Scalable Image-based Indoor Scene Rendering with Reflections

JIAMIN XU, State Key Lab of CAD&CG, Zhejiang University, China
XIUCHAO WU, State Key Lab of CAD&CG, Zhejiang University, China
ZIHAN ZHU, State Key Lab of CAD&CG, Zhejiang University, China

QIXING HUANG, University of Texas at Austin, USA
YIN YANG, Clemson University, USA

HUJUN BAQO, State Key Lab of CAD&CG, Zhejiang University, China
WEIWEI XU, State Key Lab of CAD&CG, Zhejiang University, China

Image

g : &3
1y A5

Input Cameras + Global mesh Two-layer meshes + Decomposed images

Decomposed DeepBlending

Reflection

Comparisons

Fig. 1. This figure illustrates the proposed two-layer representation and its rendering result with reflections. Decomposed images: the input image inside the
frame is decomposed into surface and reflection layer images. In this example, state-of-the-art view synthesis methods, such as DeepBlending [Hedman et al.
2018], NeRF [Mildenhall et al. 2020], and FVS [Riegler and Koltun 2020], render images with blurred reflections or without reflections at a novel viewpoint. In
contrast, our image-based rendering pipeline can achieve a high-quality rendering result using two-layer meshes and decomposed images. Best viewed with

zoom-in.

This paper proposes a novel scalable image-based rendering (IBR) pipeline
for indoor scenes with reflections. We make substantial progress towards
three sub-problems in IBR, namely, depth and reflection reconstruction,
view selection for temporally coherent view-warping, and smooth rendering
refinements. First, we introduce a global-mesh-guided alternating optimiza-
tion algorithm that robustly extracts a two-layer geometric representation.
The front and back layers encode the RGB-D reconstruction and the reflec-
tion reconstruction, respectively. This representation minimizes the image

“Corresponding author

Authors’ addresses: Jiamin Xu, superxjm@yeah.net, State Key Lab of CAD&CG,
Zhejiang University, China; Xiuchao Wu, wuxiuchao@zju.edu.cn, State Key Lab of
CAD&CG, Zhejiang University, China; Zihan Zhu, zihan.zhu@zju.edu.cn, State Key
Lab of CAD&CG, Zhejiang University, China; Qixing Huang, huangqx@cs.utexas.edu,
University of Texas at Austin, USA; Yin Yang, yin5@clemson.edu, Clemson University,
USA; Hujun Bao, bao@cad.zju.edu.cn, State Key Lab of CAD&CG, Zhejiang Univer-
sity, China; Weiwei Xu, xww@cad.zju.edu.cn, State Key Lab of CAD&CG, Zhejiang
University, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART60 $15.00

https://doi.org/10.1145/3450626.3459849

composition error under novel views, enabling accurate renderings of reflec-
tions. Second, we introduce a novel approach to select adjacent views and
compute blending weights for smooth and temporal coherent renderings.
The third contribution is a supersampling network with a motion vector
rectification module that refines the rendering results to improve the final
output’s temporal coherence. These three contributions together lead to a
novel system that produces highly realistic rendering results with various
reflections. The rendering quality outperforms state-of-the-art IBR or neural
rendering algorithms considerably.

CCS Concepts: « Computing methodologies — Image-based rendering,
Neural network; Virtual reality.

Additional Key Words and Phrases: Image-based rendering, Two-layer mesh,
Reflection, Super-resolution, Neural network

ACM Reference Format:

Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao,
and Weiwei Xu. 2021. Scalable Image-based Indoor Scene Rendering with
Reflections. ACM Trans. Graph. 40, 4, Article 60 (August 2021), 14 pages.
https://doi.org/10.1145/3450626.3459849

1 INTRODUCTION

Image-based rendering (IBR) algorithms have been applied to syn-
thesize photo-realistic images at novel viewpoints for indoor scenes,
crucial to immersive virtual reality applications, such as free-viewpoint
navigation of real-estate or museums. IBR is challenging because

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459849
https://doi.org/10.1145/3450626.3459849

60:2 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

realistic images have sophisticated view-dependent features. Ex-
amples include occlusions, sharp highlights, and reflections. High-
fidelity IBR relies on reconstructing and encoding these features
either explicitly or implicitly.

Existing IBR approaches fall into two categories. The first cate-
gory utilizes layered representations to encode each input image.
Examples include layered depth images (LDI) [Shade et al. 1998],
multi-plane images (MPI) [Flynn et al. 2019; Zhou et al. 2018], multi-
spherical images (MSI) [Broxton et al. 2020], and two-layer represen-
tation [Sinha et al. 2012]. These representations encode occlusions
and view-dependent features in IBR explicitly. The IBR results de-
pend on the reconstruction quality of these layered representations
and effective algorithms to blend them smoothly under continu-
ously changing viewpoints. An alternative approach for IBR is to
train neural networks, such as neural radiance fields [Mildenhall
et al. 2020] and the deep view synthesis network [Xu et al. 2019], to
model the scene structure from sampled images implicitly. These
networks have the potential to render reflective surfaces realisti-
cally. However, it is unclear whether neural networks can capture
all necessary view-dependent visual features. For example, it is still
challenging for existing deep neural networks to model sharp edges
of reflections, as shown in Fig. 1. Moreover, it remains computa-
tionally expensive to train these networks for large-scale indoor
scenes.

This paper introduces a novel scalable IBR algorithm, which ap-
plies to large indoor scenes with reflections. Our approach combines
the strengths of both categories of approaches. Specifically, we use
a two-layer representation to capture view-dependent visual fea-
tures. We also leverage the power of deep neural networks to rectify
artifacts after rendering and blending two-layer representations
at novel viewpoints. Our approach allows us to render and blend
layer-based representations at a lower resolution and then employ
a deep neural network to perform supersampling, which outputs
continuous and high-resolution images. The advantage of rendering
with lower-resolution images is that it can save texture storage and
allow us to sample the images of an indoor scene densely, which is
beneficial to the quality of blending results. This paper introduces a
novel blending scheme with considerably improved spatial and tem-
poral smoothness. Moreover, the supersampling network is adapted
from the network in [Wang et al. 2020], and we add a motion vec-
tor rectification module to promote temporal smoothness when
performing supersampling.

Our approach is also motivated from recent progress on large-
scale geometry reconstruction, from RGB images [Furukawa and
Ponce 2010; Hartley and Zisserman 2004; Schonberger and Frahm
2016] and RGBD images [Dong et al. 2019; Xu et al. 2017]. State-of-
the-art approaches can even reconstruct good approximations of
mirrors and glass (c.f. [Whelan et al. 2018]). Our IBR pipeline fuses
RGB-based and RGBD-based reconstructions to obtain a global geo-
metric reconstruction of the underlying scene. When re-projected
under the camera pose of each input image, this reconstruction
provides an effective initialization for computing accurate layered
representations. In particular, we also show how to formulate an
optimization problem to refine the layered decomposition jointly.

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

We have conducted experiments with our IBR pipeline for a va-
riety of indoor scenes, ranging from apartments to offices. Experi-
mental results show that our method can produce highly realistic
rendering results with various reflections, and the rendering quality
is superior to state-of-the-art IBR or neural rendering algorithms.

2 RELATED WORK

IBR applies across a wide spectrum, from no geometry with a densely
arranged camera array to explicit geometry reconstruction to assist
the image-warping-based view synthesis [Gortler et al. 1996; Levoy
and Hanrahan 1996; Penner and Zhang 2017]. We refer to [Shum
and Kang 2000; Zhang and Chen 2003] for comprehensive surveys
of IBR and [Tewari et al. 2020] for recent advances. This section
reviews the literature closely related to our work.

2.1 IBR with Geometry

Geometry information is mainly used to warp images to novel
viewpoints in IBR. The representation of the scene geometry in
IBR can be geometric proxies for depth correction, depth images
for view interpolation, visual and opacity hulls for pixel visibil-
ity, and 3D meshes for view-dependent texturing and surface light
fields [Buehler et al. 2001; Chen and Williams 1993; Debevec et al.
1996; Matusik et al. 2000, 2002; Wood et al. 2000]. The 3D geometry
of a scene can be reconstructed from captured images using multi-
view stereo (MVS) algorithms [Furukawa and Ponce 2010; Goesele
et al. 2007; Hosni et al. 2011]. The reconstructions can guide view
warping and view blending for novel view synthesis [Chaurasia
et al. 2011; Goesele et al. 2010; Ortiz-Cayon et al. 2015]. Chaurasia
et al. [2013] utilized super-pixels as constraints to obtain per-pixel
depth. It significantly reduces the image warping artifacts along
occlusion edges. For indoor scenes, the Manhattan-world assump-
tion is exploited to reconstruct piece-wise 3D planes from the input
images for IBR of indoor scenes [Furukawa et al. 2009; Sinha et al.
2009].

In [Hedman et al. 2016], the reconstructed global geometry is
refined at each view for aligning edges of the depth channel and the
RGB channels. The resulting per-view meshes can handle large oc-
clusions and motion parallax in IBR. Afterward, Hedman et al. [2018]
proposed to combine two different MVS reconstructions for per-
view depth refinement and train a deep neural network to blend
images warped with per-view meshes to reduce ghosting artifacts.
These two approaches can reproduce view-dependent effects to
some extent. However, they can not handle reflections because of
blending artifacts, e.g., when only using reflective surface geometry
to warp images. Our per-view surface layer construction algorithm
is inspired by these two works. However, our approach exploits
a two-layer mesh representation to render indoor scenes with re-
flections. Moreover, our supersampling network is trained to fuse
blended images temporally to improve the rendering result, which
is also different from the network in [Hedman et al. 2018].

2.2 Layered Representation and Reflection Decomposition
Layered representations are widely used to handle occlusions and
capture high-frequency reflections in IBR. Pioneering work on
the layered representation used in IBR is layered depth images

Pre-processing

Scalable Image-based Indoor Scene Rendering with Reflections « 60:3

UI: add proxies

Input images Global mesh reconstruction

UL specify edges

Depth to mesh

Depth refinement
Surface layer mesh construction

UL correct mislabeled reflective planes

L =

Reflection 2D reflection
detection mask

Ref / Neighbouring

1ce layer

(for reflection mask!

Reflection layer mesh
Reflection decomposition

<
4

Novel view - l‘:
4 > > ' -> I -
NS
: Va resoll;(ion

A selected view

Online Rendering

Current frame RGBD
View warping

Prev frame RGBD %

¢

—
DSRNet

Post-processing

Fig. 2. The pipeline of our IBR approach. Ul: User interaction.

(LDI) [Shade et al. 1998]. LDI is a projective volume at a specific
viewpoint that stores the scene geometry inside the volume to han-
dle large occlusions. Penner et al. [2017] constructed projective
volumes with additional depth uncertainty information for captured
images and achieved high-quality view synthesis results at the oc-
clusion edges. In [Hedman et al. 2017], two color-and-depth layer
panoramas are constructed to produce perspective views near cap-
tured viewpoints with motion parallax effects. Broxton et al. [2020]
designed a spherical dome to capture light field videos, where MSI
was first computed at each frame by extending the deep neural
network in [Xu et al. 2019] and simplified thereafter to multi-layer
meshes. This method can handle view-dependent effects, but the
target is to allow as-large-as-possible viewpoint movement in VR
videos.

Our two-layer mesh representation is mostly related to the reflec-
tion decomposition approach in [Sinha et al. 2012]. Kopf et al. [2013]
proposed to render reflections in the gradient domain. Rodriguez et
al. [2020] constructed a two-layer representation, i.e., a background
layer and a car window layer, to handle the IBR of car windows’
reflections using reflective flows. They integrated semantic labels
to reconstruct the ellipsoid approximation of the curved car win-
dows. Reflection decomposition can also be achieved according to
the motion cue computed with SIFT flow [Li and Brown 2013], ho-
mography [Guo et al. 2014], and dense optical flow [Xue et al. 2015].
Recently, deep learning-based reflection decomposition methods
are explored widely [Li et al. 2020; Liu et al. 2020b; Yang et al. 2018].
However, without a geometric structure of the scene, it is hard to
guarantee the quality of the decomposition results. In contrast, we
leverage the reconstructed global mesh to robustly compute the
color and geometry of reflection layers to render reflections.

2.3 Deep Learning-based IBR

Given the captured images, deep learning-based IBR methods are ca-
pable of learning multi-scale features as a scene representation to fa-
cilitate IBR, such as end-to-end deep stereo for unstructured view in-
terpolation [Flynn et al. 2016], deep view synthesis for sparse images
captured under controlled conditions [Xu et al. 2019], MPI [Milden-
hall et al. 2019; Srinivasan et al. 2019; Xu et al. 2019; Zhou et al. 2018],
neural textures [Thies et al. 2019a], and neural volumes [Lombardi
et al. 2019]. Coordinate-based multilayer perceptrons (MLP) have
been applied to learn an implicit function to represent a 3D scene by
minimizing the similarity between rendered and captured images at
the same viewpoints [Sitzmann et al. 2019]. Mildenhall et al. [2020]
trained a MLP that takes 3D coordinates and a viewing ray as inputs
to encode radiance fields effectively, termed neural radiance fields
(NeRF). However, the training and testing of the NeRF networks are
time-consuming. Hence, Liu et al. [2020a] proposed neural sparse
voxel fields to prune unnecessary samples inside the empty space
of a 3D scene. The volume rendering step can also be accelerated
by training a network to approximate the integration [Lindell et al.
2020].

The reconstructed coarse scene geometry can be used to fuse the
image features for novel view synthesis. Riegler et al. [2020] de-
signed a recurrent encoder-decoder network to process reprojected
features from neighboring views for view synthesis. They improved
the view synthesis results further through view-dependent on-
surface feature aggregation [Riegler and Koltun 2021]. In [Meshry
et al. 2019], a factored representation of a scene, including point
cloud, semantic segmentation, and latent appearance codes, is used
to render the scene with different appearance.

2.4 Deep Learning for Image and Video Super-resolution

Deep learning-based image super-resolution (SR) methods range
from the CNN-based methods to approaches using generative ad-
versarial networks (GANs) [Dong et al. 2014; Ledig et al. 2017; Rako-
tonirina and Rasoanaivo 2020]. A comprehensive survey on deep

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

60:4 < Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

learning-based image super-resolution methods can be found in
Wang et al. [Wang et al. 2020]. In video SR, temporal coherence
is achieved by integrating motion compensation modules into the
SR neural network. Recent approaches include multi-resolution
spatial transformer modules in VESPCN [Caballero et al. 2017], sub-
pixel motion compensation layers in SPMCVSR [Tao et al. 2017],
pyramid, cascading and deformable (PCD) alignment modules in
EDVR [Wang et al. 2019], and recurrent networks to accelerate the
frame warping in video SR [Fuoli et al. 2019; Haris et al. 2019; Sajjadi
et al. 2018].

In the game industry, temporal supersampling methods are devel-
oped for the SR of rendered videos [Chaitanya et al. 2017; Edelsten
et al. 2019; Tatarchuk et al. 2014]. Based on the motion vectors be-
tween frames computed using the camera and depth information
provided by the game engine, Xiao et al. [2020] proposed a net-
work to learn how to blend multiple-frames in the feature space for
high-quality supersampling. The key contribution of this work is
a motion vector rectification module that can refine the geometry-
based correspondences between consecutive frames to improve the
SR results. This module effectively reduces warping errors induced
by imprecise layered reconstructions.

3 OVERVIEW

Our IBR approach consists of a pre-processing stage and an online
rendering stage to render the planar reflections of indoor scenes
realistically (See Fig. 2). The goal of the pre-processing stage is to
reconstruct the two-layer mesh representation for each view, guided
by the reconstructed global mesh G. In this paper, we perform geom-
etry reconstruction by adding the strengths of MVS reconstruction
and RGBD-based reconstruction to obtain a high-quality global
mesh, as shown in the dark red box in Fig. 2.

The two-layer representation for an input image I consists of a
surface layer mesh that encodes the non-reflective regions of an
image and another layer that encodes the reflective regions. Recon-
struction of the surface layer starts with rendering the global mesh
G at the given viewpoint of I to obtain a depth image D, and then
refine D to align depth and color images (Fig. 2: dark orange box).
This alignment reduces tearing-apart and ghosting artifacts in IBR.
In contrast to using bilateral median filters [Hedman et al. 2018,
2016], we integrate surface normal information in both depth edge
detection and refinement to assist the edge alignment. The surface
layer mesh is finally constructed according to the refined depth
image D (Sec. 4.2). In the reflection decomposition step (Fig. 2: dark
yellow box), we detect reflective planes for each input image using a
multi-view consistency cue. For images that contain detected planar
reflective planes, the meshes and textures for the surface layer and
the reflection layer of these planes are obtained by solving an alter-
nating optimization problem (Sec. 4.3). To reduce the memory cost,
the textures for two-layer meshes are stored at % of the resolution
of our rendering result.

The second stage of our IBR pipeline, online rendering, aims to
generate view synthesis results according to the pre-computed two-
layer mesh representation for each image. This stage has two steps.
The first step performs view warping (Fig. 2: dark green box), in
which we introduce a novel view selection and blending approach

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

that ensures the smoothness of the view-synthesis when changing
the camera pose. The details are explained in Sec. 5.1. The second
step applies a deep neural network (named DSRNet) to refine the
view warping results, as shown in the dark blue box in Fig. 2. This
network increases the resolution of view-synthesis and performs
visual rectifications as a post-processing step, such as anti-aliasing
and reducing the ghosting effects caused by imprecise two-layer
reconstructions. The details are explained in Sec. 5.2.

Note that our system also allows users to create proxies for hard-
to-reconstruct light sources and correct reflective plane detection
errors. To facilitate the alignment of depth and color edges, we also
allow users to draw lines to indicate occlusion edges when they
occur in the regions of near-constant color. The details of reflective
plane detection and user interactions can be found in supp. material.

4 PER-VIEW TWO-LAYER MESH CONSTRUCTION

This section presents the preprocessing stage, which reconstructs a
two-layer representation for each input image. This stage assumes
a global mesh reconstruction G of the underlying scene that is not
necessary to be precise.

4.1 Global Mesh Reconstruction

To reconstruct the global mesh G, we utilize both color images
captured by a Canon EOS 6@D digital single-lens reflex camera and
RGBD images captured by a Microsoft Kinect4. The camera is
hand-held in most cases, and it is mounted on a tripod when cap-
turing reflective surfaces such that the photographer is not in the
reflection. Our global mesh is first constructed using MVS soft-
ware RealityCapture [CapturingReality 2016], as in [Hedman et al.
2018]. We convert the captured raw images (at the resolution of
6,000 by 4, 000) into 16-bit tiffs to calculate camera poses more
accurately and uniformly sample 500~800 images from the captured
images according to their timestamp to accelerate the 3D recon-
struction process. Second, during the indoor scene scanning, for
some textureless objects or planar areas, we also scan them using
the Kinect4 camera. We capture a few RGBD sequences correspond-
ing to different objects or parts of the scene, and each sequence is
fused into a mesh using the KinectFusion algorithm [Newcombe
et al. 2011]. Then we register the fused meshes into the global mesh
reconstructed by RealityCapture using the iterative closest point
(ICP) method, which forms the final global mesh. The initial pose of
each RGBD sequence is obtained by computing the camera pose of
its first RGB image in MVS.

The geometry of mirrors and their masks in an image are obtained
by the method developed by Whelan et al. [2018], but we simplify
their hardware by removing the SLAM cameras. The captured color
images with AprilTags are also fed into RealityCapture software to
compute their camera poses.

4.2 Surface Layer Mesh Construction

We first project the global mesh G using the camera pose of the
input image I to obtain an initial depth image D. As G is not precise,
there are misalignments between depth and color edges. They are
corrected in two steps, i.e., depth edge detection and refinement.

Fig. 3. Depth refinement to align depth and color edges. (a) Initial depth
map. (b) Visualization of the normal map. (c) Misalignment between depth
and color edges. (d) Regions between depth and color edges. (e) Refined
depth edges. (f) Constructed surface mesh. Lines in yellowgreen indicate
the depth edges. Please zoom-in to view the details.

4.2.1 Depth Edge Detection. For each pixel i in the depth image,
we first calculate its vertex position v; and normal n; according to
its depth d;. Second, we detect whether there exists a depth edge
between two neighboring pixels p; and p; by checking their mutual
planar distance

2 1

If dt;j exceeds a threshold A, then we label ij as a depth edge
(See Fig. 3(c)). We set A = 0.01 - max(1, min(d;,d;)), accounting
for large discretization errors for pixels with large depth. After
obtaining depth edges, we generate a depth refinement mask in the
neighborhood of the depth edges and refine the depth of the input
image within this mask. As shown in Fig. 3(d), the depth mask is
given by the fronto-parallel square patch of side length 4cm at each
depth edge pixel in the current view.

dtij = max(l(vi _Vj) 'ni|,|(Vi _Vj)

4.2.2 Depth Refinement. We proceed in two steps to refine the pixel-
wise depth. Similar to [Hedman et al. 2018], for each initial depth
image, we apply COLMAP [Schénberger et al. 2016] to recover
the detailed, pixel-wise depth. To enhance stability, we only do
COLMAP-based refinement inside the refinement mask. For each
pixel in the mask, COLMAP runs the pixel-wise view selection based
multi-view stereo algorithm to obtain the depth. Specially, it first
runs a photometric stage to optimize photo consistency, followed
by a geometric stage that takes multi-view geometric consistency
into account. Then, we remove misaligned depth edge pixels based
on comparing the photometric and geometric stage results. If the
photometric stage depth and the geometric stage depth of one pixel
differ by more than 5% of the geometric stage depth, we discard the
depth of this pixel.

The second step adapts edge-aware interpolation in Epicflow [Re-
vaud et al. 2015] to compute the depth value d; for a pixel i between
the depth edges and their closest color edges [Dollar and Zitnick
2015; He et al. 2019] as follows (Fig. 3(e)):

Wg (i, J) i
E =4,
JEA; X wg (k) @

where the pixels in A; are the 4-closest neighbors outside the refine-
ment mask of i computed using the geodesic distance d; (p;, p;), and

wy (i, j) = exp (—dg (i) Jlj is the depth induced from intersecting

Scalable Image-based Indoor Scene Rendering with Reflections « 60:5

Global Mesh

3D plane detection

Initialization

Reference image k ——————
Reflection
detection

Neighboring images

Per-view two layer decomposition

Further optimization

Fig. 4. The pipeline of reflection decomposition algorithm.

the line of sight through pixel i and the plane defined according to
the 3D position and normal at pixel j. As the interpolation considers
color edges, the resulting images usually possess aligned depth and
color edges. In a few cases, if no color edge is close to an occlusion
edge in almost constant color regions, we also allow users to specify
edges on color images.

4.2.3 Converting Refined Depth to a Surface Mesh. We initialize a
triangle mesh by converting each pixel square into two triangles.
We then apply [Garland and Heckbert 1997] to simplify the mesh
to the final per-view surface mesh. Moreover, we preserve mesh
edges along depth occlusion edges by increasing their quadric error
by a factor of 400~500 in mesh simplification to facilitate edge anti-
aliasing in the rendering. After simplification, the vertex number of
per-view mesh is less than 40,000 on average.

Our per-view depth refinement strategy is similar to [Hedman
et al. 2018]. However, we found that performing 2D edge-aware
interpolation for misaligned pixels is empirically more stable than
the bilateral median filter in our experiments.

4.3 Reflection Decomposition

The reflection decomposition of a reference image Ij. recovers four
quantities: the surface layer image Iz and mesh Mz and the reflection
layer image Illc and mesh M!. We enforce the linear image compo-
sition rule in [Sinha et al. 2012] as a constraint in the reflection
decomposition:

I (w) = I (u) + fi ()T} (w) ®)

where u indicates a pixel of I.. Note that S (u) is the pre-computed
mask that indicates if a pixel u belongs to the reflection regions

or not. To simplify the notations, we concatenate Ig and I}(as Iz’l.

Likewise, Mz’l is the concatenation of Mz and M}C.

Since the number of variables is much larger than the number of
known pixel RGB values of I, we introduce additional constraints
to regularize the decomposition. The constraints fall into two cat-
egories. The first category consists of regularization constraints

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

60:6 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

for M%l, such as smoothness regularization and the regularization
induced from the global mesh G. The second category utilizes con-
sistency constraints between Iy and a set of neighboring images Ny
(defined below). These consistency constraints are imposed at three
levels, i.e., the two layers and the composite image. Note that our
approach also utilizes the neighboring images to rectify reflected
highlights with saturated intensities that break the composition rule
in Eq. 3.

Our reflection decomposition approach alternates between op-
timizing the decomposition of each input image and aggregating
constraints from neighboring images to enforce multi-view consis-
tency. In the following, we first describe the initialization step. We
then introduce the decomposition step and the aggregation step.

4.3.1 Initialization. We initialize the per-image reflection mask f
by projecting the detected global reflective plane onto the image Ij..
The surface and reflection layer meshes MZ’I are initialized using
the refined depth and the planar-reflection geometry inside the
reflection mask, respectively (please see our supp. material).

Next, we define the set of neighboring images N by rendering
the reflection layer mesh M,lc in the other images and then checking
the depth overlap (depth difference < 0.05 * min(depth)) in fi. The
images with more than 30% depth overlap are sorted according to
the camera pose distance. We keep the top six images to form Nj.
Our approach also utilizes an image flow wy- (u, MZ) between image
I and each neighboring image Iy-. It is computed by rendering Mz
with the camera pose associated to Ij/.

The quality of the image flow wy (u, Mz) depends on the quality
of Mg. During the initialization step, we refine wys using a non-rigid
2D warping function Fy.. F, is defined on a 40x30 2D grid that
uniformly covers the image, resulting in 41x31 control vertices. It
is represented by the offset vectors f]lC, associated to the control

vertices v;c, of the grid, where [is the index through the set of
control vertices. The warping function Fy for a pixel u is as follows:

Fp (0) =u+3; 0, (u)f}, 4

where 9}(, are the weight functions of bilinear interpolation using
the control vertices of the grid cell that contains u. With this setup,

we use the image flow Fy/ (wk, (u, Mg)) to aggregate information
across neighboring views during the initialization phase. Note that

we use s (u, Mg) at subsequent iterations.

The offset vectors fllc' are obtained by minimizing

E= Sullle (Fer (o (wM2))) = Te @I +we SELI2 9)

o])

where w, = 1.2 and w, = 0.5 in our experiments. The first term
ensures the color consistency between Iy, and I; with respect to

2
+ WaZt

t _ t
V1 (V2+a

the image flow Fy/ (wk’ (u, Mz)). The second term regularizes the

deformation. The third term is the as-rigid-as-possible (ARAP) reg-
ularization introduced in [Igarashi et al. 2005], where « is the grid
aspect ratio. To compute this term, we split each grid cell into two

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

e

Neighboring image

lg w/ local warping

N
ARAP energy

Fig. 5. An example of a 2D warping result. Left: input images. Middle: The
pixel difference is reduced after warping. Right: The decomposed foreground
surface image after the first iteration of the alternating optimization algo-
rithm.

triangles, where v{, vg and vg represent three vertices of each trian-

gle t. Their deformed positions can be obtained by substituting the
corresponding vi,s into Eq. 4. We perform 5 Gauss-Newton itera-
tions to obtain the 2D warping field. Fig. 5 illustrates the influence
of 2D warping to the initialization of Iz.

Given Ny and oy (u, MZ), we initialize

10 (u) = min ({Ik, (Fk, (wk, (u, Mg))) ke M| k}) . ®)

We then set IllC =1 - 12. Note that the min operator is used to

provide a meaningful value for 12 (u) while prioritizing that Illc (w)
is non-negative.

4.3.2 Two-layer Decomposition. We solve the following optimiza-
tion problem to optimize Mz’l and 12’1:

argmin Eg+AsEs+ApEp+AmoEmo, st. T () € [0..1], (7)

RT) ML

where (R, T)]lc are the rotation and translation transformations for

M}c respectively. We set As = 0.04, A, = 0.01. The weight A,y is
set to 0 initially and then 0.05 after the aggregation step according
to multi-view consistency. Below we introduce the formulation of
each term.

Data Term. The data term E; measures the difference between the
image Iy, composed by rendering two-layer images at a neighboring
viewpoint k” according to Mz’l and the captured image Iy.:

Eg=), DIk -L @]° (®)

KeNe Uk o
7 0 -1 0 -1 0\l (-1 1
Iy (w) =1, (wk, (u, Mk)) + Pr (wk, (u, Mk)) I (“’k’ (u, Mk)),
where wlz,l represents the inverse warping function wg.

Smoothness Term. The smoothness term aims to minimize the gra-
dient of Iz’l and the mean curvature normal of Mz’l. We downscale
the smoothness weights according to the color edges.

0,1
Eo= 3 (V@i @?) +) IHMY 9)IF 9)
u v

where v is the vertex of Mz’l, and H indicates the Laplacian matrix
computed using cotangent weights [Desbrun et al. 1999].

Prior Term. This term regularizes I%l to make the optimization
stable:

Ep = (I l2) + 3 (1 (w)1?) (10)
u u

Optimization. To handle the large number of optimization vari-

ables in 12’1 and Mz’l, we develop an alternating optimization al-

gorithm to minimize the objective function Eq. 7. Specifically, the

algorithm alternatively solves for two sets of variables, namely 12’1

and {(R, T) Ilc’ Mz’l} until convergence. In each iteration, each set of

variables is solved by fixing the other set of variables.

4.3.3 Multi-view Consistency. After performing two-layer decom-
position for each input image, we aggregate the results of neighbor-
ing images. This step can be considered a filtering step, which can
enhance the decomposition of each image. To this end, we introduce
two aggregated images iz and i}c from neighboring images (defined
below). When performing the next iteration of per-view two-layer
decomposition, we introduce an additional regularization term E,y
in Eq. 7 as follows:

Emo =) I (w) =T (@)l + > I, () =T,)l®, ()

Intuitively, this term ensures that Iz (u) and I}C (u) are compatible
with the image flows between neighboring images and is easy to
optimize. Usually, our reflection decomposition algorithm converges
to a good-quality solution within two iterations.

We define iz by robustly aggregating the corresponding layers
among neighboring images:

1% (u) = median ({12, (wk, (u, Mg)) ke Ne| k}) (12)

where Mz and IZ, are optimized in previous per-view reflection

ops . . ST N .
decomposition iterations. I} is given by enforcing the linear compo-
sition rule in Eq. 3:

it (o) = {Ik (=10 () i (w) -1 (w) - 1L (w) <0

13
Illc (u) otherwise (13)

There are two special cases of reflections: 1) Highlights. Pixels in-
side highlights have saturated intensities, which can not be modeled
by Eq. 3. Thus, we propose to detect the pixels with highlights to
avoid the computation of E; for these pixels. 2) Mirrors. Considering
that mirrors are perfectly reflective surfaces without texture, we
choose to set IllC =1I; and Ig = 0 for the pixels inside a mirror. The
mirror plane is determined using a simplified hardware in [Whelan
et al. 2018] with AprilTags. The details on how we handle these two
special cases are presented in the supp. material.

5 ONLINE RENDERING

The online rendering stage generates novel-views from a moving
camera. Besides ensuring the quality of an individual image, a key
goal is to ensure that the rendered images are smooth. The design of

Scalable Image-based Indoor Scene Rendering with Reflections « 60:7

Fig. 6. Compared with InsideOut[Hedman et al. 2016], our view warping
can avoid discontinuity artifacts and produce smoother image blending
results.

It — t,]l € [1.2,1.8)
ko View Selection

v Y Z(R, R E[0910°) (3, 6, 7}

4A‘ b 2(RZ,R%) € [10°,20°) {2, 8}

A
EN 4
ﬁ\v 4
AW 4

£(R%,R%) € [20°307) {4, 5}

argmin(dy)

[
! V' Novel view (RZ. t,)

l=1-1

[
[
] [
! V' Cameras Rl te) |
} V' Selected views }

Fig. 7. 2D illustration of view selection. The view selection is done indepen-
dently for each quadrant.

our online rendering module is tailored towards both goals. Specifi-
cally, it consists of a view warping step (Sec. 5.1), which initializes
the rendering, and a supersampling step (Sec. 5.2), which employs a
neural network to refine the rendering result as a post-process.

5.1 View Warping using Two-layer Mesh Representation

Given a new view V,, our view warping algorithm first selects a suit-
able set of relevant input images. It then renders the pre-computed
two-layer meshes of each input image under this new view. Each
synthesized image is given by Eq. 3. The output of this step is
obtained by blending the synthesized images (c.f. [Hedman et al.
2016]). The quality of the output heavily depends on the blending
strategy and relevant-view’s selection strategy. We introduce a new
approach that reduces discontinuities in view selection and blend-
ing weight distribution among neighboring pixels. Fig. 6 shows an
example result of our approach, which improves the smoothness of
the renderings. Similar to [Hedman et al. 2016], our view warping
algorithm consists of three steps: view selection, fuzzy depth test
and camera-pose-based view blending.

5.1.1 View Distance. For each camera pose Vi, we denote tg and
Ri as its optical center and optical axis, respectively. In other words,
R} corresponds to the z axis of the camera rotation matrix. We first
define a distance d between an input view V. and the novel view

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

60:8 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

————‘;——-————

o,
Low [BR«l{ua't Floating geometry

High [B)Zosl
VYV Novel View @ 3D Point

V V camerss N\ IBRCost
GT Surface +=== Per-view Depth

‘W/O IBR-cost

W/ IBR-cost

Fig. 8. The floating geometry at one pixel will be removed if its IBR-cost is
high with respect to the novel view.

V, to facilitate the view blending.

di = £ (RERE) « /180 + Allte — tall/ltall - (19)

where £/ (R]i, Rfl) is the angle between Ri and RZ; ||tx — tn]| is the
distance between t; and tp,.

This distance focuses on the consistency of the look-at direction
of each camera by only using Ri as a simplified representation of
camera orientation. Empirically, we found it works well since there
seldom exist the camera rotations around its optical axis. We set
A = 0.1 in our experiments.

5.1.2 View Selection. To select views surrounding V, with a uni-
form distribution, we choose to divide the 3D space around a novel
view into 72 sub-regions and select one captured view with mini-
mum view distance dy. in each sub-region. Specifically, we first split
the 3D space into eight quadrants by local coordinate xyz-axes. We
then continue to divide the captured views into nine sub-regions
for each quadrant based on the pairwise combination of three angle
intervals and three optical center distance intervals (see Fig. 7 for
the default setting).

We found that it is also important to maintain the overlap between
selected views for V,, and those of the previous view V,_; to en-
hance temporal coherence. We achieve this by delaying the removal
of selected views at Vp,_1. Precisely, we first calculate Z(R;,,RZ_,)
and ||t, — t,—1]|| between V,, and V,,_;. These two values are then
added to the maximum angle condition and maximum distance con-
dition which are 30° and 1.8m respectively as shown in Fig. 7. Finally,
the views selected at V,,_; that satisfies the updated conditions are
also selected for V,,.

5.1.3 Fuzzy Depth Test. Given the view selection result, we first
generate a front-most depth map (FDMP) by rendering the meshes
of selected views into the novel view. The FDMP will be used for the
fuzzy depth test, to determine if a pixel contributes to the blending
result. Specifically, if the absolute distance between the depth of a
pixel and the corresponding depth in the FMDP is less than 3cm, this
pixel is deemed to be visible at V,, and will be used in view-blending.

However, floating geometries, i.e., the geometry errors, of per-
view meshes will downgrade the FDMP’s quality, making the depth
test inaccurate. Thus, we utilize a per-pixel IBR-cost to reduce the
influence of floating geometries [Hedman et al. 2018]. Specifically,
we first determine the smallest IBR-cost from the 3D points projected

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

2D Surface

Blending weight

(b) Hole filling

Fig.9. (a) We decay the weights near occlusion edges to improve the smooth-
ness of view blending. (b) We leverage tile-based rendering [Hedman et al.
2016] to render the pixels inside a hole, and also blend the rendering re-
sult with the remaining view warping result with weight decay at the hole
boundary.

to the same pixel of V,, and then only keep those points whose
difference of its IBR-cost to the smallest IBR-cost is less than a
threshold (default 0.17). The minimal depth of these remaining 3D
points is then selected to be the front-most depth. The IBR-cost is
defined in the same way as in [Hedman et al. 2016]:

where x is a 3D point. As shown in Fig. 8, this new approach can
reduce the influence of floating geometries, especially when some
depth edges are missed in depth-color edge alignment, e.g., there
are no color edges close to the depth edges.

t, —x

(tp tmX) = £ (t — Xty — %) % —— + 0,1
c(tp, th,x) = -xt; —X)* — +max |0,1—
e tn k=S 180 t —x

5.14 View Blending. We render per-view textured two-layer meshes
of selected views at V,, and blend the rendered surface and reflection
images separately. We use the fuzzy depth test to remove hidden
triangles before blending, and the blending weight for a selected
view V. is defined as follows:

w. = exp(~dy /) (15)
where § is set to 0.033 in our experiments. This weighting scheme fa-
vors those views close to V,, in view warping. Note that the blending
weight is the same for surface and reflection layer images.

To avoid discontinuity artifacts, we first apply image feathering,
which is a weight-decay operation often used in image stitching,
near the warped image boundaries [Szeliski 2006]. It is achieved by
decreasing the blending weight wi smoothly to 0 within a 20-pixel
distance to the image boundaries, which is efficient in removing
discontinuities caused by color variation among images. Second, we
also exploit weight decay to decrease the weight of pixels near depth
edges (x5 pixels distance to the depth edges along edge gradients).
The operation rectifies pixels that may contain noise, which can be
warped to semantically different objects in the scene (See Fig. 9).
Weight decay can reduce the weight of such pixels. Besides, warped

pixels far from the depth edge in another view will contribute sub-
stantially to the final RGB value. All the decayed weights are stored
in the alpha channel of mesh textures. There may be small-area
holes left after the camera-poses-based view blending, as shown in
Fig. 9(a). For pixels inside holes, we leverage the tile-based rendering
method in [Hedman et al. 2016] to render the voxels and their eight
neighbors that intersect with the surface of these pixels.

5.2 DSRNet

The second step of the online rendering employs DSRNet to rec-
tify the output of the view-warping and perform supersampling to
output the final result of target resolution. This step is also able to
reduce artifacts when stitching view-warping results.

5.2.1 Network Architecture. The key challenge of supersampling in
IBR is to improve the continuity of output. Similar to RSSNet [Xiao
et al. 2020], DSRNet combines the view warping result of the pre-
vious frame (I,—1, Dp—1) and that of the current frame (I,,, D) to
produce the final output Ifl. As illustrated in Fig. 10, the network
architecture of DSRNet combines two feature extraction towers that
operate on the current frame (dark pink box) and the previous frame
(dark green box) respectively. Thereafter, DSRNet fuses the extracted
features together and pass it through a U-Net (dark blue box) to
generate the final output Ig. Conceptually, this approach implicitly
performs temporal smoothing (i.e., between consecutive frames).
Note that the architecture of the U-Net and feature extraction towers
are standard, which follow those of RSSNet.

The performance of DSRNet is driven by the quality of the feature
module. Similar to RSSNet [Xiao et al. 2020], DSRNet first computes
a motion field M, that aligns pixels of the previous frame and pixels
of the current frame. The key innovation of DSRNet is to define the
motion vector rectification module (dark purple box) by combining
multiple inputs:

M; = Mg + MVR(I, I-1, Mg © I—1, My) (16)

where My; is the base motion vector predicted using the depth images
D;—1 and Dy,. The refinement module MVR takes the view-warping
results I,—1 and I,;, My, and the deformed image My © I,,—1 given
by deforming I, using M;, where © denotes the deformation
operation. Intuitively, this module applies a one-step flow refine-
ment between I, and My © I,,—1. Given that MVR is designed for
motion vector fine-tuning, the output of MVR is limited to [-5, 5]
pixels in our experiments. DSRNet combines the features of I, and
the weighted features of I,1 after applying M,. Similar to RSSNet,
the weights are obtained by applying three trainable convolution
operators on I, and M, ©1,,_1.

5.2.2 Training Losses. Similar to [Xiao et al. 2020], we combine a
structural similarity index (SSIM) loss and a perceptual loss to train
DSRNet:

5

2

L (If, Igt) =1 - SSIM (If, Igt)) Hconvi (If) — conv; (Igt) Hz
i=1

where If and I8! are the network output and the captured ground-
truth image respectively; conv; is the pre-computed filter, which is
a component of the perceptual loss. Weight w (default 0.1) is used
to balance the two losses.

Scalable Image-based Indoor Scene Rendering with Reflections « 60:9

Table 1. Statistics of reconstructed indoor scenes. #lmg denotes the number
of total images captured in the scene. Img/Mesh Storage denotes the GPU
memory storage for down-sampled texture images and two-layer meshes.
Numbers in brackets indicate the memory storage for surface and reflec-
tion layer meshes. #RGBD denotes the total time in seconds of all RGBD
sequences scanned in 30fps.

Scene Area(m?) | #Img Sir;lri/gl\g:(s}kl;) #RGBD
Hotel Room 7.0 % 4.4 1741 ?15:11(1)22) 540s
Living Room 1 8.2%63 | 2289 ?271271(2);:;3) 495s
Living Room 2 | 12.3 % 8.1 2782 ?2850132;1) 945s
Meeting Room 1 | 11.2 % 6.5 1631 ?1562113)2;) 720s
Meeting Room 2 | 13.3%10.4 | 998 ?03;81(1)§i) 585s

We use a warping loss to train the MVR module:
Lwarp =11 (G (In) G (Mr © In—l)) +L1 (In, M; o In—l)

where L1(+) denotes the L1 Loss and G(+) is the Gaussian filter
with 5 X 5 kernels. The Gaussian filter is used to smooth the local
gradients and avoid gradient vanishing for pixels not on the color
edges.

6 EXPERIMENTS

We have implemented our IBR pipeline on a desktop PC with a
4.20GHz Intel Core i7-7700K CPU and an NVIDIA RTX 2080Ti GPU.
The implementation details of the per-view reflection decomposi-
tion, view warping and the training of the DSRNet can be found
in our supp. material. The forward inference of the network is ac-
celerated by Nvidia TensorRT [Nvidia 2018] with 16-bit precision.
All the per-view two-layer meshes are stored in GPU memory. We
utilize an OpenGL/CUDA interop interface to directly interchange
rendering buffer and network tensor data at GPU memory during
online rendering. Our pipeline’s average running time to render
an image with 1280x960 resolution is 49.1ms, including 30.7ms for
view warping and 18.4ms for the DSRNet inference.

To evaluate our pipeline, we have applied it to render five re-
constructed indoor scenes with different sizes, types, and reflection
scenarios, including one hotel room, two living rooms, and two
meeting rooms (see Tab. 1). We train DSRNet separately for each
scene, using 90% of the captured images as the training dataset and
the remaining 10% as the validation set. During rendering, the GPU
memory required to store the two-layer meshes and textures of each
scene is listed in the 4th column in Tab. 1. Besides, the DSRNet con-
sumes another 1.7GB GPU memory to render the scene at 1280x960
resolution. Example pre-processing time and the DSRNet training
time for the Living Room 1 scene are shown in Tab. 2. In this section,
we will report the evaluation results of reflection decomposition,
DSRNet, and the rendering result comparisons with state-of-the-art

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

60:10 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

| I Skip connection

Dy In

i '
|
\ / MVR
RGBD HxW

Output

Feature extraction (current)
. Feature extraction (previous)
. Feature reweighting

. Reconstruction
. Motion vector rectification

Skip connection
w H
*7 2>

H
4

]
~
\ Mr
Backward
RGBD \W_ & ¥
Dyq Iy ’

| B . 1Md Mdoln 1

f ”“’ ?JQ

Motion Vector Rectification (MVR)

Fig. 10. Network architecture of our method. Our network consists of four modules, including feature extraction, re-weighting, reconstruction and motion
vector rectification (MVR). The numbers on each network layer represent the output channels. In the reconstruction module, the height (H) and width (W) of
output features are marked under corresponding network layers. The kernel size is 3 X 3 at all layers excepts the first layer of MVR, whose kernel size is 5 X 5

instead.

Decomposition Energy vs Iteration

Solve IZ*(Istiter) Solve (R!T),t, M

RS Wl]
Initial Mi (R, T)} optimization Mjoptimization

Rendering result

Fig. 11. Convergence curve of the alternating optimization algorithm for re-
flection decomposition. The rendering results before and after optimization
are shown in the last two images in the second row.

IBR methods. Please also see the accompanying video for the video
comparisons.

6.1 Evaluation of the Reflection Decomposition Algorithm

Fig. 11 illustrates the convergence curve of the alternating optimiza-
tion algorithm for reflection decomposition. The energy defined
in Eq. 7 is optimized using the conjugate gradient (CG) method in
Ceres solver [Agarwal et al. 2010], and it gradually decreases with
each CG iteration when optimizing for I%l at the beginning. Af-
ter 30 iterations, the algorithm continues with optimizing for MZ’I
and (R, T)}C, leading to the further decline of the energy function.
Usually, the alternating optimization algorithm converges with two
outer iterations to optimize for I%l alternatively. The red arrow in
Fig. 11 is used to emphasize the effect of the optimization of Mllc' It
can be seen that the image rendered using the optimization result is
sharp and free of misalignment artifacts in highlights that is present
before the optimization. A comparison in Fig. 12 shows that, with
prior geometry, our reflection decomposition result is superior to

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

Table 2. Preprocessing times for Living Room 1 in hours. SfM+MVS: the
global mesh reconstruction using RealityCapture software. Per-view depth:
the per-view depth refinement. Meshing: the per-view mesh simplification.
Decomp.: the per-view two-layer decomposition.

Per-view . DSRNet
Step StIM+MVS Depth Meshing | Decomp. Training
Runtime 8h 5.5h 7h 1.5h 12h

Reference image Ours [Sinha et al.2012] [Liu et al. 2020]

Fig. 12. Reflection decomposition comparison.

the results of reflection removal algorithms based on semi-global
stereo [Sinha et al. 2012] and deep-learning [Liu et al. 2020b]. We
hypothesize that the failure of the algorithm in [Sinha et al. 2012] is
due to the difficulty to reliably estimate the two-layer depth using
semi-global stereo algorithm [Hirschmuller 2008]. Given that we
do not capture images continuously as in videos, it is also challeng-
ing to estimate dense optical flows for surface and reflection layers
required in [Liu et al. 2020b].

In Fig. 13, we show how the highlight detection influences the
reflection decomposition result. If we use the linear composition rule
in this case, the highlights in neighboring views will lead to artifacts
in the foreground surface image, resulting in a large area of artifacts
in the decomposed surface image. The artifacts are corrected after
ignoring the data term inside the detected highlight regions. The
holes inside the highlights of the decomposed surface image are
filled by the multi-view consistency step. Fig. 14 shows the two-layer
image and mesh construction results of a TV screen and a mirror.
Since we enforce the RGB of Iz of mirrors to be zero, a color-less

assumption for mirrors, we did not show black 12 for the mirror. The
TV screen’s depth can be scanned with Kinect4 due to its surface

20d Ter.

Neighboring images Alternating optimization with highlight detection
Fig. 13. Two-layer decomposition for highlights. Red regions on the top-right
of the reference image indicate the detected highlights. Without highlight
detection, the highlights in neighboring views will lead to spreading artifacts
as shown in the decomposed foreground surface image in the top row.

Fig. 15. View warping vs. DSRNet. For each pair, view warping result is on
the left, and the DSRNet result is on the right. The blurring and aliasing at
object boundaries are effectively removed by the DSRNet.

Table 3. MVR ablation study.

Seenc W/ MVR W/O MVR
PSNRT SSIMT | PSNRT SSIM?T

Hotel Room | 33.57106 0.96860 | 33.20517 0.96856

LivingRoom 1 | 31.35471 0.96757 | 31.35119 0.96785
Living Room 2 | 30.01572 0.95905 | 29.43158 0.95892
Meeting Room 1 | 30.46487 0.98267 | 29.96584 0.98134
Meeting Room 2 | 31.37820 0.96296 | 30.73507 0.96277

matte. It benefits the initialization of the surface layer mesh and
helps to obtain high-quality reflection decomposition, as shown in
the top-row of Fig. 14.

Scalable Image-based Indoor Scene Rendering with Reflections « 60:11

Fig. 16. The improvement of object boundary rendering quality using the
MVR module. W/: with MVR. W/O: without MVR.

LR mesh + LR input image

I B)

LR mesh

Fig. 17. The influence of mesh and input image resolution to DSRNet. HR/LR
mesh: mesh constructed using high/low resolution depth map. HR/LR input
image: generate high-resolution or low-resolution images with view warping.
HR mesh + HR input image leads to improved rendering quality. Please also
see the accompanying video for the comparison.

Table 4. Loss term ablation study.

Only VGG Only SSIM SSIM+VGG
PSNRT SSIMT | PSNRT SSIMT | PSNRT SSIMT
28.13277 0.95896 | 33.18738 0.96884 | 33.57106 0.96360

6.2 Evaluation of DSRNet

After training, the DSRNet can produce sharp, high-quality images at
novel viewpoints. As illustrated in Fig. 15, although the images from
view warping are blurred and have alias artifacts around edges, the
image quality can be effectively enhanced by the DSRNet. Moreover,
Fig. 16 illustrates that the designed MVR module is beneficial to
remove the ghosting artifacts.

6.2.1 Ablation Study. We perform ablation studies to evaluate the
influence of the MVR module and loss terms on the DSRNet. Tab. 3
shows that the network with the MVR module can improve PSNR
values for all our reconstructed scenes and is beneficial to the im-
provement of the SSIM metric. In Fig. 16, we show that the ghosting
artifacts indicated by the red arrows can be corrected after integrat-
ing the MVR module into the DSRNet. Moreover, we remove each
loss term to evaluate its influence on the network. The evaluation
results on the hotel room scene for this ablation study are shown in
Tab. 4. The results verify that both VGG loss and L1 loss are essential
to the quality of the rendered images.

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

60:12 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

Ours Crops(ours)

InsideOut

DeepBlending NRW FVS

Fig. 18. Rendering result comparisons with InsideOut [Hedman et al. 2016], DeepBlending [Hedman et al. 2018] , NRW [Meshry et al. 2019] and FVS [Riegler

and Koltun 2020].

Our LLFF NeRF

Fig. 19. Comparisons with LLFF [Mildenhall et al. 2019] and NeRF [Milden-
hall et al. 2020].

6.2.2 Influence of the View Warping Result on the DSRNet. As
shown in Fig. 17, generating high-resolution (HR) images with per-
view meshes constructed with HR images can achieve superior
rendering results. The reason we choose to construct the mesh with
HR images is to preserve the mesh edges on occlusion edges. There-
fore, the occlusion edge details of the HR RGBD images can be
better preserved, which facilitates the DSRNet in producing high-
quality images. Note that the mesh constructed on low-resolution
(LR) RGBD images has considerably fewer boundary edges, thereby
leading to blurring or aliasing artifacts around occlusion edges. Fur-
thermore, we found it is beneficial to recover occlusion edge details
if generating HR images in view warping.

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

Table 5. Quantitative comparisons.

Deep Inside
Blending | Out
Hotel PSNRT 32.90 31.56 | 31.11 | 27.26 | 33.57
Room SSIMT 0.881 0.880 | 0.831 | 0.835 | 0.968

Scene Metric NRW | FVS | Ours

Living | PSNRT 31.33 29.99 | 30.13 | 25.54 | 31.35
Room 1 | SSIMT 0.875 0.881 | 0.828 | 0.833 | 0.968
Living | PSNRT 29.04 29.77 | 27.93 | 25.32 | 30.40
Room 2 | SSIMT 0.828 0.827 | 0.785 | 0.808 | 0.961

Meeting | PSNRT 29.86 29.19 | 25.70 | 24.61 | 30.46
Room 1 | SSIMT 0.926 0.934 | 0.875 | 0.871 | 0.983
Meeting | PSNRT 31.70 30.27 | 29.57 | 26.38 | 31.38
Room 2 | SSIMT 0.865 0.871 | 0.802 | 0.809 | 0.963

6.3 Rendering Results and Comparisons

To demonstrate the advantage of our pipeline, we compare our
method against state-of-the-art view synthesis methods, such as
InsideOut [Hedman et al. 2016], DeepBlending [Hedman et al.
2018], Neural Rerendering in the Wild (NRW) [Meshry et al.
2019], LLFF [Mildenhall et al. 2019], NeRF [Mildenhall et al. 2020]
and FVS [Riegler and Koltun 2020]. For fair comparisons, we use cap-
tured high-resolution images plus our constructed per-view meshes
as the input of InsideOut and DeepBlending. For NRW, we use a
textured global mesh generated by RealityCapture to render the in-
put color and depth images. The required semantic map is obtained
by segmenting the image with indoor scene class labels using the

network provided by NRW. Given that our DSRNet is trained for
each scene to improve the rendering quality, we also fine-tune the
networks of DeepBlending and FVS for the comparison. As shown
in Fig. 18, our method outperforms other methods on the rendering
quality of reflections. With the developed reflection decomposition
algorithm and the DSRNet, our system also achieves sharper ren-
dering results. The quantitative comparisons conducted on the five
reconstructed scenes are shown in Tab. 5, in which our pipeline
achieves the best performance over state-of-the-art methods on the
validation datasets.

Fig. 19 illustrates the comparisons with LLFF and NeRF. Al-
though these two methods can render high-quality images, it is
still challenging for them to handle high-frequency signals, such as
reflections and check patterns, resulting in evident blurring artifacts.
In contrast, our geometry-based IBR pipeline can produce sharp
images in these challenging cases.

7 CONCLUSIONS AND DISCUSSION

We have developed an IBR pipeline to render indoor scenes with
reflections. It has two main technical components: global-mesh-
guided robust two-layer mesh construction and a DSRNet based
rendering pipeline to save memory storage. We also design a view-
warping algorithm to produce temporally smooth images during
free-viewpoint navigation as the input of DSRNet. Our pipeline
can handle various types of reflections and achieve high-quality
rendering results. Its running time with NVIDIA RTX 2080Ti GPU
is below 50ms on average, suitable for interactive virtual reality
applications.

One limitation of our pipeline is that it can not handle curved
reflective surfaces. Empirically, a curved reflective surface can be
approximated by many piece-wise triangles, and we can construct a
reflection layer mesh for each triangle. However, the memory cost of
this simple extension is high, and the rendering speed is substantially
reduced. Rendering an environment map for a curved reflective sur-
face using our IBR pipeline can be an alternative method to simulate
its reflection. Another limitation is that our reflection decomposition
algorithm needs to have enough images surrounding each reference
image with translational motions to achieve high-quality decompo-
sition results. Otherwise, we discard the decomposition results. As
a result, our view warping algorithm might blur the undecomposed
reflections since it is designed to favor the temporal smoothness of
rendering results. In addition, our pipeline can not handle glass with
both background transmission and reflection. In order to realistically
render them, we might need to extend the linear composition rule
used in our paper to three layers, including transmission, reflection,
and possible opaque materials, such as papers or stickers, on the
glass. In the future, it would be interesting to investigate how to in-
tegrate feature space representation, similar to neural texture [Thies
et al. 2019b] and stable view synthesis [Riegler and Koltun 2021],
into the pipeline to balance between the rendering speed and the
robustness to inaccurate geometry in IBR.

Scalable Image-based Indoor Scene Rendering with Reflections + 60:13

ACKNOWLEDGMENTS

We thank anonymous reviewers for their professional and construc-
tive comments. Special thanks to Yifei Li for the help on the super-
resolution network. Weiwei Xu is partially supported by NSFC (No.
61732016). Qixing Huang would like to acknowledge the support
from NSF IIS-2047677 and NSF HDR TRIPODS-1934932.

REFERENCES

S. Agarwal, K. Mierle, and Others. 2010. Ceres Solver. http://ceres-solver.org.

M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall, J. Dourgarian,
J. Busch, M. Whalen, and P. Debevec. 2020. Immersive Light Field Video with a
Layered Mesh Representation. ACM Trans. Graph. 39, 4 (2020), 15.

C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. 2001. Unstructured
lumigraph rendering. In ACM Trans. Graph. 425-432.

J. Caballero, C. Ledig, A. P. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi. 2017.
Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion
Compensation. In CVPR, IEEE. 2848-2857.

CapturingReality. 2016. Reality capture, http://capturingreality.com.

C.R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai,
and T. Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using
a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (2017),
12 pages.

G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. 2013. Depth synthesis
and local warps for plausible image-based navigation. ACM Trans. Graph. 32, 3
(2013), 1-12.

G. Chaurasia, O. Sorkine-Hornung, and G. Drettakis. 2011. Silhouette-Aware Warping
for Image-Based Rendering. In Computer Graphics Forum, Vol. 30. 1223-1232.

S.E. Chen and L. Williams. 1993. View Interpolation for Image Synthesis. In SSGGRAPH,
ACM. 279-288.

P. E. Debevec, C.]. Taylor, and J. Malik. 1996. Modeling and rendering architecture
from photographs: A hybrid geometry-and image-based approach. In SSGGRAPH,
ACM. 11-20.

M. Desbrun, M. Meyer, P. Schréder, and A. H. Barr. 1999. Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow. In SSIGGRAPH, ACM. 317-324.

P. Dollar and C. L. Zitnick. 2015. Fast Edge Detection Using Structured Forests. IEEE
Trans. PAMI 37, 8 (2015), 1558-1570.

C. Dong, C. C. Loy, K. He, and X. Tang. 2014. Learning a deep convolutional network
for image super-resolution. In ECCV, Springer. 184-199.

S. Dong, K. Xu, Q. Y. Zhou, A. Tagliasacchi, S. Xin, M. Niefiner, and B. Chen. 2019.
Multi-Robot Collaborative Dense Scene Reconstruction. ACM Trans. Graph. 38, 4,
Article 84 (2019), 16 pages.

A. Edelsten, P. Jukarainen, and A. Patney. 2019. Truly next-gen: Adding deep learning to
games and graphics. In In NVIDIA Sponsored Sessions (Game Developers Conference).

J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck, N. Snavely, and R.
Tucker. 2019. Deepview: View synthesis with learned gradient descent. In CVPR,
IEEE. 2367-2376.

J. Flynn, I. Neulander, J. Philbin, and N. Snavely. 2016. Deepstereo: Learning to predict
new views from the world’s imagery. In CVPR, IEEE. 5515-5524.

D. Fuoli, S. Gu, and R. Timofte. 2019. Efficient Video Super-Resolution through Recurrent
Latent Space Propagation. In ICCV, IEEE Workshop. 3476-3485.

Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. 2009. Reconstructing building
interiors from images. In ICCV, IEEE. 80-87.

Y. Furukawa and J. Ponce. 2010. Accurate, Dense, and Robust Multiview Stereopsis.
IEEE Trans. PAMI 32, 8 (2010), 1362-1376.

M. Garland and P. S. Heckbert. 1997. Surface Simplification Using Quadric Error Metrics.
In SIGGRAPH, ACM. 209-216.

M. Goesele, J. Ackermann, S. Fuhrmann, C. Haubold, R. Klowsky, D. Steedly, and R.
Szeliski. 2010. Ambient Point Clouds for View Interpolation. In SIGGRAPH, ACM.
Article 95, 6 pages.

M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. 2007. Multi-View Stereo
for Community Photo Collections. In ICCV, IEEE. 1-8.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. 1996. The lumigraph. In
SIGGRAPH, ACM. 43-54.

X. Guo, X. Cao, and Y. Ma. 2014. Robust separation of reflection from multiple images.
In CVPR, IEEE. 2187-2194.

M. Haris, G. Shakhnarovich, and N. Ukita. 2019. Recurrent Back-Projection Network
for Video Super-Resolution. In CVPR, IEEE. 3892-3901.

R. L. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision
(second ed.). Cambridge University Press, ISBN: 0521540518.

J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang. 2019. BDCN: Bi-Directional Cascade
Network for Perceptual Edge Detection. In CVPR, IEEE. 3828-3837.

P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. 2017. Casual 3D Photography. ACM
Trans. Graph. 36, 6, Article 234 (2017), 15 pages.

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

http://ceres-solver.org
http://capturingreality.com

60:14 « Jiamin Xu, Xiuchao Wu, Zihan Zhu, Qixing Huang, Yin Yang, Hujun Bao, and Weiwei Xu

P. Hedman, J. Philip, T. Price, J. M. Frahm, G. Drettakis, and G. Brostow. 2018. Deep
blending for free-viewpoint image-based rendering. ACM Trans. Graph. 37, 6 (2018),
1-15.

P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. 2016. Scalable inside-out image-
based rendering. ACM Trans. Graph. 35, 6 (2016), 1-11.

H. Hirschmuller. 2008. Stereo Processing by Semiglobal Matching and Mutual Informa-
tion. IEEE Trans. PAMI 30, 2 (2008), 328-341.

A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz. 2011. Fast cost-volume
filtering for visual correspondence and beyond. In CVPR, IEEE. 3017-3024.

T. Igarashi, T. Moscovich, and J. F. Hughes. 2005. As-rigid-as-possible shape manipula-
tion. ACM Trans. Graph. 24, 3 (2005), 1134-1141.

J. Kopf, F. Langguth, D. Scharstein, R. Szeliski, and M. Goesele. 2013. Image-based
rendering in the gradient domain. ACM Trans. Graph. 32, 6 (2013), 1-9.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A.
Tejani, J. Totz, and Z. Wang. 2017. Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network. In CVPR, IEEE. 105-114.

M. Levoy and P. Hanrahan. 1996. Light field rendering. In SSGGRAPH, ACM. 31-42.

C.Li, Y. Yang, K. He, S. Lin, and J. E. Hopcroft. 2020. Single Image Reflection Removal
through Cascaded Refinement. In CVPR, IEEE. 3565-3574.

Y. Li and M. S. Brown. 2013. Exploiting Reflection Change for Automatic Reflection
Removal. In ICCV, IEEE.

D. B. Lindell, J. N. P. Martel, and G. Wetzstein. 2020. Autolnt: Automatic Integration
for Fast Neural Volume Rendering. arXiv preprint arXiv:2012.01714 (2020).

L. Liu, J. Gu, K. Z. Lin, T. S. Chua, and C. Theobalt. 2020a. Neural Sparse Voxel Fields.
NeurlPS (2020).

Y. L. Liu, W. S. Lai, M. H. Yang, Y. Y. Chuang, and J. B. Huang. 2020b. Learning to See
Through Obstructions. In CVPR, IEEE. 14215-14224.

S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. 2019. Neural
Volumes: Learning Dynamic Renderable Volumes from Images. ACM Trans. Graph.
38, 4CD (2019), 65.1-65.14.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. 2000. Image-Based
Visual Hulls. In SIGGRAPH, ACM. 6.

W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. Mcmillan. 2002. Image-
Based 3D Photography Using Opacity Hulls. ACM Trans. Graph. 21, 3 (2002),
427-437.

M. Meshry, D. B. Goldman, S. Khamis, H. Hoppe, R. Pandey, N. Snavely, and R. Martin-
Brualla. 2019. Neural rerendering in the wild. In CVPR, IEEE. 6878-6887.

B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng,
and A. Kar. 2019. Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Trans. Graph. 38, 4 (2019), 1-14.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and N. Ren.
2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In
ECCV, Springer.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, and A. W. Fitzgibbon. 2011.
Kinectfusion: Real-time dense surface mapping and tracking. In 2011 10th IEEE
international symposium on mixed and augmented reality. IEEE, 127-136.

Nvidia. 2017-2018. Nvidia Corporation. TensorRT. https://developer.nvidia.com/
tensorrt.

R. Ortiz-Cayon, A. Djelouah, and G. Drettakis. 2015. A Bayesian Approach for Selective
Image-Based Rendering Using Superpixels. In 2015 International Conference on 3D
Vision. 469-477.

E. Penner and L. Zhang. 2017. Soft 3D reconstruction for view synthesis. ACM Trans.
Graph. 36, 6 (2017), 1-11.

N. C. Rakotonirina and A. Rasoanaivo. 2020. ESRGAN+: Further Improving Enhanced
Super-Resolution Generative Adversarial Network. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 3637-3641.

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. 2015. Epicflow: Edge-preserving
interpolation of correspondences for optical flow. In CVPR, IEEE. 1164-1172.

G. Riegler and V. Koltun. 2020. Free View Synthesis. In ECCV, Springer.

G. Riegler and V. Koltun. 2021. Stable View Synthesis. In CVPR, IEEE.

S. Rodriguez, S. Prakash, P. Hedman, and G. Drettakis. 2020. Image-Based Rendering of
Cars using Semantic Labels and Approximate Reflection Flow. Proc. ACM Comput.
Graph. Interact. 3 (2020).

M. S. Sajjadi, Vemulapalli, and M. R., Brown. 2018. Frame-Recurrent Video Super-
Resolution. In CVPR, IEEE. 6626—6634.

J. L. Schonberger and J. M. Frahm. 2016. Structure-from-Motion Revisited. In CVPR,
IEEE. 4104-4113.

J. L. Schonberger, E. Zheng, J. M. Frahm, and M. Pollefeys. 2016. Pixelwise View Selection
for Unstructured Multi-View Stereo. In ECCV, Springer, Vol. 9907. 501-518.

J. Shade, S. Gortler, L. He, and R. Szeliski. 1998. Layered depth images. In SSIGGRAPH,
ACM. 231-242.

H. Y. Shum and S. B. Kang. 2000. A Review of Image-based Rendering Techniques.
Technical Report. Microsoft.

S. N. Sinha, J. Kopf, M. Goesele, D. Scharstein, and R. Szeliski. 2012. Image-based
rendering for scenes with reflections. ACM Trans. Graph. 31, 4 (2012), 1-10.

ACM Trans. Graph., Vol. 40, No. 4, Article 60. Publication date: August 2021.

S.N. Sinha, D. Steedly, and R. Szeliski. 2009. Piecewise planar stereo for image-based
rendering. In ICCV, IEEE. 1881-1888.

V. Sitzmann, M. Zollhofer, and G. Wetzstein. 2019. Scene representation networks:
Continuous 3d-structure-aware neural scene representations. In Advances in Neural
Information Processing Systems. 1121-1132.

P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng, and N. Snavely. 2019.
Pushing the boundaries of view extrapolation with multiplane images. In CVPR,
IEEE. 175-184.

R. Szeliski. 2006. Image Alignment and Stitching: A Tutorial. MSR-TR-2004-92.

X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. 2017. Detail-Revealing Deep Video Super-
Resolution. In ICCV, IEEE. 4482-4490.

N. Tatarchuk, B. Karis, M. Drobot, N. Schulz, J. Charles, and T. Mader. 2014. Advances in
Real-Time Rendering in Games, Part I (Full Text Not Available). In ACM SIGGRAPH
2014 Courses. Article 10, 1 pages.

A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-Brualla,
T. Simon, J. Saragih, M. Niefiner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y. Zhu, C.
Theobalt, M. Agrawala, E. Shechtman, D. B Goldman, and M. Zollhfer. 2020. State
of the Art on Neural Rendering. Computer Graphics Forum 39, 2 (2020), 701-727.

J. Thies, M. Zollhofer, and M. Niefiner. 2019a. Deferred Neural Rendering: Image
Synthesis Using Neural Textures. ACM Trans. Graph. 38, 4, Article 66 (July 2019),
12 pages.

J. Thies, M. Zollhéfer, and M. Niefiner. 2019b. Deferred neural rendering: Image synthesis
using neural textures. ACM Trans. Graph. 38, 4 (2019), 1-12.

X. Wang, K. Chan, K. Yu, C. Dong, and C. C. Loy. 2019. EDVR: Video Restoration
With Enhanced Deformable Convolutional Networks. In CVPR, IEEE Workshop.
1954-1963.

Z. Wang,]. Chen, and S. C. H Hoi. 2020. Deep Learning for Image Super-resolution: A
Survey. IEEE Trans. PAMI (2020), 1-1.

T. Whelan, M. Goesele, S. J. Lovegrove, J. Straub, S. Green, R. Szeliski, S. Butterfield, S.
Verma, R. A. Newcombe, M. Goesele, et al. 2018. Reconstructing scenes with mirror
and glass surfaces. ACM Trans. Graph. 37, 4 (2018), 102-1.

D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin, and W.
Stuetzle. 2000. Surface light fields for 3D photography. In SSGGRAPH, ACM. 287-296.

L. Xiao, S. Nouri, M. Chapman, A. Fix, D. Lanman, and A. Kaplanyan. 2020. Neural
supersampling for real-time rendering. ACM Trans. Graph. 39, 4 (2020), 142-1.

K. Xu, L. Zheng, Z. Yan, G. Yan, E. Zhang, M. Niessner, O. Deussen, D. Cohen-Or, and
H. Huang. 2017. Autonomous Reconstruction of Unknown Indoor Scenes Guided
by Time-Varying Tensor Fields. ACM Trans. Graph. 36, 6 (2017), 15.

Z. Xu, S. Bi, K. Sunkavalli, S. Hadap, H. Su, and R. Ramamoorthi. 2019. Deep view
synthesis from sparse photometric images. ACM Trans. Graph. 38, 4 (2019), 1-13.

T. Xue, M. Rubinstein, C. Liu, and W. T. Freeman. 2015. A computational approach for
obstruction-free photography. ACM Trans. Graph. 34, 4 (2015), 1-11.

J. Yang, D. Gong, L. Liu, and Q. Shi. 2018. Seeing deeply and bidirectionally: A deep
learning approach for single image reflection removal. In ECCV, Springer. 654-669.

C. Zhang and T. Chen. 2003. A survey on image-based rendering. Signal Processing
Image Communication 19 (2003), 1-28.

T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. 2018. Stereo magnification:
Learning view synthesis using multiplane images. In SSGGRAPH, ACM.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

	Abstract
	1 Introduction
	2 Related Work
	2.1 IBR with Geometry
	2.2 Layered Representation and Reflection Decomposition
	2.3 Deep Learning-based IBR
	2.4 Deep Learning for Image and Video Super-resolution

	3 Overview
	4 Per-view Two-layer mesh Construction
	4.1 Global Mesh Reconstruction
	4.2 Surface Layer Mesh Construction
	4.3 Reflection Decomposition

	5 Online Rendering
	5.1 View Warping using Two-layer Mesh Representation
	5.2 DSRNet

	6 Experiments
	6.1 Evaluation of the Reflection Decomposition Algorithm
	6.2 Evaluation of DSRNet
	6.3 Rendering Results and Comparisons

	7 Conclusions and blackDiscussion
	Acknowledgments
	References

