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1. Introduction

Liquid crystals (LCs) are a critical material for emerging technologies [1, 2].
Their response to optical [3, 4, 5, 6, 7], electric/magnetic [8, 9, 10], and mechan-
ical actuation [11, 12, 13, 14] has already yielded various devices, e.g. electronic
shutters [15], novel types of lasers [16, 17], dynamic shape control of elastic bod-5

ies [18, 19], and others [20, 21, 22, 23, 24]. Furthermore, in the emerging field of
active matter, self propulsion often leads to nematic order, both because of the
broken symmetry in motion induced by the constituent particles, and because
the elongated particles themselves promote liquid crystalline ordering [25, 26].
Fruitful connections are being found with such disparate areas of Biology as10

rearrangements in confluent epithelial tissue [27], neural stem cell cultures [28],
or cellular motors comprising microtubule bundles and kinesin complexes [29].

LCs are a meso-phase of matter in which its ordered macroscopic state is
between a spatially disordered liquid, and a fully crystalline solid [30]. In their
nematic phase, in which long ranged orientational order exists, the Landau-de15

Gennes (LdG) theory introduces a tensor-valued function Q to describe local
order in the LC material. In particular, the eigenframe of Q yields information
about the statistics of the distribution of LC molecule orientations. The energy
functional of Q that describes the LC material involves both a bulk potential,
and an elastic contribution involving the derivatives of Q.20

Unlike the related description of a LC nematic phase in terms of a director,
the analysis based onQ is generally limited to the so called one constant approxi-
mation, appropriate for an elastically isotropic phase. In this case, the Landau-
de Gennes energy is supplemented by a gradient term of the form L1|∇Q|

2,
where L1 is the elastic constant. Inclusion of elastic anisotropy requires gradi-25

ent terms at least of third order in Q. Unfortunately, at this order, the energy is
known to become unbounded for any choice of parameters [31, 32]. Therefore,
in principle, the requirement of a stable energy would imply consideration of
terms at least of fourth order in gradients. Since there are 22 possible fourth or-
der invariants allowed by symmetry [33], the Landau-de Gennes theory becomes30

overly complex for anisotropic systems.
This paper develops an alternative method to the LdG model that uses a

special type of singular bulk potential, the so-called Ball-Majumdar potential
[31]. This potential has the following desirable properties: (i), it can be de-
rived from a microscopic interaction potential by using the tools of statistical35

mechanics; and (ii), it enforces that Q has physically permissible eigenvalues.
However, this choice of potential introduces some novel difficulties that are not
present in the standard LdG model, chief among them is that in the imple-
mentation the energy as a function of Q does not have a closed form, rather it
needs to be evaluated entirely numerically. This is analogous to other self con-40

sistent field theories as applied, for example, to polymers [34]. Many numerical
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methods and implementations already exist for the standard LdG model, e.g.
[35, 36, 37, 38, 39, 40, 41]. However, numerical methods for the Ball-Majumdar
potential have been given only recently [42, 43]. In this paper we formalize this
prior work, contrast its results with the LdG model in cases in which the latter45

fails, and also show the power of the method by computing defect configurations
in three spatial dimensions.

2. Liquid Crystal Theory

We briefly review in this section the Landau-de Gennes theory for a ne-
matic phase, as well as the more microscopic Maier-Saupe theory. Consider an50

anisotropic LC molecule which is uniaxial, with orientation described by the
unit vector p. The Maier-Saupe potential between two molecules i and j is a
contact interaction of the form −κ

(
(pi · pj)

2 − 1/3)
)
, where κ is the interaction

constant [1]. In the isotropic phase, the thermal average of p is zero, while it
is nonzero in the nematic phase. The Landau-de Gennes theory of a nematic55

phase is formulated instead in terms of a mesoscopic order parameter, the sym-
metric, traceless tensor Q. In the isotropic phase Q = 0. In the nematic phase,
Q is nonzero. A uniaxial nematic phase corresponds to two of the eigenvalues
of Q being equal, and a biaxial phase to the general case. Note that although
the molecules themselves are uniaxial, the distribution of local orientations may60

itself be uniaxial or biaxial.

2.1. Landau-de Gennes Theory

Let Ξ be the set of symmetric, traceless 3×3 matrices. Given a tensor-valued
function Q : Ω→ Ξ, where Ω is a physical domain with Lipschitz boundary Γ,
the free energy of the LdG model is defined as [44, 45]:

E[Q] :=

∫

Ω

W(Q,∇Q) dx+
1

ε2

∫

Ω

ψ(Q) dx

+ ηΓ

∫

Γ

fΓ(Q) dS(x)−

∫

Ω

χ(Q) dx,

(1)

with

W(Q,∇Q) :=
1

2

(
L1|∇Q|

2 + L2|∇ ·Q|
2 + L3(∇Q)T ··· ∇Q,

+ L4∇Q ··· (e ·Q) + L∗∇Q ··· [(Q · ∇)Q]
)
,

(2)

where {Li}
4
i=1, L∗, are material dependent elastic constants, and

|∇Q|2 := (∂kQij)
2, |∇ ·Q|2 := (∂jQij)

2, (∇Q)T ··· ∇Q := (∂jQik)(∂kQij),

∇Q ··· (e ·Q) := ejklQji∂lQki, ∇Q ··· [(Q · ∇)Q] := Qlk(∂lQij)(∂kQij).

(3)

We use the convention of summation over repeated indices. Energies in Eq. (1)
are made dimensionless by writing them in units of the temperature, T , while
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lengths are scaled by a characteristic length ξ. The value of the dimensionless65

parameter ε2 ≡ L1/(Tξ
2) determines the relative weight of the gradient depen-

dent energy W(Q,∇Q) to the bulk potential ψ(Q) and thus determines ξ [46].
All five elastic constants can be related to the five independent constants of the
Oseen-Frank model (i.e. K1, K2, K3, K4, and the twist q0) [44, 45]. Indeed, L4

accounts for twist and L∗ is needed to have five independent constants. Note70

that taking Li = 0, for i = 2, 3, 4, and L∗ = 0 gives the one constant LdG
model. More complicated models can also be considered [45, 1, 47]. The bulk
potential ψ(Q) is discussed in the next subsection.

The surface energy fΓ(Q), with parameter ηΓ ≥ 0, accounts for weak an-
choring of the LC (i.e. penalization of boundary conditions). For example, a
Rapini-Papoular type anchoring energy [48] can be considered:

fΓ(Q) =
1

2
tr (Q−QΓ)

2
≡

1

2
|Q−QΓ|

2, (4)

where QΓ(x) ∈ Ξ for all x ∈ Γ.
The function χ(·) accounts for interactions with external fields (e.g., an

electric field). For example, the energy density of a dielectric LC with fixed
boundary potential is given by −1/2D ·E [49], where the electric displacement
D is related to the electric field E by the linear constitutive law [50, 1, 51]:

D = εE = ε̄E+ εaQE, ε(Q) = ε̄I+ εaQ, (5)

where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric
permittivities. Thus, in the presence of an electric field, χ(·) becomes

χ(Q) = −
1

2
D ·E = −

1

2

[
ε̄|E|2 + εaE ·QE

]
. (6)

2.2. Landau-de Gennes bulk potential75

The bulk potential ψ is a double-well type of function that is given by

ψ(Q) = K −
A

2
tr(Q2)−

B

3
tr(Q3) +

C

4

(
tr(Q2)

)2
. (7)

Above, A, B, C are material parameters such that A, B, C are positive; K is a
convenient constant to ensure ψ ≥ 0. Stationary points of ψ are either uniaxial
or isotropic Q-tensors [52].

This potential was introduced to describe the vicinity of the isotropic-nematic
phase transition, which is weakly first order. Therefore the eigenvalues of Q are80

small. However, the same potential is used to describe systems deep inside the
nematic phase, while not providing for any constraint on the eigenvalues. It
is known that they can leave their physically admissible range in some circum-
stances. For example, consideration of an elastically anisotropic phase K1 6= K3

requires that L∗ 6= 0. In this case, the energy E[Q] is unbounded below for any85

choice of physical parameters [31, 32], a divergence that is related to the absence
of a constraint on the eigenvalues. The computational approach that we present
here is precisely designed to remedy this problem.

4



3. Self Consistent Mean Field Theory

3.1. Macroscopic order parameter90

We review the singular bulk potential introduced in [53, 31]. The goal is to
have a bulk potential that correctly controls the eigenvalues of Q ∈ Ξ, where Ξ
is the set of symmetric, traceless 3 × 3 matrices. Note that Ξ is spanned by a
set of five basis matrices {Ek}5k=1 [54].

The first step is to introduce a definition of the macroscopic order parameter
(or mesoscopic field, under the assumption of local equilibrium), given by

Q =

∫

S2

(
p⊗ p−

1

3
I

)
ρ(p) dS(p), (8)

where ρ ∈ P is the equilibrium probability distribution of the LC molecules
given by statistical mechanics, i.e.

P :=

{
ρ ∈ L1(S2;R) | ρ ≥ 0,

∫

S2

ρ(p) dS(p) = 1

}
. (9)

Note that Q as defined is a thermal average. Therefore the minimization dis-95

cussed in Sec. 3.2 at fixed Q needs to be understood in a mean field sense. Note
also that in the case of a non uniform configuration, we will assume that the
same definition is valid so that an order parameter field Q(x) is defined from
the local distribution ρ(p,x).

Equation (8) implies that the eigenvalues of Q, denoted λi ≡ λi(Q), satisfy

−
1

3
≤ λi(Q) ≤

2

3
, for i = 1, 2, 3,

3∑

i=1

λi(Q) = 0. (10)

In numerical work involving the Landau-de Gennes energy, equilibrium configu-100

rations of Q are obtained by energy minimization, where the energy functional
E(Q) is independent of any probability distribution of the underlying orienta-
tion of uniaxial molecules. In other words, (10) is not guaranteed. In contrast,
the potential function defined below in Eq. (13) provides an energetic penalty
so that the eigenvalues of Q satisfy the bounds in (10).105

3.2. Self-consistent free energy

Let us define the entropy functional

S[ρ] =

∫

S2

ρ(p) ln ρ(p) dS(p), (11)

and the intermolecular interaction kernel

K[ρ, η] =

∫

S2

∫

S2

[
(p · q)2 −

1

3

]
ρ(p)η(q) dS(p) dS(q), (12)
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where ρ and η are two probability distribution functions in P. The Maier-Saupe
Potential is defined as

IMS[ρ] = TS[ρ]− κK[ρ, ρ], (13)

where T > 0 is temperature, and κ > 0 is a constant (we have omitted the Boltz-
mann constant kB). With this definition, IMS reduces to the thermodynamic
free energy when the distribution ρ is the corresponding equilibrium probability
distribution.110

One, however, proceeds differently. Given a value of Q (or locally, if a field
Q(x) is specified), we minimize IMS[ρ] over the space of probability distribution
functions with the condition that Q is given by Eq. (8).

It is straightforward to write the interaction energy solely as a function of
Q. We have

K[ρ, ρ] =

∫

S2

qT

(∫

S2

[
p⊗ p−

1

3
I

]
ρ(p) dS(p)

)
qρ(q) dS(q)

=

∫

S2

qTQqρ(q) dS(q) = Q :

∫

S2

[
q⊗ q−

1

3
I

]
ρ(q) dS(q) = Q : Q = |Q|2,

(14)

where we used the fact that Q is traceless. Therefore, the energy term in the
Maier-Saupe free energy of a given configuration Q is simply −κ|Q|2.115

The computation of the entropy for fixed Q is more complex. As in other
field theories, one needs to “invert” the relationship in (8), i.e., given Q find the
corresponding ρ that provides this value of Q in equilibrium. Of course, this is
ill-posed, so we must impose some additional conditions. We use a mean field
assumption, according to which ρ minimizes IMS[ρ] over the admissible set, and
define the corresponding mean field free energy as

ψ(Q) := inf
ρ∈AQ

IMS[ρ],

= T inf
ρ∈AQ

S[ρ]− κ|Q|2,
(15)

where the admissible set is

AQ :=

{
ρ ∈ P | Q =

∫

S2

[
p⊗ p−

1

3
I

]
ρ(p) dS(p)

}
. (16)

Since Q is fixed, we can focus on the entropy. Define

f(Q) :=

{
infρ∈AQ

S[ρ], if eigenvalues of Q satisfy (10),

+∞, else.
(17)

Then

ψ(Q) = Tf(Q)− κ|Q|2. (18)
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Figure 1: The bulk potential, Eq. (18), with Q = S(n⊗n− (1/3)I)+R(m⊗m− (1/3)I) and
κ/T = 4. The energy goes to infinity as Q approaches the physical bounds. For the chosen
value of κ/T there are three minima that represent uniaxial states for each possible director
direction which are highlighted with black dots.

Figure 1 shows plots of Eq. (18) for Q parameterized as

Q = S

(
n⊗ n−

1

3
I

)
+R

(
m⊗m−

1

3
I

)
(19)

over the “physical triangle” as in [52]. For the plots we set κ/T = 4. As seen in
the figure, when Q gets close to the physical bounds the bulk potential diverges.
For this value of κ/T , there are three minima corresponding to uniaxial states
where the director is n, m, or n × m. For κ/T < 3.4049 there is a single
minimum at Q = 0 corresponding to the isotropic phase [42].120

3.3. Properties

Before proceeding with the numerical algorithm, and for completeness, we
begin by summarizing a few preliminary results, see [31].

Lemma 1. For any Q ∈ Ξ, such that −1/3 < λi(Q) < 2/3 (for i = 1, 2, 3),
the set AQ is non-empty.125

Proof. Given Q ∈ Ξ, let R be the orthogonal matrix that diagonalizes Q,
i.e. Λ = RTQR, where (Λ)ii = λi(Q), for i = 1, 2, 3, where 2/3 > λ1 ≥ 0,
−1/3 < λ3 ≤ 0. Now define the following (generalized) function (singular
measure)

ρ̃(p) =
3∑

k=1

(
λk +

1

3

)
δ(p− ek) + δ(p+ ek)

2
, where

∫

S2

ρ̃(p) dS(p) = 1,

(20)

where δ(· − a), for a ∈ S2, is the Dirac delta function on S2 such that
∫

S2

g(p)δ(p− a) dS(p) = g(a). (21)
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Now let Xij :=
∫
S2

(
p⊗ p− 1

3I
)
ij
ρ̃(p) dS(p), for 1 ≤ i, j ≤ 3, and one can

check that

Xii = λi, for i = 1, 2, 3, and Xij = 0, for i 6= j. (22)

In other words, we have

Λ =

∫

S2

(
p⊗ p−

1

3
I

)
ρ̃(p) dS(p), (23)

i.e. it satisfies the constraint. Next, we replace (δ(p− ek) + δ(p+ ek))/2 by a
regularized version

φεk(p) =

{
1

2|A1
ε
| , if |p · ek| ≥ 1− ε,

0, if |p · ek| < 1− ε,
(24)

where ±Ak
ε denotes the spherical cap at ±ek and |A1

ε | = 2πε is the area of one
of the two spherical caps over which φεk 6= 0, with ε > 0 small. Now define a
regularized version of (20):

ρ̃ε(p) = a0

3∑

k=1

(
λk +

1

3
+ a1

)
φεk(p), (25)

where a0 > 0 and a1 are constants. For convenience, define

rki =
1

2|A1
ε |

∫

+Ak
ε
∪−Ak

ε

p2i dS(p), rii = 1−O(ε), ∀i, rki = O(ε2), for i 6= k,

(26)

and note that 1 =
∑

i=1 r
k
i for all k = 1, 2, 3, and symmetry implies

rki = rik, and rik = rit for all i, k, t distinct, (27)

which implies that rkk+2rik = 1 whenever i 6= k. Now defineXε
ij :=

∫
S2

(
p⊗ p− 1

3I
)
ij
ρ̃ε(p) dS(p),

for 1 ≤ i, j ≤ 3, and compute:

Xε
ii = a0

3∑

k=1

(
λk +

1

3
+ a1

)
1

2|A1
ε |

∫

+Ak
ε
∪−Ak

ε

(
p2i −

1

3

)
dS(p)

= a0

3∑

k=1

(
λk +

1

3
+ a1

)(
rki −

1

3

)

= a0
∑

k 6=i

(
λk +

1

3
+ a1

)(
rki −

1

3

)
+ a0

(
λi +

1

3
+ a1

)(
rii −

1

3

)
.

(28)
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Since rii = r11 for all i, and rki = r21 for all i 6= k, we continue to simplify (28):

Xε
iia

−1
0 =

(
r21 −

1

3

)∑

k 6=i

(
λk +

1

3
+ a1

)
+

(
λi +

1

3
+ a1

)(
r11 −

1

3

)

=

(
r21 −

1

3

)[
2

3
− λi + 2a1

]
+

(
λi +

1

3
+ a1

)(
r11 −

1

3

)

= λi
(
r11 − r

2
1

)
+

(
1

3
+ a1

)(
r11 + 2r21 − 1

)
︸ ︷︷ ︸

=0

= λi
(
r11 − r

2
1

)
.

(29)

Thus, letting a0 :=
(
r11 − r

2
1

)−1
= 1 +O(ε), we get

Xε
ii = λi, for i = 1, 2, 3. (30)

In addition, for i 6= j, we see that

Xε
ij = a0

3∑

k=1

(
λk +

1

3
+ a1

)
1

2|A1
ε |

∫

+Ak
ε
∪−Ak

ε

pipj dS(p) = 0, (31)

where the integral term drops by symmetry/cancellation. Note that (30) and
(31) hold for any value of a1. We must choose a1 such that

1 =

∫

S2

ρ̃ε(p) dS(p) = a0

3∑

k=1

(
λk +

1

3
+ a1

)
= a0 (1 + 3a1) ,

⇒ a1 =
1

3

(
1

a0
− 1

)
= O(ε),

(32)

where a1 may be negative. Since λk +1/3 > 0, choosing ε > 0 sufficiently small
(but fixed), we see that λk +(1/3)+ a1 > 0 for k = 1, 2, 3. Therefore, ρ̃ε(p) ≥ 0
for all p, and ρ̃ε ∈ P. Moreover,

Λ =

∫

S2

(
p⊗ p−

1

3
I

)
ρ̃ε(p) dS(p), (33)

and ρ̃ε ∈ AΛ. Finally, by rotating coordinates with R, and defining ρ̂ε(Rp) :=
ρ̃ε(p), (33) transforms into

Q =

∫

S2

(
p̂⊗ p̂−

1

3
I

)
ρ̂ε(p̂) dS(p̂), (34)

where ρ̂ε ∈ AQ. So AQ is non-empty.

The following result lays out the main aspects of f needed.
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Theorem 2. Given Q with −1/3 < λi(Q) < 2/3 (for i = 1, 2, 3), there exists a
unique minimizer ρ∗ ∈ AQ to the optimization problem in (17). In other words,

f(Q) =

∫

S2

ρ∗(p) ln ρ∗(p) dS(p), (35)

where

ρ∗(p) =
exp

(
pTAp

)

Z(A)
, Z(A) =

∫

S2

exp
(
pTAp

)
dS(p), (36)

and A ∈ Ξ (symmetric, traceless) is the (unique) Lagrange multiplier for the
constraint in (16). Moreover, A satisfies the following non-linear equation, a
requirement of mean field self-consistency:

1

Z(A)

∂Z(A)

∂A
: P = Q : P, for all P ∈ Ξ. (37)

Proof. Step 1. We show that the minimization problem is well-posed. From
Lemma 1, we know AQ is non-empty. Moreover, the constraint in (16) is clearly
convex, so AQ is a convex set. In addition, S[·] is a convex functional on P,130

because ρ ln ρ is a (strictly) convex function of ρ. Hence, S[·] is weakly lower
semi-continuous on P. So, by standard theory from the calculus of variations,
there exists a minimizer ρ∗ ∈ AQ, and it is unique by convexity.

Step 2. Derive the Euler-Lagrange equations that characterize the mini-
mizer. We will mainly proceed formally, but this can be made more rigorous
with similar arguments as in [55, Ch. 8]. In order to account for the constraint
in AQ, define the Lagrangian

L [ρ,A] := S[ρ] +A : C [ρ] =

∫

S2

ρ(p) ln ρ(p) dS(p) +A : C [ρ] ,

C [ρ] := Q−

∫

S2

(
p⊗ p−

1

3
I

)
ρ(p) dS(p) ∈ Ξ,

(38)

where A is a constant matrix in Ξ. In order to account for the other constraints
of ρ being a probability measure, let us parameterize it:

ρ(p) =
eω(p)

Z(ω)
, where Z(ω) =

∫

S2

eω(p) dS(p), (39)

where ω : S2 → R ∪ {−∞} is an “arbitrary” (measurable) function; thus, ρ is
a probability measure for any ω. We list some perturbation formulas that will
be useful later. Let ωε = ω + εη, where ε > 0 is small, and η is an arbitrary
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measurable function (perturbation). Then, standard variational calculus gives

δω(e
ω)(η) :=

d

dε

∣∣∣
ε=0

eω+εη = ηeω, δωZ(ω)(η) =

∫

S2

η(p)eω(p) dS(p),

δω

(
ω

Z(ω)

)
(η) =

η

Z(ω)
−

ω

(Z(ω))2
δωZ(ω)(η) =

1

Z(ω)

(
η − ω

∫

S2

η(p)ρ(p) dS(p)

)
=

1

Z(ω)
(η − ωη̄) ,

δω

(
eω

Z(ω)

)
(η) =

ηeω

Z(ω)
−

eω

(Z(ω))2
δωZ(ω)(η) = ρ(p) (η(p)− η̄) ,

(40)

where η̄ = Eρ[η] (the expected value with respect to ρ).
Step 3. Next, we derive the KKT conditions for the optimal solution of the

problem, in terms of ω. So, we instead form the Lagrangian (38) in terms of ω:
L [ω,A] := S[ω] +A : C [ω]. Computing the variation of the entropy, we have

δωS[ω](η) =

∫

S2

δω

(
eω

Z(ω)

)
(η) [ω(p)− lnZ(ω)] dS(p) +

∫

S2

ρ(p)

[
η(p)−

1

Z(ω)
δωZ(ω)(η)

]
dS(p)

=

∫

S2

ρ(p) (η(p)− η̄) [ω(p) + 1− lnZ(ω)] dS(p) =

∫

S2

ρ(p) (η(p)− η̄)ω(p) dS(p),

(41)

where the last equality is because of the definition of η̄ and the fact that +1−135

lnZ(ω) is a constant. Note that ρ satisfies (39).
Next, note that

A : C [ω] = A : Q−

∫

S2

pTAp
eω(p)

Z(ω)
dS(p). (42)

Hence, the first variation of the constraint gives

δω(A : C [ω])(η) = −

∫

S2

pTAp δω

(
eω

Z(ω)

)
(η) dS(p) = −

∫

S2

pTAp ρ(p) (η(p)− η̄) dS(p).

(43)

The first KKT condition is given by δωL [ω,A] (η) = 0, for all admissible η.
Therefore, by the above calculations, we obtain

0 = δωL [ω,A] (η) =

∫

S2

[
ω(p)− pTAp

]
ρ(p) (η(p)− η̄) dS(p), (44)

for all admissible η. This implies that ω(p)−pTAp = c, where c is any constant.
So, from (39), we find

ρ(p) = ec
exp

(
pTAp

)

Z(ω)
=

exp
(
pTAp

)

Z(A)
, (45)

where the ec term cancels out. Since the minimizer is unique, we have proven
(36). The second KKT condition simply recovers the constraint 0 = ∂L [ω,A] /∂A =
C [ω].
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Step 4. Finally, the last step in the inversion is an equation to determine
A ∈ Ξ. Starting from the relation Z(A) =

∫
S2 exp

(
pTAp

)
dS(p), we first

differentiate with respect A but in the direction of general symmetric matrices,
not necessarily trace free:

∂Z(A)

∂A
=

∫

S2

∂

∂A

(
pTAp

)
exp

(
pTAp

)
dS(p) =

∫

S2

(p⊗ p) exp
(
pTAp

)
dS(p)

=

∫

S2

(
p⊗ p−

1

3
I

)
exp

(
pTAp

)
dS(p) +

1

3
I

∫

S2

exp
(
pTAp

)
dS(p)

= Z(A)

[∫

S2

(
p⊗ p−

1

3
I

)
ρ(p) dS(p) +

1

3
I

]
= Z(A)

[
Q+

1

3
I

]
,

(46)

where ρ satisfies (45). Thus, the multiplier A satisfies the following equation

1

Z(A)

∂Z(A)

∂A
= Q+

1

3
I. (47)

Dotting (47) with an arbitrary “test” function in Ξ, we get (37).140

We will also make use of these results for f . Note that the partition function
(39) is a single particle partition function obtained by integration over p ∈ S2,
but with specified values of the Lagrange multiplier A. The fact that it simply
involves a quadratic form of p originates from the form of the constrain (8). In
the mean field approximation considered, given Q there is a unique A, defined145

by (47), so that the corresponding ρ in (39) gives as average precisely Q.
The following result illustrates additional properties of f(Q), including the

simultaneous diagonalization of Q and A, which can be useful for numerical
implementation purposes.

Corollary 3. The function f(Q) is a strictly convex function of Q. In addition,
any Q ∈ Ξ, and the corresponding unique A coming from solving the constrained
minimization problem in Theorem 2, are diagonalized by the same orthogonal
matrix R, i.e.

Λ = RTQR, Π = RTAR, (48)

where Λ = diag(λ1, λ2, λ3) and Π = diag(π1, π2, π3), where {πi}
3
i=1 are the150

eigenvalues of A.
Moreover, the Lagrange multiplier A can be characterized as the optimal

solution of the dual problem. In other words, define

W (A) := ln (Z(A))−Q : A, (49)

where W (·) : Ξ → R is a strictly convex function (but not uniformly strictly
convex). Then, the optimal Lagrange multiplier A from Theorem 2 is the unique
minimizer of (49) over the set of symmetric, traceless matrices, i.e. an uncon-
strained minimization problem.155
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Proof. Convexity. Let Q0,Q1 ∈ Ξ with eigenvalues satisfying (10), and let
ρi be the minimizer in (35) corresponding to Qi, for i = 0, 1. Set Q(t) =
Q0(1 − t) +Q1t for all t ∈ [0, 1], and also define ρ(·, t) := ρ0(·)(1 − t) + ρ1(·)t.
Then, since S[ρ] is a strictly convex functional of ρ, for all 0 < t < 1 we have

f(Q(t)) = min
ρ∈AQ(t)

S[ρ] ≤ S[ρ(·, t)] < S[ρ0](1− t) + S[ρ1]t

=

(
min

ρ∈AQ0

S[ρ]

)
(1− t) +

(
min

ρ∈AQ1

S[ρ]

)
t = f(Q0)(1− t) + f(Q1)t,

(50)

which verifies the strict convexity of f(·).
Simultaneous diagonalization. Given Q, let A and ρ be the optimal

solution of the constrained minimization problem, and let R be the orthogonal
matrix such that Π = RTAR where Π is a diagonal matrix. Then, using the
change of variable p = Rq, we get

Z(A)Q =

∫

S2

(
ppT −

1

3
I

)
exp

(
pTAp

)
dS(p) =

∫

S2

(
RqqTRT −

1

3
RRT

)
exp

(
qTRTARq

)
dS(q)

= R

[∫

S2

(
qqT −

1

3
I

)
exp

(
3∑

i=1

πiq
2
i

)
dS(q)

]
RT ,

(51)

i.e.

RTQR =
1

Z(A)

∫

S2

(
qqT −

1

3
I

)
exp

(
3∑

i=1

πiq
2
i

)
dS(q). (52)

Now, note that for i 6= j, there holds

0 =

∫

S2

qiqj︸︷︷︸
odd

exp

(
3∑

i=1

πiq
2
i

)

︸ ︷︷ ︸
even

dS(q).
(53)

That means RTQR must be diagonal. Since matrix diagonalization (with or-
thogonal matrices) is unique, RTQR ≡ Λ.

The dual minimization problem. Let A∗ be the optimal Lagrange mul-
tiplier from (37); it is clear that A∗ solves the first order condition for (49):

0 =
∂W (A)

∂A
: P =

1

Z(A)

∂Z(A)

∂A
: P−Q : P, for all P ∈ Ξ. (54)

Next, we compute the Hessian of W (A) for any A ∈ Ξ:

T :
∂2W (A)

∂A2
: P =

1

Z(A)
T :

∂2Z(A)

∂A2
: P−

1

(Z(A))2

(
∂Z(A)

∂A
: T

)(
∂Z(A)

∂A
: P

)
,

(55)
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where

1

Z(A)

∂Z(A)

∂A
: P =

∫

S2

pTPp ρ(p) dS(p) = Eρ[p
TPp],

1

Z(A)
T :

∂2Z(A)

∂A2
: P =

∫

S2

(
pTTp

) (
pTPp

)
ρ(p) dS(p) = Eρ[

(
pTTp

) (
pTPp

)
],

(56)

for all P,T ∈ Ξ; note that Eρ[·] is the expected value with respect to ρ, which
is determined by A. To show strict convexity, we must verify that ∂2AW (A) is
positive definite for all A:

P :
∂2W (A)

∂A2
: P = Eρ[

(
pTPp

)2
]−
(
Eρ[p

TPp]
)2

= Eρ[
(
pTPp− Eρ[p

TPp]
)2
],

(57)

which is the covariance of pTPp with respect to ρ (which depends on A) and
is always positive semi-definite. If (57) were identically zero, then that would160

imply that some marginal distribution of ρ is a Dirac delta. But this is not

possible given the form of ρ in (45) so long as A is finite. Therefore, ∂2W (A)
∂A2

is positive definite for all A ∈ Ξ such that |A| < ∞. This means that W (·) is
strictly convex.

4. Minimizing the Landau-de Gennes Energy165

The free energy minimization of the self consistent free energy (18) shares
many elements with minimization procedures of the Landau-de Gennes free
energy. We summarize known results concerning the later here, and emphasize
the differences with the proposed method.

4.1. Existence of a Minimizer170

The admissible space for Q when seeking a minimizer is

V(P) :=
{
Q ∈ H1(Ω;Ξ) | Q|ΓD

= P
}
, (58)

where P ∈ H1(Ω;Ξ). Note that Ξ is spanned by a set of five orthonormal
basis matrices {Ek}5k=1. The set ΓD ⊂ Γ is where strong anchoring is imposed,
i.e. Q|Γ = QD ∈ H1(Γ;Ξ), where ψ(QD(x)) < ∞ for all x ∈ Γ. The weak
anchoring function QΓ is taken in L2(Γ;Ξ), with ψ(QΓ(x)) <∞ for all x ∈ Γ.
The minimization problem for the LdG energy functional (1) is

min
Q∈V(QD)

E[Q], (59)

Existence of a minimizer requires the energy to be bounded from below. The
following theorem [36, Lem. 4.1] establishes this result for the L1, L2, and L3

terms only.
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Theorem 4. Let a (·, ·) : H1(Ω;Ξ)×H1(Ω;Ξ) → R be the symmetric bilinear
form defined by

a (P,T) =

∫

Ω

L1∇P ··· ∇T+ L2(∇ ·P) · (∇ ·T) + L3(∇P)T ··· ∇T dx. (60)

Then a (·, ·) is bounded. If L1, L2, L3 satisfy

0 < L1, −L1 < L3 < 2L1, −
3

5
L1 −

1

10
L3 < L2, (61)

then there is a constant C > 0 such that a (P,P) ≥ C|P|2H1(Ω) for all P ∈

H1(Ω). Moreover, if |ΓD| > 0, then there is a constant C ′ > 0 such that175

a (P,P) ≥ C ′‖P‖2H1(Ω) for all P ∈ V(0).

We also have the bilinear form b (·, ·) : H1(Ω;Ξ) × H1(Ω;Ξ) → R and
trilinear form c (·, ·; ·) : H1(Ω;Ξ) × H1(Ω;Ξ) × H1(Ω;Ξ) → R accounting for
the L4 and L∗ terms:

b (P,T) =
L4

2

∫

Ω

∇P ··· (e ·T) +∇T ··· (e ·P) dx, (62)

c (T,P;Q) =
L∗
2

∫

Ω

{
∇P ··· [(T · ∇)Q] +∇P ··· [(Q · ∇)T]

+∇T ··· [(P · ∇)Q] +∇T ··· [(Q · ∇)P]

+∇Q ··· [(P · ∇)T] +∇Q ··· [(T · ∇)P]
}
dx.

(63)

Next, consider the following sub-part of the energy (1):

Ẽ[Q] :=

∫

Ω

W(Q,∇Q) dx+
1

ε2

∫

Ω

ψ(Q) dx,

≡
1

2
a (Q,Q) +

1

2
b (Q,Q) +

1

6
c (Q,Q;Q) +

1

ε2

∫

Ω

ψ(Q) dx.

(64)

Combining Theorem 4 with the form of the energy in (1) and other basic
results (see [36, Lem. 4.2, Thm. 4.3] for instance) we arrive at the following
result.

Theorem 5 (existence of a minimizer). Suppose that QD and ΓD are defined

as above and that χ is a bounded linear functional on V(QD). Let Ẽ be given by
(64), where ψ is given by (18). Furthermore, assume T > 0, let L4 be bounded,
and assume that

L̃1 := L1 −max

(
L∗
3
,−

3

2
L∗

)
, (65)

and L̃1, L2, L3 satisfy (61) with L1 replaced by L̃1. Then Ẽ has a minimizer180

in the space V(QD), whose eigenvalues are strictly within the physical limits
(10) almost everywhere. Furthermore, E in (1), with ψ given by (18), has a
minimizer in V(QD), whose eigenvalues are strictly within the physical limits
(10) almost everywhere.
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Proof. When L4 = L∗ = 0, the result follows from [36, Lem. 4.2, Thm. 4.3].
Otherwise, consider the case where L∗ is positive (the negative case is similar).
Consider the constrained admissible set

A := {Q ∈ V(QD) | − 1/3 ≤ λi(Q) ≤ 2/3, for i = 1, 2, 3}, (66)

and note that A is a closed, convex set. Since the minimum eigenvalue of
L1I+L∗Q (on A) is L̃1, using Theorem 4, we have that Ẽ satisfies the bound

Ẽ[Q] ≥
1

2

∫

Ω

L̃1|∇Q|
2 + L2(∇ ·Q)2 + L3(∇Q)T ··· ∇Q dx

+
L4

2

∫

Ω

∇Q ··· (e ·Q) dx+
1

ε2

∫

Ω

ψ(Q) dx

≥
C

2

∫

Ω

|∇Q|2 dx+
L4

2

∫

Ω

∇Q ··· (e ·Q) dx+
1

ε2

∫

Ω

ψ(Q) dx,

(67)

for all Q ∈ A, for some constant C > 0. Furthermore, one can show

Ẽ[Q] ≥
1

2
(C − ζ0)

∫

Ω

|∇Q|2 dx−
C ′

ζ0

∫

Ω

|Q|2 dx+
1

ε2

∫

Ω

ψ(Q) dx, (68)

for any ζ0 > 0 where C ′ > 0 is some bounded constant. Choosing ζ0 = C/2, we
get

Ẽ[Q] ≥
C

4

∫

Ω

|∇Q|2 dx+
1

ε2

∫

Ω

ψ̃(Q) dx, (69)

where ψ̃(Q) := Tf(Q)−(κ+2ε2C ′/C)|Q|2. Thus, Ẽ[Q] is clearly bounded below185

by a coercive energy on A. By standard calculus of variations [56, 57], there

exists a minimizer, Q̃, of Ẽ[·] in A. Moreover, f(Q̃) < ∞ almost everywhere,

meaning the eigenvalues of Q̃ are strictly within the physical limits almost
everywhere. The same holds true for E[·].

4.2. Gradient Flow190

We look for an energy minimizer using a gradient flow strategy [40, 37,
41, 35] applied to the energy (1). Let t represent “time” and suppose that
Q ≡ Q(x, t) satisfies an evolution equation such that limt→∞ Q(·, t) =: Q∗ is a
local minimizer of E, where Q(x, 0) = Q0, and Q0 ∈ V(QD) is the initial guess
for the minimizer. The tensor Q(·, t) evolves according to the following L2(Ω)
gradient flow:

(∂tQ(·, t),P) = −δQE[Q;P], ∀P ∈ V(0), (70)

where (·, ·) is the L2 inner product over Ω. Formally, the solution of (70) will
converge to Q∗.

Remark 6. If ψ is the Landau-de Gennes bulk potential in (7), then (70)
is essentially a tensor-valued Allen-Cahn equation. By the standard theory of
parabolic PDEs [58, 59], it has a unique solution. The same result also holds195

when ψ is the singular bulk potential.
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We use a numerical scheme for approximating (70) by first discretizing in
time by minimizing movements [60]. Let Qk(x) ≈ Q(x, kδt), where δt > 0 is
a finite time-step, and k is the time index. Then (70) becomes a sequence of
variational problems. Given Qk, find Qk+1 ∈ V(QD) such that

(
Qk+1 −Qk

δt
,P

)
= −δQE[Qk+1;P], ∀P ∈ V(0), (71)

which is equivalent to

Qk+1 = argmin
Q∈V(QD)

F (Q), F (Q) :=
1

2δt
‖Q−Qk‖

2
L2(Ω) + E[Q], (72)

and yields the useful property F (Qk+1) ≤ F (Qk). However, (71) is a fully-
implicit equation and requires an iterative solution because of the non-linearities
in W(Q,∇Q) and ψ(Q). As in the Landau-de Gennes case, ψ(Q) is non-
convex [42], so that we adopt a convex splitting method [61, 41, 62]. Setting
ψc(Q) = Tf(Q) and ψe(Q) = κ|Q|2, we see that (18) already has the form of a
convex splitting:

ψ(Q) ≡ ψc(Q)− ψe(Q), (73)

i.e. ψc and ψe are convex functions of Q.
In computing (71), we treat ψc implicitly and ψe explicitly. Therefore, (71)

becomes the following. Given Qk, find Qk+1 ∈ V(QD) such that
(
Qk+1 −Qk

δt
,P

)
+ a (Qk+1,P) + b (Qk+1,P) + c (Qk+1,P;Qk+1)

1

ε2

∫

Ω

∂ψc(Qk+1)

∂Q
: P dx+ ηΓ

∫

Γ

∂fΓ(Qk+1)

∂Q
: P dS(x)

=
1

ε2

∫

Ω

∂ψe(Qk)

∂Q
: P dx+

∫

Ω

∂χ(Qk)

∂Q
: P dx, ∀P ∈ V(0),

(74)

where the right-hand-side of (74) is completely explicit. We then apply Newton’s
method to solving (74).

Next, we approximate (74) by a finite element method, so we introduce
some basic notation and assumptions in that regard. We assume that Ω ⊂ R

3

is discretized by a conforming shape regular triangulation Th = {Ti} consisting
of simplices, i.e. we define Ωh := ∪T∈Th

T . Furthermore, we define the space of
continuous piecewise linear functions on Ωh:

Mh(Ωh) :=
{
v ∈ C0(Ωh) | v|T ∈ P1(T ), ∀T ∈ Th

}
, (75)

where Pk(T ) is the space of polynomials of degree ≤ k on T .200

We discretize (74) by a P1 approximation of the Q variable denoted Qh. To
this end, define

Sh(Ωh) :=

{
P ∈ C0(Ωh;Ξ) | P =

5∑

i=1

qi,hE
i, qi,h ∈Mh(Ωh), 1 ≤ i ≤ 5

}
,

(76)

17



and let Qh ∈ Sh(Ωh). Thus, Qh =
∑5

i=1 qi,hE
i, and Qh ∈ H

1(Ω;Ξ).
The fully discrete L2-gradient flow now follows from (74), which we explicitly

state. Given Qh,k, find Qh,k+1 ∈ Sh(Ωh) ∩ V(IhQD), where Ih denotes the
Lagrange interpolation operator, such that

(
Qh,k+1 −Qh,k

δt
,P

)
+ a (Qh,k+1,P) + b (Qh,k+1,P) + c (Qh,k+1,P;Qh,k+1)

1

ε2

∫

Ω

Ih

(
∂ψc(Qh,k+1)

∂Q

)
: P dx+ ηΓ

∫

Γ

∂fΓ(Qh,k+1)

∂Q
: P dS(x)

=
1

ε2

∫

Ω

∂ψe(Qh,k)

∂Q
: P dx+

∫

Ω

∂χ(Qh,k)

∂Q
: P dx, ∀P ∈ Sh(Ωh) ∩ V(0).

(77)

We iterate this procedure until some stopping criteria is achieved. As is the
case with the Landau-de Gennes model, solving (77) at each time-step requires
Newton’s method, i.e. we must compute the gradient and Hessian of the energy.
In particular, we need to compute the gradient and Hessian of the singular bulk205

potential ψc ≡ Tf , as we detail in Section 5.

5. Evaluating the Singular Bulk Potential

As in other self consistent mean field theories, the main difficulty with the
method is that no explicit formula for f(Q) is available. Instead, one has
to solve the mean field self-consistency equation (37) numerically for a given210

Q. In the application of Newton’s method to the solution of (77), we must
compute ∂ψc(Q)/∂Q and ∂2ψc(Q)/∂Q2, evaluated at the current guess of the
solution Qh,k+1, where ψc ≡ Tf . Since Qh,k+1 = Qh,k+1(x) is spatially vary-
ing, this can potentially be very expensive to compute. However, note the
presence of the Lagrange interpolation operator Ih in (77), i.e. see the term215

Ih (∂ψc(Qh,k+1)/∂Q). Hence, f , and its derivatives, need only be evaluated
at the finite element degrees-of-freedom (or nodes) of the mesh. Moreover, the
computation at each node is completely independent of all other nodes, i.e.
it is embarrassingly parallel. Therefore, the numerical implementation of the
singular bulk potential is completely tractable.220

There are two main steps involved in the determination of the bulk potential
f(Q) and its derivatives: the calculation of the single particle partition function
(36), and the solution of the mean field self consistency equation (37). We
establish here some of the properties necessary for their calculation.

5.1. Differentiability225

We require the gradient and Hessian of f(Q) in solving (77) via Newton’s
method.
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Proposition 7. Given Q ∈ Ξ with eigenvalues that satisfy −1/3 < λi(Q) <
2/3, let A ∈ Ξ be the unique minimizer of (49). Then, there holds

f(Q) = Q : A− lnZ(A) = −W (A) ,

∂f(Q)

∂Q
: P = A : P, for all P ∈ Ξ,

T :
∂2f(Q)

∂Q2
: P =

(
∂A

∂Q
: T

)
: P, for all P,T ∈ Ξ,

(78)

where ∂A/∂Q : T is the unique solution of the linear system

(
∂A

∂Q
: T

)
:
∂2W (A)

∂A2
: P = T : P, for all P ∈ Ξ, (79)

for any T ∈ Ξ, where ∂2W (A) /∂A2 is the constant 4-tensor evaluated at A.

Proof. Let ρ be the probability distribution given by (36). Then, by (35),

f(Q) =

∫

S2

ρ(p) ln ρ(p) dS(p) =

∫

S2

exp
(
pTAp

)

Z(A)

(
pTAp− lnZ(A)

)
dS(p),

= A :

∫

S2

(
p⊗ p−

1

3
I

)
ρ(p) dS(p)− lnZ(A) = Q : A− lnZ(A) = −W (A) ,

(80)

where we used (8) and (49). Next, using (80),

∂f(Q)

∂Q
: P = P : A+Q : A′ −

1

Z(A)

∂Z(A)

∂A
: A′ = P : A+Q : A′ −

(
Q+

1

3
I

)
: A′

= P : A+Q : A′ −Q : A′ = A : P,

(81)

where Ξ 3 A′ ≡ (∂A/∂Q) : P and we used (47).
By differentiating (81), we clearly get the last line of (78). Thus, we need a

characterization of ∂A/∂Q. Recall that A is the unique minimizer of (49), i.e.
A satisfies (54). So, we differentiate (54) with respect to Q, in the direction T:

(
∂A

∂Q
: T

)
:
∂2W (A)

∂A2
: P = T : P, for all P ∈ Ξ. (82)

230

Remark 8. The 4-tensor ∂2W (A) /∂A2 is positive definite, but the coercivity
constant degrades as |A| → ∞.

5.2. Optimization Procedure

Given Q, we describe a procedure to obtain the corresponding A = A(Q),
as well as its derivative with respect to Q.235
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5.2.1. Solving the Euler-Lagrange Equation

Recall (49) and define the linear form FQ(A;P) to be the first variation of
(49) with respect to A:

FQ(A;P) :=
1

Z(A)

∂Z(A)

∂A
·P−Q : P. (83)

Thus, given Q ∈ Ξ, we want to find A such that FQ(A;P) = 0 for all P ∈ Ξ. In
other words, we want to find a zero of the non-linear function FQ(·;P). Hence,
we apply Newton’s method.

For a given A, define the bilinear form:

mA(P,T) :=
∂

∂A
FQ(A;P) : T

=
1

Z(A)
P :

∂2Z(A)

∂A2
: T−

1

Z(A)

(
∂Z(A)

∂A
: P

)
1

Z(A)

(
∂Z(A)

∂A
: T

)
.

(84)

Then Newton’s method is as follows.240

• Initialize. Set A0 ∈ Ξ (can take the zero 3× 3 matrix) and set k = 0.

• While not converged, do:

1. Solve the following (linear) variational problem. Find δAk+1 ∈ Ξ

such that

mAk
(δAk+1,P) = −FQ(Ak;P), ∀P ∈ Ξ. (85)

2. Update. Set Ak+1 := Ak + δAk+1.

3. If |δAk+1| is less than some tolerance, then stop.

4. Else, set k ← k + 1 and return to Step (1).245

Let A∗ be the solution, i.e. FQ(A∗;P) = 0 for all P ∈ Ξ. Let A′
∗(T) =

(∂A/∂Q) : T. We obtain A′
∗(T) as the unique solution of the following varia-

tional problem. Find A′
∗(T) ∈ Ξ, for every T ∈ Ξ, such that

mA∗
(A′

∗(T),P) = T : P, ∀P ∈ Ξ. (86)

5.2.2. Matrix-Vector Form

Recall the basis {Ek}5k=1 that spans Ξ. We rewrite the Newton method in
terms of this basis.

• Initialize. Letα0 ∈ R
5, withα0 = (α1

0, ..., α
5
0), such thatA0 =

∑5
`=1 α

`
0E

`.
Can simply take α0 = 0. Set k = 0.250

• While not converged, do:
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1. Compute. Let bk ∈ R
5 such that b`k = −FQ(Ak;E

`) for ` = 1, ..., 5.

Moreover, let Hk ∈ R
5×5, i.e. Hk = [hijk ]

5
i,j=1, such that hijk =

mAk
(Ei,Ej) for 1 ≤ i, j ≤ 5.

2. Solve for δαk+1 ∈ R
5:

Hk(δαk+1) = bk (87)

3. Update. Set αk+1 := αk + δαk+1, and define Ak+1 =
∑5

`=1 α
`
k+1E

`.255

4. If |δαk+1| is less than some tolerance, then stop.

5. Else, set k ← k + 1 and return to Step (1).

Let A∗ be the solution, i.e. FQ(A∗;P) = 0 for all P ∈ Ξ. Let A′
∗(E

`) =
(∂A/∂Q) : E`, for each ` = 1, ..., 5, and let (α′

∗)
` ∈ R

5 be such that

A′
∗(E

`) =

5∑

k=1

[(α′
∗)

` · ek]E
k. (88)

Next, let H∗ be the Hessian matrix corresponding to A∗. Then, we obtain
A′

∗(E
`) by solving for (α′

∗)
` the equation

H∗(α
′
∗)

` = e`, for each ` = 1, ..., 5. (89)

Note: this is a one time solve (there is no Newton iteration).

5.2.3. Computational Issues

The main difficulty associated with our method is that, contrary to the case260

of the Landau-de Gennes energy (or the Oseen-Frank energy in the director
representation of the nematic), the energy density as a function of Q is not
known explicitly. As in other self consistent field theories, practical computation
requires a numerical scheme. In this case, the approximation involved in the
evalulation of the free energy of a configuration is due to both the Lagrange265

interpolation operator Ih in (77), and the fact that integrals on the unit sphere
cannot be computed exactly. Hence we must address the following issues.

• The integrals must be approximated by quadrature, ideally a high order
quadrature rule.

• The strict convexity of the functional in (49) degrades as |A| becomes270

large, and this is exactly the situation that arises when the eigenvalues
of Q approach the physical limits in (10). Thus, any inaccuracies in the
computations (e.g. the integrals) can adversely affect the convergence of
the Newton method.

• Furthermore, when A becomes large, exp
(
pTAp

)
becomes extremely275

large. Even though we divide by Z(A), there could be an intermediate
overflow result or inaccuracies.
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Therefore, we introduce the following modifications of the optimization method
described earlier. Before computing any of the above, first do an eigen-decomposition
of Q. If the eigenvalues are in the range:

−
1

3
+ δ0 ≤ λi(Q) ≤

2

3
− δ0, for i = 1, 2, 3, (90)

for some δ0 > 0, then the plain Newton method above is sufficient (it con-
verges in ≈ 5 iterations). Numerical experience indicates that δ0 = 0.05 to
0.1 is adequate. If the eigenvalues are outside the range (90), then one must280

use a sufficiently accurate quadrature rule to ensure that the system in (83) is
accurately approximated. In addition, a more robust optimization procedure
should be used (e.g., the Broyden-Fletcher-Goldfarb-Shanno algorithm with a
line search to ensure the objective function decreases) to account for possible
numerical sensitivities. This is not difficult to implement since the problem size285

is small. However, we have not explored this possibility yet.
Next, as a general concern, the integrals should be computed using a shifting

procedure. For example, consider the computation of

1

Z(A)

∂Z(A)

∂A
=

1∫
S2 exp (pTAp) dS(p)

∫

S2

(p⊗ p) exp
(
pTAp

)
dS(p), (91)

for a given A ∈ Ξ. Let C0 = |A|. Then, (91) is equivalent to

1

Z(A)

∂Z(A)

∂A
=

1∫
S2 exp (pTAp− C0) dS(p)

∫

S2

(p⊗ p) exp
(
pTAp− C0

)
dS(p).

(92)

The advantage of (92) over (91) is that, when |A| is large, (92) will not result
in an overflow calculation.

Lastly, all the integrals over the unit sphere have been approximated by
Lebedev quadrature [63]. We ascertain the accuracy of the computation in290

section 6.1. However, we note that they involve uniformly distributed points, so
when the probability distribution ρ becomes very localized, the integration may
fail. We have not encountered this problem in our numerical results below, but
note that it would be possible to use an adaptive quadrature method instead.
Indeed, one could adapt the quadrature rule depending on the performance of295

the Newton solve, or on how close the eigenvalues are to the physical limits.

6. Results

All simulations were implemented using the Matlab/C++ finite element tool-
box FELICITY [64, 65]. For all 3-D simulations, we used the algebraic multi-
grid solver (AGMG) [66, 67, 68, 69] to solve the linear systems appearing in300

Newton’s method. In 2-D, we simply used the “backslash” command in Mat-
lab. Numerical calculations were performed with Matlab version R2017b on a
Haswell processor with a base clock of 2.5 Ghz at the Minnesota Supercom-
puting Institute. Spatially distributed Newton iterations were paralleized over
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Table 1: Maximum component of the difference Amax−A, for A given by Newton’s method
for various Lebedev quadrature degrees and Q with various eigenvalues parametrized by Sn.
Amax is given by Newton’s method with maximum quadrature degree 5810.

Degree Sn = 0.1 Sn = 0.6 Sn = 0.97 Sn = 0.995
14 0.04 1.4 49.6 No Convergence
86 3.2× 10−9 1.4× 10−3 31.2 No Convergence
590 1.8× 10−15 6.8× 10−14 7.1× 10−3 No Convergence
2030 7.2× 10−15 5.1× 10−14 5.1× 10−12 0.1
3470 2.3× 10−14 6.6× 10−14 1.9× 10−12 3.3× 10−4

|Amax| 0.82 5.1 58.3 347

24 threads (Matlab parfor). Execution timings given below correspond to this305

configuration.
In our simulations, we chose ε = 1. We also tested the method with smaller

values of ε, and a finer mesh, and there were no issues. The number of iterations
needed to relax increased roughly proportional to the decrease in ε2. But the
end result was the same.310

6.1. Accuracy of Newton’s Method

We first look at the accuracy of Newton’s method described in Sec. 5.2 to
invert the mean field self consistency relation, and obtain the Lagrange mul-
tiplier A(Q). To test this, we run the procedure for various degrees of the
Lebedev quadrature. We use in the test a tensor Q with maximum eigenvalue315

parametrized as maxi(λi) = (2/3)Sn, for a range of Sn. We have examined
the cases Sn = 0.1, Sn = 0.6, Sn = 0.97, and Sn = 0.995, which is the largest
value of Sn for which the algorithm converges. Note that if Sn = −0.5 or 1,
the physical limit of the eigenvalues is reached, Q is no longer physical, and the
corresponding A diverges. The maximum degree of the Lebedev quadrature320

tested is 5810, and we denote A given by quadrature at this degree by Amax.
Table 1 summarizes the results in terms of the maximum component of the dif-
ference Amax −A for various quadrature degrees. We find that for quadrature
degrees below 500, the eigenvalues of Q must be relatively small in order to
obtain accurate values of A. For Q with eigenvalues close to the their physical325

limit, the Lebedev quadrature degree must be sufficiently high. Depending on
the value of κ/T , it may be necessary to use larger degrees of quadrature or
more sophisticated methods to find A, as illustrated in Figure 2 showing the
bulk potential, Eq. (18), as a function of Sn. As κ/T increases, and the liquid
crystal becomes more ordered, the equilibrium value of Sn increases.330

6.2. Boundedness of the bulk potential

We next examine two spatially nonuniform configurations which are unstable
in the Landau-de Gennes theory when L∗ 6= 0, but remain stable when using
the singular bulk potential. In the first example, we choose a weakly perturbed
configuration away from uniform. We take as initial condition a purely uniaxial335
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Figure 2: Singular bulk potential, Eq. (18), as a function of Sn for κ/T = 4 and κ/T = 10.
Dots show the location of the minimum for either case. As κ/T increases, the minimum of
the bulk potential approaches the physical limit of Sn = 1.
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Singular Potential Double Well

Figure 3: Energy of the perturbed uniform configuration as a function of S0 and k for the
Maier-Saupe bulk potential and the double well potential when L1 = 1, L2 = L3 = L4 = 0
L∗ = 3. In the case of the double well, there is a saddle point and unbounded energy, while
the Maier-Saupe energy remains bounded below since it diverges if S → −0.5 or S → 1.

configuration defined by Q = Sn(x)(n̂⊗n̂−1/3I) where I is the identity matrix,
n̂ = (0, 1, 0) is fixed, and Sn(x) = S0 + β sinπkx, where S0 = 0.6751 is chosen
so as to minimize the bulk potential with κ/T = 4. We set β = 0.1, k = 10,
L1 = 1, L2 = L3 = L4 = 0, and L∗ = 3. For this ratio of κ/T , the equilibrium
configuration is inside the nematic phase. Note that the coefficients are just340

outside the limits stated in Theorem 5, but the minimizer found appears to be
robust.

We run the gradient flow described in Sec. 4.2 on the components of Q,
decomposed in the basis

E1 =




2√
3

0 0

0 − 1√
3

0

0 0 − 1√
3


 , E2 =



0 0 0
0 1 0
0 0 −1


 ,

E3 =



0 1 0
1 0 0
0 0 0


 , E4 =



0 0 1
0 0 0
1 0 0


 , E5 =



0 0 0
0 0 1
0 1 0


 ,

(93)

using a square domain defined by [0, 1]2 with a body centered mesh with 150×
150 squares (44701 vertices), linear basis functions, and a time step in the min-
imization δt = 4 × 10−3. The same parameters are used for both the singular345

bulk potential and the standard bulk potential of Landau-de Gennes (see (7)).
When L∗ 6= 0, the total LdG energy with standard double well potential is
unbounded from below when k > 0. However, the singular bulk potential main-
tains a bounded free energy for a nonzero range of L∗ since it diverges outside
of the range −1/2 ≤ Sn ≤ 1. This is illustrated in Fig. 3 where we show the350

total free energy for a set of configurations within a range of S0 and k. The
(standard) double well energy has a saddle along the line k = 0 indicating lack
of stability for any k and a range of amplitudes S0. On the other hand, given
the divergence of the Maier-Saupe bulk potential outside the admissible range
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Figure 4: Comparison of the evolution of Sn for the perturbed uniform configuration given by
Maier-Saupe bulk potential, and that given by the Landau-de Gennes double well potential.
We use k = 10, β = 0.1, and L∗ = 3. The evolution corresponding to the Maier-Saupe bulk
potential relaxes to a uniform configuration, while the configuration evolving under the double
well diverges rapidly.

of eigenvalues of Q, the free energy computed remains bounded below for all355

admissible values of S0 and k. In fact, the surface plot.
To further illustrate the difference between the two energies, we show in

Fig. 4 the gradient flow of Sn during the minimization procedure described in
Sec. 4.2. The configuration obtained by iterating with the standard Landau-de
Gennes double well energy diverges quickly, whereas in the Maier-Saupe case,360

it simply relaxes to a uniform configuration.
The second configuration studied is an adaptation of the example from Ball

and Majumdar [31] meant to demonstrate the stability of the singular bulk
potential. We consider a cylindrically symmetric initial conditionQ = Sn(r)(r̂⊗
r̂− 1/3I) with

Sn(r) =

{
S0(2 + sin πkr

5 ) 0 < r < 5

2S0(2 + sinπk)(1− r
10 ) 5 < r < 10.

(94)

This initial condition is allowed to relax by gradient flow as in Sec. 4.2. The
value of S0 = 0.32 is chosen so that the eigenvalues of Q are close to the
physically admissible limit, and κ/T = 3 so that the bulk potential is minimized
for the isotropic phase S = 0 [42]. We also set k = 5, L1 = 1, L2 = L3 = L4 = 0,365

and L∗ = 3. A body centered mesh with 150× 150 squares in a square domain
with bounds [−10, 10]2, and time step δt = 4× 10−3 are used. Each iteration of
the gradient flow for this mesh size takes ∼ 30 CPU minutes to complete. By
direct substitution of Eq. (94) into the Landau-de Gennes free energy, Ball and
Majumdar showed that the energy is unbounded below if there is no constraint370

on the value of S0 when L∗ 6= 0 [31]. Figure 5 shows several time steps in the
in the gradient flow of Sn for the initial condition (94) with both the singular
bulk potential and the standard double well Landau-de Gennes potential. As
expected, the flow corresponding to the standard double well potential fails to
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Figure 5: Evolution of Sn for the example from Ball and Majumdar [31] for the Maier-Saupe
bulk potential and standard bulk potential with k = 5 and L∗ = 3. The system with the
Maier-Saupe potential eventually relaxes to the isotropic phase, while the double well system
diverges rapidly.

converge when L∗ 6= 0, whereas the singular bulk potential eventually converges375

to a configuration with uniform eigenvalues.

6.3. Three dimensional configurations

Although the self consistent field theoretic method introduced might ap-
pear to lead to a more complex numerical implementation than the Landau-de
Gennes theory, we show that even with modest computational resources it is380

possible to obtain defected configurations in three spatial dimensions. We con-
sider three examples: a m = +1 point defect, a line disclination of charge
m = −1/2, and a Saturn ring loop disclination. For all calculations we use
κ/T = 4, L1 = 1, L2 = L3 = L4 = 0, and L∗ = 3. As above, the equilibrium
configuration is in the nematic phase. For the point defect and line disclination,385

we use a cubic domain with bounds [−5, 5]3 with a uniform tetrahedral mesh
with 41 × 41 × 41 vertices. For the Saturn ring we use a cubic domain of size
[−30, 30]3 with a spherical cavity of radius 7.5 and a body-centered-cubic (bcc)
mesh with 127108 vertices. For all computations, we use piecewise linear finite
elements and a time step δt = 5× 10−2. Iteration is continued until the energy390

change falls within a tolerance of 10−6. For the point defect, Dirichlet boundary
conditions on the components of Q are used on all sides of the computational
domain so as to enforce the topological charge of the defect at the center. For
the line disclination, Neumann boundary conditions on the components of Q
are used on the top and bottom of the computational domain, while Dirichlet395

conditions are used on all lateral sides to maintain the topological charge of the
line at the center of the domain. For the Saturn ring, Dirichlet boundary con-
ditions fixing a uniform configuration with molecules oriented along the z-axis
are used on the exterior sides of the domain while Dirichlet conditions are used
on the interior sphere to fix a configuration with molecules oriented radially.400

Figure 6 shows 3D visualizations of equilibrium configurations for a m =
+1 point defect and a m = −1/2 line disclination. Both simulations reach
equilibrium in ∼ 12 CPU hours. The surfaces in both figures show all points
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Figure 6: 3D visualization of the equilibrium configurations for a m = +1 point defect (left)
and a m = −1/2 line disclination (right). For both figures, the surface shows all points where
Sn = 0.5Smax i.e. the “boundaries” of the defects. For both simulations we set κ/T = 4,
L1 = 1, L2 = L3 = L4 = 0 and L∗ = 3.

where Sn = 0.5Smax which we define as the “boundary” of the defect. Note
that for the line disclination, the eigenvalue profile is not isotropic due to the405

inclusion of cubic order terms in the elastic free energy. Also note that the defect
core becomes biaxial, that is, the eigenvalues of Q become distinct. These two
features are shown clearly in Figure 7, which shows a cut in z = 0 plane of Sn

along with the molecular orientation probability distribution, ρ(p), at various
points through the defect. Far from the defect, the distribution is uniaxial and410

the corresponding Q has two degenerate eigenvalues. As the core of the defect is
approached, the distribution spreads out in the xy plane and the corresponding
Q has three distinct eigenvalues. At the center of the defect, the distribution
is once again uniaxial but now corresponds to a disk with all orientations in
the xy plane equally weighted, which is distinct from the commonly referred415

to phenomenon of “escape to the third dimension” [1]. This biaxiality and the
anisotropy is consistent with experimental observations in chromonic lyotropic
liquid crystals [70], and has been discussed in detail in [43].

Finally, Figure 8 shows a 3D visualization and a cut through the x = 0 plane
of a Saturn ring loop disclination around a particle with homeotropic anchoring.420

As before, the surface shows all points on the “boundary” of the defect while the
cut shows the value of Sn. The shape of the defect and the director field with
a characteristic m = −1/2 charge are consistent with previous investigations of
the Saturn ring [71, 72]. The Saturn ring configuration takes ∼ 84 CPU hours
to reach equilibrium. This is longer than the other 3D simualations because the425

mesh is larger and the system requires more iterations to reach equilibrium.
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Figure 8: 3D visualization of the equilibrium configuration for a Saturn ring loop disclination
(left) and plot of Sn in the x = 0 plane for the same configuration (right). The surface shows
all points where Sn = 0.5Smax i.e. the “boundary” of the defect. For the simulation we set
κ/T = 4, L1 = 1, L2 = L3 = L4 = 0 and L∗ = 3.
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7. Conclusions and discussion

The analysis of a new computational method to obtain equilibrium configu-
rations of a nematic liquid crystal has been presented. The method, based on
the Ball-Majumdar singular bulk potential, can overcome known limitations of430

the Landau-de Gennes theory in the case of elastically anisotropic media. We
present selected numerical results demonstrating the convergence of the method
in cases in which the Landau-de Gennes theory fails, and a study of prototypi-
cal three dimensional configurations that include both point and line topological
defects. The code developed has been incorporated into the FELICITY finite435

element framework in order to facilitate adoption [64, 65].
The results shown have been obtained with a particular microscopic inter-

action model: the Maier-Saupe contact potential. This is a simple case to
study since the resulting interaction energy is simply quadratic in Q. How-
ever, the extension to more complex interaction energies is possible assuming440

one knows their explicit functional representation in terms of the mesoscale Q.
The eigenvalue constraint as introduced is captured in the entropy functional,
which only depends on the definition of Q, and hence is independent of the
form of the interaction energy functional. Of course, the limitation of a mean
field approximation remains as long as the energy only depends on the local445

statistical average of the molecular orientation p. This is not expected to be a
serious shortcoming as long as thermal fluctuations are negligible. This is the
case in the majority of contemporary studies that focus on systems deep inside
the nematic phase.

We have restricted our analysis to finding minimizers of the free energy450

functional, but the method can be readily extended to studies of nematody-
namics (including hydrodynamic interactions). One simply needs to replace the
Landau-de Gennes functional by the free energy computed from the singular
potential. While there is an additional computational cost involved, it is not
severe as demonstrated by our calculations of defect configurations in three di-455

mensions, as long as one takes advantage of parallelism. The method can be
therefore applied to the study of the temporal evolution of elastically anisotropic
systems, including mass flows. Such a capability should be specially relevant
to studies of nematic active matter in which the length of the molecular con-
stituents, and the dependence of their elastic constants on the Debye length460

when charged, leads to strong elastic anisotropy.
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