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In this paper, we propose an improved singularity structure simplification method for hexahedral
(hex) meshes using a weighted ranking approach. In previous work, the selection of to-be-collapsed
base complex sheets/chords is only based on their thickness, which will introduce a few closed-loops
and cause an early termination of simplification and a slow convergence rate. In this paper, a new
weighted ranking function is proposed by combining the valence prediction function of local singularity
structure, shape quality metric of elements and the width of base complex sheets/chords together.
Adaptive refinement and local optimization are also introduced to improve the uniformity and aspect
ratio of mesh elements. Compared to thickness ranking methods, our weighted ranking approach
can yield a simpler singularity structure with fewer base-complex components, while achieving
comparable Hausdorff distance ratio and better mesh quality. Comparisons on a hex-mesh dataset
are performed to demonstrate the effectiveness of the proposed method.
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1. Introduction

In recent years, the application of hexahedral (hex) meshes in
finite element and isogeometric analysis has become increasingly
widespread, because of its good numerical performance, small
storage space requirements, and natural advantage of being able
to construct tensor-product splines [1,2]. However, hex-mesh
generation is not yet mature, and it cannot be guaranteed that
a good quality initial mesh can be generated in all cases. For
complex shapes and structural models, the octree-based mesh
generation method was proposed [3-5]. This efficient method
can ensure a topologically valid and well-formed meshing result.
However, it generates a large number of cells and too many
singularities. In some scenarios, we do not need a dense mesh and
complicated interior structures. Meshes with simple structure
and fewer singularities are more conducive to accelerating com-
putational and convergence speed [6]. Therefore, it is very impor-
tant to propose an effective singularity structure simplification
method for hex-meshes.

Some research work has contributed to this topic in the past
10 years. In [7], an adaptive hex-mesh localization method was
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proposed. Topological operations such as collapsing and pillowing
are used to process the locality, and localized roughening is
maintained while maintaining topological connectivity and shape
of the input mesh, which provides a basic idea of hex-mesh
coarsening. In [8], the mesh structure is simplified according
to the reparameterization requirements, and singularity is effec-
tively reduced while maintaining the number of mesh elements.
Template matching is used to split patches and eliminate the
leading blocks. However, its implementation is very limited and
not robust. It cannot simplify self-interleaved and closed-loops,
resulting in poor results on input meshes obtained from octree-
based methods. In [9], a robust hex-mesh structure simplification
method was proposed. It is possible that a feasible solution with
a simpler and coarser structure exists, but the algorithm might
fail to find it. Especially, the ranking method for the selection of
to-be-collapsed base complex sheets/chords is only based on the
thickness, and it cannot guarantee to remove most of the singular
structures. It will also introduce a few closed-loops and terminate
the simplification process in advance. For an initial hex-mesh
with many singular vertices, a proper priority ranking algorithm
is needed to guide the simplification of the singularity structure.
Moreover, a local parameterization is also needed to improve the
mesh quality and repair topology structure after simplification.
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In this paper, we propose an improved singularity structure sim-
plification method of hex-meshes. The main contribution can be
summarized as follows:

e A new weighted ranking approach for singularity struc-
ture simplification is proposed by combining the valence
prediction function of local singularity structure, shape qual-
ity metric of elements and the width of base complex
sheets/chords.

e A local optimization for SLIM [10] is proposed to improve
the uniformity of hex-elements while maintaining the ele-
ment quality;

e An adaptive sheet refinement method is proposed to im-
prove the accuracy of boundary geometry approximation
while maintaining similar number of hex-elements.

Based on these improvements, the proposed weighted ranking
method can achieve a smaller number of singularities with com-
parable Hausdorff distance ratio, effectively remove the kinks in
the hex-mesh.

The remainder of the paper is structured as follows. A re-
view of related hex-mesh generation and mesh simplification
is presented in Section 2. Some basic concepts and framework
overview are described in Section 3. Section 4 presents the sheet
and chord collapsing operation of base-complex. The proposed
weighted ranking approach is described in Section 5. Adaptive
sheet refinement is presented in Section 6. In Section 7, the ex-
perimental results are illustrated. Finally, the paper is concluded
and future work is outlined in Section 8.

2. Related work

In this section, some related work on hex-mesh generation and
simplification will be presented.

Hexahedral mesh generation. Hex mesh has been widely
studied for decades. However, an automatic method that can
generate high quality hex-meshes for any complex geometry is
still unavailable because of the strong topological constraints [11],
i.e., the dual chord and the dual sheet. Some methods were
devised for specific types of geometries. For example, the map-
ping method is preferable for mappable geometries, while the
sweeping method [12] is often used for swept volumes. By com-
bining with domain partition, they can be applied to complex
geometries [12-14]. Based on the idea of paving, several geomet-
ric and topological approaches have been proposed for all-hex
meshing. Plastering [15] and H-Morph [16] generate layers of
hex elements in geometric ways, whereas the whisker weav-
ing [17,18] method uses spatial twist continuum and generates
the topological dual of hex-mesh. Unconstrained plastering [19]
is extended from plastering. Different from other paving methods,
it starts from propagating the original geometry boundary instead
of a pre-meshed boundary into the interior domain, and hex
elements are generated when three propagating fronts intersect
each other. The octree-based approach [20] is very robust and
can be executed in a highly automatic way, however, it yields
poor quality elements near boundary and the final mesh heavily
relies on the orientation of the coordinate system. The polycube
based meshing approach uses a low distortion mapping between
the input model and polycube, and computes the corresponding
volumetric mappings. The deformation methods are introduced
for polycube construction [21-25], and frame fields are proposed
to guide the polycube construction [26]. In [27], Nieser et al.
compute a global parameterization of the volume on the basis of
a frame field to construct hex-meshes. Theoretical conditions on
singularities and the gradient frame field are derived for degener-
ated parameterization, and badly placed singularities can lead to
distortion. Based on spherical harmonics representation, Huang
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et al. [28] generated a boundary-aligned smooth frame field by
minimizing an energy function, and Li et al. also proposed the
singularity-restricted field [29]. Though impressive results were
obtained from the frame field based approaches, further efforts
are still needed for practical use.

Mesh simplification. Mesh simplification generally reduces
the number of elements and maximizes the appearance of the
original mesh by performing local coarsening operations. Trian-
gular elements can be combined with the edge flipping operation
and local MLS (moving least-squares) form of the minimum en-
ergy function [30]. This method was also applied to hierarchical
mesh generation with iterative simplification. In quadrilateral
and hex-mesh simplification, similar local operations were also
proposed [31,32]. Sheets and chords are extracted by the inherent
dual structure, and the local operation is simplified for the ob-
ject [8,9]. Recent progress in structure simplification has achieved
great success in polycube simplification [33] and hex-mesh op-
timization [34]. In [35], an effective approach was proposed to
simplify the surface meshes of arbitrary polygonal type to quad-
only meshes based on the key-frame mapping on base domains,
and in [33], the singularity misalignment problem was solved
directly in the polycube space, and the corner optimization strat-
egy was introduced to produce coarser block structured surface
and volumetric meshes. Moreover, the induced meshes are suited
for spline fitting. Topology control operations in hex-mesh sim-
plification can also be applied to adjusting low quality mesh
elements. In [34], an adjustment strategy for repairing the in-
verted elements was proposed by combining the basic mesh
editing operations with frame field optimization. Based on the
singularity structure in the mesh, a base-complex block structure
is extracted in [9]. Then the simplification operation is performed
to collapse base complex sheets and chords while redistributing
the distortion based on a volumetric parameterization.

3. Basic concepts and framework overview

In this section, we will introduce some basic concepts on
hex-mesh and the overview of the proposed framework.

3.1. Base-complex

The proposed hex-mesh simplification can effectively reduce
the singularity structure while maintaining the specified number
of elements. We briefly introduce the definition of singularity
structure, base-complex and two types of structure called base-
complex sheet and base-complex chord. The valence of vertex,
edge and face is denoted as the number of its neighboring hex
elements. A vertex is said to be regular if its valence is 4 on
the boundary or 8 in the interior. Similar to the regular vertex,
an edge is regular when its valence is 2 on the boundary or
4 in the interior. Then a series of connected irregular edges
with the same valence compose of a singular edge, and its two
ending vertices are called singular vertices, except the case of
closed singular edges. The singularity structure is composed of
these singular edges and singular vertices. According to the above
definitions, we can extract the singularity structure of a hex-
mesh. Each singular edge with a valence of n can be extended to
n segmented surfaces, and the valid manifold hex-mesh can be
divided into cube-like components by these segmented surfaces
(refer to [8] for more details). A segmented structure called base-
complex can be extracted in this way. The base-complex of the
hex-mesh M is denoted as B = (By, Bg, B, Bc), where B¢ is the
set of cube-like components (composed of hex elements), By and
Bg are the set of 8 corners of each cube-like component and
the set of base-complex edges (a series of connected edges be-
tween two base-complex vertices) respectively, and Br contains
base-complex faces of each component.
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Sub-diagonal

(d)

Fig. 1. (a) The base-complex sheet (green elements with mesh lines) consists of the left surface F;, the right surface Fr; and the middle volume E,;, with the edge
pair (yellow edges) and the vertex pair (red dots) shown in (b). (c) The green elements form a base-complex chord, where F, and Fg in (d) can be determined from
the main diagonal direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 1 Framework of singularity structure simplification

Input: A hex-mesh M; target number of mesh elements, N;
target simplification ratio of components R; user-specified
threshold of Hausdorff distance ratio, HR;

Output: Hex mesh with a simplified base-complex, Moy, ;

1: Extract the base-complex structure B = (By, B, Br, B¢) from
M;

2: Extract all the base-complex sheets and chords satisfying
filtering criteria, then push them into two priority queues
Ssheer and Scporg With length ks and k. respectively based on
the proposed weighted ranking approach. When the number
of mesh elements is less than N, go to Step 5;

3: Find the top-ranked base-complex sheet and min(|k./ks], 3)
base-complex chords to perform removing operation in Step
4, the order of removing follows the sequence in Sger and
Schord-»

4: Remove the sheet/chord by collapsing operation, then per-
form reparameterization with local regularization smoothing.
If a valid mapping parameterization is not found or the quality
metric is below the threshold, remove the next sheet/chord
until a successful operation is performed (If the candidates
selected in Step 3 are all invalid, the next candidate will
be found in Sgeer and Scporg in order). If any candidates in
Ssheet and Sgporg can not be successfully removed, go to Step
5 directly ;

5: If the number of elements is smaller than N, or the Hausdorff
distance ratio is larger than HR, perform adaptive refinement;
if the specified simplification ratio R is not satisfied, go back
to Step 1;

6: After finishing the simplification process, perform a global
optimization operation, return M.

Base-complex sheet and base-complex chord can be extracted
based on the base-complex structure. Since the singularities are
located at its eight corners and three groups of four topologically
parallel base-complex edges, removing components can effec-
tively simplify singularity structure by collapsing base-complex
sheets and chords. The base-complex sheet S consists of three
parts: the left surface F; (or the right surface Fy) contains all base-
complex vertices, edges and faces in the boundary of the left (or
right) part, and the middle volume Ey, contains the base-complex
edges with two end nodes on F; and Fy respectively. Topology
elements in F; and Fg can form element groups. Base-complex
chord has a similar definition, in which two sides follow the main
diagonal direction. Fig. 1 shows the structure of base-complex
sheet and base-complex chord.

3.2. Framework overview

In this paper, we propose an improved singularity structure
simplification method for hex-meshes while maintaining the

shape boundary and the target number of element. The proposed
framework consists of the following steps as shown in Algorithm
1:

Step 1. Specification of simplification parameters. In this step,
we will specify the target number of mesh elements N,
target simplification ratio of components R and threshold
of Hausdorff distance ratio HR for an input hex-mesh M,
in which R is denoted as

_ #BCina

#BCinit
in which #BCjy; and #BCppq are the number of base-
complex components in the input hex-mesh and the out-
put hex-mesh respectively;

Step 2. Extraction of base-complex sheets/chords based on the
singularity structure of the input hex-mesh as described
in Section 3.1.

Step 3. Weighted ranking of base-complex sheets/chords by com-
bining the valence prediction function of local singularity
structure, shape quality metric of elements and the width
of base complex sheets/chords.

Step 4. Find the top-ranked base-complex sheets and base-
complex chords iteratively and perform collapsing op-
eration with reparameterization. This pipeline will be
terminated if the output hex-mesh satisfies the target
simplification ratio.

Step 5. Adaptive sheet refinement is performed to obtain a sim-
ilar number of hex-elements as the target number of
hex-elements. This step can improve the hex-element
uniformity and reduce the error between the input and
output hex-mesh geometry. To locally improve the uni-
formity and aspect ratio, we also propose a local regu-
larization optimization in the parameterization for sheet/
chord collapsing.

R=1

With the proposed method, the singularity structure com-
plexity of a hex-mesh decreases rapidly. Furthermore, a few
close-loops and entangled sheets can be commendably elimi-
nated, leading to a high simplification rate. In addition, two extra
ranking terms are adopted to maintain the element quality and
shape boundary. In the following sections, a detailed introduction
will be given for each step.

4. Coarsening operators on hex-meshes

In this section, we introduce two local coarsening operations
on hex-meshes: the base-complex sheet collapsing operation
and the base-complex chord collapsing operation, which are two
generalized concepts to reduce singularity structure complexity
of hex-meshes. The base-complex sheet collapsing operation is
mainly applied to change singularities globally, while the base-
complex chord collapsing operation is used locally, especially for
removing edge pairs with a valence of 3~5. These two opera-
tions may introduce non-manifold and doublet configurations as
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shown in Fig. 2. Moreover, the collapsing operations may lead
to local higher complexity which should be prevented. Hence,
several filtering criteria will be proposed to determine whether
there are problematic cases.

4.1. Base-complex sheet collapsing operation

A base-complex sheet collapsing operation similar to [9] will
be adopted here. Both sides of a sheet can be found by compo-
nents, and then we remove the middle part of the base-complex
sheet and preserve the side of F; or Fg. Finally, parameterization
is employed to relocate these vertices within the §-ring neigh-
borhood region (8 is set to be 4 as in [9]). Before sheet collapsing,
several filtering criteria are used to detect whether it should be
put into the priority queue. The vertex relocation problem after
a collapsing operation can be solved by an energy-minimizing
parameterization method [9]. The corresponding energy function
can be defined as follows:

rr}/in E(V) = Ep(V) + AEr(V) + ApEp(V),

in which V is the set of vertices, A, and X, are penalty coefficients,
Ep(V) is the geometric distortion measurement of hexahedra,
Er(V) encourages two sides of a sheet to collapse into its dual
sheet, Eg(V) is related to the deviation between the original posi-
tion and new position of vertices on boundary [9]. The definition
of Ep(V), Er(V) and Eg(V') can be referred to Appendix.1 for details.

Valence prediction. When edge pairs in F, and Fr are col-
lapsed into a single edge, then the corresponding edge valence
may be changed. Generally, the valence of an inner edge is greater
than 2, otherwise, the adjacent elements will be degenerated or
form a doublet configuration (two hexahedra share two or more
faces as shown in Fig. 2), which is forbidden in our framework,
and the valence of the created edge on surface is less than the
valences of edge pair is also forbidden, which will break the
topology continuity. For the edge pair of e; and e, in a non-self-
intersection sheet, if the new edge is denoted as e, then the
valence of e, can be computed as follows:

v(en) = {U(el) +v(e,)—2,  fi is on boundary

fir is not on boundary

v(er) + vler) — 4. (D
where v(e) is the valence of a base-complex edge, and the base-
complex face fi directly connects e; and e;.

Boundary shape. The feature vertices/lines are extracted in
the initialization stage as same as [9] (they are extracted by
dihedral angle thresholding method), and in order to preserve
sharp features, the sheet and chord containing sharp feature
vertices are not allowed to be removed. Moreover, the base-
complex sheet is not collapsed when the feature edges lie on
base-complex edges. In the collapsing operation, we use a similar
way for hex-mesh sheet collapsing. In the optimization step, local
parameterization [9] is adopted. The boundary shape error and
interior distortion will be distributed to 8-ring neighboring ele-
ments by solving the energy minimization of geometric distortion
and the quality of elements with the approach called scalable
locally injective mapping (it is referred to as SLIM in the paper)
in [10].

4.2. Base-complex chord collapsing operation

The base-complex chord collapsing operation is mainly used
to optimize bad singularity structure locally. It only has effect on
one column of base-complex components. Different from chord
collapsing in hex-mesh that merging four vertices per group
into a new position, Fig. 2 shows the 3D case of chord collaps-
ing. We extract two pairs of opposite base-complex edges, and
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merge them along the diagonal direction, the relocation method
of vertices after collapsing is same as base-complex sheet. The
collapsing direction is denoted as the main diagonal direction
and the orthogonal direction along boundary is referred as the
sub-diagonal direction.

Collapsing direction. The collapsing direction can be chosen
in two directions, the valences of base-complex edges in two
sides along the main diagonal direction may change. Here, we
only consider the four groups of topology-parallel base-complex
edges on the chord surface following the direction of dual string.
We compute the predicting valence of these created base-complex
edges, and obtain the valence difference between the created
edge and the regular edge. We aim to remove edge pairs with
a valence of 3~5 and introduce high valence singularities as less
as possible. In this paper, we measure the difference between the
predicted valence and the regular valence by the following term

k
Dy(c) =Y (|(v(ehy) — 1) = plehy)] + |(u(ehy) — 1) — pleby))|
i=1

+ |(v(el) + v(el) — 2) — min(p(e}), p(e}))]), )

D(c) = min(Du(c), Dea(c)),  pe) = {ﬁ o g

where e}, and el, are the ith base-complex edges in the sub-
diagonal direction, ef and ei are the ith base-complex edges in the
main diagonal direction as shown in Fig. 2, k is the number of con-
tained components of the base-complex chord ¢, Egyface and Einper
are the ith set of boundary edges and inner edges respectively. We
choose the optimal collapsing direction by minimizing D(c), the
predicted valence of two optional directions are D,(c) and D,3(c)
respectively. In our experiments, we implement an easy-to-detect
method in advance to improve efficiency, the chord collapsing
operation is not allowed when D(c)/3k > 0.9, or the four groups
of parallel edges following the direction of dual string contain
more than two singular edges. This kind of chord will not be
pushed to the priority queues.

Base-complex sheet collapsing can make significant impact
on mesh globally, but it is extremely difficult to remove self-
intersection sheets with complex tangles and close-loop configu-
rations without creating vertices with high valence. Base-complex
chord collapsing is used to eliminate the entangled regions, and
it contributes to improving the simplification ratio of sheets.

4.3. Local parameterization for uniformity improvement

After collapsing arbitrary sheets/chords, we use local parame-
trization based on SLIM framework [9,10] to relocate vertices
within the collapsing region, and reduce the distortion by ad-
justing the ideal shape for each hexahedron to satisfy the re-
quirement of high uniformity. The framework of SLIM uses the
local/global algorithm [36], and solves the distortion term glob-
ally while fixing the rotation as computed in the local step. In
3D case, the mapping from the original tetrahedral element to
a deformed shape in a local orthogonal frame can be denoted
as a Jacobian, and the deformation can be expressed indirectly
by a transformation from the tetrahedron with three orthogonal
edges to both shapes as shown in Fig. 3. The mapping between
the reference element t; to the original element t; is defined as
W,. Similarly, the mapping between the reference element tz and
the deformed element tp is defined as Wp. Since Wp and W, are
constant matrices for affine transformation, finally the Jacobian ¢
of t; — tp can be denoted as

¢ =WwPo(wh. (3)

Our experiments show that adjusting the Jacobian of a trans-
formation to the target shape in a local operation can lead to
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Fig. 2. Left: Base-complex sheet collapsing operation and 2D degenerated cases; Right: Base-complex chord collapsing operation and 2D degenerated cases. The blue
base-complex edge e, is contained in Fj, the green base-complex edge e, is contained in Fy, the gray face linking a pair of e; and e, is f;, and the red components
may change the edge valence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

an ideal mesh result after global simplification. In this paper,
we also propose a local optimization strategy to move vertices
within the collapsing region during parameterization. For edges
in the collapsing region, their length will be re-scaled while
maintaining the element quality. A simple Laplace smoothing is
performed as a local operation. Since SLIM is used frequently
in collapsing and local refinement, and the number of elements
in parameterized region has large variations, for the purpose of
improving efficiency of SLIM, the iterative form is adapted instead
of solving a large linear system.

Let M = (V, K) be the mesh of the parameterized region, V
is the set of nodes, and K is the topology connectivity between
vertices in the parameterized region, including nodes {i} and
edges {i, j}. The discrete operator on M is defined as

(L) =Y wii(vi — vy), (4)
J

in which wj; are the weights, and the iterative form can be defined
as
Ni
Ulk = Z w,-jv}‘_l/N,-, (a)l] =1, v, v € Vin, k= 1, 2, 3)
j=1

(5)

and the iteration is terminated when the threshold of variance ¢
is reached,

[t~ 7]
[Zi(vlk—1 _ vl(cfz)z]l/z
where i and j are the vertex labels, k is the number of iterations, N;
is the number of neighboring vertices of the jth vertex, V;, is the
set of inner vertices in parameterized region. Uniform weighting
in the smoothing operation often introduces elements with low
quality. In order to improve the orthogonality, the weighting
scheme proposed in [37] is used to optimize the mesh locally.
After volumetric smoothing, the regularized length of edges in
each element is computed. A similar regularization process de-
scribed in [9] is adapted, then we perform local parameterization

with SLIM which uses the regularized results as the ideal mapping
shape for each element.

<e, (k>2) (6)

5. Weighted ranking for structure simplification

Many hex-mesh generation approaches such as octree-based
and polycube methods often yield unnecessary singularities with
a large number of small components in base-complex. The num-
ber of singularities can be progressively decreased by performing
collapsing operations based on components, and the simplified
singularity structure is obviously different with various collapsing
sequences. After comparison with experimental data, we find that
the collapsing order of base-complex sheets and chords has a
significant effect on the final simplification results. In this paper,
a weighted ranking sequence is introduced, which can choose
the optimal candidate to be removed iteratively. The ranking
sequence aims to remove singularities within fewer iterative
steps. We formulate this problem as an energy minimization
framework, and introduce a valence term related to the valence
difference caused by collapsing to achieve a rapid removal of
singularities. On the other hand, some constraints are included,
for example, the resulting elements should not be inverted and
the max Hausdorff distance ratio HR should be kept. Therefore,
the sheet/chord removal leading to less mesh distortion will have
the collapsing priority. From this motivation, we also introduce
two extra ranking terms, called the distortion term and the width
term.

5.1. Ranking method of base-complex sheet

In the base-complex sheet ranking sequence, we combine the
valence term Es,, the distortion term Es and the width term Eq as
the normalized form [38]. The ranking function which can greatly
improve the simplification rate of base-complex components is
defined as

Ey(s) = ksg(1 — e 51) 4 kg(1 — e75)) kg (1 — e7500)) - (7)

in which ki, ksg and ks are weights of different ranking terms. In
our implementation, the width term Egy(s) has the biggest weight,
ie, kg = 0.4, kg = 0.6 and ky; = 0.2. We also restrict the
value of each term within (0, 2) to reduce the impact of the actual
numerical size. In Fig. 4, we provide a comparison example of the
first collapsing operation for different ranking terms Egq, Egq4, Esy,
E; and the thickness term Eg;ckness-
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Fig. 3. (a) The mapping from a reference tetrahedron (left) to the origin shape (middle) and deformed shape (right). (b) The mapping of five tetrahedra in a hex

element (left) to the element with ideal shape (right).

Input

First candidate of different rankings

Ey [Gao et al. 2017]

L Eview 069 @

Fig. 4. A comparison example of the first candidate for different ranking term Egg, Egq, Esy, E; and the thickness term Egickness- The values of different ranking term

are also provided.

Valence term. The proposed weighted ranking algorithm for
base-complex sheet collapsing mainly focuses on the valence
difference of singular edges during the simplification. As shown
in [9], the singularities of a hex-mesh can be progressively simpli-
fied within a finite number of iterations. In this paper, we propose
an indirect energy function of valence difference between the cur-
rent mesh and the mesh without singularities. For the mesh with
singular base-complex edges set S = {e | e € Bg | e is singular},
the energy function is defined as

E(M) =" [v(e) — p(e)|. 8)

ecS

Since the simplification process is based on two kinds of
collapsing operations, and the singular edges are only located
in F, Fr and Ey, then the energy function E(M) has a local
representation on the base-complex sheet when it is collapsed

n

EM)=) (= > Iv(em) — plew)|

i=0 ey eEl"v,

+1/v(er) Y |vle)) = pler))) (9)

elreFL",l-","a

where i is the index of the base-complex sheet to be collapsed, E,‘;/,
is the interior part of ith base-complex sheet, F; and Fj, are the left
surface and the right surface of the ith base-complex sheet, ey, is
the base-complex edge in E,‘;,, of the base-complex sheet, e is the
base-complex edge to be collapsed, e}, is the created new base-
complex edge, and n is the number of the base-complex sheets

which are allowed to be collapsed. In order to prevent double-
counting of difference (if the valence of the interior singular edge
is k, k > 2, this singular edge is shared with k sheets), the value
of coefficient is selected as the reciprocal of valence.

According to the energy function E(M), some analysis on the
structure of base-complex sheets can be performed. The base-
complex sheet has an interesting property: all the interior edges
which are topology parallel to the dual face of sheet are regular,
the singular edges only exist in Ey; or F; and Fg, and the collapsing
operation will introduce edges with a different valence. Hence,
the influence of collapsing operation can be predicted.

During a collapsing operation, the edges in the interior part
will be eliminated. For a singular edge L, if the whole edge is
contained in Ey, then the value of E(M) will be reduced. This type
of elimination is equivalent to creating new regular edges while
collapsing. Moreover, the singularity structure will not change
when the singular edge Ly runs though the sheet (Lg; is part of a
singular edge). Such base-complex edges will not be considered
in our valence calculation. Two types of L; are shown in Fig. 5(a).

Since a singular edge is completely contained in F; or Fg of
one or more base-complex sheets, the collapsing operation may
remove the singular edges in both sides directly. Concerning
the valence variation of edges in an edge pair of F; and Fg, the
following three cases are shown in Fig. 5(b) respectively will
be considered: (c1) all the edges in F; and Fy are regular; (c2)
edges in only one side of F; or Fy are singular; and (c3) both
edges in F;, and Fy are singular. In case of (c1), the valence of
the created edge will be regular; in case of (c2), the created edge
will have the same valence as an irregular edge, and it does
not affect the surrounding singularity configurations; in case of
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Fig. 5. Distribution of singularities in Ey;, F;, and Fgz. The lines marked in green and black are regular edges, and all the other edges are singular edges. Two types
of middle edges in Ey are shown in (a), and three types of edge pairs on both sides are shown in (b). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

(c3), the valence of created edges will change, which means that
the singularities of the rest part of hex-mesh will be changed.
Moreover, there are several configurations in case of (c3), the
created edges might have different valences compared with base-
complex edge pairs in F; and Fg. The singularity structure will
be simplified when the valence difference between irregular and
regular edges decreases.

In order to improve the convergence rate of E(M), we greed-
ily select the base-complex sheets which can effectively reduce
E(M) locally and introduce edges with higher valence as few as
possible. The valence term is defined as

Eq = [DM — B(Y _ T(K™ — K'")+ > K™)]/DM, (10)
i i
in which
Kinew — |U(enew) _ p(enew)

K™ = max (|v(el) — q(e!)

i

v(el) —q(e])])

’

0.5k, k<0
T(k) = { 1.0, k=0
k, k>0

where i is the index of edge pairs, ef and e} form an edge pair, and
they belong to F; and Fy respectively, e" is the singular edge in
Ey, DM is a large value to control the scale of the term Es,, which
is set as the maximum number of Ey; in the hex-mesh. In our
experiments, S is set to be 1.67. In order to minimize the energy
function, the convergence rate will be faster when the value of
B, T(K™X — K )+ . K™) is much larger. Here T(k) is used
to adjust the difference of valence, the speed of simplification will
be slower and the simplification rate will be reduced while strict
restriction is applied, hence the coefficient is set to be 0.5k when
k < 0. For the difference as k = 0, it corresponds to the case
that merging an inner singular edge and a boundary singular edge
with the same valence, this kind of merging actually removes a
singular edge, and the value of T(k) for k = 0 can be maintained
less than the value for k > 0, hence we set the corresponding
coefficient as 1.

Distortion term. The distortion term Egq is an optional term
for hex-mesh with complex singularity structure. The sheet pass-
ing through the regions with dense singularities often contains
patches with serious distortion, hence removing these sheets can
greatly improve the average value of Jacobians, and lead to a
significant complexity reduction in geometric processing. Here
we use the shape metric fiqpe Of hexahedron [39] to measure
the sheet distortion. fsqpe = 1 if the hexahedron is a cube with
parallel faces, and fsqpe = O if the hexahedron is degenerated.
fshape is a scale-invariant, the specific form adapted is given in
Appendix A (refer to [39] for the specific definition of fiape).

In this paper, we obtain the second derivative of fsqpe in each
element for three parametric directions, and select the maximum
difference as the differential value of the hexahedron. From the
experiments, we find that serious distortion happens when the
second derivative is up to 0.55 as illustrated in Fig. 6. In this
term, we use the second derivative of fsqpe to identify the regions
with big distortion. Since local parameterization can improve
the element quality, removing regions with serious distortion in
advance will increase the average value of Jacobians locally. The
value of Z?:l fi has a large variation in different base-complex
sheets, in order to obtain a reasonably weighted sum with the
other terms, the distortion term needs to be normalized. In(x +
e)~! is used to restrict the value in [0, 1). Eyq is defined as

n
Eq(s)=In(> fi+e) ", (11)
i=1
- 0, d(i) < 0.55 N J . J PN .
fi= { i dio0ms 0= ol D gl = 1) = 2l
in which f},,,.(i) is the value of fyuqpe of the ith element in the jth

parametric direction. The definition of fsepe [39] can be referred
to Appendix.2 for details.

Width term. The width term Eg; in the weighted ranking
function measures the width of sheet. If the sheet is too wide, the
collapsing operation will lead to big distortion on the boundary
geometry and affect the adjacent sheets seriously. Hence it is
reasonable to remove sheets with thin shape. For this term, we
use the width of base-complex edges in Ey;, which is more accu-
rate than the length between the vertex pair on surface. Based
on the observation, some base-complex sheets with locally thin
shape will be difficult to identify in the original method. In our
framework, Eyy is defined by combining the average width and
the minimum length, and the cube root form is used to reduce
the effect of actual values. Ey4 is defined as

1/3
Esd:|:<aa min_ d(vy, vr)—f-abd) /L} (12)
(vp,vr)ePy

in which L is the average length of the base-complex edges,
d(vy, vr) is the length of the base-complex edge connecting v; and
vy, d is the average length of the base-complex edges in Ej; of this
base-complex sheet, and we choose «; = 0.7 and «, = 0.3 in our
experiments.

5.2. Ranking approach for base-complex chord

The base-complex chord collapsing operation only influences
one column of components, which is used to adjust regions with
many edge pairs having a valence of 3~5. From our observation,
edge pair with a valence of 3~5 often exists in the entangled
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Fig. 6. Color mapping of the second derivative of fqpe for four base-complex sheets.

twist.

Fig. 7. Two base-complex chords (red) in a toy mesh. The first chord is located
in a patch near the feature edges (top right), and the second chord is located
in the flat region (bottom right). The elimination of the first chord will lead to
a significant boundary geometry error. The proposed geometric error term can
prevent this kind of collapsing operation effectively.

sheets, which is difficult to eliminate. In order to untangle them,
we propose a priority metric E.(c). E.(c) does not contain the
distortion term, because the elimination of base-complex chords
only has impact on local regions. The formula of E.(c) is defined
as

Ec(c) = keg(1 — e7Fa() ke, (1 — e7Fer()) (13)

in which E, is the valence term and E is the geometry error
term, ke, and k., are set to be 0.6 and 0.4 respectively in our
experiments.

Geometry error term. The chord collapsing operation often
leads to simplification results with inverted elements. We pro-
pose a simple strategy for priority processing on chords with
narrow shape and smaller length. The aspect ratio of a chord is
defined as the ratio of the average length of the main diagonal
to the sub-diagonal, which is applied to the measurement of
thickness. To reduce the collapsing effect on boundary geometry,
Gaussian curvature [40] is used to measure the shape error locally
after collapsing. In our implementation, we use the variance of
curvature to find patches with significant curvature changes. A
patch may contain sharp features when its variance of curvature
is large as shown in Fig. 7. The geometry error term Eg(c) is
defined as

CLie) [ Qe — Q)
B TLz(C) N, -1

in which Ly, L, are the average length of the main diagonal and
the sub-diagonal respectively, | is the average length of elements,
Qgi is the Gaussian curvature of a vertex on two sides (two sides of
the chord are the set of faces in the boundary, and their normals
are parallel to the direction of the dual string.) and Qg is the
average Gaussian curvature of vertices on two sides.

Valence error term. The valence error term measures the
valence error of four topological parallel edges, and uses the same
form as the valence term for base-complex sheet. To eliminate
entangled sheets and simplify the local complexity, three topo-
logical parallel edges created by collapsing should be all regular.

Eqy(c) (14)
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The second derivative of fuqpe is larger than 0.55 for regions with more serious

The ideal situation is that the valence error tends to be zero. In
our framework, the valence error is set as one of the optimiza-
tion objectives, and the valance error of base-complex chord in
the collapsing operation is provided in Section 4 as D(c), and
1/Np(c) can be used as the normalization coefficient naturally.
The valence error term E., is defined as

Ecy(c) = D(c)/3Ny(c), (15)

in which Np(c) is the number of base-complex components in
base-complex chord c.

6. Sheet refinement

Sheet refinement is performed during the simplification
pipeline in order to maintain the input mesh geometry with the
user-defined target number of elements. A similar method in [9]
can be used to split one element on a specific sheet into two
elements along the direction perpendicular to the parallel edges.
In this paper, we propose an adaptive sheet refinement method
to improve the accuracy of boundary geometry approximation.

In our implementation, we find that choosing a sheet with
the maximum width to refine is not a robust strategy, where
some boundary patches with large boundary approximation er-
ror may not be refined. In our method, we firstly obtain the
average length of all edges along the collapsing direction, and
then compute the average Hausdorff distance ratio HR(s) by the
means of point sampling for each sheet in the priority queue.
According to the descending order of HR(s), the first four base-
complex sheets will be selected in advance, and the average
length in the collapsing direction is denoted as L. We choose one
from the first four sheets to perform refinement if L, > 1.2L;
otherwise, we refine the candidate with the maximum L, and
meeting the above condition. During simplification, collapsing
operations may fail frequently due to the element quality and
shape error constrains. In order to relax these constrains, we also
perform the refinement process when a sheet collapsing fails. The
base-complex sheets sharing F, and Fr with the removed sheet
are selected as candidates. The refinement process narrows the
parameterized region of failed sheets, such that it reduces the
shape error by introducing more elements, and the sheet may
be collapsed in the next iteration. In addition, another criterion
is introduced to control the number of elements strictly. For the
input hex-mesh with Cy elements, if the target number is C,
before performing refinement, we check whether the number
of hexahedra contained in a sheet is less than 1.5 x (Co — G,).
This criterion can effectively prevent some sheets being refined
repeatedly.

7. Experimental results

The proposed algorithm has been tested on a four-core i7
processor with 8 GB memory. The maximal number of iterations
of the SLIM solver is set as 5, and HR = 1% (the threshold of the
Hausdorff distance ratio defined by the user, the simplification



G. Xu, R. Ling, Y,J. Zhang et al.

SR:0% SR:60%
/Welghted ranking 4

@mm&f D}}\_@M @7 g_/\

Thickness ranking

. S
e S | ¢co
S PR

SR:0%
MSJ:0.10
ASJ:0.84

Thickness ranking

ASJ:0.93
MSJ:0.35
----- g #8:1048 5
R:94.97% [

" As10.94

Computer-Aided Design 130 (2021) 102946

SR:80%

@ @
J\

SR:64%
MSJ:0.43
ASJ:0.90

SR:80%
MSJ:0.38
ASJ:0.91 ’5; o

Thickness ranking

: Weighted ranking

Weighted ranking

« Ours

70004 i H - [Gao etal.2017]
\‘- .zg times. :
‘E 6000 . ." :72 times
S \ssas :
= 5000 = H
& o, :
= . 1
2 4000 s, N
& H & '
S 30004 S ==
MsJ:0.32 3 12588 12634
#B:310 £ } \
2000 - : :
R:98.51% 2 : ] N
o ; 11288
£ 1000 : \
0
T T T T T T
0 20 40 60 80 100

Iterations

(c)

Fig. 8. Simplification results of the fertility mesh with different complexity reductions, including our weighted ranking approach and the thickness ranking method [9]
as shown in (a). Our ranking method can effectively decrease the iteration steps (N;) and improve the simplification results around regions with dense singularities
as shown in the singular structure highlighted with red circles. The top 4 candidates in each sequence are also shown when the simplification rates (SR) achieve
0%, 60% and 80%. The simplification results are shown in (b), and the statistics of iterations are shown in (c). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

rate becomes larger when HR increases) and ry = 1.0 (the
rate of the target number over the number of hex-elements in
the input mesh) for all experiments. We also report the number
of hex elements (#H), the number of base-complex components
(#BC) and the minimal, average and standard variance value of
scaled Jacobians (MS]J/AS]/Std). The boundary geometry error is
measured by the Hausdorff distance ratio (HR). We have tested
the proposed method on 165 hex-mesh models, the average
simplification rate for these meshes is 88%, which is higher than
the approaches in [8] and [9].

Weighted ranking candidates. Simplification results of the
thickness ranking method [9] and the proposed weighted ranking
method will be compared. In Fig. 8(a), we show top 4 candidates
in the fertility mesh when the simplification rates achieve 0%, 60%
and 80% respectively. In the initial priority queue, our weighted
ranking term can effectively pick up base-complex sheets with
serious distortion and close-loop configurations. Moreover, the
number of singularities can also be reduced faster. For a sim-
plification rate of 60%, the thickness ranking method needs 65
iterations, and our proposed method only needs 28 iterations.
For the comparison results as shown in Fig. 8(a), when the sim-
plification rates reach 60% and 80%, our ranking algorithm can
preferentially remove sheets to promote singular edge elimina-
tion, and the regions with dense singularities (marked with red
circles) have been greatly improved. Compared with the sim-
plification results by the thickness ranking, regions with dense
singular edges can be successfully eliminated by our method,
and self-intersected sheets can be removed as well at the same
time. In the simplification process, the distortion term is used to
eliminate elements with poor shape quality, and to spread the

distortion to neighboring elements while gradually improving the
value of MSJ/AS] in the hex-mesh. AS] with the proposed method
is better than thickness ranking during these three stages, 12.66%
AS] improvement over the input and 2.20% AS] improvements
over the simplification result by [9] can be achieved. The average
running time of the entire dataset is 71 minutes, which is slightly
slower than [9].

There are quite few candidates in the simplification queue
when the reduction ratio reaches 90%, and the number of candi-
dates is also limited by geometrical constrains, which will cause
more incorrect collapsing and need more time consumption. The
pipeline of [9] uses a simple strategy by skipping a set num-
ber of candidates to improve the speed, but it may cause early
termination.

Ranking terms. In this paper, several ranking terms for
collapsing base-complex sheets have been proposed. In Fig. 9,
simplification results by two terms for base-complex sheets are
compared. As shown in the second row of Fig. 9, the proposed
valence term has some advantages to improve the simplification
ratio in fewer iterative steps, However, if we only use the valence
term, more failed collapsing operations will be introduced to
reach the threshold of the Hausdorff distance ratio, and it also
leads to a simplified mesh with a lower value of MS]. The result
by using the valence term is shown in the last column in Fig. 9.
The width term plays an assistance role for the valence term to
avoid serious shape error, the proposed new width term can lead
to a more uniform distribution of elements when it is compared
with [9] as shown in the third column of Fig. 9. The MS] value
is improved significantly compared with the result of [9], and
the original width ranking approach may result in an unexpected
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Fig. 9. Simplification results on an isidore horse hex-mesh generated by the octree-based method. The hex-mesh and base-complex structure of input, result of the
method in [9], result of the method based on the new width term and result of the approach based on the valence term are shown from left to right respectively.
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Fig. 10. Simplification results of toy and lock. From left to right, the input meshes, results of thickness ranking [9] and our weighted ranking results are shown
respectively. The color mapping shows the value of VDR, which illustrates that our weighted ranking method can achieve a significant improvement on uniformity.
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Fig. 11. Simplification result on bottle mesh generated by the octree-based method. The scaled Jacobian of the input mesh, the simplified result and elements with
scaled Jacobian less than 0.64 are shown from left to right, respectively. As shown in the enlarged region, there are a few poorly shaped elements which are mainly

around singular edges with high valence.

exception since the thick sheet with narrow localized regions
cannot be removed.

Element uniformity. In the proposed approach, local param-
eterization is used to improve the uniformity of hex-mesh ele-
ments. We also propose a measurement of element uniformity
called the volume deviation ratio (VDR), which is defined as the
standard volume deviation of neighboring elements divided by
the average element volume. The range of VDR is (0, oc], and
the uniformity is better while the value is closer to 0 (for all
elements with the same volume, VDR=0). Compared with the
thickness ranking method [9], our simplification results have
30.17% and 7.04% improvement in the average volume deviation
ratio (AVDR) and the max volume deviation ratio (MVDR). In
our experiments, the average AVDR and MVDR of meshes from
polycube-base methods are 0.19 and 2.78 respectively, and the
average AVDR/MVDR are 0.25/2.54 in the simplification results

of octree-base meshes. AVDR and MVDR gain 35.56% and 10.86%
improvement compared with the thickness ranking approach for
octree-based meshes. Two comparison examples are shown in
Fig. 10 with the VDR colormap.

In the proposed framework, hex-elements with low quality
mainly distribute near the edges with high valence, which can
be promoted by the optimization approach introduced in [34]
and [43]. In Fig. 11, the Jacobian quality colormap of a bottle mesh
is shown, and we can observe that elements with Jacobian lower
than 0.64 are neighboring to the edges with high valence.

Simplification of hex-meshes generated by polycube-based
methods. For hex-meshes generated by polycube-based meth-
ods [21,26,41], the singularity structures are completely dis-
tributed on the boundary surface, and the distribution of singular
edges is sparse. Hence, the valence term has a small contribution,
and the weights ky; and kg, are set as kg = 0.6 and k;, = 0.4
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Fig. 12. Simplification results on meshes generated by the polycube-based method, the gargoyle mesh (left) is generated by [41], and the casting mesh (right) is
generated by [42]. From top to bottom, the input hex-mesh, simplification results of thickness ranking [9] and our weighted ranking results are presented. For each
example, we show the information of scaled Jacobian, singularity structure, and the base-complex components with different colors.

Table 1
Statistics of meshes generated by octree-based methods.

Model Input hex mesh Simplified result
#H #BC MS] AS] Std #H #BC MS] AS] Std HR (%) R (%) Time (m)

Bimba (Fig. 13) 25,347 25,347 0.06 0.80 0.162 23,840 171 0.43 0.97 0.051 0.96 99.33 69.50
Bottle (Fig. 13) 35,886 35,860 0.13 0.79 0.167 34,484 121 0.37 0.98 0.046 0.93 99.66 104.01
Deckle (Fig. 13) 53,658 53,116 0.03 0.84 0.187 48,674 902 0.48 0.96 0.072 0.99 98.30 452.90
Fertility (Fig. 8) 21,370 20,840 0.10 0.84 0.150 21,016 310 0.32 0.94 0.079 0.87 98.51 153.83
Toy1 (Fig. 7) 18947 18883 0.12 0.81 0.161 18656 323 0.45 0.96 0.059 0.95 98.29 38.20
Toy2 (Fig. 10) 14,288 14,288 0.15 0.81 0.158 13,476 173 0.43 0.96 0.058 0.92 98.79 30.79
Lock (Fig. 10) 28,753 25,720 0.01 0.80 0.244 26,555 2058 0.33 0.94 0.109 0.97 92.00 369.07

in our experiments. As shown in Fig. 12 and Table 2, the pro-
posed approach can achieve a higher base-complex component
reduction with similar element quality as the results in [9]. In
our experiments, the average scaled Jacobian is improved to 0.96,
and the meshes obtain 30.17%/7.04% improvement for AVDR
and MVDR compared with the thickness ranking approach [9].
Moreover, the average component reduction ratio is promoted to
63.81%, and some results are very similar with the structure of
meshes generated by [33].

Simplification of hex-meshes from octree-based methods.
Octree-based hex-meshing approaches often generate a complex
structure with dense local singularities. In [9], the greedy col-
lapsing by thickness ranking was utilized under a set of filters.
It cannot find a coarser structure in the hex-mesh with a large
number of interior singularities, since the thickness ranking term
does not have a direct effect on singularity removal. The corre-
sponding simplification [9] has a slow convergence rate, and it
can achieve an average simplification rate around 86% for the
hex-mesh database. The proposed weighted ranking method can
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obtain a much simpler singularity structure with much fewer
base-complex components. The average simplification rate in the
proposed framework can increase 89.24% with respect to the
initial number of base-complex components in the input hex-
mesh, and gain 3.24% improvement compared with [9]. Moreover,
in the proposed framework, adaptive refinement is performed
during the simplification process, which can effectively maintain
the quality of boundary geometry and promote the simplifica-
tion process under the constraint of HR. Our ASJ/MS] achieves
0.91/0.28, and gain 11.57% AS] improvements over the thickness
ranking method. Some simplification results are shown in Fig. 13,
and statistics are presented in Table 1. Comparison examples
with [9] are also presented in Fig. 14 and Table 2.

8. Conclusion and future work

In this paper, an improved singularity structure simplification
method is proposed for hex-meshes based on a weighted rank-
ing function, which is a combination of the valence prediction
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Fig. 13. Simplification results on meshes generated by octree-based methods, including the bimbia, deckel and bottle models. From left to right, the input mesh,
singularity structure (the singular edges with a valence of 5 marked in green, and a valence of 3 marked in red, the valence of edges with other colors is greater

than 5), base-complex of original meshes (a) and simplified results (b).
the web version of this article.)

Table 2

(For interpretation of the references to color in this figure legend, the reader is referred to

Comparison with [9]. #H is the number of hex-elements, #BC is the number of base-complex components, Std is the standard deviation of the scaled Jacobians, HR

stands for the Hausdorff distance, and R is the simplification rate.

Model #H #BC MS] AS] Std AVDR MVDR HR (%) R (%) Time (m)
Input 25,669 7,563 0.20 0.91 0.907 0.11 0.64

Gargoyle (Fig. 12) Thickness ranking 22,524 805 0.14 0.96 0.068 0.30 3.52 0.98 89.36 30.67
Weighted ranking 25,034 451 0.33 0.96 0.068 0.19 1.79 0.91 92.75 51.52
Input 21,167 2,805 0.20 0.85 0.016 0.05 1.29

Casting (Fig. 12) Thickness ranking 15,123 1,562 0.11 0.92 0.012 0.10 2.74 0.83 4431 7.53
Weighted ranking 18,522 595 0.34 0.93 0.082 0.26 1.74 0.94 78.79 30.68
Input 16,608 16,487 0.11 0.86 0.139 0.18 2.69

Rocker (Fig. 14) Thickness ranking 10,278 636 0.44 0.93 0.081 0.38 1.77 0.99 96.14 32.25
Weighted ranking 14,996 367 0.55 0.95 0.070 0.24 2.25 0.88 97.77 52.42
Input 13,987 13,987 0.02 0.79 0.168 0.46 8.02

Pig (Fig. 14) Thickness ranking 10,704 2,305 0.23 0.92 0.102 0.38 3.89 0.99 83.52 31.24
Weighted ranking 11,144 880 0.39 0.94 0.082 0.24 1.49 0.98 93.71 33.01
Input 4,247 3,640 0.03 0.82 0.159 0.18 0.51

Bird (Fig. 14) Thickness ranking 2,868 580 0.24 0.90 0.117 0.36 2.43 1.00 84.07 14.57
Weighted ranking 4336 312 0.34 0.92 0.102 0.21 123 0.92 91.43 10.85
Input 19,075 18,355 0.13 0.85 0.151 0.28 3.20

Buste (Fig. 14) Thickness ranking 17,680 691 0.44 0.95 0.070 0.33 436 0.98 96.24 113.67
Weighted ranking 17,324 221 0.53 0.97 0.055 0.22 1.62 0.90 98.80 38.31

function of local singularity structure, shape quality metric of Acknowledgments
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improve the element quality of simplified hex-mesh. Compared
with the thickness ranking method, simpler singularity structure
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Appendix A

Energy minimizing equation

The three terms Ep(V), Er(V) and Eg(V) in E(V') are denoted as
follows:
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Fig. 14. For each model, from top to bottom: the input octree-based hex-mesh, simplification results of [9] and our results. From left to right: the input mesh,
singularity structure, and base-complex. We show the scaled Jacobian, singularity structure, and base-complex components with different colors.

Eo(V) = 3 S M2 + ;2.

heH teh

where H is the parameterization region, h is an element in H, and
t is one of the eight tetrahedra in h (each tetrahedron is related
with a corner of h), J; is the Jacobian of the transformation from
the original shape to the ideal shape of t.

KK ,
E(V)= Z Z vij — ]|

i=1 j=1

where K is the number of groups of collapsing vertices, K; is the
number of vertices in a group, v; j is the jth vertex in the ith group,
the vertices in the ith group will be collapsed to the new position
v;, and v; is located in the dual surface sheet.

- 12
BWV) =Y o=+ |v--ad| + > [iw-9)|*,
veC vel ves

where C, L, and S are the set of corner vertices, feature line
vertices, and regular vertices respectively, vertex v is located on

13

the boundary, and v is the closet surface position for v, a, is the
feature line tangent at v, 71 is the normal of v.

Shape metric

A hexahedral element has eight nodes, the kth node can form
a Jacobian matrix Ay, k = 0,1,...,7, and o = det(Ay) is the
local tetrahedron volume associated with the kth node. A, has the
following form:

L Xe+1 — Xk X2 — Xk Xp43 — Xk
A= (=1 | Ykr1 — Yk Y2 =Yk Yew3 — Yk |,
Zk+1 — 2k Zk+2 — Zk Zk+3 — Zk

in which Xy, Yk+i, Zksi, i = 1, 2, 3 are the coordinates of the kth
node’s three neighboring nodes. We can construct a metric tensor
A£Ak in the form of 3 x 3 symmetric matrix, and each matrix
contains six different elements. The )»5 i,j = 1,2, 3, is the ijth
element of the kth metric tensor. The shape quality metric for a
hexahedron with a cubical reference element is

24
Y roW + 2%, + 1))

fshupe =
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This metric depends on both element angle and length ratio,
and can measure the shape distortion of a hexahedron. fsqpe has
the property of scale-invariance, the hexahedron is a cube when
fshape = 1, and the hexahedron is degenerated when fyqpe = 0.
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