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Inverse reinforcement learning (IRL) is the problem of inferring the reward function of 
an agent, given its policy or observed behavior. Analogous to RL, IRL is perceived both 
as a problem and as a class of methods. By categorically surveying the extant literature 
in IRL, this article serves as a comprehensive reference for researchers and practitioners 
of machine learning as well as those new to it to understand the challenges of IRL

and select the approaches best suited for the problem on hand. The survey formally 
introduces the IRL problem along with its central challenges such as the difficulty in 
performing accurate inference and its generalizability, its sensitivity to prior knowledge, 
and the disproportionate growth in solution complexity with problem size. The article 
surveys a vast collection of foundational methods grouped together by the commonality 
of their objectives, and elaborates how these methods mitigate the challenges. We further 
discuss extensions to the traditional IRL methods for handling imperfect perception, an 
incomplete model, learning multiple reward functions and nonlinear reward functions. The 
article concludes the survey with a discussion of some broad advances in the research area 
and currently open research questions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Inverse reinforcement learning (IRL) is the problem of inferring the hidden preferences of another agent from its observed 
behavior, thereby avoiding a manual specification of its reward function [1,2]. Over the past decade, IRL has attracted much 
interest in the communities of artificial intelligence, control theory, machine learning, and psychology. IRL is appealing 
because of its potential to use data recorded in performing a task to build autonomous agents capable of modeling others 
without intervening in the performance of the task.

We study this problem and associated advances in a structured way to address the needs of readers with different levels 
of familiarity with the field. For clarity, we use a contemporary example to illustrate IRL’s use and associated challenges. 
Consider a self-driving car in role B in Fig. 1. To safely merge into a congested freeway, it may model the behavior of the 
car in role A; this car forms the immediate traffic. We may use previously collected trajectories of cars in roles A and B, on 
freeway entry ramps, to learn the safety and speed preferences of a typical driver in role B as she approaches this difficult 
merge (NGSIM [3] is one such existing data set).

Approaches for IRL predominantly ascribe a Markov decision process (MDP) [4] to the interaction of the observed agent 
with its environment, and whose solution is a policy that maps states to actions. The reward function of this MDP is 
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Fig. 1. Red car B is seeking to merge into the lane, and green car A is the immediate traffic. The lighter images of cars show their positions before merging, 
and the opaque images to the right depict one of their possible positions after the merger. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

unknown, and the observed agent is assumed to follow an optimal policy of the MDP. In the traffic merge example, the
MDP represents the driving process of Car B. The driver of Car B is following action choices (deceleration, braking, low 
acceleration, and others) based on its optimal policy. Car B needs to reach the end of the merging lane after Car A for 
merging safely.

1.1. Significance of IRL

Researchers in the areas of machine learning and artificial intelligence have developed a substantial interest in IRL be-
cause it caters to the following needs.

1.1.1. Demonstration substitutes manual specification of reward
Typically, if a designer wants intelligent behavior in an agent, she manually formulates the problem as a forward learning 

or forward control task solvable using solution techniques in RL, optimal control, or predictive control. A key element of 
this formulation is a specification of the agent’s preferences and goals via a reward function. In the traffic merge example, 
we may hand design a reward function for Car B. For example, +1 reward if taking an action in a state decreases the 
relative velocity of Car B w.r.t. Car A within a predefined distance from merging junction, thereby allowing for a safe merge. 
Analogously, a negative reward of −1 if taking an action in a state increases the relative velocity of Car B w.r.t. Car A. This 
example specification captures one aspect of a successful merge into a congested freeway: that the merging car must slow 
down to match the speed of the freeway traffic. However, other aspects such as merging a safe distance behind Car A and 
not too close in front of the car behind A require further tuning of the reward function. While roughly specified reward 
functions are sufficient in many domains to obtain expected behavior (indeed affine transformations of the true reward 
function are sufficient), others require much trial-and-error or a delicate balance of multiple conflicting attributes [5], which 
becomes cumbersome.

The need to pre-specify the reward function limits the applicability of RL and optimal planning to problems where a 
reward function can be easily specified. IRL offers a way to broaden the applicability of RL and reduce the manual design 
of task specification, when a policy or demonstration of desired behavior is available. While acquiring the complete desired 
policy is usually infeasible, we have easier access to demonstrations of behaviors, often in the form of recorded data. For 
example, state to action mappings for all contingencies for Car B are not typically available, but datasets such as NGSIM 
contain trajectories of Cars A and B in real-world driving. Thus, IRL forms a key method for learning from demonstration [6].

A topic in control theory related to IRL is inverse optimal control [7]. While the input in both IRL and inverse optimal 
control are trajectories consisting of state-action pairs, the target of learning in inverse optimal control is a function mapping 
states of observed agent to her actions, which need not involve recovering the hidden rewards. The learning agent may use 
this policy to imitate it or deliberate with it in its own decision-making process.

1.1.2. Improved generalization
A reward function represents the preferences of an agent in a succinct form, and is amenable to transfer to another agent. 

The learned reward function may be used as is if the subject agent shares the same environment, actions, and goals as the 
other, otherwise it continues to provide a useful basis when the agent specifications differ mildly, for example, when the 
subject agent’s problem domain exhibits additional states. Indeed, as Russell [1] points out, the reward function is inherently 
more transferable compared to the observed agent’s policy. This is because even slight changes in the environment – for 
example, changes to the noise levels in the transition function – likely renders the learned policy unusable because it may 
not be directly revised in straightforward ways. However, this change does not impact the transferability of the reward 
function. Furthermore, it is likely that the learned reward function simply needs to be extended to any new states in the 
learner’s environment while a learned policy would be discarded if the new states are significant.

1.1.3. Potential applications
While introducing IRL, Russell [1] alluded to its potential application in providing computational models of human and 

animal behavior because these are difficult to specify. In this regard, Baker et al. [8] and Ullman et al. [9] demonstrate the 
2
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Fig. 2. Complex helicopter maneuvers learned using RL on a reward function learned from an expert pilot through IRL. The image is reprinted from [10]
with permission from publisher.

inference of a human’s goal as an inverse planning problem in an MDP. Furthermore, IRL’s use toward apprenticeship and 
imitation learning has rapidly expanded the set of visible use cases. These can be categorized into:

1. Learning from an expert to create an agent with the expert’s preferences. An early and well-known application that 
brought significant attention to IRL is helicopter flight control [10], illustrated in Fig. 2. In this application, an expert 
helicopter operator’s sophisticated preferences over 24 features were learned from recorded behavior data using IRL. 
This reward function was then used to teach a physical remotely-controlled helicopter advanced maneuvers using RL. 
Another application that brought IRL closer to Russell’s [1] motivation of modeling animal behavior is that of socially 
adaptive navigation to avoid colliding into humans by learning from human-walk trajectories [11,12]. Other important 
examples include boat sailing [13], learning driving styles [14], and expert video game play [15].

2. Learning from another agent to predict its behavior. One of the first attempts in this direction was route prediction for 
taxis [16,17]. Other such applications are footstep prediction for planning legged locomotion [18], anticipation of pedes-
trian interactions [19], energy efficient driving [20], and penetration of a perimeter patrol by learning the patrollers’ 
preferences and patrolling route [21].

1.2. Importance of this survey

This article is a reflection on the research area of IRL with a focus on the following important aspects:

1. Formally introducing IRL and its importance, by means of a uncomplicated exposition and various examples, to the 
researchers and practitioners new to the field;

2. A study of the challenges that make IRL difficult, and a review of the various foundational methods;
3. Qualitative assessments and comparisons among different methods, both those that are foundational and those that 

extend traditional IRL, to evaluate them coherently. This will considerably help the readers decide on the approach 
suitable for the problem at hand;

4. Identification of some significant milestones achieved by the methods in this field;
5. Identification of the common shortcomings and open avenues for future research.

Of course, a single article may not cover all methods in this growing field. Nevertheless, we have sought to make 
this survey as comprehensive as possible. To help with this goal, we maintain a distinction between IRL and areas of 
research pertaining to problems such as behavior cloning, imitation learning, learning from demonstration, and inverse 
optimal control. Specifically, IRL is simply one way to perform imitation learning or to learn from demonstration (whereas 
other methods for these problems need not recover the reward function). As the scope of our survey is limited to IRL, we 
do not focus on reviewing other methods for imitation learning, learning from demonstration, or inverse optimal control. 
We refer the interested reader to survey articles focused on these problems [22,23] (which include brief references to IRL

as one way of approaching the problem).
3
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1.3. Organization of contents

As IRL is an emerging area and the target reader is likely who is keen to learn about IRL, the viewpoint of ‘IRL as a re-
search problem’ is used to guide the organization of this article. Therefore, Section 2 mathematically defines the IRL problem 
and provides the requisite technical background that is referenced in later sections. We introduce the core challenges faced 
by this learning problem in Section 3. These challenges confront all methods and are not specific to any particular technique. 
Then, we briefly review the foundational methods with some recent extensions grouped together by the commonality of 
their underlying approaches, in Section 4 that have facilitated much early progress in IRL. We include a tabulated summary 
and unifying views of these methods. Section 5 then discusses how these methods mitigate the previously introduced core 
challenges and some achieved milestones. This separation of method description across two sections allows a practitioner 
to quickly identify the methods pertinent to the most egregious challenge she is facing in her IRL problem. This is followed 
in Section 6 by a review of efforts that generalize or extend the fundamental IRL problem in various directions. Finally, the 
article concludes with a discussion of some shortcomings and open research questions.

2. Formal definition of IRL

In order to formally define IRL, we must first decide on a framework for modeling the observed agent’s behavior. While 
methods ascribe different frameworks such as an MDP, hidden-parameter MDP, or a POMDP to the expert, we focus on the 
most popular model by far, which is the MDP [4].

Definition 1 (MDP). An MDP M := 〈S, A, T , R, γ 〉 models an agent’s sequential decision-making process. S is a finite set of 
states and A is a set of actions. Mapping T : S × A → Prob(S) defines a probability distribution over the set of next states 
conditioned on the agent taking action a at state s; Prob(S) here denotes the set of all probability distributions over S . 
T (s′|s, a) ∈ [0, 1] is the probability that the system transitions to state s′ . The reward function R can be specified in different 
ways: R : S → R gives the scalar reinforcement at state s, R : S × A →R maps a tuple (state s, action a taken in state s) to 
the reward received on performing the action, and, R : S × A × S →R maps a triplet (state s, action a, resultant state s′) to 
the reward obtained on performing the transition. Discount factor γ ∈ [0, 1] is the weight for future rewards in a trajectory, 
〈(s0, a0), (s1, a1), . . . (s j, a j)〉, where s j ∈ S, a j ∈ A, j ∈N .

A policy is a function mapping current state to next action choice(s). It can be deterministic, π : S → A or stochastic π :
S → Prob(A). For a policy π , value function V π : S → R gives the value of a state s as the long-term expected cumulative 
reward incurred from the state by following π . The value of a policy π for a given start state s0 is,

V π (s0) = Es,π(s)

[ ∞∑
t=0

γ t R(st ,π(st))|s0
]

(1)

The goal of solving the MDP M is to find an optimal policy π∗ such that V π∗
(s) = V ∗(s) = supπ V π (s), for all s ∈ S . The 

action-value function for π , Q π : S× A →R, maps a state-action pair to the long-term expected cumulative reward incurred 
after taking action a from s and following policy π thereafter. We also define the optimal action-value function as Q ∗(s, a) =
supπ Q π (s, a). Subsequently, V ∗(s) = supa∈A Q ∗(s, a). Another perspective to the value function involves multiplying the 
reward with the converged state-visitation frequency ψπ(s), which is the number of times the state s is visited on using 
policy π . The latter is given by:

ψπ(s) = ψ0(s) + γ
∑
s′∈S

T (s,π(s), s′) ψπ (s′) (2)

where ψ0(s) is initialized to the initial state distribution. Let � be the space of all ψ functions. Iterating Eq. (2) until the 
state-visitation frequency stops changing yields the converged frequency function, ψπ∗ . We may write the value function as, 
V ∗(s) = sup

π

∑
s∈S ψπ∗ (s) R(s, π(s)).

We may express the reward function as a linear sum of weighted features:

R(s,a) = w1φ1(s,a) + w2φ2(s,a) + . . . + wkφk(s,a)

= wTφ(s,a), (3)

where φk : S →R is a feature function and weight wk ∈R. Then, define the expected feature count for policy π and feature 
φk as,

μφk (π) =
∞∑
t=0

ψπ(st) φk(st,π(st)). (4)
4
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Fig. 3. (a) A schematic showing the subject agent (shaded in blue) performing RL [24]. In forward learning or RL, the agent chooses an action at a known 
state and receives a reward in return generated by a reward function R that may not be known to the agent. The state changes based on the previous state 
and action, which is modeled using the transition function T that may be unknown as well. (b) In inverse learning or IRL, the input and output for the 
learner L are reversed. L perceives the states and actions {(s, a), (s, a), . . . , (s, a)} of expert E (or its policy πE ), and learns a reward function R̂ E that best 
explains E ’s behavior, as the output. Note that the learned reward function may not exactly correspond to the true reward function.

We will extensively refer to this formulation of the reward function and the expected feature count later in this article. Note 
that μφk (π) is also called a successor feature in RL. The expected feature count can be used to define the expected value of 
a policy:

V π = wTμφ(π) =
∑
s∈S

ψπ(s) wTφ(s,π(s))

=
∑
s∈S

ψπ(s) R(s,π(s)). (5)

RL offers an online way to solve an MDP. The input for RL is the sequence of sampled experiences in the form (s, a, r) or 
(s, a, r, s′), which includes the reward or reinforcement due to the agent performing action a in state s. For the model-free 
setting of RL, the transition function T is unknown. Both the transition function and policy are estimated from the samples 
and the target of RL is to learn an optimal policy.

We adopt the conventional terminology in IRL, referring to the observed agent as an expert and the subject agent as the 
learner. Typically, IRL assumes that the expert is behaving according to an underlying policy πE , which may not be known. If 
policy is not known, the learner observes sequences of the expert’s state-action pairs called trajectories. The reward function 
is unknown but the learner usually assumes some structure that helps in the learning. Common functional forms include 
a linearly-weighted combination of reward features, a probability distribution over reward functions, or a neural network 
representation. We elaborate on these forms later in this article. The expert’s transition function may not be known to the 
learner. We are now ready to give the formal problem definition of IRL.

Definition 2 (IRL). Let an MDP without reward, M\RE , model the interaction of the expert E with the environment. 
Let D = {〈(s0, a0), (s1, a1), . . . , (s j, a j)〉1, . . . , 〈(s0, a0), (s1, a1), . . . , (s j, a j)〉Ni=2}, s j ∈ S , a j ∈ A, and i, j, N ∈ N be the set of 
demonstrated trajectories. A trajectory in D is denoted as τ . We may assume that all τ ∈ D are perfectly observed. Then, 
determine R̂ E that best explains either policy πE if given or the observed behavior in the form of demonstrated trajectories.

Notice that IRL inverts the RL problem. Whereas RL seeks to learn the optimal behavior based on experiences ((s, r)
or (s, r, s′)) that include obtained rewards, IRL seeks to best explain the observed behavior by learning the corresponding 
reward function. We illustrate this relationship between RL and IRL in Fig. 3.

We may obtain an estimate of the expected feature count from a given demonstration D of N trajectories, which is the 
empirical analog of that in Eq. (4),

μ̂φk (D) = 1

N

N∑
i=1

∞∑
t=0

γ tφk(st ,at). (6)

3. Primary challenges of IRL

IRL is challenging because the optimization associated in finding a reward function that best explains observations is 
essentially ill-posed. Furthermore, computational costs of solving the problem tend to grow disproportionately with the size 
of the problem. We discuss these challenges in detail below, but prior to this discussion, we establish some notation. Let π̂E

be the policy obtained by optimally solving the MDP with reward function R̂ E .
5
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Fig. 4. Pipeline for a classical IRL process. The learner receives an optimal policy or trajectories as input. The prior domain knowledge (shown here as a 
pentagon) include the completely observable state space, action space, and fully known transition probabilities.

3.1. Obstacles to accurate inference

Classical IRL takes an expert demonstration of a task consisting of a finite set of trajectories, knowledge of the environ-
ment and expert’s dynamics, and finds the expert’s potential reward function; this is illustrated in Fig. 4.

A critical challenge, first noticed by Ng and Russell [2], is that many reward functions (including highly degenerate ones 
such as a function with all reward values zero) could explain the observations. This is because the input is usually a finite 
and small set of trajectories (or a policy) and many reward functions in the set of all reward functions can generate policies 
that realize the observed demonstration. Thus, IRL suffers from an ambiguity in solution.

Given the difficulty of ensuring accurate inference, its pertinent to contemplate how we may measure accuracy. If the 
true reward function RE is available for purposes of evaluation, then one measure of accuracy is the closeness of a learned 
reward function R̂ E to RE , 

∣∣∣∣∣∣RE − R̂ E

∣∣∣∣∣∣
p
. However, a direct comparison of rewards is not useful because an MDP’s optimal 

policy is invariant under affine transformations of the reward function [25]. On the other hand, two reward functions similar 
for the most part but differing for some state-action pairs may produce considerably different policies and behaviors. To 
make the evaluation targeted, a comparison of the behavior generated from the learned reward function with the true 
behavior of expert is more appropriate. In other words, we may compare the policy π̂E generated from MDP with R̂ E with 
the true policy πE . The latter could be given or is generated using the true reward function. A limitation of this measure of 
accuracy is that a difference between the two policies in just one state could still have a significant impact. This is because 
performing the correct action at that state may be crucial to realizing the task. Consequently, this measure of closeness is 
inadequate because it would report just a small difference despite the high significance.

This brings us to another metric, which is to measure the difference in values of the learned and true policies. Specif-
ically, we may measure the error in inverse learning, called inverse learning error (ILE), as 

∣∣∣∣∣∣V πE − V π̂E

∣∣∣∣∣∣
p

where V πE is 

the value function for actual policy πE and V π̂E is that for the learned policy π̂E both obtained using the true reward 
function [26]. Notice that if the true and learned policies are the same, then ILE is zero. However, ILE may also vanish 
when the two differ but if both policies are optimal. On the other hand, ILE requires knowing the true transition and re-
ward functions which limits its use to formative evaluations. Another assessment measures the learned behavior accuracy. 
This metric is computed as the number of demonstrated state-action pairs that match between using the true and learned 
policies expressed as a percentage of the former. However, it is limited to the demonstration. Clearly, no single metric gives 
a complete evaluation.

3.2. Generalizability

Generalization refers to the extrapolation of learned information to the states and actions unobserved in the demonstra-
tion and to starting the task at different initial states. Observed trajectories typically encompass a subset of the state space 
and the actions performed from those states. Well-generalized reward functions should reflect expert’s overall preferences 
relevant to the task. The challenge is to generalize correctly to the unobserved space using data that often covers a fraction 
of the complete space.

Notice that achieving generalizability then promotes the temptation of training the learner using fewer examples because 
the latter now possesses the ability to extrapolate. However, less data may contribute to greater approximation error in R̂ E

and inaccurate inference.
The metric ILE continues to be pertinent by offering a way to measure the generalizability of the learned information 

as well. This is because it compares value functions, which are defined over all states. Another procedure for evaluating 
generalizability is to simply withhold a few of the demonstration trajectories from the learner. These can be used as labeled 
test data for comparing with the output of the learned policy on the undemonstrated state-action pairs.
6
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3.3. Sensitivity to correctness of prior knowledge

If we represent the reward function, RE , as a weighted combination of feature functions, the problem then reduces to 
finding the values of the weights. Each feature function, φ : S × A → R, is given and is intended to model a facet of the 
expert’s preferences.

Prior knowledge enters IRL via the specification of feature functions in RE and the transition function in the MDP

ascribed to the expert. Consequently, the accuracy of IRL is sensitive to the selection of feature functions that not only 
encompass the various facets of the expert’s true reward function but also differentiate the facets. Indeed, Neu and 
Szepesvári [13] prove that IRL’s accuracy is closely tied to the scaling of correct features. Furthermore, it is also dependent 
on how accurately are the dynamics of the expert modeled by the ascribed MDP. If the dynamics are not deterministic, due 
to say noise in the expert’s actuators, the corresponding stochasticity needs to be precisely modeled in the transitions.

Given the significant role of prior knowledge in IRL, the challenge is two-fold: (i) we must ensure its accuracy, but this 
is often difficult to achieve in practice; (ii) we must reduce the sensitivity of solution methods to the correctness of prior 
knowledge or replace the knowledge with learned information.

3.4. Disproportionate growth in solution complexity with problem size

Methods for IRL are iterative as they involve a constrained search through the space of reward functions. As the number 
of iterations may vary based on whether the optimization is convex, is linear, the gradient can be computed quickly, or 
none of these, researchers focus on analyzing the complexity of each iteration. Consequently, the computational complexity 
is expressed as the time complexity of each iteration and its space complexity.

Each iteration’s time is dominated by the complexity of solving the ascribed MDP using the reward function currently 
learned. While the complexity of solving an MDP is polynomial in the size of its parameters, the parameters such as the 
state space are impacted by the curse of dimensionality – its size is exponential in the number of components of state vector 
(dimensions). Furthermore, the state space in domains such as robotics is often continuous and an effective discretization 
also leads to an exponential blowup in the number of discrete states. Therefore, increasing problem size adversely impacts 
the run time of each iteration of IRL methods.

Another type of complexity affecting IRL is sample complexity, which refers to the number of trajectories present in the 
input demonstration. As the problem size increases, the expert must demonstrate more trajectories in order to maintain the 
required level of coverage in the training data.

3.5. Direct learning of reward or policy matching

Two distinct approaches to IRL present themselves, each with its own attendant set of challenges. The first one seeks 
to directly approximate the reward function R̂ E by tuning it using input data. The second approach focuses on learning a 
policy that matches its actions or action values with the demonstrated behavior, and explicitly learning the reward function 
as an intermediate step.

Success of the first approach hinges on selecting an adequate and complete reward structure (for example, the set of 
feature functions) that composes the reward function. Though learning a reward function offers a deeper generalization and 
better transferability of the task at hand, it may lead to policies that do not fully reproduce the observed trajectories. For the 
second approach, Neu and Szespesvári. [27] point out that the optimization for IRL is convex if the actions are deterministic 
and the demonstration spans the complete state space. While both approaches are negatively impacted by reduced data, 
matching the observed policy is particularly sensitive to missing states in the demonstration, which makes the problem 
non-convex and weakens the objective of matching the given (but now partial) policy.

The following section categorizes the foundational methods in IRL based on the mathematical framework they use for 
learning, and discusses them in some detail.

4. Foundational methods for IRL

Many IRL methods fit a template of key steps. We show this template in Algorithm 1, and present the methods in the 
context of this template. Such presentation allows us to compare and contrast various methods. Algorithm 1 assumes that 
the expert’s MDP sans the reward function is known to the learner as is commonly assumed in most IRL methods although 
a few methods discussed later allow the transition function to be unknown. Either a demonstration or the expert’s policy is 
provided as input as well as any features for the reward function.

Existing methods seek to learn the expert’s preferences, a reward function R̂ E , represented in different forms such as 
a linear combination of weighted feature functions, a probability distribution over multiple real-valued maps from states 
to reward values, and others. Parameters of R̂ E vary with the type of representation (weights, parameters defining the 
shape of distribution). IRL involves solving the MDP with the function hypothesized in current iteration and updating the 
parameters, constituting a search that terminates when the behavior derived from the current solution aligns with the 
observed behavior. As such, it involves repeatedly solving the embedded forward learning problem.
7
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Algorithm 1: Template for IRL.
Input: M\RE = 〈S, A, T , γ 〉,
Set of trajectories demonstrating desired behavior:
D = {〈(s0, a0), (s1, a1), . . . , (st , at )〉, . . .}, st ∈ S , at ∈ A, t ∈N ,
or expert’s policy: πE , and reward function features
Output: R̂ E

1 Model the expert’s observed behavior as the solution of an MDP whose reward function is not known;
2 Initialize the parameterized form of the reward function using any given features (linearly weighted sum of feature values, distribution over 

rewards, or other);
3 Solve the MDP with current reward function to generate the learned behavior or policy;
4 Update the optimization parameters to minimize the divergence between the observed behavior (or policy) and the learned behavior (policy);
5 Repeat the previous two steps till the divergence is reduced to a desired level.

The remainder of this section categorizes IRL methods based on the core approach they use for inverse learning – margin 
based optimization, entropy based optimization, Bayesian inference, classification, and regression. A second-level grouping 
within each of these categories clusters methods based on the specific objective function utilized in realizing the core 
approach. Our presentation emphasizes the commonalities between the various methods. Recall the notation introduced in 
Section 2 before continuing.

4.1. Margin optimization

Maximum margin prediction aims to learn a reward function that explains the demonstrated policy better than alterna-
tive policies by a margin. The methods under this category aim to address IRL’s solution ambiguity (discussed in Section 3.1) 
by converging on a solution that maximizes some margin. We broadly organize the methods that engage in margin opti-
mization based on the type of the margin that is used.

4.1.1. Margin of optimal from other actions or policies
One of the earliest and simplest margins chosen for optimization is the sum of differences between the expected value 

of the optimal action and that of the next-best action over all states,
∑
s∈S

Q π (s,a∗) − max
a∈A\{a∗}

Q π (s,a) (7)

where a∗ is the optimal action for s.
If the reward function is feature-based, whose form is given in Eq. (3), a similar margin that takes the difference between 

the expected value of the behavior from each observed trajectory and the largest of the expected values of behaviors from 
all other trajectories can be used to learn the feature weights. The expected value of a policy is obtained by multiplying the 
empirical state visitation frequency from the observed trajectory with the weighted feature function values φ( · ) obtained 
for the trajectory. For each trajectory τi in the demonstration, this margin is expressed as,

∑
〈s,a〉∈τi

ψ(s) wTφ(s,a) − max
τ∈(S×A)l\{τi}

∑
〈s,a〉∈τ

ψ(s) wTφ(s,a) (8)

where (S × A)l is the set of all trajectories of length l.
An early and foundational method that optimized the margin given in Eq. (7) is Ng and Russell’s [2], which takes in 

the expert’s policy as input thereby instantiating π as πE in the margin. It formulates a linear program to retrieve the 
reward function that not only produces the given policy as optimal output from the complete MDP, but also maximizes the 
margin shown above. In addition to maximizing this margin, it also prefers reward functions with smaller values as a form 
of regularization.

Under the assumption that each trajectory in a demonstration reflects a distinct policy and the reward function is ex-
pressed as a linear and weighted sum of feature functions, Ratliff et al.’s [28] maximum margin planning (mmp) associates 
each trajectory τi ∈ D with an MDP. While these MDPs could differ in their state and action sets, and the transition func-
tions, they share the same reward function. The desired reward weight vector w is obtained by solving a quadratic program 
that is constrained to have a positive value on the margin given in Eq. (8) with the right-hand side of the margin augmented 
by a regularizing loss term lTi ψ that quantifies the closeness between the demonstrated and other behaviors.

Using the same margin as in Eq. (8) and the regularizer, Ratliff et al. [18] improves on mmp in a subsequent method called 
learn to search (learch). Fig. 5 explains how an iteration of learch increases the cost (decreases the reward) for the actions 
that cause deviation between the learned and demonstrated behaviors. For optimization, learch uses an exponentiated 
functional gradient descent in the space of reward functions (represented as cost maps). Later, Silver et al. [29] introduced 
a gradient normalization technique for learch to allow for suboptimal demonstrations as input.
8
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Fig. 5. An iteration of learch in the feature space � = {φ(s, a)|∀(s, a) ∈ S × A} (Fig. 3 in Ratliff et al. [18] excerpted with permission). The method considers 
a reward function as negative of a cost function. Blue path depicts the demonstrated trajectory, and green path shows the maximum return (or minimum 
cost) trajectory according to the current intermediate reward hypothesis. Step 1 is the determination of the points where reward should be modified, 
shown as −	r for a decrease and +	r for an increase. Step 2 generalizes the modifications to entire space � computing the next hypothesis R̂ E and 
corresponding maximum return trajectory. Next iteration repeats these two steps. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 6. Iterations of the max-margin method computing the weight vector, w, and the feature expectations, μφ . μ̂φ
(D) is the estimation of the feature 

counts μφ(πE ) of the expert. w j is the learned weight vector in the jth iteration and π H
E j

is the corresponding optimal policy for intermediate hypothesis. 
This figure is redrawn with slight changes from the one in Abbeel and Ng [30].

4.1.2. Margin of observed from learned feature expectations
Adoption of the feature-based reward function led to several methods optimizing margins that utilized feature expec-

tations. Some of these methods seek a reward function that minimizes the margin between the feature expectations of a 
policy computed by the learner (Eq. (4)) and the empirically computed feature expectations from the expert’s trajectory 
(Eq. (6)):

|μφ(π) − μ̂φ
(D)|. (9)

We refer to this margin as the feature expectation loss.
Two foundational methods [30] that minimize the feature expectation loss of Eq. (9) are max-margin and projection. 

Noting that the learner does not typically have access to the expert’s policy, both these methods take a demonstration 
(defined in Definition 2) as input. The methods represent the reward function as a linear, weighted sum of feature functions.

Both methods iteratively tune weight vector w by computing a policy as an intermediate hypothesis at each step and 
using it to obtain intermediate feature counts. These counts are compared with the empirical feature counts μ̂φ

(D) of expert 
and the weights are updated, as shown in Fig. 6. Abbeel and Ng [30] points out that the performance of these methods 
is contingent on matching the feature expectations, which may not yield an accurate R̂ E because feature expectations are 
based on the policy. An advantage of these methods is that their sample complexity depends on the number of features and 
not on the complexity of expert’s policy or the size of the state space.

A variant of the projection method described above is Syed et al.’s. multiplicative weights for apprenticeship learn-
ing (mwal) [31]. The initial model and input are the same in both methods. However, mwal presents a learner as a 
max player choosing a policy and its environment as an adversary selecting a reward hypothesis. This formulation trans-
forms the value-loss margin to a minimax objective for a zero-sum game between the learner and its environment, 
maxπ̂E

minw wT (μφ(π̂E ) − μ̂φ
(D)), and the optimization uses the exponentiated gradient ascent to obtain the weights w .

4.1.3. Observed and learned policy distributions over actions
An alternative to minimizing the feature expectation loss is to minimize the probability difference between stochastic 

policies
9



S. Arora and P. Doshi Artificial Intelligence 297 (2021) 103500
π̂E(a|s) − πE(a|s) (10)

for each state. As the behavior of expert is available instead of its policy, the difference above is computed using the 
empirically estimated state visitation frequencies (Eq. (2)) and the frequencies of taking specific actions in the states. hy-
brid-IRL [13] uses Eq. (10) in the margin optimization problem, solving the optimization using gradient descent in the space 
of reward hypotheses.

4.2. Entropy optimization

IRL is essentially an ill-posed problem because multiple reward functions can explain the expert’s behavior. The max-
imum margin approaches of Section 4.1 introduce a bias into the learned reward function. To avoid this bias, multiple 
methods take recourse to the maximum entropy principle [32] to obtain a distribution over behaviors, parameterized by the 
reward function weights. According to this principle, the distribution that maximizes the entropy makes minimal commit-
ments beyond the constraints and is least wrong. We broadly categorize the methods that optimize entropy based on the 
distribution chosen by the method, whose entropy is considered.

4.2.1. Entropy of the distribution over trajectories or policies
We may learn a reward function that yields the distribution over all trajectories with the maximum entropy

max
	

−
∑

τ∈(S×A)l

P r(τ ) log Pr(τ ) (11)

while being constrained by the observed demonstration. However, the search space of trajectories in this optimization 
(S × A)l grows exponentially with the length of the trajectory l. To avoid this disproportionate growth, we may learn a 
reward function that alternately yields the distribution over all policies with the maximum entropy

max
	

−
∑

π∈(S×A)

Pr(π) log Pr(π) (12)

where 	 is the space of all distributions. Notice that the space of policies grows with the sizes of the state and action sets 
as O(|A||S|) but not with the length of the trajectory.

A foundational and popular IRL technique by Ziebart et al. [16] maxentirl optimizes the entropy formulation of Eq. (11)
while adding two constraints. First, the distribution over all trajectories should be a probability distribution. Second, the 
expected feature count of the demonstrated trajectories 

∑
τ∈D Pr(τ ) 

∑l
t=1 γ tφk(st , at) must match the empirical feature 

count obtained using Eq. (6).
Mathematically, this problem is a convex but nonlinear optimization whose Lagrangian dual reveals that the distributions 

of maximum entropy belong to the exponential family. Therefore, the problem reduces to finding the reward weights w that 
parameterize the exponential distribution over trajectories and exhibit the highest likelihood of the demonstration,

argmax
w

∑
τ∈D

log Pr(τ ; w) where Pr(τ ; w) = e

∑
〈s,a〉∈τ

wT φ(s,a)

Z(w)
(13)

where the normalization constant Z(w) is the well-known partition function. We show this distribution here as it is the 
subject of other methods as well. Ziebart et al. solves the Lagrangian dual thereby maximizing the likelihood, using gradient 
descent.

A subsequent method by Ziebart et al. [33] replaces the maximization objective of Eq. (11) for sequential environments 
with that of maximizing the causal entropy. More formally, the objective function becomes, max

	
− ∑

τ∈(S×A)l

P r(τ )× ∑l
t=1 log

Pr(at |s1:t, a1:t−1), where 	 is the space of all causally-conditioned probabilities Pr(at |s1:t, a1:t−1) for t = 1, 2, . . . , l. All other 
constraints remain the same. Notice that the causal entropy allows the actions at to be conditioned on the prior sequences 
of states and actions, and not on any future information (which may not have a causal relationship); this serves to upper 
bound the entropy that would be obtained by conditioning on the entire sequence of states and actions. A recent iteration 
on this method suggests the use of causal Tsallis entropy in the objective function [34]. We may then utilize sparse Tsallis 
MDPs to model the expert, which scale better to larger problems and yield policies which may assign zero probabilities to 
unseen actions in contrast to softmax policies.

Wulfmeier et al. [35] shows that the linearly-weighted reward function in maxentirl can be easily generalized to a 
nonlinear reward function represented by a neural network. The corresponding deep maxentirl technique continues to 
maximize the likelihood of Eq. (13) by using its known gradient in the backpropagation to update the neural network’s 
weights. Though a neural network representation does not require the use of explicit feature functions, it typically uses far 
more reward parameters, whose learning requires more data.

The optimization of the likelihood of Eq. (13) is also the subject of the pi-irl method [36], which generalizes maxentirl

to continuous state spaces. To enable this, it replaces the traditional feature functions in a reward with its path integral 
10
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Fig. 7. A Markov random field, representing the distribution resulting from structured apprenticeship learning, favors the policies which prescribe similar 
actions in neighboring states. This structure generalizes the feature information beyond individual states and helps manage reward ambiguity. (Figure 
reprinted from [38] with permission from publisher.)

formulations [37] that involves not only the known features, but also the rate of change in the continuous state, and a 
matrix giving the state and goal costs. pi-irl uses an iterated sampling approach to continually improve both the region of 
trajectory sampling and the path integral functions used in determining the demonstrated trajectory rewards.

Subsequent to maxentirl, Boularias et al.’s structured apprenticeship learning [38] maximizes the entropy shown in 
Eq. (12) under constraints that are analogous to those of maxentirl but pertaining to policy. In particular, the second 
constraint matches the expected feature count from the distribution over all the policies with the empirical feature count 
obtained using Eq. (6). Additionally, the method introduces a third constraint that brings a preference for those policies 
that assign the same action to adjacent states, while still conforming to the state-action pairs in the given trajectory. The 
resulting convex, nonlinear optimization problem is made somewhat tractable by observing that domains often exhibit 
structure that spatially neighboring states have similar optimal actions, which can be used to guide the search. This results 
in a Markov random field like distribution over policies as illustrated in Fig. 7.

4.2.2. Relative entropy of the distribution over trajectories
A different approach to entropy optimization for IRL involves minimizing the relative entropy (also known as Kullbach-

Leibler divergence [39]) between two distributions P and Q over the trajectories. More formally,

min
P∈	

∑
τ∈(S×A)l

P (τ ) log
P (τ )

Q (τ )
. (14)

reirl [40] is a prominent technique that utilizes the optimization objective given in Eq. (14). Distribution Q in reirl

is obtained empirically by sampling trajectories under a baseline policy. Distribution P is obtained such that the expected 
feature count of the trajectories matches the empirical feature count obtained using Eq. (6). This constraint is similar to 
previous approaches in this section and constrains reirl to the demonstration data. The baseline policy serves as a way to 
provide domain-specific guidance to the method. While an analytical solution would need the transition dynamics to be 
pre-specified, Boularias et al. shows that the presence of the baseline policy allows importance sampling and reirl can be 
solved model-free using stochastic gradient descent.

4.3. Bayesian update

An important class of IRL methods treats the state-action pairs in a trajectory as observations that facilitate a Bayesian 
update of a prior distribution over candidate reward functions. This approach yields a different but principled way for IRL

that has spawned various methods. No structure is typically imposed on the reward function. Let Pr(R̂ E ) be a prior distri-
bution over the reward functions and Pr(τ |R̂ E ) be the observation likelihood of the reward hypothesis. Then, a posterior 
distribution over candidate reward functions is obtained using the following Bayesian update:

Pr(R̂ E |τ ) ∝ Pr(τ |R̂ E) Pr(R̂ E) (15)

Here, the likelihood is typically factored as Pr(τ |R̂ E ) = ∏
〈s,a〉∈τ Pr(〈s, a〉|R̂ E). The update above is performed as many times 

as the number of trajectories in the observed demonstration.
We categorize the Bayesian IRL methods based on how they model the observation likelihood in Eq. (15).

4.3.1. Boltzmann distribution
A popular choice for the likelihood function is the Boltzmann distribution (also known as the Gibbs distribution) with 

the Q-value of the state-action pair as the energy function:

Pr(〈s,a〉|R̂ E) ∝ e

(
Q ∗(s,a;R̂ E )

β

)
(16)
11
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where parameter β controls the randomness of the state-action probability (lower the β , more random is the state-action 
pair). Given a candidate reward hypothesis, some state-action pairs are more likely than others as given by the likelihood 
function.

The earliest Bayesian IRL technique is birl [41], which models the likelihood as shown in Eq. (16). birl suggests several 
different priors over the continuous space of reward functions. While the uniform density function is an agnostic choice, 
several real-world MDPs have a sparse reward structure for which a Gaussian or Laplacian prior is better suited. If the MDP 
reflects a planning type problem with a large dichotomy in rewards (goal states exhibiting a large positive reward), then a 
Beta density could be appropriate. The continuous space of reward functions brings the challenge that analytically obtaining 
the posterior is difficult. To address this issue, birl presents a random walk based MCMC algorithm in the space of policies 
for obtaining a sample-based empirical approximation of the posterior. On the other hand, we may also converge to the 
maximum-a-posteriori reward function directly using gradient descent [42].

Lopes et al. [43] shows that the posterior computed in birl can be used to incorporate active learning in IRL. The learner 
queries the expert for additional samples of actions in those states where a distribution induced from the posterior exhibits 
a high entropy. The induced distribution is a measure of how discriminating is the learned expert policy at each state. The 
new samples help learn an improved posterior.

4.3.2. Gaussian process
An influential Bayesian approach introduced after birl lets the reward function be a nonlinear function of features, 

R̂ E = f (r, φ), and models it as a Gaussian process whose underlying structure is given by a kernel function parameterized 
by θ . Thus, the posterior Pr(R̂ E |τ ) in Eq. (15) now becomes Pr(r, θ |τ , φ) where r are the rewards associated with the 
feature functions φ at select states and actions.

The gpirl technique [44] computes this posterior as a Bayesian update with the likelihood being Pr(τ |R̂ E )Pr(R̂ E |r, θ , φ). 
The first factor is computed as shown previously in Eq. (16). However, the distinctive second factor (also called the Gaussian 
process posterior) is a Gaussian distribution with analytically derived mean and covariance matrices. gpirl generalizes from 
just a small subset of reward values – those contained in the observed trajectories and a few additional rewards at random 
states. It utilized L-BFGS with restarts to optimize the likelihood, finding most likely r, thereby most likely reward functions.

4.3.3. Maximum likelihood estimation
Apart from the posterior estimation in birl methods, we may just directly maximize the likelihood of the input data 

(Pr(τ |R̂ E ) in Eq. (15)). The standard expression for the data likelihood involves the policy and the Bellman operator, which 
is not differentiable. However, a softmax Boltzmann exploration can be used to change the policy expression from maxi-

mization to πw (s, a) = eβQ (s,a;R̂ E )∑
a′∈A eβQ (s,a′;R̂ E )

, which in turn makes the likelihood P (τ |R̂ E ) differentiable. Vroman et al. [45] in the 

method mlirl chooses this Boltzmann exploration policy to infer the reward feature weights w that leads to the maximum 
likelihood estimate. As the likelihood is now differentiable, the algorithm uses a standard gradient ascent for converging to 
the (locally-) optimal weights.

4.4. Classification and regression

Classical machine learning techniques such as classification and regression have also played a significant role in IRL. How-
ever, these methods are challenged by the fact that IRL is not a straightforward supervised learning problem. Nevertheless, 
the methods below show that IRL can be cast into this framework.

4.4.1. Classification based on action-value scores
IRL may be formulated as a multi-class classification problem by viewing the state-action pairs in a trajectory as data-

label pairs. For each state in a pair, the label is the corresponding action performed at that state as prescribed by the expert’s 
policy. As there are usually more than two actions in most domains, the classification is into one of multiple classes. An 
obvious way to score the classification is to use the action-value function, which is derived from Eq. (5) as:

Q π (s,a) = wT μφ(π)(s,a). (17)

Notice that this is a linear scoring function which uses the same feature weight vector w as used in the reward function. 
Subsequently, a classifier aims to learn the weights that minimize the classification error between the labels in the state-
action pairs of a trajectory and the action label predicted as argmaxa∈A Q π (s, a).

Klein et al. [46] introduced this multi-class classification formulation of IRL in a method called scirl. The demonstration 
is utilized for training a classifier with Eq. (17) as the scoring function. Any linear score based multi-class classification 
algorithm may be used to solve for the weight vector w . scirl chose the large margin approach of structured prediction [47]
as the algorithm for classification.

While scirl assumes the presence of a transition model to compute the scoring function, an extension called csi [48]
takes a step further and estimates the transition probabilities if they are not known. csi utilizes standard regression on a 
simulated demonstration data set to estimate the transition model and thereafter learn the reward function using scirl.
12
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Table 1
A compilation of the notation introduced in the text and ab-
breviations, which is referenced in Tables 2 and 3.

φ(·) reward features
w reward feature weights
ψπ (s) state visitation frequency
μφ(π) feature expectations
τ trajectory
D demonstration (set of trajectories)
β temperature in Boltzmann distribution
M number of target reward functions
IBP Indian buffet Gaussian process

Notice that scirl is predicated on the action in the state-action pair being the desired optimal action and uses it as 
the label. However, if we allow for the demonstration to be suboptimal, this classification approach may not work. In this 
context, Brown et al. [49] shows that if the input to IRL also includes a ranking of the trajectories based on the degree of 
suboptimality of the trajectory, we may utilize this additional preference information to fit a neural network representation 
of the reward function. A cross-entropy based loss function trains the neural network to obtain a higher cumulative reward 
for the trajectory that is preferred over another per the given ranking.

4.4.2. Regression tree for state space partitions
The linearly weighted sum of feature functions represents a global reward function model over the entire state and 

action spaces. It may be inadequate or require many features when these spaces are large. An alternate model could be a 
regression tree whose intermediate nodes are the individual feature functions and whose leaves represent a conjunction of 
indicator feature functions. Each path of this tree then captures a region of the state and action space, and the whole tree 
induces a partition of this space.

Subscribing to this representation of the reward function, firl [50] iteratively constructs both the features and the re-
gression tree. To arrive at the reward values for the current regression tree, it solves a quadratic program with the objective 
function

min
R̂ E

||R̂ E − Projφ(i−1) (R̂ E)||2

under the constraint that the policy obtained by solving the MDP with current R̂ E gives actions that match those in the 
demonstrations for the associated states. Here, Projφ(i−1) (·) is the projection of the reward function on the linear combi-

nation of the set of features φ(i−1) from the previous iteration. firl interleaves this optimization step with a fitting step 
during which a new set of features φ(i) is learned by splitting those leaves of the tree that are too coarse or merging 
leaves that yield the same average reward values. The iterations stop when the learner detects that further node splitting is 
unnecessary to maintain consistency with the demonstration.

Recently, regression has been used to extend IRL to linearly-solvable MDPs [51] – a class of MDPs for discrete states but 
continuous actions. These MDPs define the reward function as the magnitude of the impact of actions on an uncontrolled 
transition function. Uchibe [52] uses a combination of three neural networks – for the reward function and value-function 
approximations and third for the ratio of controlled and uncontrolled state transitions – all of which are trained using 
logistic regression on the trajectory data. Logistic regression is also used in Fu et al. [53] to train a deep neural network 
(utilized in representing the reward function) by minimizing the cross-entropy between the given trajectories and those 
generated by a policy from optimizing the currently evolved reward function. A key focus in this technique, labeled airl, is 
on inversely learning rewards that are not tied to any particular transition function, yet yield the same policy as the true 
rewards.

4.5. Summary and unified views of methods

In the previous subsections, we briefly described the early and foundational IRL methods and briefly remarked on their 
notable extensions. These have influenced various subsequent methods and spawned improvements as discussed in the later 
sections. Table 2 abstracts and summarizes the key insights of these methods. It identifies the parameters that are learned, 
the metric used in the optimization objective, and a distinguishing contribution of the method. This facilitates a convenient 
comparison across the techniques and helps in aligning the methods with the template given in Algorithm 1.

Our groupings of the methods based on their optimization objectives emphasizes the common grounding of multiple IRL 
methods. More formal unifications also exist and we review the prominent ones here.

Neu and Szepesvari [27] adopts the function J (R̂ E , D), which quantifies the dissimilarity between the optimal behavior 
with respect to the learned expert’s reward function R̂ E and the demonstrated behavior. This real-valued function that 
assigns higher values when the two behaviors are less similar serves to unify several methods discussed in Section 4. For 
instance, the margins defined in Section 4.1 (Eqs. (7), (9), and others) naturally serve as J thereby reiterating our common 
13
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Table 2
A categorized summarization of the foundational IRL methods presented in Section 4. We focus on the key aspects of each method and abstract out 
the shared representations. For example, notice how popular is the linearly-weighted representation of the reward function. Refer to Table 1 for a quick 
explanation of abbreviations and notations used here.
Method R̂ E params Optimization objective Notable aspect
Max margin methods - maximize the margin between value of observed behavior and the hypothesis
mmp

w

value of obs. τ - max of values from all other τ (Eq. (8)) provable convergence
max-margin feature exp. of policy - empirical feature exp. (Eq. (9)) sample bounds
mwal min diff. in value of policy and observed τ across features first bound on iteration 

complexity
hybrid-irl empirical stochastic policy - computed policy of expert (Eq. (10)) natural gradients and efficient 

optimization
learch

R(φ) value of obs. τ - max of values from all other τ (Eq. (8))
nonlinear reward with 
suboptimal input

Silver et al. [29] normalization of outlier inputs
Max entropy methods - maximize the entropy of the distribution over behaviors
maxentirl

w

entropy of distribution over trajectories (Eq. (11)) low learning bias
structured 
apprenticeship

entropy of distribution over policies (Eq. (12)) efficient optimization

deep maxentirl
gradient of likelihood equivalent of MaxEnt (Eq. (13))

nonlinear reward
pi-irl continuous state-action spaces
reirl relative entropy of distribution from baseline policy (Eq. (14)) suboptimal input and unknown 

dynamics

Bayesian learning methods - learn posterior over hypothesis space using Bayes rule
birl

R(s)
posterior with Boltzmann data likelihood (Eq. (16)) first Bayesian IRL formulation

Lopes et al. [43] entropy of multinomial (p1(s), p2(s), . . . , p|A|−1(s)) derived from 
posterior

active learning

gp-irl f (r,θ) Gaussian process posterior nonlinear reward

mlirl w differentiable likelihood with Boltzmann policy (Eq. (16)) first ML approach
Classification and regression - learn a prediction model that imitates observed behavior
scirl

w Q-function as classifier scoring function
actions as state labels provable 
convergence

csi unknown dynamics

firl regression tree norm of (R̂ E - projection of R̂ E ) avoids manual feature 
engineering

airl R(s) regression error between expert demonstration D and Dπ suitable for transfer learning

perspective to mmp, max-margin/projection, mwal, and hybrid-irl techniques. Interestingly, the maxentirl method of 
Section 4.2 can also be brought under the umbrella of the dissimilarity function! Neu and Szepesvari show that its entropy 
optimization is equivalent to minimizing the Kullbach-Leibler divergence in w between the unknown Pr(τ ) induced by the 
expert’s behavior and the given empirical Pr(τ ) as given in Eq. (13). Therefore, we may write the dissimilarity function as 
J (R̂ E , D) = −w T μ̂φ(D) + log Z(w). Along a similar vein, Ghasemipour et al. [54] recently suggests that the dissimilarity 
function, f -divergence, which generalizes several divergences including the Kullbach-Leibler divergence, could also be used 
to unify some recent IRL methods. For e.g., airl’s objective function could be viewed as the Kullbach-Leibler divergence 
between the expert’s trajectory distribution and the learner neural network’s distribution of the trajectories.

Another approach toward unification [55] assumes that the expert’s policy is given and adopts the maximum causal 
entropy technique (reviewed in Section 4.2) as a representative and unifying IRL method. First, the approach shows that 
if the reward function is not limited to a weighted sum of feature functions (it is allowed to be RS×A ) and a closed and 
convex reward regularizer is additionally added to the optimization objective of the IRL method (to minimize overfitting), 
then maximizing the regularized causal entropy implicitly yields a policy whose state-visitation frequency is very close 
to that of the expert’s policy if available. Indeed, IRL then can be seen as a dual of a state-visitation frequency matching 
problem. Second, Ho and Ermon [55] shows that the regularized variant of the maximum causal entropy method also yields 
the max-margin and mwal methods of Section 4.1 as special cases, thereby offering a unifying approach.

The relatedness between the max-margin (and projection) and mwal margins can also be analyzed using restrictions of 
the reward function space. In particular, Ho and Ermon [55] notes that max-margin restricts the space of reward functions 
to {wTφ : ||w||2 ≤ 1} whereas mwal imposes a convexity constraint on the weights, {w Tφ : ||w||1 = 1, wi ≥ 0 ∀i}. Thus, 
the former restriction on the reward space leads to a feature expectation matching that minimizes the L2 distance between 
expected feature functions while the latter restriction maximizes the worst-case excess reward among the basis features.

5. Mitigating the challenges

Next, we elaborate how the foundational methods reviewed in Section 4 mitigate the various challenges for IRL intro-
duced in Section 3. Technical challenges often drive the development of methods. Hence, in addition to situating the overall 
progress of the field, this section will help the reader make an informed choice about the method that may address the 
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Fig. 8. Learning with a perturbed demonstration in an unstructured terrain. Figure reprinted [29] with permission from MIT Press. An expert provides 
three demonstration trajectories - red, blue, and green [top left]. The portion of terrain traveled by a presumably achievable red trajectory should have 
low cost (high reward) as the expert is presumably optimal. But the path is not optimal. It is not even achievable by any planning system with predefined 
features because passing through the grass is always cheaper than taking a wide berth around it. The assumed optimality of expert forces the optimization 
procedure in IRL methods to lower the cost (increase the reward) for features encountered along the path, i.e., features for grass. This influences the 
learning behavior in other paths such as the blue path [bottom left]. Using a normalized functional gradient [29] mitigates the lowering of costs [bottom 
right]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

challenges in her particular domain. We have also included techniques that purposefully extend some of the foundational 
methods to address a specific challenge.

5.1. Improving the accuracy of inference

As we mentioned in Section 3.1, IRL’s inference accuracy depends on several components of the learning process. Most 
existing methods aim at ensuring that the input is accurate, reducing the ambiguity among multiple solutions, improving 
feature selection, and offering algorithmic performance guarantees.

5.1.1. Learning from noisy input
Perturbed demonstrations may be due to noisy sensing or suboptimal actions by the expert. Methods such as reirl

stay robust to perturbations whereas other IRL methods may learn inaccurate feature weights [10] or predict the action 
poorly [28]. Methods such as maxentirl, birl, mlirl, and gpirl use probabilistic frameworks to account for the perturbation. 
For example, mlirl allows tuning of its model parameter β in Eq. (16) to allow more randomness into the learned policy 
π̂E when the demonstrated behavior is expected to be noisy and suboptimal [45]. On the other hand, methods such as mmp

and learch introduce slack variables in their optimization objective for this purpose. Using the application of helicopter 
flight control, Ziebart et al. [56] shows that the robustness of maxentirl to an imperfect demonstration is better than that 
of mmp. The recent method by Brown et al. (called t-rex) [49] was shown to learn a reward function from sub-optimal 
input, which then surpasses the performances of the demonstrator in simulated domains.

To specifically address noisy input, Coates et al. [57] introduces a model-based technique of trajectory learning that 
de-noises the noisy demonstration by learning a generative trajectory model and then utilizing it to produce noise-free tra-
jectories. Apprenticeship learning is then applied to the resultant noise-free but unobserved trajectories [5]. Melo et al. [58]
formally analyzed and characterized the space of solutions for the case when some actions in a demonstration are not 
optimal and when the demonstration does not include all states. Such demonstrations were obtained by perturbing the dis-
tribution that modeled the expert’s policy. Taking a step further, Shiarlis et al. [59] performs IRL with some demonstrations 
that fail to even complete the task.

Suboptimal demonstrations may also include trajectories whose lengths are much longer than expected. As we men-
tioned in Section 4.1, mmp minimizes the cost of simulated trajectories diverging from the demonstrated ones by noting the 
difference in state-visitation frequencies of two trajectories. mmp attempts this minimization for a suboptimal demonstration 
as well, but avoids it if the learning method distinguishes an unusually long demonstration from the optimal ones. Silver et 
al. [29,18] specifically target this issue by implementing an mmp-based imitation learning approach that applies a functional 
gradient normalized by the state-visitation frequencies of a whole trajectory (see Fig. 8 for an illustration).

5.1.2. Ambiguity and degeneracy of reward hypotheses
Several methods mitigate this challenge of ambiguity and degeneracy by better characterizing the space of solutions. This 

includes using heuristics and prior domain knowledge, and adding optimization constraints.
15



S. Arora and P. Doshi Artificial Intelligence 297 (2021) 103500
mmp and mwal avoid degenerate solutions by using heuristics that favor the learned value V π̂E to be close to expert’s 
V πE . Specifically, mmp avoids degeneracy by using a loss function, which the degenerate R̂ E = 0 can not minimize because 
the function is proportional to state-visitation frequencies [27]. hybrid-IRL avoids degeneracy in the same way as mmp, and 
makes the solution less ambiguous by preferring a reward function that corresponds to a stochastic policy π̂E with action 
selection same as the expert’s (π̂E(a|s) ≈ πE (a|s)). Naturally, if no single non-degenerate solution makes the demonstration 
optimal, ambiguous output cannot be entirely avoided using these methods [33].

Making this more stringent, Bayesian and entropy optimization methods embrace the ambiguity by modeling the un-
certainty of the hypothesized rewards as a probability distribution over reward functions or that over the trajectories 
corresponding to the rewards. In this regard, maxentirl infers a single reward function by using a probabilistic framework 
that avoids any constraint other than making the value-loss zero, V π̂E = V πE . On the other hand, the maximum-a-posteriori 
objective of Bayesian inference techniques and gpirl limit the probability mass of the posterior distribution to the specific 
subset of reward functions that supports the demonstrated behavior. This change in probability mass shapes the mean of 
the posterior, which is output by these methods. Active learning of the reward function uses the state-conditional entropy 
of the posterior to select the least informative states [43] and query for further information in those states. The selection 
mechanism builds on birl and reduces the solution ambiguity compared to birl. In general, these methods add optimization 
constraints and exploit domain knowledge to distinguish between the multiple hypotheses.

We believe that the progress made collectively by the methods in significantly mitigating this challenge of IRL – that it 
is an underconstrained learning problem – represents a key milestone in the progression of this relatively new field.

The presence of degenerate and multiple solutions led early methods such as max-margin and mwal to introduce bias in 
their optimizations. However, a side effect of this bias is that these methods may compute a policy π̂E with zero probability 
assigned to some of the demonstrated actions [33]. Indeed, this is also observed in maximum likelihood based approaches 
such as mlirl. Subsequent methods have largely solved this issue. For example, mmp makes the solution policy have state-
action visitations that align with those in the expert’s demonstration. maxent distributes probability mass based on entropy 
but under the constraint of feature expectation matching. Further, gpirl addresses it by assigning a higher probability mass 
to the reward function corresponding to the demonstrated behavior, seeking posterior distributions with low variance.

5.1.3. Theoretical bounds on accuracy
From a theoretical viewpoint, some methods have better performance guarantees than others. The maximum entropy 

probability distribution over the space of trajectories (or policies) minimizes the worst-case expected loss [60]. Consequently,
maxentirl learns a behavior which is neither much better nor much worse than the expert’s [61]. However, the worst-case 
analysis may not represent the performance in practice because the performance of optimization-based learning methods 
can be improved by exploiting favorable properties of the application domain. Classification based approaches such as csi

and scirl admit a theoretical bound for the quality of R̂ E in terms of optimality of the learned behavior π̂E , given that both 
classification and regression errors are small. Nevertheless, these methods may not reduce the loss as much as mwal as the 
latter is the only method, in our knowledge, which has no lower bound on the incurred value-loss [31].

Some methods also analyze and bound the ILE metric for a given threshold of success and a given minimum number of 
demonstrations. The analysis relies on determining the value of a policy using its generated feature expectations μφ(π) [30,
16,26] or state-visitation frequencies ψπ(s) [13,16,28,45] as shown in Eq. (5).

For any method based on feature expectations or state-visitation frequencies, there exists a probabilistic upper bound on 
the bias in V̂ πE and thereby on ILE for a given minimum sample complexity [30,62,63]. These bounds apply to methods 
such as mmp, hybrid-irl, and maxentirl that use state-visitation frequencies. Subsequently, the derived bound on bias can 
be used to analytically compute the maximum error in learning for a given minimum sample complexity Lee et al. [64]
change the criterion (and thereby the direction) for updating the current solution in max-margin and projection methods 
to formally prove an improvement in the accuracy of the solution as compared to that of the original method. A recent 
extension of BIRL introduced the bounding of approximated ILE as an alternative to the bounding of the difference in feature 
expectations as a learning objective [65]. The method demonstrated confidence error bounds tighter than the methods that 
used the latter objective.

In the context of Ng and Russell’s early IRL method [2] that takes the policy as input, a recent sample complexity 
analysis [66] bounds the number of samples needed so that the estimated transition probabilities yield the reward function 
that would have generated the input policy with the true transition function. The analysis uses a notion of separability (as 
in support vector machines) and rests on formulating a variant of Ng and Russell’s method whose solution not only admits 
infinitely-many nonzero reward functions but also a reward function for which the input policy is strictly optimal.

5.2. Generalizability

While early approaches such as apprenticeship learning required a demonstration that spanned all states, later ap-
proaches sought to explicitly learn a reward function that correctly represented expert’s preferences for unseen state-action 
pairs, or one that is valid in an environment that mildly differs from the input. An added benefit is that such methods 
may need less demonstrations. gpirl can learn the reward for unseen states lying within the domains of the features of a 
Gaussian process. Furthermore, firl can use the learned reward function in an environment that is slightly different from 
the original environment used for demonstration but with base features similar to those in the original environment. And,
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Fig. 9. The 3-step process of IRL in a relational domain - classification outputs a score function, reward shaping optimizes the output, and regression 
generates an approximate reward function R̂ E corresponding to the optimal score function. Included with permission from authors.

airl specifically targets transfer learning by learning a reward function that is disentangled from the demonstrated environ-
ment’s transition dynamics. Similarly, Finn et al.’s guided cost learning (gcl) [67], which extends reirl to include a neural 
network representation for the reward function and a baseline distribution learned using RL, admits an enhanced gener-
alization by learning new instances of a previously-learned task without repeated reward learning. Melo and Lopes [68]
shows that the use of bisimulation metrics allows birl to achieve improved generalization by partitioning the state space 
based on a relaxed equivalence between the states.

Munzer et al. [69] extends the classification-regression steps in csi to include relational learning in order to benefit from 
the strong generalization and transfer properties that are associated with relational-learning representations. The process 
shapes the reward function using the scoring function as computed by the classification (see Fig. 9 for more details).

5.3. Lowering sensitivity to prior knowledge

In this section, we discuss techniques in the context of the challenge introduced in Section 3.3. Performance of the foun-
dational methods such as projection, max-margin, mmp, mwal, learch, and mlirl are all highly sensitive to the selection 
of features. While we are unaware of methods that explicitly seek to reduce their dependence on feature selection, some 
methods are less impacted by virtue of their approach. These include hybrid-IRL that uses policy matching and all max-
imum entropy based methods tune distributions over the trajectories or policies, which reduces the impact that feature 
selection has on the performance of IRL [27].

Apart from selecting appropriate features, the size of the feature space influences the error in learned feature expecta-
tions for the methods that rely on V̂ πE , e.g., projection, mmp, mwal, and maxentirl. If a reward function is linear taking 
the form of Eq. (3) and the value of each of its k features is bounded from the above, then the probable bound on the error 
scales linearly with k [16]. However, maximum entropy based methods show an improvement in this aspect with O (logk)
dependence.

Orthogonal to reducing feature dependence, airl explicitly focuses on learning robust reward functions that continue 
to yield the same optimal policy as the true reward function regardless of the underlying transition function. This reduces
airl’s sensitivity to the given transition model and supports transfer learning.

5.4. Analysis and reduction of complexity

The intractability of this machine learning problem due to its large hypothesis space has been significantly mitigated 
through the widespread adoption of a reward function composed of linearly-weighted features. Though this imposed struc-
ture limits the hypothesis class, it often adequately represents the reward function in many problem domains. Importantly, 
it allowed the use of feature expectations as a sufficient statistic for representing the value of trajectories or the value of an 
expert’s policy. This has contributed significantly to the success of early methods such as projection, mmp, and maxentirl. 
Consequently, we view this adoption as another milestone for this field.

Next, we discuss ways by which IRL methods have sought to reduce the time and space complexity of an iteration, 
and mitigate the input sample complexity. Early IRL methods such as Ng and Russell [2] and projection were mostly 
demonstrated on grid problems exhibiting less than a hundred states and four actions. Later methods based on entropy 
optimization and GP-IRL scaled up with maxentirl demonstrating results on a deterministic MDP with thousands of states 
and actions while taking recourse to approximations.

While an emphasis on reducing the time and space complexity is generally lacking among IRL techniques, a small subset 
does seek to reduce the time complexity. An analysis of birl shows that computing the policy πE using the mean of 
the posterior distribution is computationally more efficient than the direct minimization of expected value-loss over the 
posterior [41]. Specifically, the Markov chain with a uniform prior that approximates the Bayesian posterior converges in 
polynomial time. Enhancing birl via bisimulation also exhibits low computational cost because it need not solve equivalent 
intermediate MDPs; the computation of the bisimulation metric over space S occurs once regardless of how many times 
the metric is used as shown in Fig. 10. mwal requires O(lnk) (k is number of features) iterations for convergence, which 
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Fig. 10. State equivalence in an MDP with states S = {1, 2, 3} and actions A = {a, b, c}. The similarity in actions and transitions for states 1 and 2 makes 
them equivalent. Therefore, the selection of optimal actions through expert’s policy πE will be similar in both the states. Demonstration of c in one implies 
the optimality of c in other. The illustration redraws Fig. 1 in Melo et al. [68].

is lower than the O(k lnk) for the projection method. Though an iteration of firl is slower than both mmp and projection

due to the computationally expensive step of regression, firl converges in fewer iterations than the latter two methods.
Some optimization methods employ more affordable techniques of gradient computations. In contrast with the fixed-

point method in hybrid-irl, the approximation method in birl with active learning (reviewed in Section 4.3) has a 
complexity that is polynomial in the number of states. For maximum entropy based parameter estimation, gradient-based 
methods (e.g., BFGS [70]) outperform iterative scaling approaches [71].

birl with active learning offers a benefit over traditional birl by exhibiting reduced sample complexity. This is because 
it seeks to ascertain the most informative states where a demonstration is needed, and queries for it. Consequently, less 
demonstrations are needed and the method becomes more targeted. Of course, this efficiency exists at the computational 
expense of interacting with the expert. Model-free reirl uses fewer samples (input trajectories) as compared to alternative 
methods including a model-free variant of mmp [40].

5.4.1. Continuous state spaces
While most approaches for IRL target discrete state spaces, a group of prominent methods that operate on continu-

ous state spaces are path integral based approaches, pi-irl. These aim for local optimality of demonstrations to avoid the 
complexity of full forward learning in a continuous space. This approximation makes it scale well to high-dimensional con-
tinuous spaces and large demonstration data. Although the performance of path integral algorithms is sensitive to the choice 
of samples in the demonstration, they show promising progress in scalability. Kretzschmar et al. [11] applies maxentirl to 
learn the probability distribution over navigation trajectories of interacting pedestrians using a subset of their continuous 
space trajectories. A mixture distribution models both, the discrete as well as the continuous navigation decisions.

5.4.2. High dimensional and large spaces
In IRL methods such as maxentirl and birl, the complexity of computing the partition function Z , which appears in 

the normalization constant of the likelihood (Eq. (13)), increases exponentially with the dimensionality of the state space 
because it requires finding the complete policy under the current solution R̂ E . Approaches for making the likelihood com-
putation in a high-dimensional state space tractable include the use of importance sampling as utilized by reirl and gcl, 
down-scaling the state space using low-dimensional features [72], and the assumption by pi-irl that demonstrations are 
locally optimal.

For the optimizations involved in maximum entropy methods, limited memory variable metric optimization methods 
such as L-BFGS are shown to perform better than other alternatives because they implicitly approximate the likelihood in 
the vicinity of the current solution [71] thereby limiting the memory consumption.

Instead of demonstrating complete trajectories for large tasks, the designer may decompose the task hierarchically. An 
expert may then give demonstrations at different levels of implementation. The modularity of this process significantly re-
duces the complexity of learning. For example, Kolter et al. [73] applies such task decomposition toward learning quadruped 
locomotion by scaling IRL from low- to high-dimensional spaces. Likewise, Rothkopf et al. [74] utilizes the independence 
between components of a task – each modeled using a stochastic reward function of its own – to introduce decomposition 
in birl.

We may speed up forward learning by quickly computing the values of the intermediate policies learned in IRL. Both
lpal [75] and lpirl [45] are incremental extensions of mwal that solve the underlying MDP in mwal using the dual and 
primal linear programs, respectively. These linear program formulations make solving the MDP less expensive in large state 
spaces with many basis functions (φ for RE = wTφ). Similarly, csi and scirl do not need to solve MDPs repeatedly because 
they update the previous solution by exploiting the structure imposed on the MDP by their classification-based models.
18



S. Arora and P. Doshi Artificial Intelligence 297 (2021) 103500
Fig. 11. IRL with imperfect perception of the input trajectory. The learner is limited to using just the perceived portions.

6. Extensions of basic IRL

Having surveyed the foundational methods for IRL in Section 4 and discussed how they and their extensions mitigate the 
various challenges in Section 5, we now discuss important ways in which the assumptions of the basic IRL problem have 
been relaxed to enable advances toward real-world applications.

6.1. Incomplete and imperfect observations

Learners in the real world must deal with noisy sensors and may not perceive the full demonstration trajectory. For 
example, the merging car B in our illustrative example of Fig. 1 described in Section 1 may not see car A in the merging 
lane until it comes into its sensor view. This is often complicated by the fact that car B’s sensor may be partially blocked 
by other cars in front of it, which further occludes car A. Additionally, the expert itself may possess noisy sensors and may 
not observe its own state perfectly.

6.1.1. Extended definition
The property of incomplete and noisy observations by the learner modifies the traditional IRL problem and we provide a 

new definition below for completeness.

Definition 3 (IRL with imperfect perception). Let M\RE represent the dynamics of the expert E . Let the set of demonstrated 
trajectories be, D = {〈(s0, a0), (s1, a1), . . . (s j, a j)〉Ni=1}, s j ∈ Obs(S), a j ∈ Obs(A), i, j, N ∈ N . Either some state-action pairs 
of a trajectory, τ ∈ D, are not observed or some of the observed state-action pairs could be different from the actual 
demonstrated ones. Thus, let Obs(S) and Obs(A) be the subsets of states and actions respectively that are observed. Then, 
determine R̂ E that best explains either given policy πE or the demonstrated trajectories.

Fig. 11 revises the schematic for the traditional IRL shown in Fig. 3 to allow for incomplete and imperfect observations. 
Observing the trajectories imperfectly may require the learner to draw inferences about the unobserved state-action pairs 
or the true ones from available information, which is challenging.

6.1.2. Methods
Bogert et al. [21] introduces irl* for settings where the learner is unable to see some state-action pairs of the demon-

strated trajectories due to occlusion. The maximum entropy formulation of the structured apprenticeship learning method 
by Boularias et al. is generalized to allow feature expectations that span the observable state space only. This method is 
applied to a new domain of multi-robot patrolling as illustrated in Fig. 12.

The principle of latent maximum entropy [76,77] allows us to extend the maximum entropy principle to problems 
with hidden variables. By using this extension, Bogert et al. [78] continued along the vein of incomplete observations and 
generalized maxentirl to the context where a dimension of the expert’s actions are hidden from the learner. For example, 
the amount of force applied by a human while picking ripe and unripe fruit usually differs but this would be hidden from 
an observing co-worker robot. An expectation-maximization scheme is introduced with the E-step involving an expectation 
of the hidden variables while the M-step performs the maxent optimization.

Taking the context of noisy observations, a hidden-variable MDP incorporates the probability of learner’s noisy obser-
vation conditioned on the current state (u in Fig. 13), as an additional feature φu in the feature vector φ. Hidden-variable 
inverse optimal control (hioc) [79] then modifies maxentirl to a problem where the dynamics are modeled by the hidden 
variable MDP with a linearly-weighted reward function. Consequently, the expression for the likelihood of expert’s behavior 
incorporates the additional feature and its weight (φu, wu). The tuning of weights during optimization also adjusts wu to 
determine the reliability of the imperfect observations.

Choi and Kim [26] take a different perspective involving an expert that senses its state imperfectly. The expert is modeled 
as a partially observable MDP (POMDP) [80]. The expert’s uncertainty about its current physical state is modeled as a 
belief (distribution) over its state space. The expert’s policy is then a mapping from its beliefs to optimal actions. The 
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Fig. 12. Prediction of experts’ behaviors using multi-robot IRL* [21] in a multi-robot patrolling problem (left). Learner L (green) needs to cross hallways 
patrolled by experts I (black, reward RE1 ) and J (gray, reward RE2 ). It has to reach goal ‘X’ without being detected. Due to occlusion, just portions of the 
trajectory are visible to L. After learning RE1 and RE2 , L computes their policies and projects their trajectories forward in time and space to know the 
possible locations of patrollers at each future time step. These projections over future time steps help create L’s own policy as shown in the figure on the 
right.

Fig. 13. Hidden-variable MDP. ui is a noisy observation, by the learner, of the state si reached after taking action ai−1. The source of illustration is [79]. The 
figure is shown here with permission from publisher.

Fig. 14. In this illustration, similar to the one in Choi et al. [26], consider a POMDP with two actions and two observations. πE (solid lines) is a fsm with 
nodes {n1, n2} associated to actions and edges as observations {z1, z2}. The one-step deviating policies (dashed lines) {πi}2i=1 are policies which are slightly 
modified from πE . Each πi visits n′

i instead of ni and then becomes same as πE . The comparison of V̂ πE with {V (πi)}2i=1 characterizes the set of potential 
solutions. Since such policies are suboptimal yet similar to expert’s, to reduces computations, they are preferable for comparison instead of comparing V̂πE

with all possible policies.

method pomdp-irl makes either this policy available to the learner or the prior belief along with the sequence of expert’s 
observations and actions (that can be used to reconstruct the expert’s sequence of beliefs). The POMDP policy is represented 
as a finite-state machine whose nodes are the actions to perform on receiving observations that form the edge labels. The 
learner conducts a search through the space of reward functions as it gradually improves on the previous policy until the 
policy explains the observed behavior. Fig. 14 illustrates this approach. However, a known limitation of utilizing POMDPs is 
that the exact solution of a POMDP is PSPACE-hard, which makes them difficult to scale to pragmatic settings.

In pomdp-irl, the expert may not observe its state perfectly. However, IRL* and HIOC differ from this setup. They model 
the learner observing the expert’s state and action imperfectly whereas the expert is perfectly aware of its state.

6.2. Multiple tasks

Human drivers often exhibit differing driving styles based on traffic conditions as they drive toward their destination. For 
example, the style of driving on the rightmost lane of a freeway is distinctly different prior to the joining of a merging lane, 
at joining of the lane, and post joining the lane. We may model such distinct behaviors of expert(s) as guided by differing 
reward functions. Consequently, there is a need to investigate methods that learn multiple reward functions simultaneously.
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Fig. 15. Multi-task IRL involves learning multiple reward functions. The input is mixed trajectories executed by a single or multiple expert(s) realizing 
behavior driven by different reward functions but in the same environment. The output is a set of reward functions, each one associated with a subset of 
input trajectories potentially generated by it.

Fig. 16. Updating the hyperprior in parametric multi-task birl modifies the dependent priors P R on reward functions and priors Pπ on policies – the 
figure shows it as a sequence of priors. The variation in priors is assumed to influence the observed trajectories {τ }i, i ∈ N . Bayesian update outputs an 
approximated posterior over rewards and policies.

6.2.1. Extended definition
To accommodate demonstrations involving multiple tasks, we revise the traditional IRL problem definition as given below.

Definition 4 (Multi-task IRL). Let the dynamics of the expert(s) be represented by M MDPs each without the reward function 
where M may not be known. Let the set of demonstrated trajectories be, D = {〈(s0, a0), (s1, a1), . . . , (s j, a j)〉Ni=1}, s j ∈ S , 
a j ∈ A, i, j, N ∈ N . Determine R̂1

E , R̂
2
E , . . ., R̂

M
E that best explain the observed behavior.

Fig. 15 gives the schematic for this important IRL extension. Having to associate a subset of input trajectories from the 
demonstration to a reward function that likely generates it (also called the data association problem) makes this extension 
challenging. This becomes further complex when the number of involved tasks is not known. Diverse methods have sought 
to address the problem defined in Definition 4, and we briefly review them below.

6.2.2. Methods
Babes-Vroman et al. [45] assume that a linear reward function of an expert can change over time in a chain of tasks. 

The method aims to learn multiple reward functions with common features {R̂ i
E = wT

i φ}Mi=1, M ∈ N . Given prior knowledge 
of M , the solution is a pair of weight vector w i ∈ Rk and a correspondence probability for each reward function R̂ i

E . 
This probabilistically ties a cluster of trajectories to a reward function. The process iteratively clusters trajectories based on 
current hypothesis, followed by implementation of mlirl for updating the weights. This approach is reminiscent of using 
expectation-maximization for Gaussian data clustering.

Continuing with the assumption of knowing M , birl can be generalized to a hierarchical Bayes network by introducing 
a hyperprior that imposes a probability measure on the space of priors over the joint reward-policy space. Dimitrakakis 
and Rothkopf [61] show how the prior is sampled from an updated posterior given an input demonstration. This posterior 
(and thus the sampled prior) may differ for an expert performing different tasks or multiple experts involved in different 
tasks. Within the context of our running example, Fig. 16 illustrates how this approach may be used to learn posteriors for 
multiple drivers on a merging lane of a freeway.
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Fig. 17. IRL with incomplete model of transition probabilities.

In contrast to parametric clustering, dpm-birl is a clustering method that learns multiple reward specifications from 
unlabeled fixed-length trajectories [81]. It differs from the previous methods in this section in that the number of experts 
are not known. Therefore, it addresses the problem in Definition 4 with M unknown. The method initializes a nonparametric 
Dirichlet process of priors over the reward functions and aims to assign each input trajectory to a reward function that 
potentially generates it, thereby forming clusters of trajectories. Learning occurs by implementing a Bayesian update to 
compute the joint posterior over the reward functions and the probabilistic assignments to clusters. The procedure iterates 
until the reward functions and clusters stabilize.

In settings populated by multiple experts, Bogert et al. [21] extend irl* and maxentirl to multiple experts who may 
interact, albeit sparsely. These experts are mobile robots patrolling a narrow hallway. While the motion dynamics of each 
expert is modeled separately, the interaction is modeled as a strategic game between the two experts; this approach pro-
motes scalability to many experts. Experts are assumed to play one of the Nash equilibria profiles during the interaction, 
although the precise one is unknown to the learner. Alternatively, all experts may be modeled jointly as a multiagent sys-
tem. Reddy et al. [82] adopt this approach and model multiple interacting experts as a decentralized general-sum stochastic 
game. Similarly, Lin et al. [83] presents a Bayesian method that learns the distribution over rewards in a sequential zero-sum 
stochastic multi-agent game.

6.3. Incomplete model

Definition 2 for IRL assumes full knowledge of the transition model T and the reward feature functions. However, know-
ing the transition probabilities that represent the dynamics or specifying the complete feature set is challenging and often 
unrealistic. Hand-designed features introduce structure to the reward, but they increase the engineering burden. Inverse 
learning is difficult when the learner is partially unaware of the expert’s dynamics or when the known features do not 
sufficiently model the expert’s preferences. Subsequently, the learner must estimate the missing components for inferring 
R̂ E . Readers familiar with RL may notice that these extensions share similarity with model-free RL where the transition 
model and reward function features are also unknown.

6.3.1. Extended definition

Definition 5 (Incomplete dynamics). Let an MDP without reward, M\RE = (S, A, T̂ , γ ), represent the dynamics between an 
expert and its environment, where T̂ specifies the probabilities for a subset of all possible transitions. The input is demon-
stration D = {〈(s0, a0), (s1, a1), . . . (s j, a j)〉Ni=1}, s j ∈ S , a j ∈ A, i, j, N ∈ N or expert’s policy πE . Then, determine reward R̂ E

that best explains either the input policy πE or the observed demonstration D.

Fig. 17 illustrates the corresponding generalized IRL pipeline. Next, we define the IRL problem when the set of basis 
feature functions is incomplete.

Definition 6 (Incomplete features). Let an MDP without reward, M\RE = (S, A, T , γ ), represent the dynamics of an expert 
and its environment. Let the reward function R̂ E = f (φ) depend on the feature set φ . The input is demonstration D =
{〈(si0, ai0), (si1, ai1), . . . (sij, aij)〉Ni=1}, s j ∈ S , a j ∈ A, i, j, N ∈ N or expert’s policy πE . If the given feature set φ is incomplete, 
find the features and function R̂ E that best explains the input.

6.3.2. Methods
While the majority of IRL methods assume completely specified dynamics, we briefly review two that learn the dynamics 

in addition to the reward function. mwal obtains the maximum likelihood estimate of unknown transition probabilities by 
computing the frequencies of state-action pairs which are observed more than a preset threshold number of times. The 
process determines the complete transition function by routing the transitions for the remaining state-action pairs to an 
absorbing state. To formally guarantee the accuracy of learned dynamics and thereby the reward function, the algorithm 
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Fig. 18. In mIRL*\t, ξ (s,a)
i = {τ1, τ2, . . . τb} denotes the transition-features for transition (s, a, s′) of expert i, s′ is intended next state. Computation of 

unknown probabilities by using probabilities of transition-features, ∏
τ∈ξ

(s,a)
i

P (τ ) = Tsa(s, a, s′), is feasible because different transitions share transition 
features among them. Source of illustration is [84] and figure is reprinted with author’s permission.

leverages a theoretical upper bound on the accuracy of the learned transition model if the learner receives a given minimum 
amount of demonstration [62].

While mwal assumes that a learner fully observes the states, mIRL*\T [21] focuses on limited observations with unknown 
transition probabilities and multiple experts. Bogert and Doshi model each transition as an event composed of underlying 
components. For example, movement by a robot may be decomposed into its left and right wheels moving at some angular 
velocity. Therefore, the probability of reaching intended location by moving forward is the joint probability of left and right 
wheels rotating with the same velocities. The learner is assumed to know the intended next state for a state-action pair, 
and probability not assigned to the intended state is distributed equally among the unintended next states. Importantly, 
the components, also called transition features, are likely to be shared between observable and unobserved transitions as 
shown in Fig. 18. Therefore, a fixed distribution over the transition features determines T . The frequencies of a state-action 
pair in the demonstration provide a set of empirical joint probabilities, as potential solutions. The preferred solution is 
the distribution of component probabilities with the maximum entropy. mIRL*\t generalizes better than mwal because the 
structure introduced by shared features is more generalizable in the space of transition probabilities than local frequency 
based estimation.

Furthermore, for estimating the unknown dynamics, gcl [85] iteratively runs a linear-Gaussian controller (current policy) 
to generate trajectory samples, fits local linear-Gaussian dynamics to them by using linear regression, and updates the 
controller under the fitted dynamics. On the other hand, Boularias et al. [40] shows that the transition models approximated 
from a small set of demonstrations may result in highly inaccurate solutions.

Of course, model-free IRL completely bypasses learning the transition dynamics. Prominent model-free methods include
airl and pi-irl, which were reviewed in Sections 4.4 and Section 5.4, respectively. A recent method [86] builds on mlirl by 
replacing the traditional Bellman update in mlirl to perform model-free Q-learning, which is modified to be differentiable. 
One modification replaces the max operator in the update with an averaging operator. An alternative modification replaces 
the max operator with a Boltzmann-weighted mean. These modifications demonstrated good results on the real-world 
NGSIM data set toward learning driver preferences during a freeway merge.

A generalization of mmp that focuses on IRL when the feature vector is known to be insufficient to explain the expert’s 
behavior is mmpboost [87]. In this case, the method assumes that a predefined set of primitive features, which are easier 
to specify, create the reward feature functions. In the space of nonlinear functions of base features, mmpboost searches 
new features that make the demonstrated trajectories more likely and any alternative (simulated) trajectories less likely. 
Consequently, the hypothesized reward function performs better than the one with original feature functions. Further, it is 
well known that methods employing L1 regularization objectives can learn robustly when input features are not completely 
relevant [88]. In addition to mmpboost, gpirl also uses this concept of base features to learn a new set of features which 
correspond better to the observed behavior.

In some applications, it is important to capture the logical relationships between base features to learn an optimum 
function representing the expert’s reward. Most methods do not determine these relationships automatically. Recall that
firl constructs features by capturing these relationships in a regression tree. In contrast, bnp-firl uses an Indian buffet 
process to derive a Markov Chain Monte Carlo procedure for Bayesian inference of the features and weights of a linear 
reward function [89]. bnp-firl is demonstrated to construct features more succinct than those by firl. Of course, all these 
methods are applicable only when the feature space is sufficient to express the reward function.

6.4. Nonlinear reward function

A majority of the IRL methods such as projection, mmp, and maxentirl assume that the solution is a weighted linear 
combination of a set of reward features (Eq. (3)). While this is sufficient for many domains, a linear representation may 
be simplistic in complex real tasks especially when raw sensory input is used to compute the reward values [67]. Also, 
analyzing the learner’s performance w.r.t. the best solution seems compromised when a linear form restricts the class of 
possible solutions. But a significant challenge for relaxing this assumption is that nonlinear reward functions may take any 
shape, which could lead to a very large number of parameters and search space, and promote overfitting.

As our definition of IRL given in Definition 2 does not involve the structure of the learned reward function, it continues 
to represent the problem in the context of nonlinear reward functions as well.
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Fig. 19. Learning a nonlinear reward function with boosted features improves performance over linear reward. Learner needs to imitate example paths 
drawn by humans in overhead imagery. Upper left panel - base features for a region. Upper right panel - image of the region used for testing. Red path is 
a demonstrated path and Green path is a learned path. Lower left panel - a map (un-boosted linear reward function) inferred using mmp with uniformly 
high cost everywhere. Lower right panel shows results of mmpboost. Since mmpboost creates new features by a search through a space of nonlinear reward 
functions, it performs significantly better. We reprinted this figure from [87] with permission from MIT press. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Table 3
A comparative analysis of the challenges addressed by the extensions introduced in Section 6. Please refer to Table 1 for the explanation of abbreviations 
and notations used here.
Method R̂ E params Optimization Obj. Notable aspects
Methods for incomplete and noisy observations
pomdp-irl

w
feature expectation of policy - empirical feature exp. max-margin with noisy 

observations of expert
hioc entropy of distribution modeling noise in input
irl

∗ over trajectories IRL with hidden variables
Methods for multiple tasks
Dimitrakakis et al. [61] {Ri

E }Mi=1 joint dist. over rewards and policies hierarchical birl for multiple 
hypotheses

dpm-birl {Ri
E }∗ generative DP governing D first nonparametric multi-task 

technique
Reddy et al. [82]
Lin et al. [83]

{Ri
E }Mi=1 joint policy value modeling expert interactions 

using game theory
Methods for incomplete model parameters
mmpboost

w

value of observed τ - max of values from all other τ max. likelihood derived classifier 
to fit φ

mwal min diff. in value of policy and observed τ across 
features

first formal bound on learning 
dynamics

Model-free mlirl [86] differentiable Q-learning update rule good performance on real-world 
driving data

bnp-firl w , primitive features generative IBP governing {primitive features, w, D} integrating feature learning in
birl

To overcome the constraint of using a linear reward function, methods mmpboost, learch, and gpirl infer a nonlinear 
reward function. mmpboost and learch use a matrix of features in an image (cost map) and gpirl uses a Gaussian process 
for representing the nonlinear function R̂ E = f (φ). Fig. 19 shows the benefit of a nonlinear form with boosted features 
as compared to a restrictive linear form. In addition to these, Wulfmeier et al. [35], Finn et al. [67], and airl represent a 
complex nonlinear cost function using a neural network approximation, thereby avoiding the assumption of a linear form.

Table 3 abstracts and summarizes the key properties of the methods reviewed in this section. Some of these methods 
build on the foundational methods reviewed in Section 4 while others are new introduced with the aim of generalizing IRL

in pragmatic ways.

7. Concluding remarks and future work

Since the introduction of IRL in 1998 by Russell, researchers have demonstrated a significantly improved understanding of 
the inherent challenges, developed various methods for their mitigation, and investigated the extension of these challenges 
toward real-world applications. This survey takes a rigorous but accessible look at IRL, and focuses on the specific ways by 
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Fig. 20. The state of i-POMDP evolves as an interactive state space that encompasses the computable models (beliefs, preferences, and capabilities) for other 
agents and the physical states of the environment. Agent i maintains and updates his models of other agents.

which various methods mitigated challenges and contribute to the ongoing advance of IRL. The reason for this focus is that 
we believe that successful approaches in IRL will eventually combine the synergy of different methods to solve complex 
learning problems that typically exhibit many challenges.

Our improved understanding has also revealed more novel questions. In our survey of several IRL methods, we observed 
that very few methods provably analyzed the sample or time complexity of their techniques, and compared it with those 
of other methods. Indeed, until last year, projection and mwal were the only methods among the foundational ones that 
provided a sample complexity analysis. These methods use Hoeffding’s inequality to relate the error in estimated feature 
expectations with the minimum sample complexity. Only recently was the sample complexity of Ng and Russell’s early IRL

method analyzed [66]. As such, there is a general lack of theoretical guidance on the complexity of IRL as a problem, and 
on the complexity and accuracy of IRL methods, with most focusing on empirical comparisons to establish improvement.

A particularly egregious shortcoming is that the existing set of methods do not scale reasonably to beyond a few dozens 
of states or more than ten possible actions. This is a critical limitation that limits IRL demonstrations mainly to toy problems 
and prevents IRL from being applied in more pragmatic applications. Many methods in IRL rely on parameter estimation 
techniques, and current trends show that meta-heuristic algorithms can estimate the optimal parameters efficiently. Some 
prominent meta-heuristic methods are cuckoo search algorithm [90,91], particle swarm optimization [92], and the firefly 
algorithm [93]. As their noticeable benefits, meta-heuristic algorithms do not rely on the optimization being convex, rather 
they can search general spaces relatively fast, and they can find a global minimum. Thus, studying the performance of these 
techniques in IRL should reveal new insights.

There is a distinct lack of a standard testbed of problem domains for evaluating IRL methods, despite the prevalence of 
empirical evaluations in this area. Well designed testbeds allow methods to be evaluated along various relevant dimensions, 
point out shared deficiencies, and typically speed up the advance of a particular field. For example, UCI’s machine learning 
repository and OpenAI’s Gym library are playing significant roles in advancing the progress of supervised and reinforcement 
learning techniques, respectively.

In addition to these immediate avenues of future work, we also discuss lines of inquiry below that could lead to a better 
understanding of IRL and lead to progress over the longer term.

Direct and indirect learning. When the state space is large and precise identification of π̂E is cumbersome, directly learning 
a reward function results in a better generalization as compared to policy matching [13] (see Section 3.5). However, the 
issue of choosing between these two ways of learning from demonstrations or exploiting their synergies warrants a more 
thorough analysis.

Heuristics. Choi et al. [26] observes that when the values of learned policy π̂E and expert’s policy πE are evaluated on the 
true reward RE , both are optimal and about equal. However, π̂E obtained using R̂ E does not achieve the same value as 
πE when they use the learned reward R̂ E for the evaluation. This is, of course, a quantification of the reward ambiguity 
challenge, which we pointed out earlier in this survey. It significantly limits learning accuracy. We believe that the choice 
of heuristics in the optimization may mitigate this issue.

Multi-expert interaction. Recent work on IRL for multi-agent interactive systems can be extended to include more general 
classes of interaction-based models to increase the potential for applications [83,82]. These classes include models for fully-
observable state spaces (Markov games [94], multi-agent Markov decision processes [95], interaction-driven Markov games 
[96]) and for partially-observable states (partially observable identical-payoff stochastic games [97], multi-agent team de-
cision problems [98], decentralized Markov decision processes [99], and interactive POMDPs [100] illustrated in Fig. 20). 
researchers must extend the existing approaches to this level of inference. A special case worth initiative is a single learner 
with multiple interactive experts in partial observation settings. Outside the domain of IRL, we note behavior prediction 
approaches related to inverse optimal control in multi-agent game-theoretic settings [101]. The regret-based criterion in 
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this work can be used for Markov games too: for any linear reward function, the learned behavior of agents should have 
regret less than or equal to that in observed behavior.

Non-stationary rewards. Most methods assume a fixed reward function that does not change. However, the preferences of 
agent(s) may change with time, and the reward function can be time-variant i.e., R : S× A ×η → R. Babes-Vroman et al. [45]
capture such dynamic reward functions as multiple reward functions, but this approximation is crude. A more reasonable 
start in this research direction is the reward model in Kalakrishnan et al. [102].
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[64] S.J. Lee, Z. Popović, Learning behavior styles with inverse reinforcement learning, ACM Trans. Graph. 29 (4) (2010) 122:1–122:7.
[65] D.S. Brown, S. Niekum, Efficient probabilistic performance bounds for inverse reinforcement learning, in: Thirty-Second AAAI Conference on Artificial 

Intelligence, 2018.
[66] A. Komanduru, J. Honorio, On the correctness and sample complexity of inverse reinforcement learning, in: Advances in Neural Information Processing 

Systems, vol. 32, 2019, pp. 7112–7121.
[67] C. Finn, S. Levine, P. Abbeel, Guided cost learning: deep inverse optimal control via policy optimization, preprint, arXiv:1603 .00448.
[68] F.S. Melo, M. Lopes, Learning from demonstration using mdp induced metrics, in: Proceedings of the 2010 European Conference on Machine Learning 

and Knowledge Discovery in Databases: Part II, ECML PKDD’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 385–401.
[69] T. Munzer, B. Piot, M. Geist, O. Pietquin, M. Lopes, Inverse reinforcement learning in relational domains, in: Proceedings of the 24th International 

Conference on Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 3735–3741.
[70] R. Fletcher, Practical Methods of Optimization, Wiley-Interscience Publication, Wiley, 1987.
[71] R. Malouf, A comparison of algorithms for maximum entropy parameter estimation, in: Proceedings of the 6th Conference on Natural Language 

Learning - Volume 20, COLING-02, Association for Computational Linguistics, Stroudsburg, PA, USA, 2002, pp. 1–7.
[72] P. Vernaza, J.A. Bagnell, Efficient high-dimensional maximum entropy modeling via symmetric partition functions, in: Proceedings of the 25th Inter-

national Conference on Neural Information Processing Systems, NIPS’12, Curran Associates Inc., USA, 2012, pp. 575–583.
27

http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2494DDC36F8F6B7C610297A0B4E4BFB6s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2494DDC36F8F6B7C610297A0B4E4BFB6s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD9DA82E785541E390663423B27404115s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0FC9AF8DCD6F817E8E98F2622309565Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0FC9AF8DCD6F817E8E98F2622309565Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB4DF6EB3F051FD24AD22574453676FA5s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB4DF6EB3F051FD24AD22574453676FA5s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6453CEF39B3376343F2364FE679590A9s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6453CEF39B3376343F2364FE679590A9s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib4BF2E7D6D3FBD78D313EEFD921CCFFDFs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA1FC99894925EE8516689F794BFD73AAs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA1FC99894925EE8516689F794BFD73AAs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA1FC99894925EE8516689F794BFD73AAs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2810105781BE3ED4E126378707A3B213s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2810105781BE3ED4E126378707A3B213s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib8E9EA5EE518DC5F270A9B1B6C8023944s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib8E9EA5EE518DC5F270A9B1B6C8023944s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibEE3F100060ED4FAC2DC55E0E6E5E0E5As1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibEE3F100060ED4FAC2DC55E0E6E5E0E5As1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7E61C066EF33CD1EA4961C480747B2A9s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7E61C066EF33CD1EA4961C480747B2A9s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2BB6436B20E48C75C064422B547AD261s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2BB6436B20E48C75C064422B547AD261s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib362DEE9530F2459268A372BA35697CB7s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib362DEE9530F2459268A372BA35697CB7s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD0B8E3F64479889C4A865D169355BD54s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD0B8E3F64479889C4A865D169355BD54s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB083BB851263D73CB2043D6BEAF4CE69s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB083BB851263D73CB2043D6BEAF4CE69s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0483553BDB365760EA36EBACB80E8B5Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0483553BDB365760EA36EBACB80E8B5Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0483553BDB365760EA36EBACB80E8B5Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib79E67F151387AE25A8D1C4A89E97EBDEs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib79E67F151387AE25A8D1C4A89E97EBDEs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib01E8159EEBC4E5F71086757F59590137s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib01E8159EEBC4E5F71086757F59590137s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6DAD5D45285FA27DC6188B91C66DBB37s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib66AE37EABB1BA1541E9AFCF400041E61s1
https://openreview.net/forum?id=rkHywl-A
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD3C244CB359D5893AD44B0062BD04776s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD3C244CB359D5893AD44B0062BD04776s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibAE439424ADFB53F5DC429AB4CB498C6Ds1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib147EC36FFCC8C39DD08D9F72B5DF7566s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib147EC36FFCC8C39DD08D9F72B5DF7566s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB262C21B8BADFEC3E380F88CB33C2770s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibB262C21B8BADFEC3E380F88CB33C2770s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7C6B7D8A6B5229B9A4B6855377FE9596s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7C6B7D8A6B5229B9A4B6855377FE9596s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5AAE3991C587702982BD618BD97EC9D3s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5AAE3991C587702982BD618BD97EC9D3s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5AAE3991C587702982BD618BD97EC9D3s1
http://arxiv.org/abs/0410076v1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2DE4860DA751BC83FC2E415F1917FB59s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib2DE4860DA751BC83FC2E415F1917FB59s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA2EDA9E1A422A5F652DA48D9A20800DCs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibF20E54C8640BC8BD97631BA008EEA0F7s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibCC8B2E706459CA51212B938C62CF2817s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibCC8B2E706459CA51212B938C62CF2817s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib36BA3D5CA3C2A07FA332CAC86A369B6Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib36BA3D5CA3C2A07FA332CAC86A369B6Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib4DBD7E76D58B72C06057E091BD46D404s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6763DCDD48C14C53963A1155ED5E7E4Bs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6763DCDD48C14C53963A1155ED5E7E4Bs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib89E99C6BDD56C04FB4C58CF0DEAD7636s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib89E99C6BDD56C04FB4C58CF0DEAD7636s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib399775BE3792F0E6F666D13C2B210674s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib47BBA02D7FC81BC32A8636F0E8A61532s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib47BBA02D7FC81BC32A8636F0E8A61532s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibE102C753FB24B8DE0C32772D71F2F92Fs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibE102C753FB24B8DE0C32772D71F2F92Fs1


S. Arora and P. Doshi Artificial Intelligence 297 (2021) 103500
[73] J.Z. Kolter, P. Abbeel, A.Y. Ng, Hierarchical apprenticeship learning, with application to quadruped locomotion, in: Proceedings of the 20th International 
Conference on Neural Information Processing Systems, NIPS’07, Curran Associates Inc., USA, 2007, pp. 769–776.

[74] C.A. Rothkopf, D.H. Ballard, Modular inverse reinforcement learning for visuomotor behavior, Biol. Cybern. 107 (4) (2013) 477–490.
[75] U. Syed, M. Bowling, R.E. Schapire, Apprenticeship learning using linear programming, in: Proceedings of the 25th International Conference on Ma-

chine Learning, ICML ’08, ACM, New York, NY, USA, 2008, pp. 1032–1039.
[76] S. Wang, R. Rosenfeld, Y. Zhao, D. Schuurmans, The latent maximum entropy principle, in: IEEE International Symposium on Information Theory, 

2002, p. 131.
[77] S. Wang, D. Schuurmans, Yunxin Zhao, The latent maximum entropy principle, ACM Trans. Knowl. Discov. Data 6 (8) (2012).
[78] K. Bogert, J.F.-S. Lin, P. Doshi, D. Kulic, Expectation-maximization for inverse reinforcement learning with hidden data, in: Proceedings of the 2016 In-

ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS ’16, International Foundation for Autonomous Agents and Multiagent 
Systems, 2016, pp. 1034–1042.

[79] K.M. Kitani, B.D. Ziebart, J.A. Bagnell, M. Hebert, Activity forecasting, in: Proceedings of the 12th European Conference on Computer Vision - Volume 
Part IV, ECCV’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 201–214.

[80] L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially observable stochastic domains, Artif. Intell. 101 (1–2) (1998) 99–134.
[81] J. Choi, K.-E. Kim, Nonparametric bayesian inverse reinforcement learning for multiple reward functions, in: Proceedings of the 25th International 

Conference on Neural Information Processing Systems, NIPS’12, Curran Associates Inc., USA, 2012, pp. 305–313.
[82] T.S. Reddy, V. Gopikrishna, G. Zaruba, M. Huber, Inverse reinforcement learning for decentralized non-cooperative multiagent systems, in: 2012 IEEE 

International Conference on Systems, Man, and Cybernetics, SMC, 2012, pp. 1930–1935.
[83] X. Lin, P.A. Beling, R. Cogill, Multi-agent inverse reinforcement learning for zero-sum games, CoRR, arXiv:1403 .6508 [abs].
[84] K. Bogert, P. Doshi, Toward estimating others’ transition models under occlusion for multi-robot irl, in: Proceedings of the 24th International Confer-

ence on Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 1867–1873.
[85] S. Levine, P. Abbeel, Learning neural network policies with guided policy search under unknown dynamics, in: Proceedings of the 27th International 

Conference on Neural Information Processing Systems, NIPS’14, MIT Press, Cambridge, MA, USA, 2014, pp. 1071–1079.
[86] V. Jain, P. Doshi, B. Banerjee, Model-free irl using maximum likelihood estimation, in: AAAI Conference on Artificial Intelligence, vol. 19, 2019, 

pp. 3951–3958.
[87] N. Ratliff, D. Bradley, J.A. Bagnell, J. Chestnutt, Boosting structured prediction for imitation learning, in: Proceedings of the 19th International Confer-

ence on Neural Information Processing Systems, NIPS’06, MIT Press, Cambridge, MA, USA, 2006, pp. 1153–1160.
[88] A.Y. Ng, Feature selection, l1 vs. l2 regularization, and rotational invariance, in: Proceedings of the Twenty-First International Conference on Machine 

Learning, ICML ’04, ACM, New York, NY, USA, 2004, p. 78.
[89] J. Choi, K.-E. Kim, Bayesian nonparametric feature construction for inverse reinforcement learning, in: Proceedings of the Twenty-Third International 

Joint Conference on Artificial Intelligence, IJCAI ’13, AAAI Press, 2013, pp. 1287–1293.
[90] X.-S. Yang, S. Deb, Cuckoo search via Lévy flights, in: 2009 World Congress on Nature & Biologically Inspired Computing, NaBIC, IEEE, 2009, 

pp. 210–214.
[91] X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, preprint, arXiv:1005 .2908.
[92] R. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, 

pp. 1942–1948.
[93] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, preprint, arXiv:1003 .1409.
[94] M.L. Littman, Markov games as a framework for multi-agent reinforcement learning, in: Proceedings of the Eleventh International Conference on 

Machine Learning, vol. 157, 1994, pp. 157–163.
[95] C. Boutilier, Sequential optimality and coordination in multiagent systems, in: Proceedings of the 16th International Joint Conference on Artifical 

Intelligence - Volume 1, IJCAI’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 478–485.
[96] M.T.J. Spaan, F.S. Melo, Interaction-driven Markov games for decentralized multiagent planning under uncertainty, in: Proceedings of the 7th Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’08, International Foundation for Autonomous Agents 
and Multiagent Systems, Richland, SC, 2008, pp. 525–532.

[97] L. Peshkin, K.-E. Kim, N. Meuleau, L.P. Kaelbling, Learning to cooperate via policy search, in: Proceedings of the 16th Conference on Uncertainty in 
Artificial Intelligence, UAI ’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000, pp. 489–496.

[98] D.V. Pynadath, M. Tambe, The communicative multiagent team decision problem: analyzing teamwork theories and models, J. Artif. Intell. Res. 16 (1) 
(2002) 389–423.

[99] D.S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of decentralized control of Markov decision processes, Math. Oper. Res. 27 (4) 
(2002) 819–840.

[100] P.J. Gmytrasiewicz, P. Doshi, A framework for sequential planning in multi-agent settings, J. Artif. Intell. Res. 24 (1) (2005) 49–79.
[101] K. Waugh, B.D. Ziebart, J.A. Bagnell, Computational rationalization: the inverse equilibrium problem, CoRR, arXiv:1308 .3506 [abs].
[102] M. Kalakrishnan, P. Pastor, L. Righetti, S. Schaal, Learning objective functions for manipulation, in: IEEE International Conference on Robotics and 

Automation, ICRA, 2013, 2013, pp. 1331–1336.
28

http://refhub.elsevier.com/S0004-3702(21)00051-5/bibCC3D1ECE6C4ED5A4E9097F97BD999592s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibCC3D1ECE6C4ED5A4E9097F97BD999592s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6DFA49956B0FC80D0C0BA802354917BAs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib85EA718152E4C265F2AC0EF8F714E744s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib85EA718152E4C265F2AC0EF8F714E744s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib8E5055DF0706CE93D91F61DF39A99970s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib8E5055DF0706CE93D91F61DF39A99970s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib981561B4A9EFE3307AA7FB629281014Bs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibE46BE5E676AA0760814C827A04B055B0s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibE46BE5E676AA0760814C827A04B055B0s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibE46BE5E676AA0760814C827A04B055B0s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib26E4096C7E0D1B59E3288CA157F4A41Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib26E4096C7E0D1B59E3288CA157F4A41Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA469012CB43936C90CFEB56338E8A176s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib9B07B52887763422F7597D51AA19ABB3s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib9B07B52887763422F7597D51AA19ABB3s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7CBB25E405C00162003EE4F1673D9212s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7CBB25E405C00162003EE4F1673D9212s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibDC3975A0E5B16A222B0501D59A67FDCBs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7A79D9E8D476886C2C571EF3C3648D4Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib7A79D9E8D476886C2C571EF3C3648D4Es1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib30ACC127D4B342DFACED628E47A21141s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib30ACC127D4B342DFACED628E47A21141s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibBA0F51B3FC85D774A2607E25E6840F52s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibBA0F51B3FC85D774A2607E25E6840F52s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib435C10401BFF374630DC100C92732377s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib435C10401BFF374630DC100C92732377s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA402545E55D481CAB36088A4AFB70FB6s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibA402545E55D481CAB36088A4AFB70FB6s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibF16974199A8B9995910CF5EDADD9D882s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibF16974199A8B9995910CF5EDADD9D882s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib260C9EA35F98A8778C844843ADEBA571s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib260C9EA35F98A8778C844843ADEBA571s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5945D953AF145946E0BBE514A79E1F85s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib50C1159DDB869F8EA669192B62D75C78s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib50C1159DDB869F8EA669192B62D75C78s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib26661784AAA9AE3FE5188A917C3342B0s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD14E03F448CBBF7F95F402682B57A13Bs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibD14E03F448CBBF7F95F402682B57A13Bs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib1DD017EED91F1163FA1C6F4EF1C6F01Fs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib1DD017EED91F1163FA1C6F4EF1C6F01Fs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib3B0437423FD14DD9BD3FDB39BA960F0Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib3B0437423FD14DD9BD3FDB39BA960F0Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib3B0437423FD14DD9BD3FDB39BA960F0Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6B68CD3EC8195B43F1C70DBCA177C812s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib6B68CD3EC8195B43F1C70DBCA177C812s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5A74EE510BF056B346A4478497C7EB9Fs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib5A74EE510BF056B346A4478497C7EB9Fs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibFAA5087F855FD6C97113434D567A1D16s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bibFAA5087F855FD6C97113434D567A1D16s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib0F9587BE2BB2483ABB9274D3E7616C4Cs1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib066A73438DB81032A7CE11725BEE1766s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib05834C866EDABCC5C17D087486E25535s1
http://refhub.elsevier.com/S0004-3702(21)00051-5/bib05834C866EDABCC5C17D087486E25535s1

	A survey of inverse reinforcement learning: Challenges, methods and progress
	1 Introduction
	1.1 Significance of IRL
	1.1.1 Demonstration substitutes manual specification of reward
	1.1.2 Improved generalization
	1.1.3 Potential applications

	1.2 Importance of this survey
	1.3 Organization of contents

	2 Formal definition of IRL
	3 Primary challenges of IRL
	3.1 Obstacles to accurate inference
	3.2 Generalizability
	3.3 Sensitivity to correctness of prior knowledge
	3.4 Disproportionate growth in solution complexity with problem size
	3.5 Direct learning of reward or policy matching

	4 Foundational methods for IRL
	4.1 Margin optimization
	4.1.1 Margin of optimal from other actions or policies
	4.1.2 Margin of observed from learned feature expectations
	4.1.3 Observed and learned policy distributions over actions

	4.2 Entropy optimization
	4.2.1 Entropy of the distribution over trajectories or policies
	4.2.2 Relative entropy of the distribution over trajectories

	4.3 Bayesian update
	4.3.1 Boltzmann distribution
	4.3.2 Gaussian process
	4.3.3 Maximum likelihood estimation

	4.4 Classification and regression
	4.4.1 Classification based on action-value scores
	4.4.2 Regression tree for state space partitions

	4.5 Summary and unified views of methods

	5 Mitigating the challenges
	5.1 Improving the accuracy of inference
	5.1.1 Learning from noisy input
	5.1.2 Ambiguity and degeneracy of reward hypotheses
	5.1.3 Theoretical bounds on accuracy

	5.2 Generalizability
	5.3 Lowering sensitivity to prior knowledge
	5.4 Analysis and reduction of complexity
	5.4.1 Continuous state spaces
	5.4.2 High dimensional and large spaces


	6 Extensions of basic IRL
	6.1 Incomplete and imperfect observations
	6.1.1 Extended definition
	6.1.2 Methods

	6.2 Multiple tasks
	6.2.1 Extended definition
	6.2.2 Methods

	6.3 Incomplete model
	6.3.1 Extended definition
	6.3.2 Methods

	6.4 Nonlinear reward function

	7 Concluding remarks and future work
	Declaration of competing interest
	Acknowledgements
	References


