in [35]. While

an extension to such a dissipative stress is straightforward in the model, these coefficients are poorly characterized

experimentally, so that we focus exclusively on the simpler form of Eq. (19). Further, we consider η and λ to be ho-

mogeneous throughout the smectic-isotropic system, so that another possible extension of the model would consider

viscosity contrast between the phases.

From the constitutive relations for the stress T and the quasi-current Z, we find that the balance of mass, the

balance of linear momentum, and the dynamic equation for the order parameter, which govern the weakly compressible

smectic-isotropic system, have the following form

ρ̇ = −ρ∇ · v , (20)

ρv̇ = ∇ ·
(

TR +TD
)

, (21)

ψ̇ = −Γµ . (22)

Boundary conditions are specified by Eqs. (3), the reversible stress TR is defined in Eq. (15), the dissipative stress

TD in Eq. (19) and the generalized chemical potential µ in Eq. (16).

C. Energy density of the smectic phase

The specific energy u we use allows for coexistence of isotropic and smectic phases, and remains rotationally

invariant. It is given by

u(ψ,∇2ψ) =
1

2

{

ǫψ2 + α
[(

∇2 + q20
)

ψ
]2

−
β

2
ψ4 +

γ

3
ψ6

}

, (23)
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where ψ = 0 represents the isotropic phase, and a periodic ψ the smectic phase. The coefficients α, β and γ are

three constant, positive parameters, ǫ is a bifurcation parameter that describes the distance away from the smectic-

isotropic transition, and q0 is approximately the smectic layer wave number. The associated quintic Swift-Hohenberg

equation has been used in the past to describe modulated phases [53–55] in coexistence with an isotropic (ψ = 0)

phase, and describes the diffusive relaxation of the order parameter ψ driven by energy minimization. The sixth order

polynomial in ψ leads to a triple well energy potential function, whose minima represent the smectic and isotropic

phases. By fixing β and γ, the relative height between these wells can be controlled through ǫ, such that smectric-

isotropic coexistence occurs at ǫc = 27β2/160γ, when both phases present the same energy density. For ǫ > ǫc, ψ = 0

(isotropic) becomes the equilibrium phase, whereas for ǫ < ǫc, a modulated phase (smectic) ψ ≈ 1

2
(Aeiq·x + c.c.) is

the equilibrium one. The amplitude As of the bulk smectic is given by [53]

A2
s =

3β +
√

9β2 − 40ǫγ

5γ
, (24)

which is relevant when choosing the constants κ and ρ0 for a specific density ratio. For small layer perturbations away

from planarity, the energy reduces to the classical form of the smectic energy, where the elastic moduli for compression

of layers and splay of molecules can be written as a function of α [34].

By substituting this definition of specific energy into the chemical potential from Eq. (16), we obtain

µ = −κζ
(

ρ− ρ0 − κA
)∂A

∂ψ
+ ρ

[

ǫψ + αq20(∇
2 + q20)ψ − βψ3 + γψ5

]

+ α∇2
[

ρ(∇2 + q20)ψ
]

. (25)

An issue concerning the actual computation of µ from Eq. (25) is that while we are able to numerically extract

the amplitude from ψ, the dependence of A as a function of ψ is unknown, and so is its derivative with respect to ψ.

In this work, since the order parameter ψ has an asymptotic sinusoidal form, we compute the amplitude A through

A = (ψ2 + q−2
0 |∇ψ|2)1/2. By accounting for this dependency on ∇ψ, we then write the chemical potential µ = δU/δψ

as,

µ = −κζ
(

ρ− ρ0 − κA
)ψ

A
+ κζq−2

0 ∇ ·

[

(ρ− ρ0 − κA)
∇ψ

A

]

+ρ
[

ǫψ + αq20(∇
2 + q20)ψ − βψ3 + γψ5

]

+ α∇2
[

ρ(∇2 + q20)ψ
]

. (26)

We also neglect inertia compared to viscous effects, so that by using the definition of the energy density in Eq. (23),

the balance of linear momentum, Eq. (21), becomes

0 = −
ζ

2
∇
[

ρ2 − (ρ0 + κA)2
]

+ α∇2
[

ρ(∇2 + q20)ψ
]

∇ψ

−αρ(∇2 + q20)ψ∇
2∇ψ + η∇2v + (η + λ)∇(∇ · v) . (27)

By defining the modified chemical potential µ̄ as

µ̄ = ρ
[

ǫψ + αq20(∇
2 + q20)ψ − βψ3 + γψ5

]

+ α∇2
[

ρ(∇2 + q20)ψ
]

,

we can rewrite Eq. (27) as,

0 = −
ζ

2
∇
[

ρ2 − (ρ0 + κA)2
]

+ µ̄∇ψ − ρ∇u+ η∇2v + (η + λ)∇(∇ · v) . (28)

The quantity µ̄∇ψ is known as the osmotic force [56], and is exactly the forcing term that appears for an incompressible

smectic-isotropic system, where both phases have the same density [34]. Therefore, −ρ∇u is a force that originates

from compressibility effects.

Dimensionless variables are introduced similarly to [35]. Let U and L represent characteristic scales for the velocity

and length, and ρ̃ and µ̃ represent typical values for ρ and µ in the modulated phase. We then perform the non-

dimensionalization by defining v∗ = v/U , x∗ = x/L, t∗ = Ut/L, ρ∗ = ρ/ρ̃, µ∗ = µ/µ̃ and ψ∗ = ψµ̃/ρ̃U2. The

dimensionless constants one finds are κ∗ = κ/ρ̃, Γ∗ = Γµ̃2L/ρ̃U3, ζ∗ = ζρ̃/U2, η∗ = η/ρ̃UL and λ∗ = λ/ρ̃UL. Note
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that η∗ is the inverse Reynolds number, and ζ∗ is a dimensionless number that controls the ratio of ψ currents arising

from density gradients compared to ψ owing to local curvatures. This can be seen by taking the ratio of terms in

Eq. (25) in dimensionless form:

κζδρ

µ̄

∂A

∂ψ
= ζ∗

(

κ∗δρ∗

µ̄∗

∂A

∂ψ∗

)

, (29)

where δρ = ρ − ρeq and the chemical potential µ̄ is proportional to local curvatures through the Gibbs-Thomson

relation, see Eqs. (43) and (44). Hence, when ζ is small, the evolution of ψ is driven primarily by the chemical

potential µ̄.

By dropping the star notation from variables and constants, we here summarize the complete set of dimensionless

governing equations for the weakly compressible smectic-isotropic fluid system, including balance of mass, balance of

linear momentum, and order parameter equation,

ρ̇ = −ρ∇ · v , (30)

0 = −
ζ

2
∇
[

ρ2 − (ρ0 + κA)2
]

+ µ̄∇ψ − ρ∇u+ η∇2v + (η + λ)∇(∇ · v) , (31)

ψ̇ = −Γµ , (32)

with the generalized chemical potential µ given by Eq. (26), modified chemical potential µ̄ given by Eq. (28), and

energy density u given by Eq. (23). Note that ζ in Eq. (31) plays a role in setting diffuseness of the density across the

interface. For small ζ the interface is more diffuse and the penalty for deviations of ρ from equilibrium is small, while

for larger ζ the variation in ρ across the interface becomes sharper and the system approaches quasi-incompressibility.

III. NUMERICAL ALGORITHM

The governing equations (30)-(32), with boundary conditions specified in Eq. (3), are integrated with a pseudo-

spectral method in three spatial dimensions, in which linear and gradient terms are computed in Fourier space and

nonlinear terms in real space. A regular cubic grid is used with linear spacing ∆x = 2π/(nwq0), where nw is the

number of grid points per base wavelength. We have developed a custom C++ code (smaiso-wcomp) based on the

parallel FFTW library and the standard MPI passing interface for parallelization, which is publicly avilable [57]. In

order to accommodate the boundary conditions, we use both the Discrete Cosine Transform of (ψ, ρ) and the Discrete

Sine Transform of (∇ψ, v).

We compute the order parameter amplitude A by A = (ψ2 + q−2
0 |∇ψ|2)1/2. While this approximation gives us an

adequate value of A in regions where the smectic layers are well formed and only weakly distorted, it becomes noisier on

the interface, and also in regions where layers are highly distorted or break up. Therefore in our numerical calculations

we smooth the computed amplitude with a Gaussian filter in Fourier space, given by the operator Fω = exp(−ω2q2/2),

where q is the local wavenumber and ω the filtering radius, chosen as 1/q0.

A. Order parameter equation

The numerical scheme for integrating Eq. (32) has been detailed in [35], and here we summarize it. Due to the

variable density multiplying the RHS of Eq. (32), it cannot be dealt with in the same form as the uniform density

case [34], for which the split in linear and nonlinear parts was immediate. Instead, we follow a scheme previously
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employed for phase-field models with variable mobility [58, 59]. First, we split Eq. (32) as ∂tψ = Γ(ρLψ +N) with

L = −
[

ǫ+ (∇2 + q20)
2
]

, (33)

N = κζ
(

ρ− ρ0 − κA
)ψ

A
+ κζq−2

0 ∇ ·

[

(ρ− ρ0 − κA)
∇ψ

A

]

−2α∇ρ · (∇2 + q20)∇ψ − α∇2ρ (∇2 + q20)ψ + βψ3 − γψ5 − Γ−1v · ∇ψ , (34)

where L is a linear operator, and N is a collection of nonlinear terms. We split the density as ρ → ρm + (ρ − ρm),

where ρm = 1

2
(ρs+ρ0). Here, ρs is the density of the smectic bulk, which can be obtained from the system parameters

by ρs = κAs + ρ0, where As is the amplitude solution of the sinusoidal phase. The term associated with ρm can

be treated implicitly, and (ρ − ρm) is treated explicitly, with a choice of ρm that satisfies |ρ − ρm| ≤ ρm. We treat

the linear term L implicitly, while the nonlinear term N is treated with a second order Adams-Bashforth scheme. In

Fourier space, the order parameter ψq for the new time step n+ 1 is computed from

(3/2−∆tΓρmL)ψ
n+1
q = (2−∆tΓρmL)ψ

n
q −

1

2
ψn−1
q +

∆tΓ

2
(3Nn

q −Nn−1
q ) . (35)

Numerical verification and stability of this scheme have been studied in [35], where we found that for nw = 8 a time

step of ∆t = 1 · 10−3 or less was necessary to guarantee stability.

B. Velocity decomposition

Our weakly compressible model requires additional considerations for computing the velocity and density as com-

pared to [35]. A Helmholtz decomposition the velocity field v is introduced,

v = ∇Φ+∇×P , (36)

where Φ is a scalar potential and P is a vector potential. By substituting this decomposition of the velocity into the

balance of linear momentum from Eq. (31), we obtain

0 = −
ζ

2
∇
[

ρ2 − (ρ0 + κA)2
]

+ f + η∇2∇×P+ (2η + λ)∇∇2Φ , (37)

where f = µ̄∇ψ − ρ∇u. Since the gradient of the density is computed numerically at every time step, one can avoid

computing the gradient of the energy density u by adding ρu inside the gradient from the first term in Eq. (37) and

rewriting f as f̄ = µ̄∇ψ + u∇ρ.

The solenoidal field can be obtained from the transverse part of Eq. (37). By eliminating irrotational terms through

an orthogonal projection (and, consequently, modulations due to the layering), we compute ∇ × P in Fourier space

from

(∇×P)q =
1

η q2

(

I−
q⊗ q

q2

)

fq . (38)

Similarly, the longitudinal component of Eq. (37) eliminates the solenoidal terms, and allows us to compute ∇Φ. By

substituting Eq. (38) into Eq. (37), we obtain

(∇Φ)q =
1

(2η + λ) q2

{

ζ q

2

[

ρ2 − (ρ0 + κA)2
]

q
+

q⊗ q

q2
fq

}

. (39)

Note that the density does not change in the scale of the smectic layering modulations, and also that the force f

contains both resonant terms on the same scale as the amplitude, and modes ±2iq0 or higher. In order to avoid

spurious oscillations in the irrotational flow along smectic layers, we dampen contributions from the higher order

frequencies by applying the filter Fω = exp(−ω2q2/2) to the fq term in Eq. (39), with a filtering radius ω = 1/q0.
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C. Balance of mass

The balance of mass from Eq. (30) can be easily integrated by a multistep method such as Adam-Bashforth. Here,

we compute the density at the new time step n+ 1 through

ρn+1 = ρn −∆t

[

3

2

(

vn · ∇ρn + ρn∇ · vn
)

−
1

2

(

vn−1 · ∇ρn−1 + ρn−1∇ · vn−1
)

]

, (40)

where the divergence of the velocity is computed from ∇ · v = ∇2Φ.

IV. COMPRESSIBILITY EFFECTS ON ORDER PARAMETER DIFFUSION

One of the main goals of the weakly compressible model is to explore how the energy penalty for deviations in

density from equilibrium in Eq. (2) affects the evolution of the non-conserved order parameter ψ. We have shown that

the dimensionless ζ controls the ratio between order parameter currents arising from density gradients and curvatures.

Now we investigate its role on the motion of ψ given by Eq. (32).

Assume first we have a region of constant density and amplitude A. By setting Γ = 1, as in our numerical

computations, the order parameter equation (32) can be written as

ψ̇ =
κζ

A

(

ρ− ρ0 − κA
)

(1− q−2
0 ∇2)ψ − ρ

[

ǫψ + α(∇2 + q20)
2ψ − βψ3 + γψ5

]

. (41)

The first term on the RHS is linear under this scenario. Since the order parameter asymptotic solution is

ψ ≈ A cos(q0 · x), this implies that (1 − q−2
0 ∇2)ψ ≈ 2ψ. By using this approximation we can regroup the terms

in Eq. (41) as

ψ̇ ≈ −[ρǫ− 2
κζ

A
(ρ− ρ0 − κA)]ψ − ρ

[

α(∇2 + q20)
2ψ − βψ3 + γψ5

]

= −ρǫeψ − ρ
[

α(∇2 + q20)
2ψ − βψ3 + γψ5

]

. (42)

Therefore, the term proportional to ζ can be viewed as a correction to the bifurcation parameter ǫ, resulting in an

effective bifurcation parameter ǫe.

We first investigate the stability of our algorithm by computing a stationary configuration at coexistence with planar

smectic-isotropic interfaces, as well as the evolution near coexistence to evaluate numerically the effect of ǫe. The

governing equations are integrated with a time step ∆t = 0.001 and grid spacing ∆x = π/4 (8 points per wavelength).

These equilibrium configurations have been obtained by setting q0 = 1, β = 2, γ = 1, ν = 1, λ = 1, ζ = 1, an isotropic

equilibrium density ρ0 = 0.5 and κ = 0.3727, so that the equilibrium density of the smectic is ρs = 1 (density ratio

ρs : ρ0 = 2 : 1).

Consider a stack of planar smectic layers in contact with an isotropic phase, where the layer normal is in the ẑ

direction. When both phases are at coexistence (ǫ = ǫc), the density profile is ρ = ρ0 + κA, as illustrated in Fig.

1. Figure 1 shows an xz cross-section of a cubic computational domain with N = 643 nodes at coexistence with

ǫc = 0.675. The velocity is v = 0, and the interface is stationary with ∂tψ = 0. If ǫ 6= ǫc there is a direct coupling

between the local density difference relative to the stationary case and the order parameter. This coupling term

generally opposes interfacial motion.

Starting from this initial configuration, Fig. 2a shows the evolving configuration at time t = 90 when ǫ is set to 0.5

(within the smectic region of the phase diagram), and coupling constant ζ = 1. The initial smectic has grown, and

the region of high density has also spread, with its value reduced from the initial ρs = 1 (so as to conserve mass). We

note that the smectic is only able to grow significantly due to the fact that ρs : ρ0 = 2 : 1 so that there are enough

molecules in the isotropic phase to allow growth. Smectic growth does not occur for larger density ratios such as

ρs : ρ0 = 100 : 1 when ζ = 1.
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(a) ψ (b) ρ

FIG. 1: Middle cross section xy of a stack of flat smectic layers with normal in the z direction, showing the order

parameter field ψ and density field ρ used as initial condition. Simulations employing this initial conditions use

parameters β = 2, γ = 1, ν = 1, λ = 1, ρ0 = 0.5 and κ = 0.3727. For these values, the coexistence parameter is

ǫc = 0.675.

(a) ǫ = 0.5, ζ = 1 (b) ǫ = 0.5, ζ = 100 (c) ǫ = 0.8, ζ = 1 (d) ǫ = 0.8, ζ = 100

FIG. 2: Order parameter (top) and density (bottom) configuration at time t = 90, starting from the initial condition

in Fig. 1. For ǫ = 0.5, the smectic phase is energetically favored, while for ǫ = 0.8, the isotropic phase is

energetically favored. For ζ = 1 the interface moves to grow the energetically favored phase, while for ζ = 100 the

interface does not move when ǫ = 0.5 and moves only slightly when ǫ = 0.8.

Figure 2b shows the evolution of the same initial configuration and t = 90 but for ζ = 100. In this case the smectic

region and the density remain almost the same as in the initial condition shown in Fig. 1. The reason why further
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growth is not observed can be explained by the effective bifurcation parameter ǫe in Eq. (42). If the smectic grows

and the smectic-isotropic interface advances into regions of lower density, we argue that ǫe increases over ǫ in such

regions. Hence when ζ is large enough, the effective bifurcation parameter can increase even beyond the coexistence

value ǫc, which prevents any growth of the smectic.

Similarly, we show in Figs. 2c and 2d the case ǫ = 0.8 (within the isotropic region of the phase diagram) for ζ = 1

and 100, at t = 90. Consistent with the above discussion, we see some shrinkage of the smectic while increasing the

density of the isotropic phase (satisfying the balance of mass) when ζ = 1. However when ζ = 100 there is significantly

slower evolution of the smectic because of the strong coupling between the order parameter and the density. This

can also be explained in terms of the effective bifurcation parameter ǫe, as in this case if the smectic tries to shrink

it creates a region where ǫe decreases from ǫ.

V. MORPHOLOGICAL EVOLUTION AND FLOWS IN FOCAL CONIC DOMAINS

The outer boundary of a FCD in smectic films has a mean curvature that changes sign from positive away from

the center, to negative near the center. At that point there is a macroscopic singularity in the form of a cusp.

Near the cusp, the principal curvatures become very large, which can lead to interesting interfacial stresses and

flows. Experiments have shown that the FCD undergoes complex morphological changes under temperatures changes,

mediated by evaporation of smectic layers. In this section, we study the velocity field in a smectic-isotropic system

presenting layers bent in a focal conic configuration. We also revisit the morphological transitions studied in [34],

which were previously investigated within a purely diffusional model (governed by the order parameter equation only),

and for uniform density. First, we show that for a certain range of parameters, the transition from focal conic defects

to conical pyramids or concentric rings is also observed in the weakly compressible model with density contrast. We

then investigate how the velocity field changes during these morphological transitions, revealing the roles of Gaussian

curvature and layer orientation at the interface on flow fields.

A. Flows in focal conics at coexistence

We analyze the velocity fields obtained at coexistence ǫc = 0.675 for different values of ζ and density ratios, using

an initial condition consisting of bent layers forming a focal conic (see Fig. 6 left panel). The computational domain

is a cubic cell with N = 2563 grid points, with approximately 8 points per wavelength and q0 = 1, so that Lx = 200,

Ly = 200 and Lz = 200. Parameters used are β = 2, γ = 1, and ν = λ = 1. We will compare the velocity field v

obtained when ζ is large and the system approaches incompressibility with that obtained when ζ is small.

As a reference, we begin with the case with κ = 0, so ρs = ρ0 = 1. Figure 3 shows v at time t = 4 at the mid section

of the domain, y = Ly, so, at t = 4 for ζ = 100 and ζ = 0.01. As expected, for ζ = 100 the flow behaves similarly

to an incompressible uniform density system [35]. Vortices appear at the smectic-isotropic interface, where the flow

moves outward from the smectic in regions of negative mean curvature, and inward towards the smectic in regions of

positive mean curvature. The flow is governed by local curvatures since no significant density deviation from ρ = 1

is observed due to the large value of ζ. The term µ̄∇ψ determines v in Eq. (28), where the local curvatures appear

from the difference in chemical potential µ between a planar and a curved interface. This difference is given by the

Gibbs-Thomson equation for the case of layers parallel to the interface [34]:

δµ∆A = 2Hσh + (4H2 − 2G)σb − 2H(3G− 4H2)σt . (43)

Here ∆A is the difference in amplitude between the two phases, σh is the surface tension, σb the interface bending

coefficient, and σt the interface torsion coefficient. These coefficients can be directly computed from the model

parameters, see [34]. The mean curvature H = (c1 + c2)/2 is the average of the principal curvatures c1 and c2 at a

surface point, while the Gaussian curvature G = c1c2 is the product of these curvatures.

For surfaces where the leading order term proportional to H dominates Eq. (43), the difference in chemical potential

δµ is positive for H > 0, implying in a thermodynamic force µ̄∇ψ pointing towards the smectic at the interface, and
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the opposite when δµ is negative. Based on Eq. (28), this corroborates with the numerical results discussed for

Fig. 3(a), where we also notice that the flow is stronger in regions where the magnitude H is high. However, when ζ

is reduced to ζ = 0.01, the flow in the isotropic phase at t = 4 simply points away from the interface, whereas inside

the smectic the flow also moves up, and curves near the interface. The reason is that for small ζ the density has more

freedom to deviate from the equilibrium values ρ0 and ρs, particularly at the interface. This creates density gradients

that interfere with the resulting flow structure.
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(b) ζ = 0.01

FIG. 3: Comparison between the transient fluid flow v on smectic-isotropic fluid system for different ζ, at an early

time t = 4, where both phases have the same bulk density (κ = 0 and ρ0 = 1). Background color is the order

parameter ψ. We use N = 2563, ∆t = 1× 10−3, and parameters q0 = 1, η = 1, ǫ = 0.675 (coexistence), α = 1, β = 2

and γ = 1.

We now increase the density contrast to ρs : ρ0 = 2 : 1, using κ = 0.3727 and ρ0 = 0.5. Figure 4 shows numerical

results for v at time t = 4 for the cases of ζ = 100 and ζ = 0.01. When compared to Fig. 3(a), the velocity field

for ζ = 100 presents smaller vortices closer to the smectic region, which quickly decay away from the interface in

the isotropic phase. This is characteristic of quasi-incompressibility, since for large ζ the density is constant almost

everywhere except at the sharp interface. For the case of ζ = 0.01, the velocity points upwards throughout the

smectic-isotropic system, implying that the density gradient dominates the orientation of the flow. This result is

similar to Fig. 3(b), although for Fig. 4(b) the flow in the smectic is stronger; this happens owing to the combination

of the larger density gradient for ρs : ρ0 = 2 : 1 with the small value of ζ. In this case the density at the interface

becomes more diffuse, enhancing the longitudinal flow that moves from regions of high to low density.

On increasing the density ratio to ρs : ρ0 = 100 : 1, by using κ = 0.7379 and ρ0 = 0.01, some significant changes

in the velocity are observed for large ζ. Figure 5a shows that for ζ = 100 at t = 4, the flow in the smectic becomes

dominated by the potential part of the velocity, so that it points radially outward from the layers in the direction of

the density gradient. The velocity in the isotropic phase is smaller in magnitude, and points towards the smectic.

This happens because for large ζ the density gradient becomes large at the interface owing to the large density ratio.

We also show in Fig. 5c the transient flow for ζ = 100 at a later time, t = 25. The flow in the smectic has mostly

disappeared, so the only significant flow is in the isotropic phase towards the smectic and tangential at the interface.

Since the density of the isotropic phase is small, the mass flux in this case becomes very small in magnitude and

decreases with time.
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FIG. 4: Comparison between the transient fluid flow v on smectic-isotropic fluid system for different ζ, at an early

time t = 4, with ρs : ρ0 = 2 : 1 density ratio between bulk phases (κ = 0.3727 and ρ0 = 0.5). Background color is the

order parameter ψ. We use N = 2563, ∆t = 1× 10−3, and parameters q0 = 1, η = 1, ǫ = 0.675 (coexistence), α = 1,

β = 2 and γ = 1.

For ζ = 0.01 Fig. 5b shows that the velocity at t = 4 points upwards as in Fig. 4(b). In Fig. 5d, we see that the

velocity at t = 25 is still primarily pointing upwards, and that significant growth of smectic layers at the interface

has taken place when since t = 4. Since the energy penalty for deviations of the preferred bulk density is small for a

small ζ, the mass flux ρv from the bulk smectic towards the interface leads to the growth of layers. That is, growth of

the smectic by mass flow may occur, albeit at the cost of reducing the bulk smectic density in order to satisfy overall

mass conservation.

B. Flows in focal conics under thermal sintering

Transitions in smectic thin films from focal conic domains to conical pyramids have been experimentally observed

by Kim et al. [16, 17] under sintering. By increasing the value of ǫ (favoring the isotropic phase) we can simulate a

heat treatment of a smectic film similar to the sintering experiments. We set as initial condition the configuration of

Fig. 6 (left), with smectic layers bent in a focal conic configuration, in a domain with N = 2563 grid points, so that

Lx = 200, Ly = 200 and Lz = 200. Parameter values used are β = 2, γ = 1, ν = λ = 100, ρ0 = 0.5, ρs = 1 and

ζ = 0.01. We set ǫ = 0.8, so that the initial smectic region should slowly evaporate at the interface with the isotropic

phase. We choose a small value for ζ in order to allow the transition to take place. If ζ is too large the focal conic

morphology is unable to change significantly since the motion of ψ becomes restricted due to the balance of mass.

Figure 6 shows the initial focal conic (left) and the resulting conical pyramid (right) at time t = 80, after a number

of layers have evaporated away from the core, sculpting a pyramidal structure that is more resilient to evaporation

than the original focal conic. Also, the velocity field for a focal conic ǫ = 0.8 initially points away from the smectic,

similarly to Fig. 4(b).

Note that the edges of the smectic layers in the pyramidal region become exposed at the interface. As discussed

in [34], the equation describing interfacial thermodynamics for this perpendicular alignment of layers with respect to



15

0 50 100 150 200

x

0

50

100

150

200

z

(a) t = 4, ζ = 100

0 50 100 150 200

x

0

50

100

150

200

z

(b) t = 4, ζ = 0.01
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(d) t = 25, ζ = 0.01

FIG. 5: Comparison between the transient fluid flow v on smectic-isotropic fluid system for different ζ, at times

t = 4 and t = 25, with ρs : ρ0 = 100 : 1 density ratio between bulk phases (κ = 0.7379 and ρ0 = 0.01). Background

color is the order parameter ψ. We use N = 2563, ∆t = 1× 10−3, and parameters q0 = 1, η = 1, ǫ = 0.675

(coexistence), α = 1, β = 2 and γ = 1.

the interface is different from the classical Gibbs-Thomson equation found in literature, even at leading order. The

difference in chemical potential between planar and curved interfaces in this case is given by

δµ∆A =

[

1

2
∇2

sH + 2H(H2 −G)

]

σh
q20

, (44)

where the combination of curvatures in the RHS is similar to Willmore-type flows [60]. Therefore, we consider the

effect of layer alignment at the interface on flow.

For a small dimensionless ζ, local curvatures dominate the motion of ψ. A small ζ also leads to a very diffuse

density variation at the interface, which evolves slowly compared to the order parameter. Based on the balance of

linear momentum in Eq. (31), under these conditions the velocity at the interface of a conical pyramid is governed
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FIG. 7: Order parameter field for a conical pyramid (in cross-section) at t = 80 obtained from an initial focal conic

configuration. The velocity field v is also plotted, showing that the velocity becomes tangential to the interface of

the pyramid. Parameters are ǫ = 0.8 (favoring the isotropic phase), β = 2, γ = 1, ν = 1, λ = 1, ρ0 = 0.5, κ = 0.3727,

and ζ = 0.01.

cylinders enveloped by outer layers, bounded by edge dislocation loops. The line tension arising from the dislocations

is argued to drive the initial bridge expansion in the coalescence process. In contrast to ordinary fluids, Nguyen

et al. [64, 65] showed that permeation through the molecular layers of the merging islands is an additional channel

for dissipative motion, not included in Hopper’s model, and it may be responsible for the observed slow coarsening

dynamics. Coalescence of smectic islands [63, 64] and holes [66] have been observed in freely-suspended smectic films

(FSSF) with layers parallel to the surface of the film, with thicknesses that can range from two layers up to thousands

of layers.

Here, we study numerically a related configuration consisting of two smectic cylinders, which are initially touching,

surrounded by an isotropic phase of different density. While this geometry is much simpler than a FSSF, it connects

to Hopper’s work on the coalescence of two fluid cylinders, and also shows the role played by irrotational flow in our

model. As smectic is a uniaxial phase, we expect to observe qualitatively different features in the interaction between

two smectic cylinders when compared to isotropic fluids. We consider a N = 2562 × 32 grid as the computational

domain, so that Lx = 200, Ly = 200 and Lz = 25. The domain contains two smectic cylinders, each with radius

R0 = 37.5 and five layers, embedded in the middle of an isotropic domain. Parameters used are β = 2, γ = 1,

ν = λ = 1, ρ0 = 0.5, κ = 0.3727 (2:1 density ratio) and ζ = 100. We choose ǫ = 0.3, deep in the smectic state (as

ǫc = 0.675), so that the smectic is energetically favored. At the same time, we take ζ = 100 to be high enough to

guarantee a weak conservation of ψ, a necessary condition for smectic coalescence to take place (if ζ is too small, ψ

would grow and occupy the whole domain with ǫ = 0.3 and a 2:1 density ratio). Figure 8 shows the two smectic

cylinders creating a bridge between each other at time t = 2.5, and also the resulting stationary cylinder at time

t = 200 after coalescence occurs. Note that in addition to a two-dimensional coalescence process in the plane of the

smectic layers, we observe a number of layers growing in the normal direction ẑ, from five initial layers to eight in the

resulting cylinder (filling the whole Lz).
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(a) t = 2.5 (b) t = 200

FIG. 8: Coalescence of smectic cylinders inside a box with Lx = Ly = 200 and Lz = 25. Besides coalescence, the

number of layers of the final cylinder grow with respect to the initial ones. Parameters are ǫ = 0.3 (smectic region),

ζ = 100, β = 2, γ = 1, ν = 1, λ = 1, ρs = 1, and ρ0 = 0.5 (κ = 0.3727).

In order to make contact with Hopper’s theory for infinite fluid cylinders, we focus on the two-dimensional dynamics

on the plane of the stacks by changing the initial condition from five to eight smectic layers, so that both cylinders

occupy the entire z range of the domain. This initial condition is intended to mimic Hopper’s case of infinite cylinders

(and is also closer to the smectic islands constrained by enveloping layers observed in experiments). Figure 9 shows

the evolution of order parameter on the midplane (Lz/2) of the box: due to the large ζ, the area defined by ψ shows

little growth as it evolves. That is, as ζ and the density ratio gets larger, the area evolves in a more conserved fashion.

The midplane density evolves in the same way, since the motion of ψ is tied to ρ for large ζ.
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FIG. 9: Order parameter at the mid height xy plane of a box with Lx = Ly = 200 and Lz = 25 showing coalescence

of smectic cylinders, at times t = 0.5, t = 10 and t = 50. Initial conditions present two parallel smectic cylinders

with layers filling the whole height Lz. Parameters are ǫ = 0.3 (smectic region), ζ = 100, β = 2, γ = 1, ν = 1, λ = 1,

ρs = 1, and ρ0 = 0.5 (κ = 0.3727).

While capillarity driven coalescence is well understood for objects such as droplets or cylinders of isotropic fluids,

the modulated nature of a smectic leads to several significant differences. First, the interface between the cylinder

and the isotropic phase is composed of layers oriented perpendicular to the interface. According to the equations

derived in [34], shown here in Eq. (44), diffusion driven interface motion of the smectic for such orientation goes as

vn ∼ −H3 for zero Gaussian curvature (as in a cylinder), which by itself leads to coalescence at a slower rate than
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the classical motion by mean curvature. The smectic motion also depends on the evolution of the density, ρ̇, governed

by Eq. (30), which is proportional to −∇ · v. Therefore, in the coalescence of smectic cylinders, a competition exists

between the diffusional motion of the order parameter and mass transport.

Recall that the divergence of the velocity depends on the irrotational flow, ∇·v = ∇2Φ, given by Eq. (39) in Fourier

space. The first term on the RHS of Eq. (39) is proportional to the normal n at the interface when ρ 6= ρ0+κA. Since

∇·n = 2H, this implies that ρ̇ is proportional to the negative of the mean curvature, so that there is a mean curvature

driven flow of mass from regions of positive to negative curvature. To verify this, we plot the divergence of the velocity

for time t = 5 in Fig. 10. Regions of positive ∇·v correspond to an interface of positive mean curvature, while regions

of negative ∇ · v have an interface of negative mean curvature. Figure 10 shows the enlarged bridge region, and the

velocity field v. During coalescence, the flow in the left cylinder moves toward the right, and vice-versa, and at the

bridge the flow moves inwards in the region of negative mean curvature, as expected from the coalescence process.
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FIG. 10: Divergence of the velocity ∇ · v at the mid height xy plane of a box with Lx = Ly = 200 and Lz = 25 at

time t = 5. Initial conditions and parameters are the same as in Fig. 9. The right figure is a close up of the bridge

region, showing that the velocity field v moves from regions of positive ∇ · v (H > 0) towards regions of negative

∇ · v (H < 0).

In our numerical calculations involving smectic cylinders spanning the domain in z, we observe coalescence deep

inside the smectic region from ǫ = 0.2 up to the coexistence point ǫc = 0.675. In Fig. 11 we plot the normalized

bridge length between the smectic stacks as a function of time for different values of ǫ. Coalescence occurs faster as

we decrease the bifurcation parameter from the coexistence value, that is, as we decrease the energy of the smectic in

comparison to the isotropic phase (corresponding to a decrease in temperature). Qualitatively these curves and the

numerical evolution of the order parameter resemble the bridge width evolution shown in experiments and Hopper’s

theoretical model. The phase-field model also allows for more intricate order parameter morphologies, so that a

possibility for future work is to simulate FSSF and study the role of permeation on coalescence.

Interestingly, if the initial smectic cylinders do not span the computational domain in the z-direction, coalescence

is only observed once ǫ becomes sufficiently small. For example, using a domain with N = 2562 × 64, and the same

parameters as above, smectic domains of approximately five layers did not coalesce for ǫ close to ǫc = 0.675. From

plots of the midplane order parameter in Fig. 12, we observe that after an initial thin bridge is formed (at t = 25),

the two stacks move apart, until the bridge breaks (at t = 35). In this case, since five layers don’t span the domain

in the z-direction, growth in that direction competes with coalescence, as the total mass of the smectic phase is

approximately conserved for large ζ. In order to help visualize this process, Fig. 13 shows both the velocity v and the

order parameter in the x− z plane at Ly/2. At early times, t = 2.5, the two cylinders are still closely in contact (at

x = 100), but a flow forms that induces mass to move from the lateral of the cylinder towards the top and bottom.

At a later time, t = 25, the flow continues to point opposite to the bridge (which is very thin at this point, as seen in
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FIG. 11: Bridge width as a function of time, for simulations employing different values of ǫ. Domain size, initial

conditions and parameters are the same as in Fig. 9.

Fig. 12), leading the cylinders to further separate from each other. As we have seen in Fig. 11, coalescence is slower

at a higher ǫ, so at ǫc the coalescence bridge collapses as mass continuously moves away from it. At the top and

bottom of the cylinders, we observe the formation of target structures [46], which are interfacial rings (the bottom

and top droplets shown in the cross-section) induced by the circular geometry of the order parameter. Therefore,

while we argue that the capillary induced diffusion leads to a slow coalescence process, in this case the flow dominates

the motion of the smectic and inhibits coalescence.
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FIG. 12: Order parameter on the mid xy plane of a domain with Lx = Ly = 200 and Lz = 50 showing separation of

smectic cylinders, at times t = 2.5 and t = 25. Initial conditions are two smectic tangential cylinders with

approximately five layers. Parameters are ǫ = 0.675 (coexistence), ζ = 100, β = 2, γ = 1, ν = 1, λ = 1, ρs = 1, and

ρ0 = 0.5 (κ = 0.3727).
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FIG. 13: Order parameter and velocity field on the mid xz plane for the same calculation of Fig. 12. The z axis has

been multipled by a factor of four for better visualizing the flow. Left: two smectic cylinder in contact at x = 100,

and time t = 2.5. Right: smectic cylinders are almost separating due to the flow, time t = 25.

We note finally that coalescence does not occur in the isotropic region ǫ > ǫc for any of the geometries shown in this

section, even for cylindrical domains spanning the computational cell. Numerical results are shown in Fig. 14, using

the same parameters and initial configuration as in Fig. 9, with ǫ = 0.9. The smectic region shrinks since ǫ > ǫc. No

bridge is initially formed, and the cross-section of the cylinders start to melt into a target shape, as seen at t = 7.5. At

time t = 20 the target cross-section further breaks into droplets, and at time t = 200 the order parameter field shows

droplets spread all over the domain. The melting of smectic order when heating suspended films and formation of

isotropic or nematic droplets have also been observed experimentally [67, 68], so that the present model may provide

further insights on the interaction, arrangement and dynamics of these droplets. In terms of differential equations,

these results are strikingly different from classical Swift-Hohenberg dynamics (pure diffusional dynamics of ψ), for

which the order parameter in the isotropic region would simply disappear in time. We conclude that coalescence

requires synergy between flow and diffusive dynamics of the order parameter and density, and it may not occur if one

of them becomes antagonistic to the coalescence process.

B. Interactions between focal conic domains

While topological defects are known to interact in various soft matter systems, little is known about interactions

between focal conics, or even about flows on their surface. The formation of a focal conic domain of the type

investigated in this paper depends on the balance between the splay energy to form the conic (proportional to splay

elastic constantK1), and the difference between the surface tensions for parallel and perpendicular molecular anchoring

at the the smectic-air interface (∆σ = σ‖−σ⊥). The size of the conic is determined by the balance of the two energies,

and it is of the order of K1/|∆σ| [69]. Once an equilibrium array of focal conics is formed, Kim et al. [16] have reported

experiments on sintering of FCDs that showed morphologies in which neighboring focal conic domains interact, for

example via thin tunnel like structures that remains from the original film. In order to begin to understand these

interactions, we have investigated numerically the evolution of initial configurations that consist of two focal conics,

where we have biased the system away from equilibrium. We show three different examples here: (1) we differentially

compress the smectic layers of two neighboring focal conic domains, (2) we impose a density gradient in the isotropic
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FIG. 14: Order parameter at the mid height xy plane of a box with Lx = Ly = 200 and Lz = 25 showing

disintegration of smectic cylinders, at times t = 7.5, t = 20 and t = 200 (steady state). Initial conditions present two

smectic tangential cylinders with layers filling the height Lz. Parameters are ǫ = 0.9 (isotropic region), ζ = 100,

β = 2, γ = 1, ν = 1, λ = 1, ρs = 1, and ρ0 = 0.5 (κ = 0.3727).

phase from one defect towards the other, and (3) we start from an initial condition in which two focal conics overlap.

In all cases we use a computational domain with N = 512× 2562 grid points, 8 points per ψ wavelength and q0 = 1,

so that Lx = 400, Ly = 200 and Lz = 200, and we set the density ratio between phases ρs : ρ0 as 2 : 1 (with ρs = 1

and ρ0 = 0.5). Other parameters used are β = 2, γ = 1, ν = λ = 1, and ζ = 1, which allows for a moderate coupling

between the order parameter and density fields.

1. Layer compression

The equilibrium layer spacing, given by λ0/2, may be changed by straining the liquid crystal [70]. For arrays of

FCDs, due to boundary conditions or proximity to defects, some regions may have layers deviating from λ0/2. We

impose a variable strain so that the local layer wavenumber increases linearly from 1.2q0 at x = 0 to 0.8q0 at x = Lx.

Hence, the layers in the left focal conic are initially compressed, and the right ones stretched. Figure 15 shows the

velocity v and order parameter ψ at the middle cross section of the domain (y = Ly/2) for ǫ = ǫc. At early times,

t = 0.5, there is induced flow from the conic in compression to the conic in extension. At t = 15 there is a strong

flux in the bulk smectic so that the compressed conic grows into the isotropic phase while increasing the interlayer

spacing. On the other side, the conic with stretched layers contracts by decreasing the interlayer spacing. Simultaneous

evaporation/condensation and mass transport through the smectic allows the initially compressed (expanded) focal

conic to expand (contract) at a later time, so that its layers achieve the required equilibrium layer spacing.

2. Imposed density gradient in the isotropic phase

The second situation we consider is an initial condition consisting of two identical focal conics, with an imposed

density gradient in the isotropic phase. The initial density in the isotropic phase is a function of x, starting at ρ = 0.7

at x = 0, and decreasing linearly up to ρ = 0.2 at x = Lx (hence deviating from ρ0 = 0.5). The density of the smectic

is constant at ρs = 1. Figures 16 (a) and (b) show the velocity field with the density in the background for times

t = 0.5 and t = 25 with ǫ = 0.8. The velocity field goes to the right (so from high density to low density) in the

isotropic phase, and also points to the right in the smectic, despite the smectic having uniform density ρs = 1. At

time t = 25, the velocity field is small in the smectic, but flow in the isotropic region continues since the density is
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FIG. 15: Two neighboring focal conics with a varying strain field, showing both the transient velocity field v and

the order parameter ψ. The layers of the left focal conic are initially compressed, and those of the right focal conic

stretched.

still not homogeneous. Figure 16(c) shows the order parameter field ψ at time t = 25. Note that the radius of the

region containing the left focal conic has increased in time due to the imposed density gradient. The center of the

left focal conic has also moved from x = 100 to the right, and this region now spans up to approximately x = 215,

thereby compressing the right focal conic.

3. Overlapping focal conics

The third example is that of two focal conics with a reduced distance between their centers. Figure 17 shows the

velocity and order parameter fields at the cross section y = Ly/2 with ǫ = ǫc. The initial distance between the cores

is L = 150, whereas the minimum distance under these conditions to isolate two focal conics is Le = 200. This

compression creates a region of high positive mean curvature between the two focal conics, inducing strong flow from

the isotropic phase towards the smectic in that region. This flow persists for long times as the focal conic domains

relax to equilibrium.
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FIG. 16: Two neighboring focal conics in contact with an isotropic phase, with an initial density gradient present in

the isotropic phase. Figures show the transient velocity field v alongside the density (a,b), and with the order

parameter (c).
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FIG. 17: Two neighboring focal conics that overlap at x = 200, showing both the transient velocity field v and the

order parameter ψ. The minimum non-overlapping distance between their cores is Le = 200, while the distance

employed as initial condition is L = 150.

VII. CONCLUSIONS

A coupled phase-field and hydrodynamics model has been introduced to describe a weakly compressible two phase

system consisting of a smectic (soft modulated phase) in contact with an isotropic fluid of different density (e.g. water,

air or the own liquid crystal isotropic state). A non-conserved smectic order parameter is coupled to a conserved mass

density so as to accommodate non-solenoidal flows near the smectic-isotropic boundary arising from a density contrast

between the two phases. The model energy is a functional of the order parameter and its derivatives, and also includes

coupling to a conserved density that has different values in bulk smectic and isotropic regions. For large values of the

coupling coefficient, the order parameter becomes approximately conserved. This is the quasi-incompressible limit

in which the density is constitutively related to the order parameter. However for smaller values of the coupling

coefficient the variations of density and order parameter become independent. In real physical systems, this suggests

a temperature dependence of the coupling coefficient: for instance, it would become lower at elevated temperatures

in order to allow the smectic to melt/evaporate independently of the density. The model fully incorporates surface
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driven flows due to local stresses that depend on boundary curvatures, and non-solenoidal flows that arise from density

gradients.

The weakly compressible model has been used to describe morphological instabilities in smectic thin films, away

from an equilibrium configuration comprising an array of focal conic domains. Experiments show that, upon sintering,

focal conics decay into conical pyramids and concentric rings. For a single focal conic domain, our model leads to a

transition between focal conics and conical pyramids upon increasing the temperature, mediated, as in the experiments,

by localized evaporation of smectic layers. Flows are induced by boundary stresses due to curvature -including

Gaussian curvature- through an extended form of equilibrium thermodynamics conditions at a curved surface (the

Gibbs-Thomson equation). Furthermore, different boundary conditions apply when smectic layers become exposed

in pyramidal domains, which do not have a counterpart in classic thermodynamics. This configuration is associated

with tangential flows at the boundary of conical pyramids, which helps explain why this structures persist while focal

conics evaporate. Irrotational flows are also induced by boundary motion due to phase density changes.

As further applications, we consider configurations that mimic focal conic interactions. These include setting up a

density gradient in the isotropic phase above two focal conics, adding a nonuniform strain in the smectic layers, and

taking the inter-center distance of two conics small enough so the conics overlap. Finally, we discuss the coalescence

of cylindrical stacks of smectic layers, motivated by Hopper’s theory of coarsening of isotropic fluid cylinders, and

experiments on freely-suspended smectic films. Coalescence depends on the competition between capillarity induced

diffusion of the order parameter, local curvatures, and mass transport. Instead, if we simulate a heating of the smectic

cylinders, numerical results show the melting of smectic order and formation of droplets, a phenomenon that has also

been observed in experiments. Future work will address the complex role of permeation in the coalescence of islands

and holes, as discussed in recent experiments, and further explore the physics behind the transition into arranged

droplets.
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[21] W.K. Schief, M. Kléman, and C. Rogers, “On a nonlinear elastic shell system in liquid crystal theory: Generalized willmore

surfaces and dupin cyclides,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461,

2817–2837 (2005).

[22] H. Brand and H. Pleiner, “Nonlinear reversible hydrodynamics of liquid crystals and crystals,” Journal de Physique 41,

553–564 (1980).

[23] F.M. Leslie, “Some constitutive equations for anisotropic fluids,” The Quarterly Journal of Mechanics and Applied Math-

ematics 19, 357–370 (1966).

[24] P.C. Martin, O. Parodi, and P.S. Pershan, “Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids,”

Physical Review A 6, 2401 (1972).

[25] E. Moritz and W. Franklin, “Nonlinearities in the nematic stress tensor,” Physical Review A 14, 2334 (1976).

[26] H.R. Brand, P.K. Mukherjee, and H. Pleiner, “Macroscopic dynamics near the isotropic–smectic-A phase transition,”

Physical Review E 63, 061708 (2001).

[27] P.K. Mukherjee, H. Pleiner, and H.R. Brand, “Simple landau model of the smectic-A-isotropic phase transition,” The

European Physical Journal E 4, 293–297 (2001).

[28] N.M. Abukhdeir and A.D. Rey, “Edge dislocation core structure in lamellar smectic-A liquid crystals,” Soft Matter 6,

1117–1120 (2010).

[29] A. Poniewierski and T.J. Sluckin, “Phase diagram for a system of hard spherocylinders,” Physical Review A 43, 6837

(1991).

[30] A. Linhananta and D.E. Sullivan, “Phenomenological theory of smectic-A liquid crystals,” Physical Review A 44, 8189

(1991).

[31] M.Y. Pevnyi, J.V. Selinger, and T.J. Sluckin, “Modeling smectic layers in confined geometries: Order parameter and

defects,” Physical Review E 90, 032507 (2014).
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