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In this paper, we propose an improved singularity structure simplification method for hexahedral
(hex) meshes using a weighted ranking approach. In previous work, the selection of to-be-collapsed
base complex sheets/chords is only based on their thickness, which will introduce a few closed-loops
and cause an early termination of simplification and a slow convergence rate. In this paper, a new
weighted ranking function is proposed by combining the valence prediction function of local singularity
structure, shape quality metric of elements and the width of base complex sheets/chords together.
Adaptive refinement and local optimization are also introduced to improve the uniformity and aspect
ratio of mesh elements. Compared to thickness ranking methods, our weighted ranking approach
can yield a simpler singularity structure with fewer base-complex components, while achieving
comparable Hausdorff distance ratio and better mesh quality. Comparisons on a hex-mesh dataset
are performed to demonstrate the effectiveness of the proposed method.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the application of hexahedral (hex) meshes in
inite element and isogeometric analysis has become increasingly
idespread, because of its good numerical performance, small
torage space requirements, and natural advantage of being able
o construct tensor-product splines [1,2]. However, hex-mesh
eneration is not yet mature, and it cannot be guaranteed that
good quality initial mesh can be generated in all cases. For

omplex shapes and structural models, the octree-based mesh
eneration method was proposed [3–5]. This efficient method
an ensure a topologically valid and well-formed meshing result.
owever, it generates a large number of cells and too many
ingularities. In some scenarios, we do not need a dense mesh and
omplicated interior structures. Meshes with simple structure
nd fewer singularities are more conducive to accelerating com-
utational and convergence speed [6]. Therefore, it is very impor-
ant to propose an effective singularity structure simplification
ethod for hex-meshes.
Some research work has contributed to this topic in the past

0 years. In [7], an adaptive hex-mesh localization method was
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010-4485/© 2020 Elsevier Ltd. All rights reserved.
proposed. Topological operations such as collapsing and pillowing
are used to process the locality, and localized roughening is
maintained while maintaining topological connectivity and shape
of the input mesh, which provides a basic idea of hex-mesh
coarsening. In [8], the mesh structure is simplified according
to the reparameterization requirements, and singularity is effec-
tively reduced while maintaining the number of mesh elements.
Template matching is used to split patches and eliminate the
leading blocks. However, its implementation is very limited and
not robust. It cannot simplify self-interleaved and closed-loops,
resulting in poor results on input meshes obtained from octree-
based methods. In [9], a robust hex-mesh structure simplification
method was proposed. It is possible that a feasible solution with
a simpler and coarser structure exists, but the algorithm might
fail to find it. Especially, the ranking method for the selection of
to-be-collapsed base complex sheets/chords is only based on the
thickness, and it cannot guarantee to remove most of the singular
structures. It will also introduce a few closed-loops and terminate
the simplification process in advance. For an initial hex-mesh
with many singular vertices, a proper priority ranking algorithm
is needed to guide the simplification of the singularity structure.
Moreover, a local parameterization is also needed to improve the
mesh quality and repair topology structure after simplification.

https://doi.org/10.1016/j.cad.2020.102946
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102946&domain=pdf
mailto:gxu@hdu.edu.cn
https://doi.org/10.1016/j.cad.2020.102946
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n this paper, we propose an improved singularity structure sim-
lification method of hex-meshes. The main contribution can be
ummarized as follows:

• A new weighted ranking approach for singularity struc-
ture simplification is proposed by combining the valence
prediction function of local singularity structure, shape qual-
ity metric of elements and the width of base complex
sheets/chords.

• A local optimization for SLIM [10] is proposed to improve
the uniformity of hex-elements while maintaining the ele-
ment quality;

• An adaptive sheet refinement method is proposed to im-
prove the accuracy of boundary geometry approximation
while maintaining similar number of hex-elements.

ased on these improvements, the proposed weighted ranking
ethod can achieve a smaller number of singularities with com-
arable Hausdorff distance ratio, effectively remove the kinks in
he hex-mesh.

The remainder of the paper is structured as follows. A re-
iew of related hex-mesh generation and mesh simplification
s presented in Section 2. Some basic concepts and framework
verview are described in Section 3. Section 4 presents the sheet
nd chord collapsing operation of base-complex. The proposed
eighted ranking approach is described in Section 5. Adaptive
heet refinement is presented in Section 6. In Section 7, the ex-
erimental results are illustrated. Finally, the paper is concluded
nd future work is outlined in Section 8.

. Related work

In this section, some related work on hex-mesh generation and
implification will be presented.
Hexahedral mesh generation. Hex mesh has been widely

tudied for decades. However, an automatic method that can
enerate high quality hex-meshes for any complex geometry is
till unavailable because of the strong topological constraints [11],
.e., the dual chord and the dual sheet. Some methods were
evised for specific types of geometries. For example, the map-
ing method is preferable for mappable geometries, while the
weeping method [12] is often used for swept volumes. By com-
ining with domain partition, they can be applied to complex
eometries [12–14]. Based on the idea of paving, several geomet-
ic and topological approaches have been proposed for all-hex
eshing. Plastering [15] and H-Morph [16] generate layers of
ex elements in geometric ways, whereas the whisker weav-
ng [17,18] method uses spatial twist continuum and generates
he topological dual of hex-mesh. Unconstrained plastering [19]
s extended from plastering. Different from other paving methods,
t starts from propagating the original geometry boundary instead
f a pre-meshed boundary into the interior domain, and hex
lements are generated when three propagating fronts intersect
ach other. The octree-based approach [20] is very robust and
an be executed in a highly automatic way, however, it yields
oor quality elements near boundary and the final mesh heavily
elies on the orientation of the coordinate system. The polycube
ased meshing approach uses a low distortion mapping between
he input model and polycube, and computes the corresponding
olumetric mappings. The deformation methods are introduced
or polycube construction [21–25], and frame fields are proposed
o guide the polycube construction [26]. In [27], Nieser et al.
ompute a global parameterization of the volume on the basis of
frame field to construct hex-meshes. Theoretical conditions on
ingularities and the gradient frame field are derived for degener-
ted parameterization, and badly placed singularities can lead to
istortion. Based on spherical harmonics representation, Huang
2

et al. [28] generated a boundary-aligned smooth frame field by
minimizing an energy function, and Li et al. also proposed the
singularity-restricted field [29]. Though impressive results were
obtained from the frame field based approaches, further efforts
are still needed for practical use.

Mesh simplification. Mesh simplification generally reduces
he number of elements and maximizes the appearance of the
riginal mesh by performing local coarsening operations. Trian-
ular elements can be combined with the edge flipping operation
nd local MLS (moving least-squares) form of the minimum en-
rgy function [30]. This method was also applied to hierarchical
esh generation with iterative simplification. In quadrilateral
nd hex-mesh simplification, similar local operations were also
roposed [31,32]. Sheets and chords are extracted by the inherent
ual structure, and the local operation is simplified for the ob-
ect [8,9]. Recent progress in structure simplification has achieved
reat success in polycube simplification [33] and hex-mesh op-
imization [34]. In [35], an effective approach was proposed to
implify the surface meshes of arbitrary polygonal type to quad-
nly meshes based on the key-frame mapping on base domains,
nd in [33], the singularity misalignment problem was solved
irectly in the polycube space, and the corner optimization strat-
gy was introduced to produce coarser block structured surface
nd volumetric meshes. Moreover, the induced meshes are suited
or spline fitting. Topology control operations in hex-mesh sim-
lification can also be applied to adjusting low quality mesh
lements. In [34], an adjustment strategy for repairing the in-
erted elements was proposed by combining the basic mesh
diting operations with frame field optimization. Based on the
ingularity structure in the mesh, a base-complex block structure
s extracted in [9]. Then the simplification operation is performed
o collapse base complex sheets and chords while redistributing
he distortion based on a volumetric parameterization.

. Basic concepts and framework overview

In this section, we will introduce some basic concepts on
ex-mesh and the overview of the proposed framework.

.1. Base-complex

The proposed hex-mesh simplification can effectively reduce
he singularity structure while maintaining the specified number
f elements. We briefly introduce the definition of singularity
tructure, base-complex and two types of structure called base-
omplex sheet and base-complex chord. The valence of vertex,
dge and face is denoted as the number of its neighboring hex
lements. A vertex is said to be regular if its valence is 4 on
he boundary or 8 in the interior. Similar to the regular vertex,
n edge is regular when its valence is 2 on the boundary or
in the interior. Then a series of connected irregular edges
ith the same valence compose of a singular edge, and its two
nding vertices are called singular vertices, except the case of
losed singular edges. The singularity structure is composed of
hese singular edges and singular vertices. According to the above
efinitions, we can extract the singularity structure of a hex-
esh. Each singular edge with a valence of n can be extended to
segmented surfaces, and the valid manifold hex-mesh can be
ivided into cube-like components by these segmented surfaces
refer to [8] for more details). A segmented structure called base-
omplex can be extracted in this way. The base-complex of the
ex-mesh M is denoted as B = (BV , BE, BF , BC ), where BC is the
et of cube-like components (composed of hex elements), BV and
E are the set of 8 corners of each cube-like component and
he set of base-complex edges (a series of connected edges be-
ween two base-complex vertices) respectively, and BF contains
ase-complex faces of each component.
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Fig. 1. (a) The base-complex sheet (green elements with mesh lines) consists of the left surface FL , the right surface FR and the middle volume EM , with the edge
air (yellow edges) and the vertex pair (red dots) shown in (b). (c) The green elements form a base-complex chord, where FL and FR in (d) can be determined from
he main diagonal direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Algorithm 1 Framework of singularity structure simplification

Input: A hex-mesh M; target number of mesh elements, Nc ;
target simplification ratio of components R; user-specified
threshold of Hausdorff distance ratio, HR;

Output: Hex mesh with a simplified base-complex, Mout ;
1: Extract the base-complex structure B = (BV , BE, BF , BC ) from

M;
2: Extract all the base-complex sheets and chords satisfying

filtering criteria, then push them into two priority queues
Ssheet and Schord with length ks and kc respectively based on
the proposed weighted ranking approach. When the number
of mesh elements is less than Nc , go to Step 5;

3: Find the top-ranked base-complex sheet and min(⌊kc/ks⌋, 3)
base-complex chords to perform removing operation in Step
4, the order of removing follows the sequence in Ssheet and
Schord.;

4: Remove the sheet/chord by collapsing operation, then per-
form reparameterization with local regularization smoothing.
If a valid mapping parameterization is not found or the quality
metric is below the threshold, remove the next sheet/chord
until a successful operation is performed (If the candidates
selected in Step 3 are all invalid, the next candidate will
be found in Ssheet and Schord in order). If any candidates in
Ssheet and Schord can not be successfully removed, go to Step
5 directly ;

5: If the number of elements is smaller than Nc or the Hausdorff
distance ratio is larger than HR, perform adaptive refinement;
if the specified simplification ratio R is not satisfied, go back
to Step 1;

6: After finishing the simplification process, perform a global
optimization operation, return Mout .

Base-complex sheet and base-complex chord can be extracted
ased on the base-complex structure. Since the singularities are
ocated at its eight corners and three groups of four topologically
arallel base-complex edges, removing components can effec-
ively simplify singularity structure by collapsing base-complex
heets and chords. The base-complex sheet S consists of three
arts: the left surface FL (or the right surface FR) contains all base-

complex vertices, edges and faces in the boundary of the left (or
right) part, and the middle volume EM contains the base-complex
dges with two end nodes on FL and FR respectively. Topology
lements in FL and FR can form element groups. Base-complex
hord has a similar definition, in which two sides follow the main
iagonal direction. Fig. 1 shows the structure of base-complex
heet and base-complex chord.

.2. Framework overview

In this paper, we propose an improved singularity structure
implification method for hex-meshes while maintaining the
3

shape boundary and the target number of element. The proposed
framework consists of the following steps as shown in Algorithm
1:

tep 1. Specification of simplification parameters. In this step,
we will specify the target number of mesh elements Nc ,
target simplification ratio of components R and threshold
of Hausdorff distance ratio HR for an input hex-mesh M ,
in which R is denoted as

R = 1 −
#BC final

#BC init

in which #BC init and #BC final are the number of base-
complex components in the input hex-mesh and the out-
put hex-mesh respectively;

tep 2. Extraction of base-complex sheets/chords based on the
singularity structure of the input hex-mesh as described
in Section 3.1.

tep 3. Weighted ranking of base-complex sheets/chords by com-
bining the valence prediction function of local singularity
structure, shape quality metric of elements and the width
of base complex sheets/chords.

tep 4. Find the top-ranked base-complex sheets and base-
complex chords iteratively and perform collapsing op-
eration with reparameterization. This pipeline will be
terminated if the output hex-mesh satisfies the target
simplification ratio.

tep 5. Adaptive sheet refinement is performed to obtain a sim-
ilar number of hex-elements as the target number of
hex-elements. This step can improve the hex-element
uniformity and reduce the error between the input and
output hex-mesh geometry. To locally improve the uni-
formity and aspect ratio, we also propose a local regu-
larization optimization in the parameterization for sheet/
chord collapsing.

With the proposed method, the singularity structure com-
plexity of a hex-mesh decreases rapidly. Furthermore, a few
close-loops and entangled sheets can be commendably elimi-
nated, leading to a high simplification rate. In addition, two extra
ranking terms are adopted to maintain the element quality and
shape boundary. In the following sections, a detailed introduction
will be given for each step.

4. Coarsening operators on hex-meshes

In this section, we introduce two local coarsening operations
on hex-meshes: the base-complex sheet collapsing operation
and the base-complex chord collapsing operation, which are two
generalized concepts to reduce singularity structure complexity
of hex-meshes. The base-complex sheet collapsing operation is
mainly applied to change singularities globally, while the base-
complex chord collapsing operation is used locally, especially for
removing edge pairs with a valence of 3∼5. These two opera-
tions may introduce non-manifold and doublet configurations as
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hown in Fig. 2. Moreover, the collapsing operations may lead
o local higher complexity which should be prevented. Hence,
everal filtering criteria will be proposed to determine whether
here are problematic cases.

.1. Base-complex sheet collapsing operation

A base-complex sheet collapsing operation similar to [9] will
e adopted here. Both sides of a sheet can be found by compo-
ents, and then we remove the middle part of the base-complex
heet and preserve the side of FL or FR. Finally, parameterization
is employed to relocate these vertices within the δ-ring neigh-
borhood region (δ is set to be 4 as in [9]). Before sheet collapsing,
several filtering criteria are used to detect whether it should be
put into the priority queue. The vertex relocation problem after
a collapsing operation can be solved by an energy-minimizing
parameterization method [9]. The corresponding energy function
can be defined as follows:

min
V

E(V ) = ED(V ) + λtET (V ) + λbEB(V ),

n which V is the set of vertices, λt and λb are penalty coefficients,
D(V ) is the geometric distortion measurement of hexahedra,
T (V ) encourages two sides of a sheet to collapse into its dual
heet, EB(V ) is related to the deviation between the original posi-
ion and new position of vertices on boundary [9]. The definition
f ED(V ), ET (V ) and EB(V ) can be referred to Appendix.1 for details.
Valence prediction. When edge pairs in FL and FR are col-

apsed into a single edge, then the corresponding edge valence
ay be changed. Generally, the valence of an inner edge is greater

han 2, otherwise, the adjacent elements will be degenerated or
orm a doublet configuration (two hexahedra share two or more
aces as shown in Fig. 2), which is forbidden in our framework,
nd the valence of the created edge on surface is less than the
alences of edge pair is also forbidden, which will break the
opology continuity. For the edge pair of el and er in a non-self-
ntersection sheet, if the new edge is denoted as en, then the
alence of en can be computed as follows:

(en) =

{
v(el) + v(er ) − 2, flr is on boundary
v(el) + v(er ) − 4, flr is not on boundary (1)

here v(e) is the valence of a base-complex edge, and the base-
omplex face flr directly connects el and er .
Boundary shape. The feature vertices/lines are extracted in

he initialization stage as same as [9] (they are extracted by
ihedral angle thresholding method), and in order to preserve
harp features, the sheet and chord containing sharp feature
ertices are not allowed to be removed. Moreover, the base-
omplex sheet is not collapsed when the feature edges lie on
ase-complex edges. In the collapsing operation, we use a similar
ay for hex-mesh sheet collapsing. In the optimization step, local
arameterization [9] is adopted. The boundary shape error and
nterior distortion will be distributed to δ-ring neighboring ele-
ents by solving the energy minimization of geometric distortion
nd the quality of elements with the approach called scalable
ocally injective mapping (it is referred to as SLIM in the paper)
n [10].

.2. Base-complex chord collapsing operation

The base-complex chord collapsing operation is mainly used
o optimize bad singularity structure locally. It only has effect on
ne column of base-complex components. Different from chord
ollapsing in hex-mesh that merging four vertices per group
nto a new position, Fig. 2 shows the 3D case of chord collaps-
ng. We extract two pairs of opposite base-complex edges, and
4

erge them along the diagonal direction, the relocation method
f vertices after collapsing is same as base-complex sheet. The
ollapsing direction is denoted as the main diagonal direction
nd the orthogonal direction along boundary is referred as the
ub-diagonal direction.
Collapsing direction. The collapsing direction can be chosen

n two directions, the valences of base-complex edges in two
ides along the main diagonal direction may change. Here, we
nly consider the four groups of topology-parallel base-complex
dges on the chord surface following the direction of dual string.
e compute the predicting valence of these created base-complex

dges, and obtain the valence difference between the created
dge and the regular edge. We aim to remove edge pairs with
valence of 3∼5 and introduce high valence singularities as less
s possible. In this paper, we measure the difference between the
redicted valence and the regular valence by the following term

v(c) =

k∑
i=1

(
⏐⏐(v(eip1) − 1) − p(eip1)

⏐⏐ +
⏐⏐(v(eip2) − 1) − p(eip2)

⏐⏐
+

⏐⏐(v(eil) + v(eir ) − 2) − min(p(eil), p(e
i
r ))

⏐⏐), (2)

(c) = min(Dv1(c),Dv2(c)), p(e) =

{
2, e ∈ Esurface
4, e ∈ Einner

here eip1 and eip2 are the ith base-complex edges in the sub-
iagonal direction, eil and eir are the ith base-complex edges in the
ain diagonal direction as shown in Fig. 2, k is the number of con-

ained components of the base-complex chord c , Esurface and Einner
re the ith set of boundary edges and inner edges respectively. We
hoose the optimal collapsing direction by minimizing D(c), the
redicted valence of two optional directions are Dv1(c) and Dv2(c)

respectively. In our experiments, we implement an easy-to-detect
method in advance to improve efficiency, the chord collapsing
operation is not allowed when D(c)/3k > 0.9, or the four groups
of parallel edges following the direction of dual string contain
more than two singular edges. This kind of chord will not be
pushed to the priority queues.

Base-complex sheet collapsing can make significant impact
on mesh globally, but it is extremely difficult to remove self-
intersection sheets with complex tangles and close-loop configu-
rations without creating vertices with high valence. Base-complex
chord collapsing is used to eliminate the entangled regions, and
it contributes to improving the simplification ratio of sheets.

4.3. Local parameterization for uniformity improvement

After collapsing arbitrary sheets/chords, we use local parame-
trization based on SLIM framework [9,10] to relocate vertices
within the collapsing region, and reduce the distortion by ad-
justing the ideal shape for each hexahedron to satisfy the re-
quirement of high uniformity. The framework of SLIM uses the
local/global algorithm [36], and solves the distortion term glob-
ally while fixing the rotation as computed in the local step. In
3D case, the mapping from the original tetrahedral element to
a deformed shape in a local orthogonal frame can be denoted
as a Jacobian, and the deformation can be expressed indirectly
by a transformation from the tetrahedron with three orthogonal
edges to both shapes as shown in Fig. 3. The mapping between
the reference element tR to the original element tI is defined as
WI . Similarly, the mapping between the reference element tR and
the deformed element tD is defined as WD. Since WD and WI are
constant matrices for affine transformation, finally the Jacobian φ
of tI → tD can be denoted as

= WD
◦ (W I )−1. (3)

Our experiments show that adjusting the Jacobian of a trans-
formation to the target shape in a local operation can lead to
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Fig. 2. Left: Base-complex sheet collapsing operation and 2D degenerated cases; Right: Base-complex chord collapsing operation and 2D degenerated cases. The blue
base-complex edge el is contained in FL , the green base-complex edge er is contained in FR , the gray face linking a pair of el and er is flr , and the red components
ay change the edge valence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
i

n ideal mesh result after global simplification. In this paper,
e also propose a local optimization strategy to move vertices
ithin the collapsing region during parameterization. For edges

n the collapsing region, their length will be re-scaled while
aintaining the element quality. A simple Laplace smoothing is
erformed as a local operation. Since SLIM is used frequently
n collapsing and local refinement, and the number of elements
n parameterized region has large variations, for the purpose of
mproving efficiency of SLIM, the iterative form is adapted instead
f solving a large linear system.
Let M = (V , K ) be the mesh of the parameterized region, V

s the set of nodes, and K is the topology connectivity between
ertices in the parameterized region, including nodes {i} and
dges {i, j}. The discrete operator on M is defined as

Lv)i =

∑
j

ωij(vi − vj), (4)

n which ωij are the weights, and the iterative form can be defined
s

vk
i =

Ni∑
j=1

wijv
k−1
j /Ni, (ωij = 1, vi, vj ∈ Vin, k = 1, 2, 3...)

(5)

and the iteration is terminated when the threshold of variance ϵ
is reached,[∑

i(v
k
i − vk−1

i )2
]1/2[∑

i(v
k−1
i − vk−2

i )2
]1/2 < ϵ, (k > 2) (6)

where i and j are the vertex labels, k is the number of iterations, Ni
is the number of neighboring vertices of the jth vertex, Vin is the
et of inner vertices in parameterized region. Uniform weighting
n the smoothing operation often introduces elements with low
uality. In order to improve the orthogonality, the weighting
cheme proposed in [37] is used to optimize the mesh locally.
fter volumetric smoothing, the regularized length of edges in
ach element is computed. A similar regularization process de-
cribed in [9] is adapted, then we perform local parameterization
ith SLIM which uses the regularized results as the ideal mapping
hape for each element.
5

5. Weighted ranking for structure simplification

Many hex-mesh generation approaches such as octree-based
and polycube methods often yield unnecessary singularities with
a large number of small components in base-complex. The num-
ber of singularities can be progressively decreased by performing
collapsing operations based on components, and the simplified
singularity structure is obviously different with various collapsing
sequences. After comparison with experimental data, we find that
the collapsing order of base-complex sheets and chords has a
significant effect on the final simplification results. In this paper,
a weighted ranking sequence is introduced, which can choose
the optimal candidate to be removed iteratively. The ranking
sequence aims to remove singularities within fewer iterative
steps. We formulate this problem as an energy minimization
framework, and introduce a valence term related to the valence
difference caused by collapsing to achieve a rapid removal of
singularities. On the other hand, some constraints are included,
for example, the resulting elements should not be inverted and
the max Hausdorff distance ratio HR should be kept. Therefore,
the sheet/chord removal leading to less mesh distortion will have
the collapsing priority. From this motivation, we also introduce
two extra ranking terms, called the distortion term and the width
term.

5.1. Ranking method of base-complex sheet

In the base-complex sheet ranking sequence, we combine the
valence term Esv , the distortion term Esq and the width term Esd as
the normalized form [38]. The ranking function which can greatly
improve the simplification rate of base-complex components is
defined as

Es(s) = ksq(1 − e−Esq(s)) + ksd(1 − e−Esd(s)) + ksv(1 − e−Esv (s)) (7)

in which ksv , ksd and ksd are weights of different ranking terms. In
our implementation, the width term Esd(s) has the biggest weight,
.e., ksv = 0.4, ksd = 0.6 and ksq = 0.2. We also restrict the
value of each term within (0, 2) to reduce the impact of the actual
numerical size. In Fig. 4, we provide a comparison example of the
first collapsing operation for different ranking terms Esq, Esd, Esv ,

Es and the thickness term Ethickness.
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Fig. 3. (a) The mapping from a reference tetrahedron (left) to the origin shape (middle) and deformed shape (right). (b) The mapping of five tetrahedra in a hex
element (left) to the element with ideal shape (right).
Fig. 4. A comparison example of the first candidate for different ranking term Esq , Esd , Esv , Es and the thickness term Ethickness . The values of different ranking term
re also provided.
Valence term. The proposed weighted ranking algorithm for
ase-complex sheet collapsing mainly focuses on the valence
ifference of singular edges during the simplification. As shown
n [9], the singularities of a hex-mesh can be progressively simpli-
ied within a finite number of iterations. In this paper, we propose
n indirect energy function of valence difference between the cur-
ent mesh and the mesh without singularities. For the mesh with
ingular base-complex edges set S = {e | e ∈ BE | e is singular},
he energy function is defined as

(M) =

∑
e∈S

|v(e) − p(e)| . (8)

Since the simplification process is based on two kinds of
collapsing operations, and the singular edges are only located
in FL, FR and EM , then the energy function E(M) has a local
representation on the base-complex sheet when it is collapsed

E(M) =

n∑
i=0

(−
∑

eM∈EiM

|v(eM ) − p(eM )|

+ 1/v(elr )
∑

elr∈F iL,F
i
R

⏐⏐v(e′

lr ) − p(elr )
⏐⏐) (9)

where i is the index of the base-complex sheet to be collapsed, E i
M

is the interior part of ith base-complex sheet, F i
L and F i

R are the left
surface and the right surface of the ith base-complex sheet, eM is
the base-complex edge in E i

M of the base-complex sheet, elr is the
base-complex edge to be collapsed, e′

lr is the created new base-
complex edge, and n is the number of the base-complex sheets
6

which are allowed to be collapsed. In order to prevent double-
counting of difference (if the valence of the interior singular edge
is k, k > 2, this singular edge is shared with k sheets), the value
of coefficient is selected as the reciprocal of valence.

According to the energy function E(M), some analysis on the
structure of base-complex sheets can be performed. The base-
complex sheet has an interesting property: all the interior edges
which are topology parallel to the dual face of sheet are regular,
the singular edges only exist in EM or FL and FR, and the collapsing
operation will introduce edges with a different valence. Hence,
the influence of collapsing operation can be predicted.

During a collapsing operation, the edges in the interior part
will be eliminated. For a singular edge Lsi, if the whole edge is
contained in EM , then the value of E(M) will be reduced. This type
of elimination is equivalent to creating new regular edges while
collapsing. Moreover, the singularity structure will not change
when the singular edge Lsi runs though the sheet (Lsi is part of a
singular edge). Such base-complex edges will not be considered
in our valence calculation. Two types of Lsi are shown in Fig. 5(a).

Since a singular edge is completely contained in FL or FR of
one or more base-complex sheets, the collapsing operation may
remove the singular edges in both sides directly. Concerning
the valence variation of edges in an edge pair of FL and FR, the
following three cases are shown in Fig. 5(b) respectively will
be considered: (c1) all the edges in FL and FR are regular; (c2)
edges in only one side of FL or FR are singular; and (c3) both
edges in FL and FR are singular. In case of (c1), the valence of
the created edge will be regular; in case of (c2), the created edge
will have the same valence as an irregular edge, and it does
not affect the surrounding singularity configurations; in case of
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Fig. 5. Distribution of singularities in EM , FL and FR . The lines marked in green and black are regular edges, and all the other edges are singular edges. Two types
of middle edges in EM are shown in (a), and three types of edge pairs on both sides are shown in (b). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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(c3), the valence of created edges will change, which means that
the singularities of the rest part of hex-mesh will be changed.
Moreover, there are several configurations in case of (c3), the
created edges might have different valences compared with base-
complex edge pairs in FL and FR. The singularity structure will
be simplified when the valence difference between irregular and
regular edges decreases.

In order to improve the convergence rate of E(M), we greed-
ily select the base-complex sheets which can effectively reduce
E(M) locally and introduce edges with higher valence as few as
possible. The valence term is defined as

Esv = [DM − β(
∑

i

T (Kmax
i − K new

i ) +

∑
i

Km
i )]/DM, (10)

in which⎧⎪⎪⎨⎪⎪⎩
K new
i =

⏐⏐v(enewi ) − p(enewi )
⏐⏐ ,

Km
i =

⏐⏐v(emi ) − p(emi )
⏐⏐ ,

Kmax
i = max

(⏐⏐v(eli) − q(eli)
⏐⏐ , ⏐⏐v(eri ) − q(eri )

⏐⏐) ,

T (k) =

{ 0.5k, k < 0
1.0, k = 0
k, k > 0

where i is the index of edge pairs, eli and eri form an edge pair, and
they belong to FL and FR respectively, emi is the singular edge in
EM , DM is a large value to control the scale of the term Esv , which
is set as the maximum number of EM in the hex-mesh. In our
experiments, β is set to be 1.67. In order to minimize the energy
function, the convergence rate will be faster when the value of
β(

∑n
i=0 T (K

max
i −K new

i )+
∑

i K
m
i ) is much larger. Here T (k) is used

to adjust the difference of valence, the speed of simplification will
be slower and the simplification rate will be reduced while strict
restriction is applied, hence the coefficient is set to be 0.5k when
k < 0. For the difference as k = 0, it corresponds to the case
that merging an inner singular edge and a boundary singular edge
with the same valence, this kind of merging actually removes a
singular edge, and the value of T (k) for k = 0 can be maintained
less than the value for k > 0, hence we set the corresponding
coefficient as 1.

Distortion term. The distortion term Esq is an optional term
for hex-mesh with complex singularity structure. The sheet pass-
ing through the regions with dense singularities often contains
patches with serious distortion, hence removing these sheets can
greatly improve the average value of Jacobians, and lead to a
significant complexity reduction in geometric processing. Here
we use the shape metric fshape of hexahedron [39] to measure
the sheet distortion. fshape = 1 if the hexahedron is a cube with
parallel faces, and fshape = 0 if the hexahedron is degenerated.
fshape is a scale-invariant, the specific form adapted is given in
Appendix A (refer to [39] for the specific definition of f ).
shape

7

In this paper, we obtain the second derivative of fshape in each
element for three parametric directions, and select the maximum
difference as the differential value of the hexahedron. From the
experiments, we find that serious distortion happens when the
second derivative is up to 0.55 as illustrated in Fig. 6. In this
term, we use the second derivative of fshape to identify the regions
with big distortion. Since local parameterization can improve
the element quality, removing regions with serious distortion in
advance will increase the average value of Jacobians locally. The
value of

∑n
i=1 fi has a large variation in different base-complex

sheets, in order to obtain a reasonably weighted sum with the
other terms, the distortion term needs to be normalized. ln(x +

e)−1 is used to restrict the value in [0, 1). Esq is defined as

Esq(s) = ln(
n∑

i=1

fi + e)−1, (11)

i =

{
0, d(i) < 0.55

d(i), d(i) ≥ 0.55
, d(i) = max

0≤j≤2

⏐⏐⏐f jshape(i + 1) + f jshape(i − 1) − 2f jshape(i)
⏐⏐⏐

n which f jshape(i) is the value of fshape of the ith element in the jth
arametric direction. The definition of fshape [39] can be referred
o Appendix.2 for details.

Width term. The width term Esd in the weighted ranking
unction measures the width of sheet. If the sheet is too wide, the
ollapsing operation will lead to big distortion on the boundary
eometry and affect the adjacent sheets seriously. Hence it is
easonable to remove sheets with thin shape. For this term, we
se the width of base-complex edges in EM , which is more accu-
ate than the length between the vertex pair on surface. Based
n the observation, some base-complex sheets with locally thin
hape will be difficult to identify in the original method. In our
ramework, Esd is defined by combining the average width and
he minimum length, and the cube root form is used to reduce
he effect of actual values. Esd is defined as

Esd =

[(
αa min

(vl,vr )∈PV
d(vl, vr ) + αbd̄

)
/L̄

]1/3

(12)

n which L̄ is the average length of the base-complex edges,
(vl, vr ) is the length of the base-complex edge connecting vl and
r , d̄ is the average length of the base-complex edges in EM of this
ase-complex sheet, and we choose αa = 0.7 and αb = 0.3 in our
xperiments.

.2. Ranking approach for base-complex chord

The base-complex chord collapsing operation only influences
ne column of components, which is used to adjust regions with
any edge pairs having a valence of 3∼5. From our observation,
dge pair with a valence of 3∼5 often exists in the entangled
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Fig. 6. Color mapping of the second derivative of fshape for four base-complex sheets. The second derivative of fshape is larger than 0.55 for regions with more serious
twist.
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Fig. 7. Two base-complex chords (red) in a toy mesh. The first chord is located
n a patch near the feature edges (top right), and the second chord is located
n the flat region (bottom right). The elimination of the first chord will lead to
significant boundary geometry error. The proposed geometric error term can
revent this kind of collapsing operation effectively.

heets, which is difficult to eliminate. In order to untangle them,
e propose a priority metric Ec(c). Ec(c) does not contain the
istortion term, because the elimination of base-complex chords
nly has impact on local regions. The formula of Ec(c) is defined
s

c(c) = kcq(1 − e−Ecq(c)) + kcv(1 − e−Ecv (c)) (13)

in which Ecv is the valence term and Ecq is the geometry error
term, kcq and kcv are set to be 0.6 and 0.4 respectively in our
experiments.

Geometry error term. The chord collapsing operation often
leads to simplification results with inverted elements. We pro-
pose a simple strategy for priority processing on chords with
narrow shape and smaller length. The aspect ratio of a chord is
defined as the ratio of the average length of the main diagonal
to the sub-diagonal, which is applied to the measurement of
thickness. To reduce the collapsing effect on boundary geometry,
Gaussian curvature [40] is used to measure the shape error locally
after collapsing. In our implementation, we use the variance of
curvature to find patches with significant curvature changes. A
patch may contain sharp features when its variance of curvature
is large as shown in Fig. 7. The geometry error term Ecq(c) is
defined as

Ecq(c) =
L1(c)
l̄L2(c)

√∑Nv

i=1(Qgi − Q̄g )2

Nv − 1
(14)

n which L1, L2 are the average length of the main diagonal and
the sub-diagonal respectively, l̄ is the average length of elements,
Qgi is the Gaussian curvature of a vertex on two sides (two sides of
the chord are the set of faces in the boundary, and their normals
are parallel to the direction of the dual string.) and Q̄g is the
average Gaussian curvature of vertices on two sides.

Valence error term. The valence error term measures the
valence error of four topological parallel edges, and uses the same
form as the valence term for base-complex sheet. To eliminate
entangled sheets and simplify the local complexity, three topo-
logical parallel edges created by collapsing should be all regular.
8

The ideal situation is that the valence error tends to be zero. In
our framework, the valence error is set as one of the optimiza-
tion objectives, and the valance error of base-complex chord in
the collapsing operation is provided in Section 4 as D(c), and
1/Nb(c) can be used as the normalization coefficient naturally.
The valence error term Ecv is defined as

Ecv(c) = D(c)/3Nb(c), (15)

n which Nb(c) is the number of base-complex components in
ase-complex chord c.

. Sheet refinement

Sheet refinement is performed during the simplification
ipeline in order to maintain the input mesh geometry with the
ser-defined target number of elements. A similar method in [9]
an be used to split one element on a specific sheet into two
lements along the direction perpendicular to the parallel edges.
n this paper, we propose an adaptive sheet refinement method
o improve the accuracy of boundary geometry approximation.

In our implementation, we find that choosing a sheet with
he maximum width to refine is not a robust strategy, where
ome boundary patches with large boundary approximation er-
or may not be refined. In our method, we firstly obtain the
verage length of all edges along the collapsing direction, and
hen compute the average Hausdorff distance ratio HR(s) by the
eans of point sampling for each sheet in the priority queue.
ccording to the descending order of HR(s), the first four base-
omplex sheets will be selected in advance, and the average
ength in the collapsing direction is denoted as L̄b. We choose one
rom the first four sheets to perform refinement if Lb > 1.2L̄;
therwise, we refine the candidate with the maximum L̄b and
eeting the above condition. During simplification, collapsing
perations may fail frequently due to the element quality and
hape error constrains. In order to relax these constrains, we also
erform the refinement process when a sheet collapsing fails. The
ase-complex sheets sharing FL and FR with the removed sheet
re selected as candidates. The refinement process narrows the
arameterized region of failed sheets, such that it reduces the
hape error by introducing more elements, and the sheet may
e collapsed in the next iteration. In addition, another criterion
s introduced to control the number of elements strictly. For the
nput hex-mesh with C0 elements, if the target number is Cn
efore performing refinement, we check whether the number
f hexahedra contained in a sheet is less than 1.5 × (C0 − Cn).
his criterion can effectively prevent some sheets being refined
epeatedly.

. Experimental results

The proposed algorithm has been tested on a four-core i7
rocessor with 8 GB memory. The maximal number of iterations
f the SLIM solver is set as 5, and HR = 1% (the threshold of the
ausdorff distance ratio defined by the user, the simplification
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Fig. 8. Simplification results of the fertility mesh with different complexity reductions, including our weighted ranking approach and the thickness ranking method [9]
as shown in (a). Our ranking method can effectively decrease the iteration steps (NI ) and improve the simplification results around regions with dense singularities
s shown in the singular structure highlighted with red circles. The top 4 candidates in each sequence are also shown when the simplification rates (SR) achieve
%, 60% and 80%. The simplification results are shown in (b), and the statistics of iterations are shown in (c). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
ate becomes larger when HR increases) and r|H| = 1.0 (the
ate of the target number over the number of hex-elements in
he input mesh) for all experiments. We also report the number
f hex elements (#H), the number of base-complex components
#BC) and the minimal, average and standard variance value of
caled Jacobians (MSJ/ASJ/Std). The boundary geometry error is
easured by the Hausdorff distance ratio (HR). We have tested

he proposed method on 165 hex-mesh models, the average
implification rate for these meshes is 88%, which is higher than
he approaches in [8] and [9].

Weighted ranking candidates. Simplification results of the
hickness ranking method [9] and the proposed weighted ranking
ethod will be compared. In Fig. 8(a), we show top 4 candidates

n the fertility mesh when the simplification rates achieve 0%, 60%
nd 80% respectively. In the initial priority queue, our weighted
anking term can effectively pick up base-complex sheets with
erious distortion and close-loop configurations. Moreover, the
umber of singularities can also be reduced faster. For a sim-
lification rate of 60%, the thickness ranking method needs 65
terations, and our proposed method only needs 28 iterations.
or the comparison results as shown in Fig. 8(a), when the sim-
lification rates reach 60% and 80%, our ranking algorithm can
referentially remove sheets to promote singular edge elimina-
ion, and the regions with dense singularities (marked with red
ircles) have been greatly improved. Compared with the sim-
lification results by the thickness ranking, regions with dense
ingular edges can be successfully eliminated by our method,
nd self-intersected sheets can be removed as well at the same
ime. In the simplification process, the distortion term is used to
liminate elements with poor shape quality, and to spread the
9

distortion to neighboring elements while gradually improving the
value of MSJ/ASJ in the hex-mesh. ASJ with the proposed method
is better than thickness ranking during these three stages, 12.66%
ASJ improvement over the input and 2.20% ASJ improvements
over the simplification result by [9] can be achieved. The average
running time of the entire dataset is 71 minutes, which is slightly
slower than [9].

There are quite few candidates in the simplification queue
when the reduction ratio reaches 90%, and the number of candi-
dates is also limited by geometrical constrains, which will cause
more incorrect collapsing and need more time consumption. The
pipeline of [9] uses a simple strategy by skipping a set num-
ber of candidates to improve the speed, but it may cause early
termination.

Ranking terms. In this paper, several ranking terms for
collapsing base-complex sheets have been proposed. In Fig. 9,
simplification results by two terms for base-complex sheets are
compared. As shown in the second row of Fig. 9, the proposed
valence term has some advantages to improve the simplification
ratio in fewer iterative steps, However, if we only use the valence
term, more failed collapsing operations will be introduced to
reach the threshold of the Hausdorff distance ratio, and it also
leads to a simplified mesh with a lower value of MSJ. The result
by using the valence term is shown in the last column in Fig. 9.
The width term plays an assistance role for the valence term to
avoid serious shape error, the proposed new width term can lead
to a more uniform distribution of elements when it is compared
with [9] as shown in the third column of Fig. 9. The MSJ value
is improved significantly compared with the result of [9], and
the original width ranking approach may result in an unexpected
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Fig. 9. Simplification results on an isidore horse hex-mesh generated by the octree-based method. The hex-mesh and base-complex structure of input, result of the
method in [9], result of the method based on the new width term and result of the approach based on the valence term are shown from left to right respectively.
Fig. 10. Simplification results of toy and lock. From left to right, the input meshes, results of thickness ranking [9] and our weighted ranking results are shown
respectively. The color mapping shows the value of VDR, which illustrates that our weighted ranking method can achieve a significant improvement on uniformity.
Fig. 11. Simplification result on bottle mesh generated by the octree-based method. The scaled Jacobian of the input mesh, the simplified result and elements with
scaled Jacobian less than 0.64 are shown from left to right, respectively. As shown in the enlarged region, there are a few poorly shaped elements which are mainly
around singular edges with high valence.
exception since the thick sheet with narrow localized regions
cannot be removed.

Element uniformity. In the proposed approach, local param-
terization is used to improve the uniformity of hex-mesh ele-
ents. We also propose a measurement of element uniformity
alled the volume deviation ratio (VDR), which is defined as the
tandard volume deviation of neighboring elements divided by
he average element volume. The range of VDR is (0, ∞], and
he uniformity is better while the value is closer to 0 (for all
lements with the same volume, VDR=0). Compared with the
hickness ranking method [9], our simplification results have
0.17% and 7.04% improvement in the average volume deviation
atio (AVDR) and the max volume deviation ratio (MVDR). In
ur experiments, the average AVDR and MVDR of meshes from
olycube-base methods are 0.19 and 2.78 respectively, and the
verage AVDR/MVDR are 0.25/2.54 in the simplification results
10
of octree-base meshes. AVDR and MVDR gain 35.56% and 10.86%
improvement compared with the thickness ranking approach for
octree-based meshes. Two comparison examples are shown in
Fig. 10 with the VDR colormap.

In the proposed framework, hex-elements with low quality
mainly distribute near the edges with high valence, which can
be promoted by the optimization approach introduced in [34]
and [43]. In Fig. 11, the Jacobian quality colormap of a bottle mesh
is shown, and we can observe that elements with Jacobian lower
than 0.64 are neighboring to the edges with high valence.

Simplification of hex-meshes generated by polycube-based
methods. For hex-meshes generated by polycube-based meth-
ods [21,26,41], the singularity structures are completely dis-
tributed on the boundary surface, and the distribution of singular
edges is sparse. Hence, the valence term has a small contribution,
and the weights ksd and ksv are set as ksd = 0.6 and ksv = 0.4



G. Xu, R. Ling, Y.J. Zhang et al. Computer-Aided Design 130 (2021) 102946

a
M
6
m

O
s
l
I
n
d
s
c
h

Fig. 12. Simplification results on meshes generated by the polycube-based method, the gargoyle mesh (left) is generated by [41], and the casting mesh (right) is
generated by [42]. From top to bottom, the input hex-mesh, simplification results of thickness ranking [9] and our weighted ranking results are presented. For each
example, we show the information of scaled Jacobian, singularity structure, and the base-complex components with different colors.
Table 1
Statistics of meshes generated by octree-based methods.
Model Input hex mesh Simplified result

#H #BC MSJ ASJ Std #H #BC MSJ ASJ Std HR (%) R (%) Time (m)

Bimba (Fig. 13) 25,347 25,347 0.06 0.80 0.162 23,840 171 0.43 0.97 0.051 0.96 99.33 69.50
Bottle (Fig. 13) 35,886 35,860 0.13 0.79 0.167 34,484 121 0.37 0.98 0.046 0.93 99.66 104.01
Deckle (Fig. 13) 53,658 53,116 0.03 0.84 0.187 48,674 902 0.48 0.96 0.072 0.99 98.30 452.90
Fertility (Fig. 8) 21,370 20,840 0.10 0.84 0.150 21,016 310 0.32 0.94 0.079 0.87 98.51 153.83
Toy1 (Fig. 7) 18947 18883 0.12 0.81 0.161 18656 323 0.45 0.96 0.059 0.95 98.29 38.20
Toy2 (Fig. 10) 14,288 14,288 0.15 0.81 0.158 13,476 173 0.43 0.96 0.058 0.92 98.79 30.79
Lock (Fig. 10) 28,753 25,720 0.01 0.80 0.244 26,555 2058 0.33 0.94 0.109 0.97 92.00 369.07
0

in our experiments. As shown in Fig. 12 and Table 2, the pro-
posed approach can achieve a higher base-complex component
reduction with similar element quality as the results in [9]. In
our experiments, the average scaled Jacobian is improved to 0.96,
and the meshes obtain 30.17%/7.04% improvement for AVDR
nd MVDR compared with the thickness ranking approach [9].
oreover, the average component reduction ratio is promoted to
3.81%, and some results are very similar with the structure of
eshes generated by [33].
Simplification of hex-meshes from octree-based methods.

ctree-based hex-meshing approaches often generate a complex
tructure with dense local singularities. In [9], the greedy col-
apsing by thickness ranking was utilized under a set of filters.
t cannot find a coarser structure in the hex-mesh with a large
umber of interior singularities, since the thickness ranking term
oes not have a direct effect on singularity removal. The corre-
ponding simplification [9] has a slow convergence rate, and it
an achieve an average simplification rate around 86% for the
ex-mesh database. The proposed weighted ranking method can
11
obtain a much simpler singularity structure with much fewer
base-complex components. The average simplification rate in the
proposed framework can increase 89.24% with respect to the
initial number of base-complex components in the input hex-
mesh, and gain 3.24% improvement compared with [9]. Moreover,
in the proposed framework, adaptive refinement is performed
during the simplification process, which can effectively maintain
the quality of boundary geometry and promote the simplifica-
tion process under the constraint of HR. Our ASJ/MSJ achieves
.91/0.28, and gain 11.57% ASJ improvements over the thickness

ranking method. Some simplification results are shown in Fig. 13,
and statistics are presented in Table 1. Comparison examples
with [9] are also presented in Fig. 14 and Table 2.

8. Conclusion and future work

In this paper, an improved singularity structure simplification
method is proposed for hex-meshes based on a weighted rank-
ing function, which is a combination of the valence prediction
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Fig. 13. Simplification results on meshes generated by octree-based methods, including the bimbia, deckel and bottle models. From left to right, the input mesh,
singularity structure (the singular edges with a valence of 5 marked in green, and a valence of 3 marked in red, the valence of edges with other colors is greater
than 5), base-complex of original meshes (a) and simplified results (b). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Table 2
Comparison with [9]. #H is the number of hex-elements, #BC is the number of base-complex components, Std is the standard deviation of the scaled Jacobians, HR
tands for the Hausdorff distance, and R is the simplification rate.
Model #H #BC MSJ ASJ Std AVDR MVDR HR (%) R (%) Time (m)

Gargoyle (Fig. 12)
Input 25,669 7,563 0.20 0.91 0.907 0.11 0.64
Thickness ranking 22,524 805 0.14 0.96 0.068 0.30 3.52 0.98 89.36 30.67
Weighted ranking 25,034 451 0.33 0.96 0.068 0.19 1.79 0.91 92.75 51.52

Casting (Fig. 12)
Input 21,167 2,805 0.20 0.85 0.016 0.05 1.29
Thickness ranking 15,123 1,562 0.11 0.92 0.012 0.10 2.74 0.83 44.31 7.53
Weighted ranking 18,522 595 0.34 0.93 0.082 0.26 1.74 0.94 78.79 30.68

Rocker (Fig. 14)
Input 16,608 16,487 0.11 0.86 0.139 0.18 2.69
Thickness ranking 10,278 636 0.44 0.93 0.081 0.38 1.77 0.99 96.14 32.25
Weighted ranking 14,996 367 0.55 0.95 0.070 0.24 2.25 0.88 97.77 52.42

Pig (Fig. 14)
Input 13,987 13,987 0.02 0.79 0.168 0.46 8.02
Thickness ranking 10,704 2,305 0.23 0.92 0.102 0.38 3.89 0.99 83.52 31.24
Weighted ranking 11,144 880 0.39 0.94 0.082 0.24 1.49 0.98 93.71 33.01

Bird (Fig. 14)
Input 4,247 3,640 0.03 0.82 0.159 0.18 0.51
Thickness ranking 2,868 580 0.24 0.90 0.117 0.36 2.43 1.00 84.07 14.57
Weighted ranking 4,336 312 0.34 0.92 0.102 0.21 1.23 0.92 91.43 10.85

Buste (Fig. 14)
Input 19,075 18,355 0.13 0.85 0.151 0.28 3.20
Thickness ranking 17,680 691 0.44 0.95 0.070 0.33 4.36 0.98 96.24 113.67
Weighted ranking 17,324 221 0.53 0.97 0.055 0.22 1.62 0.90 98.80 38.31
function of local singularity structure, shape quality metric of
elements and the width of base-complex sheets/chords. Local
optimization and adaptive sheet refinement are also proposed to
improve the element quality of simplified hex-mesh. Compared
with the thickness ranking method, simpler singularity structure
with fewer base-complex components can be achieved while
achieving better mesh quality and Hausdorff distance ratio. The
proposed approach has a few limitations, for examples, sharp
features cannot be preserved very well on the boundary, and
the boundary approximation could be improved for models with
high genus. In the future, we can also apply the proposed hex-
mesh simplification method to volume parameterization prob-
lems [44–46], which is a bottleneck in isogeometric analysis.
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Appendix A

Energy minimizing equation

The three terms ED(V ), ET (V ) and EB(V ) in E(V ) are denoted as
ollows:
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s
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n
t

Fig. 14. For each model, from top to bottom: the input octree-based hex-mesh, simplification results of [9] and our results. From left to right: the input mesh,
ingularity structure, and base-complex. We show the scaled Jacobian, singularity structure, and base-complex components with different colors.
f

S

a

D(V ) =

∑
h∈H

∑
t∈h

Mt (∥Jt∥2
F +

J−1
t

2
F ),

where H is the parameterization region, h is an element in H , and
t is one of the eight tetrahedra in h (each tetrahedron is related
with a corner of h), Jt is the Jacobian of the transformation from
the original shape to the ideal shape of t .

Et (V ) =

K∑
i=1

Ki∑
j=1

vi,j − v̄i
2

,

where K is the number of groups of collapsing vertices, Ki is the
umber of vertices in a group, vi,j is the jth vertex in the ith group,
he vertices in the ith group will be collapsed to the new position
v̄i, and v̄i is located in the dual surface sheet.

EB(V ) =

∑
v∈C

∥v − v̄∥
2
+

∑
v∈L

v − v̄ − ald⃗l
2

+

∑
v∈S

n⃗(v − v⃗)
2

,

where C , L, and S are the set of corner vertices, feature line
vertices, and regular vertices respectively, vertex v is located on
13
the boundary, and v̄ is the closet surface position for v, d⃗l is the
eature line tangent at v̄, n⃗ is the normal of v̄.

hape metric

A hexahedral element has eight nodes, the kth node can form
Jacobian matrix Ak, k = 0, 1, . . . , 7, and αk = det(Ak) is the

local tetrahedron volume associated with the kth node. Ak has the
following form:

Ak = (−1)k
[xk+1 − xk xk+2 − xk xk+3 − xk
yk+1 − yk yk+2 − yk yk+3 − yk
zk+1 − zk zk+2 − zk zk+3 − zk

]
,

in which xk+i, yk+i, zk+i, i = 1, 2, 3 are the coordinates of the kth
node’s three neighboring nodes. We can construct a metric tensor
AT
kAk in the form of 3 × 3 symmetric matrix, and each matrix

contains six different elements. The λk
ij, i, j = 1, 2, 3, is the ijth

element of the kth metric tensor. The shape quality metric for a
hexahedron with a cubical reference element is

fshape =
24∑7 k k k 2/3 .
k=0(λ11 + λ22 + λ33)/(αk )
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his metric depends on both element angle and length ratio,
nd can measure the shape distortion of a hexahedron. fshape has
he property of scale-invariance, the hexahedron is a cube when
shape = 1, and the hexahedron is degenerated when fshape = 0.
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