Session 1: loT Security and Privacy

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

DeepPowER: Non-intrusive and Deep Learning-based Detection
of loT Malware Using Power Side Channels

Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng, Hai Xiao and Rong Ge
Clemson University

{feid, hongdal, luofeng, hongxih, Icheng2, haix, rge}@clemson.edu

ABSTRACT

The vulnerability of Internet of Things (IoT) devices to malware
attacks poses huge challenges to current Internet security. The IoT
malware attacks are usually composed of three stages: intrusion,
infection and monetization. Existing approaches for IoT malware
detection cannot effectively identify the executed malicious activ-
ities at intrusion and infection stages, and thus cannot help stop
potential attacks timely. In this paper, we present DEEPPOWER, a
non-intrusive approach to infer malicious activities of IoT mal-
ware via analyzing power side-channel signals using deep learning.
DeepPoweR first filters raw power signals of IoT devices to obtain
suspicious signals, and then performs a fine-grained analysis on
these signals to infer corresponding executed activities inside the
devices. DEepPower determines whether there exists an ongoing
malware infection by conducting a correlation analysis on these
identified activities. We implement a prototype of DeepPowkr lever-
aging low-cost sensors and devices and evaluate the effectiveness
of DeepPower against real-world IoT malware using commodity IoT
devices. Our experimental results demonstrate that DEepPowERr is
able to detect infection activities of different IoT malware with a
high accuracy without any changes to the monitored devices.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; - Com-
puter systems organization — Embedded hardware; « Comput-
ing methodologies — Neural networks.

KEYWORDS

IoT; malware detection; non-intrusive; power side channels; deep
learning

ACM Reference Format:

Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng, Hai Xiao and Rong
Ge. 2020. DEEPPOWER: Non-intrusive and Deep Learning-based Detection
of IoT Malware Using Power Side Channels. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security (ASIA CCS °20),
October 5-9, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3320269.3384727

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6750-9/20/10...$15.00
https://doi.org/10.1145/3320269.3384727

33

1 INTRODUCTION

As Internet of Things (IoT) has become an integral part of our
lives, these devices provide great convenience and efficiency while
also introduce unexpected risks and new threats. There have been
lots of high-profile attacks against IoT devices being reported re-
cently [3, 4, 47]. These compromised IoT devices can be leveraged
to launch Distributed Denial of Service (DDoS) attacks [3] or Per-
manent Denial of Service (PDoS) attacks [47]. Existing research
divides the IoT malware attacks into three stages: intrusion, infec-
tion, and monetization [44, 46]. Through an in-depth analysis of IoT
malware, we find that there exist several common activities in many
IoT malware attacks, such as usage exploitation, malware down-
loading, permission change, and binary execution. These activities
are the most basic activities to launch IoT malware attacks, and
even unknown malware variants need to perform these activities.
In order to minimize the loss caused by IoT malware, it is important
to identify these malicious activities as early as possible.

In general, malware detection approaches can be divided into
two categories: network-based and host-based approaches. The
network traffic analysis [19, 42] has be commonly used for protect-
ing IoT systems. When malicious traffic patterns are detected in
IoT networks, warnings are generated. However, such a solution
cannot examine the details of activities that are executed in IoT
devices, which are important to enable fine-grained detection of
IoT malware. Another possible solution is to detect these activities
by host-based security mechanisms [2, 51]. Unfortunately, IoT de-
vices are usually resource-constrained and always hard to support
full-fledged detection solution. Even worse, these devices are de-
signed based on different principles and mechanisms, which make
it difficult to apply one general detection approach to all kinds
of devices. Therefore, it is not practical to directly leverage tradi-
tional host-based security solutions (e.g., antivirus) to secure IoT
devices [61]. A feasible detection solution for IoT malware should
be able to effectively monitor the infection activities while require
minimal changes to the software or hardware of IoT devices. Intu-
itively, the non-intrusive monitoring (i.e., side-channel analysis) of
a system’s runtime activities is such an ideal host-based method
for the detection of IoT malware.

Non-intrusive power side-channel approaches have been re-
cently developed to distinguish malicious and legitimate activities
based on the power signals (i.e., power consumption measurements)
of embedded devices [9, 33, 60]. For example, WattsUpDoc [9] is
an anomaly-based detection method to identify malware on medi-
cal devices. However, existing detection methods based on normal
and abnormal patterns cannot be directly used for effective detec-
tion of IoT malware. Usually, they only consider deviations from
normal baselines as abnormal but ignore the internal details of
these anomalous behaviors. That said, they cannot differentiate

https://doi.org/10.1145/3320269.3384727
https://doi.org/10.1145/3320269.3384727

Session 1: loT Security and Privacy

specific malicious activities and attack stages. Simply categorizing
anomalous activities as an attack without considering different
stages of attacks could inevitably cause a large number of false pos-
itives. Therefore, it is necessary to design a fine-grained approach
to further identify executed activities (i.e., commands) from these
anomalous cases, and achieve an effective detection of IoT malware.

The IoT malware detection based on fine-grained power side-
channel analysis requires us to address several critical technical
challenges. First, there is a lack of in-depth analysis of activities
of IoT malware due to the lack of relevant malware samples. A
systematic analysis of IoT malware is important to identify their
common activities. Second, though power signals provide a promis-
ing solution, they are notoriously noisy due to the fact that most
IoT devices rely on the alternating current. It is unclear whether the
power signals associated with different activities in IoT devices are
distinguishable. It is even challenging to detect multiple consecutive
activities as there are no clear boundaries in their corresponding
power signals. Third, even if we can accurately infer activities from
power signals, it is non-trivial to determine whether these activities
are belonging to IoT malware attacks or benign usage.

In this paper, we address the above challenges and present Deep-
PoweR, a novel framework for non-intrusive detection of IoT mal-
ware based fine-grained power signals analysis. First, we identify
common activity patterns of IoT malware from a set of known
open-source malware and reverse engineering reports. Second,
DeepPower performs an effective data preprocessing to tackle the
problem of noisy power signals. By using deep learning techniques,
DeepPower infers executed activities from corresponding power
signals. Third, DeepPower performs a correlation analysis of these
activities to determine whether there exist malware infections in
IoT devices.

We make the following contributions in this paper:

e We perform a study of IoT malware infection process based
on open-source IoT malware and reverse engineering reports.
We categorize the malicious activities of IoT malware into
one intrusion and five infection states, and identify common
activities of IoT malware in the process of infecting devices.

e We develop effective data preprocessing methods to min-
imize the influence of noise in power signals, including a
wavelet denoising method to remove background noise, and
a feature extraction method to obtain unique signal patterns.
These methods collectively improve the performance of the
following malware detection task.

e We propose a new framework, DEepPoweR, for the non-intrusive
detection of infection activities of IoT malware using power
signals based on deep learning. DeepPower begins with a fast
signal detection to identify suspicious activities, and then
utilizes an attention-based Seq2Seq model to achieve a fine-
grained analysis of these suspicious signals. After inferring
these activities, DEepPower conducts a correlation analysis
between activities and infection states, and outputs the final
detection results.

e We implement the DeepPower system by using low-cost
sensors and devices, and evaluate its effectiveness for non-
intrusive detection based on real-world IoT malware using
commodity IoT devices. Our experiment results show that

34

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

w
o
|

N
©
|

N
©
L

I
g
.

Voltage (V)

N
)
L

N
5
L

N
>
L

0.2 0.3
Time (second)

0.0 0.1

Figure 1: The power signals collected on a D-Link IP Camera
during the infection process of IoT malware Mirai [41]. The
red boxes (a), (b) and (c) indicate three different infection
activities: login attempts, environment preparation and file
downloading,.

DeepPower can detect the infection activities of different
IoT malware with high accuracy (90.4% detection rate on
average) without any changes to IoT devices.

Roadmap. Section 2 describes the threat model and deployment
scenarios. Section 3 presents our study of intrusion and infection
process of IoT malware. Section 4 describes our DeepPower design.
Implementation and evaluation details are discussed in Section 5.
Section 6 reviews related work and Section 7 concludes this paper.

2 THREAT MODEL AND DEPLOYMENT
SCENARIOS

Due to the software and hardware constraints in IoT devices, it still
lacks an effective security mechanism to protect these devices. Many
devices with known and unknown vulnerabilities (e.g., default/weak
passwords, unpatched bugs) are still being exploited. It is highly
desirable for these resource-constrained devices to detect malware
activities in a non-intrusive manner. The power side-channel anal-
ysis is one of ideal choices. Previous research shows that power
signal analysis can achieve high detection rates of anomalous be-
haviors [9], but it inevitably results in some false positives due
to noisy power signals. A traditional anomaly detection solution,
however, doesn’t further analyze these abnormal behaviors and
thus only provides a coarse-grained detection.

Taking the IoT malware Mirai [41] as an example, as shown in
Figure 1, during its infection process on a D-Link IP Camera, there
exist at least three different waveforms (a), (b) and (c), which indi-
cate three different infection activities: login attempt, environment
preparation, and file downloading. The traditional anomaly detec-
tion method can only categorize these three different waveforms
as abnormal cases, but cannot tell us what activities behind these

Session 1: loT Security and Privacy

Figure 2: Three deployment scenarios of our proposed detec-
tion solution: (a) implementing it as an independent moni-
tor; (b) integrating it into the Smart Plug; and (c) adding a
power sensor to an IoT device.

suspicious signals. In fact, it is obvious that these three power wave-
forms are different. Thus, it is desirable to perform a fine-grained
analysis of these waveforms, and identify corresponding activities
that cause these abnormal waveforms.

2.1 Threat Model

In this paper, we focus on Linux-based IoT devices, which are the
main target of IoT malware [3, 10]. Remote attackers may exploit
different vulnerabilities [61] (such as device firmware flaws, un-
protected authentication, and vulnerable applications) for compro-
mising IoT devices. In the intrusion process, the attacker can get
a remote shell and execute several commands to infect devices
or cause a severe system damage. The infection process has sev-
eral states/steps for preparing the environment, and downloading
and executing the malware binary. We don’t consider the situation
where multiple attackers attack the same device simultaneously
and execute their own infection activities in parallel. We aim at
the detection of IoT malware attacks, which perform malicious or
destructive behaviors on devices by injecting commands. Although
most of the IoT malware targets the Linux-based devices running
BusyBox [29], which combines many common UNIX utilities into a
single executable, our design is not limited to these Linux-based IoT
devices running BusyBox, and generally applicable to any Linux-
based devices.

2.2 Deployment Scenarios

Our research goal is to design a low cost and non-intrusive IoT
malware detection solution, which can support various flexible
deployment scenarios. It has a strong advantage of being inexpen-
sively deployable for critical 10T devices, i.e., IP cameras, rather
than for every IoT device. There are several feasible deployment
solutions in real world as shown in Figure 2. Figure 2 (a) demon-
strates a deployment scenario where our detection solution can
be implemented as an independent monitoring system, which is
provided by third-party vendors. Such a plugin system is placed
between an IoT device that needs to be protected and an AC-power
adaptor. For the second deployment scenario shown in Figure 2 (b),
since there are already Smart Plug products on the market that can
monitor the energy consumption of devices [5], it would be easy
to integrate our solution into such Smart Plug products. In fact, it

35

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

is also possible to extend Smart Plug products to monitor multiple
IoT devices at the same time. As shown in Figure 2 (c) for the third
deployment scenario, IoT device vendors could integrate power
sensors into some [oT devices, which means that it would be much
easier to monitor the power consumption of those devices. Actually,
internal power sensors have already been integrated into today’s
smartphones. Previous studies have shown the possibility to use
the power consumption for detecting malware in smartphones [40].

3 IDENTIFYING INTRUSION AND INFECTION
ACTIVITIES OF IOT MALWARE

In this work, we collect and analyze open-source IoT malware in-
cluding Mirai [41], Linux.wifatch [58], and Lightaidra [16], and
reverse engineering reports from security researchers [3, 23]. We
observe that there exist two typical stages when IoT malware at-
tempts to compromise a device. The first stage is intrusion process,
at which attackers try to log into IoT devices. The second one is
infection process, at which several activities are executed to prepare
the environment, and download and execute malware binary files to
infect the devices. Through the infection process, several activities
are used to infect vulnerable devices.

3.1 Intrusion Process of IoT Malware

After the intrusion process, the attacker is able to get a remote shell
and execute several commands to infect devices or cause a severe
damage. Usually, IoT devices are exposed to a number of security
attacks, including weak/default passwords, lack of encryption, back-
door, and zero-day vulnerabilities. As listed in Table 1, we categorize
the intrusion process into two types: vulnerable authentication, and
unpatched or zero-day vulnerabilities.

Vulnerable Authentication: Authentication plays an essential
role in IoT security solutions. A poor authentication mechanism can
lead to a device to be compromised easily and thus attackers can get
its remote shell. For example, most of IoT malware compromise and
infect devices through weak/default passwords on Telnet, and hijack
them to launch DDoS attacks. An increasingly popular cyber-attack,
Permanent Denial of Service (PDoS) attack, also uses the same
security flaws as Mirai [47] to compromise the victim’s hardware.

Unpatched or Zero-day Vulnerabilities: Another category
of intrusion is based on exploiting unpatched or new vulnera-
bilities, which can also be used to launch DDoS attacks, such as
OKIRU/SATORI [7] and Amnesia [59]. IoTroop [8] is a new type
of IoT botnet that is designed to scan device’s vulnerabilities in-
stead of brute forcing passwords. BASHLITE is a malware which
infects Linux-based IoT devices by exploiting the GNU Bash vul-
nerability known as ShellShock (CVE-2014-6271) [30]. It allows
attackers to execute malicious code via a crafted environment [12].
TheMoon [32] is a worm, which was firstly discovered in 2014 by
exploiting a vulnerability (CVE-2014-9853) in ASUS routers. It al-
lows attackers to bypass the authentication process and execute
malicious commands via a NET_CMD_ID_MANU_CMD packet to
UDP port 9999 [13].

Table 1 also lists several top security threats, such as buffer over-
flow and backdoor. For example, Linux.Darlloz [15] is a worm by
utilizing the PHP ‘php-cgi’ Information Disclosure Vulnerability

Session 1: loT Security and Privacy

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Table 1: The intrusion summary of reported IoT malware.

Intrusion Type Attack Type Security Issue IoT Malware Attacks
Vulnerable DDoS attacks Weak/default passwords or bypass Mirai [4], Remaiten [35]
Authentication PDoS attacks Weak/default passwords BrickerBot [47]
Brute force attacks Not limit password attempts Linux/NyaDrop [39], LuaBot [39]
DDoS attacks CVE-2017-17215,RCE, Shellshock Amnesia [59], IoTroop [8]
Unpatched Crypto-currency mining PHP Vulnerability (CVE-2012-1823) Linux.Darlloz [4]
Vulnerabilities ~ Buffer overflow attacks ~ Insecure HANP Protocol DSP-W215 Smart Plug [14]

Backdoor attacks

Pre-auth RCE vulnerability of IP Camera

Affect 1250+ models [27]

Three Stages Early-stage states

Intrusion

Process : Login Attempts]

v

: Environment Preparation

v

: Files Downloading

v

. Permission Modification]

Infection

v

: File Execution

L

: History Removal

Monetization
Process

I
I
I
I
I
|
Process i
I
I
|
I
I
|
I

Figure 3: Three stages of IoT malware attacks [44, 46]. The
intrusion and infection models (Sy-S5) in our analysis.

(CVE-2012-1823), which allows remote attackers to execute arbi-
trary code by placing command-line options in the query string [11].
In addition, the D-Link DSP-W215 Smart Plug can be exploited to
get a root shell by stack overflow, since it uses the insecure Home
Network Administration Protocol (HNAP) [14]. Some new vulnera-
bilities about backdoor root account (CVE-2017-8224) have already
been reported, which at least affect 1250+ Wireless IP Camera (P2)
models [27]. Through the intrusion process, the attacker is able
to get a remote shell and execute malicious commands to infect
devices or cause a severe damage.

3.2 Infection Process of IoT Malware

Identifying the infection process is a critical step for IoT malware
detection, which requires a comprehensive analysis of real-world
attacks on IoT devices. Based on the infection activities observed
from the IoT malware source code and the reverse engineering
reports, and command patterns observed by IoTPOT [46], we sum-
marize the commonly used commands and their corresponding
states as shown in Table 2. It illustrates that multiple steps need to
be executed to infect devices successfully. For instance, the wget
command is used to download a bash script or malware binary to
victim’s device. The chmod command may be used to change the
access permission to the malicious file. After these two operations,
the malware begins to run an execute command of the downloaded

36

malware and become active. As shown in Table 2, most of the IoT
malware take advantage of these three commands to compromise
vulnerable devices. The rm command and kill or killall command
also appear often in our collection. The former one is used to delete
all malicious files when they are successfully executed. The latter
one may be used to terminate the telnet, SSH, and HTTP services
to prevent victim’s device to be compromised again.

Take the IoT Mirai malware for example, the infection log shows
that it will execute several commands after successful login. The
first step is to check and customize the environment. It executes
“/bin/busybox ps;” command to display the processes running on
the system, and tries to find a folder with the write and execute
permissions to download malware files by using “/bin/busybox cat
/proc/mounts;” command. When it successfully executes echo, cat,
and rm commands, a suitable folder is found to save the malware
files. Then it continues to execute the following commands: “cd /;
/bin/busybox cp /bin/echo dvrHelper; >dvrHelper; /bin/busybox
chmod 777 dvrHelper;”, to test whether it can create a new exe-
cutable file. Before it starts to download the malware binary, it uses
the command “/bin/busybox cat /bin/echo\r\n” to parse the ELF
(Executable and LinkableFormat) header and obtain the architec-
ture information. Next, the malware tries to download the binary
file by the command wget and change the permision of downloaded
file by chmod command. After successful execution, it removes the
infection history on the device as quickly as possible.

However, IoT malware families are diverse and have versatile
ways to achieve the same purpose by different commands. For
example, to find a folder with write and execution permissions,
IoT malware can utilize the command sequence of “cd /tmp || cd
/var/run || c¢d /mnt || cd /root || cd /;”. Some malware may use the
command combination of “cat /proc/mounts | grep r”. In addition,
a new IoT malware botnet, called IoTroop [48], uses the “echo”
command to convey the vulnerability information of devices to
attackers for a further infection. Thus, it is necessary to model
the infection process to analyze the activities across various IoT
malware families.

As shown in Figure 3, we further divide the infection process into
five states. As a result, our analysis typically focuses the intrusion
and infection processes, which includes six states, login attempts,
environment preparation, downloading files, permission modification,
executing files, and deleting infection history. Note that the intrusion
and infection stages we studied are host-based and different from
the infection dialog process of network traffic by Gu et al. [19].
Compared to other recent studies on IoT malware analysis, focusing
on malware execution behaviors of open-source botnets [3, 4], our

Session 1: loT Security and Privacy

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Table 2: The commonly used commands (operations) during the infection process. S;~Ss are different infection states shown

in Figure 3.
S S S10§ Sy S5 0$ Sy S3 Sy Ss S5

IoT Malware cd cat cp echo mkdir ps grep wget chmod execute rm kill References
Linux.wifatch . . . e Source code [58]
Lightaidra ° . ° Source code [16]
Mirai e o ° ° ° e Source code [41]
Psybot . . . Reverse Eng. [28]
Chuck Norris . . ° . Reverse Eng. [28]
Kaiten . ° . ° ° Reverse Eng. [20]
Linux.Darlloz e Reverse Eng. [15]
BASHLITE . . ° Reverse Eng. [26]
XOR.DDoS e o ° . Reverse Eng. [36]
IRCTelnet . ° . . Reverse Eng. [38]
LizKebab . . ° Reverse Eng. [37]
Remaiten . . ° . ° e Reverse Eng. [35]
TheMoon Reverse Eng. [32]
NyaDrop o o . . . Reverse Eng. [39]
Hajime ° . ° ° Reverse Eng. [55]
Amnesia Reverse Eng. [59]
BrickerBot . Reverse Eng. [47]
PERSIRALA . ° Reverse Eng. [53]
IMEIJ.A . . Reverse Eng. [52]
DvrHelper . 3 . Reverse Eng. [54]
Okiru . ° ° Reverse Eng. [7]

analysis is concentrated on the common infection activities, where
different variants of malware are likely to share common infection
behaviors. Therefore, our method is able to detect new malware
variants. Based on the in-depth understanding of malware infection
activities, we next discuss how to accurately detect them using
power signals.

4 DEEPPOWER DESIGN

A fine-grained analysis of IoT malware allows us to understand
what kinds of activities on devices are expected to appear during
the IoT malware infection process. The major challenge is how
to accurately detect these activities on resource-constrained IoT
devices. In this section, we introduce the system architecture of
DeepPower and the technical details behind it.

4.1 System Overview

DeepPower focuses on the detection of infection activities of IoT
malware attacks, which are more common and general than other
activities. Figure 4 illustrates the overall system architecture of
DeepPoweR. It consists of four phases: (1) detection of suspicious
signals; (2) preprocessing of suspicious signals; (3) inferring activi-
ties from suspicious signals; and (4) infection process modeling and
correlation analysis of inferred activities. In phase (3), it contains
training (model learning) stage and testing (malware detection)
stage.

The first phase takes the power signals of the monitored device
as input and quickly detects suspicious power signals. The purpose
of this phase is to filter out most of the signals and only retain a
small number of suspicious signals for further fine-grained analysis.

37

Considering that the suspicious signals contain a lot of noises, in
the second phase, DeepPower performs an effective data preprocess-
ing to reduce noises and extract useful features that will be used
by a sequence to sequence (Seq2Seq) model. In the third phase, the
Seq2Seq model is developed to infer the activities from the prepro-
cessed suspicious signals. We choose the Seq2Seq model because
it has been applied with a great success in various tasks, such as
neural machine translation [34] and automatic speech recognition
(ASR) [6], which are similar to the activity prediction problem in this
work. Finally, to determine whether a malware infection process
exists in the device, the last phase performs a correlation analysis
of the inferred activities against the infection process model, and
calculates a weighted score for each state.

4.2 Detection of Suspicious Signals

Recently, many machine learning techniques have been proposed
to perform anomaly detection tasks based on power signals [9],
which model permissible activities and detects deviations. When
power signals are identified as outliers, it is unclear whether these
deviations are caused by anomalous activities or by noises, since
power signals always contain lots of random and periodic noises
introduced by the power supply (i.e., 50/60 Hz AC). Therefore, it
is reasonable to consider these deviations as suspicious activities,
and perform a further fine-grained analysis of them. In this phase,
we use a deep autoencoder to detect suspicious activities with low
complexity and in an unsupervised manner.

A deep autoencoder is a multi-layer feed-forward neural net-
work, which encodes the input into low-dimensional representation
based on non-linear transformations, and reconstructs the original

Session 1: loT Security and Privacy

Detection

% I 10T device

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Phase 4: Infection Process
Modeling & Correlation

Phase 3: Inferring Activities

Results Analysis from Suspicious Signals
T
P ignal '
ower signa —— Training [
collection ! I
1
Output: activities

Phase 1: Phase 2: Data LS

Suspicious Preprocessing Seq2Seq

Detection A A Ao
Input: signals
) Waveform of 4
Power signal S e
suspicious activities

Testing

Figure 4: DEEPPOWER system overview.

input based on the representation. Unfortunately, the outliers and
noise in power signals reduce the representation quality and bring
great challenges to the standard denoising autoencoders, which
requires clean training data. Herein, we utilize a Robust Deep Au-
toencoder (RDA) model [62] to first isolate the suspicious parts
in power signals and then train an autoencoder on the remaining
portion. This model is suitable for handling different noise intensi-
ties and patterns in heterogeneous devices. The power signals X
are splitted into two parts, X = Lp + S, where Lp represents the
part that can be accurately reconstructed by an autoencoder, and S
indicates the outliers and noise that are difficult to reconstruct. We
use the following optimization objective:

ming||Lp — Do(Eg(Lp))ll2 + AllS|lx
st.X-Lp-S=0,

where X is the input power signals, Ey is an Encoder, and Dy is

a Decoder. S contains the suspicious portions, and Lp represents

the remaining parts. || - ||2 denotes the L?-norm and || - ||; denotes

L'-norm (the absolute-value norm). A is a hyperparameter that

controls the sparsity level of S. A small A will isolate more parts of
raw power signals into S as suspicious portions.

1

4.3 Preprocessing of Suspicious Signals

The objective of this phase (Phase 2 in Figure 4) is to preprocess
suspicious signals to obtain high-quality features for activity infer-
ence. There exist two issues that need to be solved. First, the AC
power supply causes periodic appearance of strong peaks during
(a), (b) and (c) activities in Figure 1. Our experiments show that
these peaks randomly appear anywhere in a periodic way. It is
necessary to remove these peaks from the raw signals before the
feature extraction. Second, due to the intrinsic properties of power
signals, the time domain-based signal processing method cannot
discriminate the fine-grained characteristics of different activities
accurately. We need an effective solution to extract unique features
from suspicious signals.

Our data preprocessing method is described as follows. First,
a 100-point simple moving average (SMA) filter is applied to re-
duce the effect of small fluctuations and smooth the power signals.

38

Figure 5(a) shows the power signals of wget command by using
the SMA filter. Second, we apply the wavelet denoising method to
remove the strong background noise generated from the AC power,
as shown in Figure 5(b), while keeping as much useful information
as possible (Figure 5(c)). Third, we transform the filtered signals
into mel-scaled spectrograms and use them as the input of the later
prediction tasks. These frequency domain-based features make the
power signals of different activities more distinguishable while
reducing input dimensionality and computational overhead. To
verify whether this preprocessing method is effective, we perform
a classification task on individual activities of power signals. The
classification result also demonstrates the distinguishability of the
individual activity’s power signal. Furthermore, while analyzing the
situation of multiple consecutive activities, there are no boundaries
between their waveforms of different activities. A natural choice is
to apply a Seq2Seq model to infer activities from power signals.

4.4 Inferring Activities from Suspicious Signals

After preprocessing the suspicious signals, this phase (Phase 3 in
Figure 4) utilizes deep learning techniques to infer activities from
the signals. It aims to sequentially infer the activities sequence from
their corresponding power signals. First, DEepPower employs an
effective attention-based Seq2Seq architecture with Long Short-
Term Memory (LSTM) networks [24, 34] to figure out the problem
about no boundaries between the power signals of different activ-
ities. This Seq2Seq model allows it to focus on the specific parts
of the power signals to output one activity in the target sequence
every time. To achieve a better prediction performance, DEepPPOWER
utilizes the convolutional layer to capture high-level features from
the processed suspicious signals and feeds these high-level features
into the Seq2Seq model. Second, to infer activities from suspicious
signals, we need to build the training dataset and testing dataset to
train and test this Seq2Seq model. However, given a power signal,
it is unclear that how many activities it contains, and which part
of power signal should each activity correspond to. It is difficult to
build the dataset of time-aligned pairs of activities sequence (output)
and power signals (input). We address this dataset issue through
two main steps. First, we concatenate the power signal of individual

Session 1: loT Security and Privacy

(a) The signal after SMA

3.00 1

2.751

2.501

(b) Noise

w

o

S
L

2.751

Voltage (V)

2.501

(c) The signal after denoising

0.05

0.00

—0.05

0.015 0.020 0.025 0.030 0.035

Time (second)

0.000 0.005 0.010

Figure 5: The wavelet denoising of wget command on D-Link
IP Camera: (a) the signal after SMA; (b) background noise;
and (c) the signal after denoising. (a), (b) and (c) share the
same x coordinate.

activity to create the power signals of multiple activities. Second,
this Seq2Seq task requires to further process the training dataset
by labeling a power signal multiple times. The power signal of one
activity can usually be converted to dozens of frames for feature
extractions, which means that dozens of frame inputs correspond to
one output. This extreme imbalance between the input and output
lengths makes it difficult for the Seq2Seq model to accurately align
the short target sequence to the long power frame sequence. There-
fore, instead of setting one label per activity in target sequence,
we set each activity with multiple repeated labels according to the
power signal length of this activity. This labeling method enables
the model to predict each activity of the target sequence and the
boundaries of each activity. In addition, it also makes our model
focus more on the activities that the corresponding signals have
longer lengths, which are more energy-consuming and sensitive.

For a given power waveform sample X = {xy, ..., x5}, we map it
to a target sequence y = {y1, ..., ym }. The variable n is the length
of the power waveform of one or more activities. The m means
the number of activities contained in the power waveform. The
target sentence y is generated one target y; at a time based on the
probability:

P(y¢ly<r.cr) = sof tmax(Wshy) @
where the attentional hidden state h; is computed as:
he = tanh(We[ce: he]) ()

h; is the hidden state of the Decoder, c; is the input context vec-
tor, and [;] indicates the concatenation operation. Wy and W, are

trainable parameters.
r = Z a (S)Fls
N

Here, the context vector c; is derived from all the hidden states
of the Encoder. At each time step t, the score function is used to
compare the target hidden state h; and all the encoder hidden

©

39

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

state hs, and the result is normalized to derive a variable-length
alignment weight vector a;:

exp(score(h;, ES)))
25:1 exp(score(hy, h;)))

where the alignment weight «; indicates that the parts in the input
are the most likely to help in predicting the output in the target
sequence.

®)

ar(s) =

4.5 Infection Process Modeling & Correlation
Analysis

To detect IoT malware via the infection process, this phase (Phase 4
in Figure 4) first models the infection process and then performs a
correlation analysis of the inferred activities based on the infection
process model. The malware analysis (Section 3) shows that IoT
malware usually use the following different approaches to infect
devices: (1) downloading scripts and execution; (2) creating new files
and execution; (3) direct injection of commands; and (4) running
different commands interactively. We also find that even given the
sequence of the same commands, some attackers run the entire
sequence multiple times to meet different architecture requirements,
while others tend to repeatedly run parts of the command sequence
to achieve the same goal. In addition, there are multiple activities
that can achieve the same purpose. For instance, both of the wget
command and the #ftp command can be used to download the
malware to the device for execution. To handle such complexity
and diversity, we map all these activities in target sequence to
corresponding infection states according to Table 2, which enables
us to better understand the semantics of the entire target sequence.
Then, we correlate these states from inferred activities against our
infection model (Figure 3) to identify whether an IoT device is
infected. According to Table 2, there are different combinations
of states that are required for the infection of an IoT malware. To
transform these combinations into a scoring system, we employ
a regression model to estimate the state weights and a threshold
value.

5 IMPLEMENTATION AND EVALUATION

In this section, we implement a prototype of DeepPower and eval-
uate our method on real-world settings. We perform a number of
experiments to answer the following questions:

e Can we implement DeepPower in a plug-and-play manner
using low-cost sensor and devices (Section 5.1) ?

e Can DeerPower detect the power signals of suspicious activ-
ities by the autoencoder model (Section 5.2) ?

e Can the power signals associated with different activities be
distinguishable and what is the classification performance
of the individual activity (Section 5.3) ?

e What is the DeepPower performance on identifying multi-
ple activities based on power signals during cross-device
prediction (Section 5.4) ?

e What is the DeepPowEr performance in detecting infection
activities of real-world IoT malware based on fine-grained
power signals analysis (Section 5.5) ?

e Can DeepPower be resistant to potential evasion attacks dur-
ing the detection of infection activities (Section 5.6) ?

Session 1: loT Security and Privacy

e A
Camera s ®
L Q
L -IN INL_]
GND Vrefl
Vref2 V+

E —‘ AD2
Ne ouT coocoos
Sensor %=

o—
Power Supply

Camera

Figure 6: The wiring diagram (a) and experimental setup (b)
for DEEPPOWER system (AD2: Analog Discovery2), the green
lines represent the sensor wires, the red lines denote the
power supply, the black lines are the ground wires, and the
blue wires connect the AD2 with the sensors. The power sup-
ply, shunt, and AD2 board need to be properly grounded.

5.1 Experimental Setup

Most IoT devices have separate alternative current to direct cur-
rent (AC-DC) converters, which can serve as the power monitoring
point without any hardware or software modification. In this work,
we measure the power consumption of the entire IoT device, by
inserting a precision resistor (0.3 Q) between the load and the
power supply. We choose the Analog AD8210 current sensor and
the USB oscilloscope Analog Discovery2 to monitor power usage
with 1-MHz sampling rate. Figure 6 shows the wiring diagram and
experimental setup for our system. The entire system has its own
separate power supply and does not interfere with the power con-
sumption of the monitored device. There are two main reasons
for choosing such configuration. First, this plug-and-play setting
ensures that it can be easily deployed to monitor the critical and
sensitive IoT devices. Second, choosing a low sampling rate (1 MHz),
which is three orders of magnitude lower than other work [33], can
reduce the cost of the entire implementation, making our approach
more practical.

40

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

We choose IP cameras to evaluate the detection solution based
on the fact that the most known attacks, i.e., Mirai botnet, targeted
such devices [3, 4]. IP cameras contain representative hardware
modules and complex software applications, such as image sensor
and light sensor, which require special software for remote viewing,
motion detection and day/night mode shift. In other words, the
power signals of these devices are complex and dynamic, and not
as fixed and repeated as SCADA [9], PLC [60] or MCU [33]. Table 3
lists the detailed information of three real-world IP cameras used
in this work. Without loss of generality, we install the OpenWrt
15.05.1 firmware, the mjpg_streamer driver and light sensor daemon
on D-Link DCS-934L (D-934L) to ensure that it works normally.
This firmware allows us to test the default password attack. The
camera of ESCAM GO02 (E-G02) has a vulnerability that allows us
to test on the original firmware. Xiaofang 1S (X-1S) allows us to
run a modified firmware on it through SD-card hacks [18]. In our
experiments, these IoT devices represent three different noise levels
of power signals: strong, medium and weak, which ensure broad
coverage of our evaluation.

Based on hardware configuration discussed above, we collect the
power signals of these IoT devices in a real-world environment. The
power signals generated by all relevant software are reflected in the
background of power signals. For each time window of the power
signals, we first perform a fast detection of the suspicious activities
to identify potential anomalies. Then, these suspicious signals are
further processed to obtain the waveform of suspicious activities
through smoothed z-score algorithm and the Run Length Encoding
(RLE) approach. To identify what type of activities are included in
a suspicious signal waveform, we need to perform a fine-grained
analysis. Since the signals are noisy, we first reduce the noise by
the Wavelet method. Our experiments show that the Wavelet con-
figuration of db2 type and 7 level can achieve the satisfactory noise
reduction results. Then, to perform the spectral feature extraction,
we adopt the following parameters: the length of FFT window is
2048, the number of samples between successive frames is 512 and
n_mels is 32. All experiments are conducted on a server with 2
NVIDIA K40 GPUs with the CUDA 9.0 toolkit installed.

The main problem that DeepPower is expected to address is the
fine-grained detection of malware infections on resource-constrained
devices. We do not assume that DeepPoweRr is only for less complex
devices. Considering that IoT devices are becoming increasingly
complicated, with more functionalities equipped, this may diversify
the background information of power signals. In this case, we can
add more relevant signals to the training data set to ensure that
DeepPower can still predict reasonable results.

5.2 Detection of Suspicious Activities

To detect the suspicious activities, we implement the autoencoder
model using TensorFlow. For the Encoder Eg and Decoder Dy, we
follow multi-layer neural network Eg(Lp) = Z(Lp) = logit(WLp+
bg) and Eg(Lp) = Lp = logit(WT Z(Lp) + bp) [31], where W
projects the input dimension to a lower dimensional space, W7
indicates a projection from the low-dimensional space back to the
original input dimension, bg and bp are the bias terms. We use one
hidden layer that projects the input signals from 1000 dimensions
to 256 dimensions. The hyperparameter A is set to 20 to isolate a

Session 1: loT Security and Privacy

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Table 3: The summary of real-world IoT devices being tested in our experiments.

IoT Device CPU Arch Firmware

Power Usage

Noise Level Attack Type

D-Link (D-934L) MIPS OpenWRT rt305x 5V, 1A Noise-dominant Default password
ESCAM (E-G02) ARM Original version 5V, 1.6A Medium-intensity ~ CGI vulnerabilities
Xiaofang (X-1S) MIPS Modified version 5V, 1A Low-noise SD-card hacks

Outliers Detected —— Original Signal

0 0.2

0.4 0.6
Time(second)

0.8 1.0

Figure 7: The detection of suspicious activities by autoen-
coder model on DCS-934L.

small portion of power signals as the noise or outliers. To train this
model, we sample the power signals with 1-second window size,
and collect 100 normal power signal samples for each device. Then
these 1-second samples are downsampled to 100 kHz from 1 MHz.
After normalizing the signals of each device, we mix all the signals
together as the training data to train an autoencoder model that can
be applied on different devices. Figure 7 demonstrates the detection
results on DCS-934L. The outliers detected by the model are caused
by the suspicious activities. The following experiments will map
these suspicious power signals to their corresponding activities.

5.3 Discriminative Analysis of Activities

To infer activities from power signals, we first perform signal clas-
sification task to evaluate the distinguishability of the individual
command’s power signal after data preprocessing. This task is
conducted by ResNet-50 Convolutional Neural Networks (CNN)
model [22] in PyTorch. This experiment is implemented on the
DCS-834L IP Camera. We should notice that the signal length of
each activity is different, and if the entire signals of the activities are
fed into the neural networks, the model will learn to identify these
activities mainly by their signal lengths rather than the patterns of
their signals. Therefore, we split the power signal of each activity
to multiple 10 ms chunks without overlap, where the chunks from
the same activity have the same label. After this step, our training
data set and testing data set have 78,220 and 7,309 fix-length power
signal samples, respectively. In our experiments, we set the batch
size to 128, weight decay to le-2, learning rate to le-4, and the max
epoch to 70. To train the model, we use the stochastic gradient
descent (SGD) optimizer and reduce the learning rate by a factor
of 10 when the validation loss is not improved for five consecutive
epochs.

41

Table 4 shows the confusion matrix of 11 different activities for
the classification task. Compared with the commands in Table 2, we
group the chmod, rm, mkdir and cp command into the METADATA
operation. On the monitored device, there exists an intrusion type
to obtain a root shell by remote attackers, which is labeled as login
activity. If there is a non-existent or unrecognized command, the
corresponding power signal is labeled as UNKNOWN activity. As
shown in the table, most of the power signal chunks are classified
correctly as their true activity labels. The model achieves the highest
prediction accuracy on UNKNOWN activity. For the signals with
longer activities, e.g., grep and wget, the prediction results are not
as good as other activities. A possible reason is that some CPU and
10 operations involved in one activity are similar to other activities.
Because we split the power signal of each activity into equal-length
chunks, some signal chunks from different activities have highly
similar characteristics. Still, these different patterns of the same
activity can be used to identify the corresponding activity label. The
classification results show that the power signals of the different
individual activities are indeed distinguishable.

However, this classification model with the fix-length chunks
cannot be used to directly predict multiple activities from power
signals for the following reasons. First, the main reason is that
power signals are very complicated in real-world. Given a suspi-
cious power signal, it is difficult to determine how many activities
it contains and the location of each activity. Thus the fix-length
model can result in poor classification performance since it divides
the power activities into one chunk. Second, even though it can
utilize the sliding windows to avoid the problem of inappropri-
ate segmentation, this solution has high overhead and introduces
new problems, such as how to combine the results of each chunk
into a sequence. Third, this model outputs the result of each chuck
independently, which will result in the loss of the dependency in-
formation of the neighboring chunks and the global information
of the entire sequence. Therefore, we apply the Seq2Seq model to
directly map the power signals to the executed activities sequence
according to the order in which they are executed. This model
can not only overcome the above challenges, but also be trained
end-to-end.

54

To predict multiple activities based on power signals, we imple-
ment the Seq2Seq model using TensorFlow. The Encoder employs
3 convolutional layers with 16-length filter and 2 strides to extract
high-level features, and a one-layer Bidirectional LSTM neural net-
works with 256-dim hidden units to capture contextual information
in the input. The Decoder employs a one-layer LSTM neural net-
work with 256-dim hidden units to output the target sequence in
an autoregressive manner. To train the model, we use the SGD
optimizer and a learning rate of 1e-06. The dropout scheme with a

Multiple Activities Prediction

Session 1: loT Security and Privacy

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Table 4: The confusion matrix (%) of the individual activity’s classification on DCS-934L.

cat cd exe echo ps grep login kil wget M U
cat 73.86 0.59 4.55 1.19 0.79 3.17 2.38 0.79 5.15 5.94 1.58
cd 2.27 8545 3.18 5.45 0. 0. 0. 2.73 0.45 0. 0.45
exe 3.26 0.65 76.02 1.14 0.16 2.45 6.36 2.28 0.98 5.22 1.47
echo 1.31 3.93 6.11 72.93 0. 3.06 1.75 9.17 0.44 0.87 0.44
ps 1.00 0. 0.50 0.10 82.5 9.90 2.00 0.10 1.60 1.20 1.10
grep 2.50 0.40 3.10 0.90 1430 67.30 4.90 0.40 4.00 1.20 1.00
login 0. 0. 2.00 0.40 0.90 430 83.90 0.30 2.30 2.70 3.20
kill 2.47 2.06 6.58 12.76 0. 2.06 1.65 66.67 3.29 2.06 0.41
wget 3.29 0.09 1.46 0. 2.56 3.20 4.47 1.19 7498 6.39 2.37
M 4.21 0.34 8.08 0.46 0.34 1.37 6.71 1.02 228 7292 2.28
U 1.59 0. 0.40 1.39 0.40 0.20 3.37 0.20 1.79 2.78 87.90

Table 5: The cross-device prediction results of several true
multiple activities on three IP Cameras (L: login, P: ps, U:
UNKNOWN, M: METADATA, C: cat, D: cd, W: wget).

True seq Prediction (%)

L L (92.2), P (7.3), WM (0.5), WMU (0.1)
PU P (63.5), PU (15.4), WU (23.1)

CU CU (82.5), MU (17.5)

DMMU DMMU (50.8), MMU (12.6), MM (36.6)
CMMU CMM (80.1), MM (19.9)

WUU WUU (66.4), WMU (33.6)

20% dropout rate and the early-stopping method are used to avoid
overfitting. We also clip gradients by the global norm to prevent
exploding gradient, and the max value is set to 5.0. To address the
issue of lack of time-aligned labeled dataset, we concatenate the
power signal of individual activity to synthesize consecutive power
signals of multiple activities. Then, we utilize the power signals of
real multiple activities to fine-tune the pretained model from the
synthesized data set. The training dataset has 21,601 samples and
the validation dataset has 1,731 samples. To verify the feasibility of
the synthesized dataset, we execute multiple activities on the device
and collect their corresponding signals as testing data, which is
composed of 1,800 samples.

Table 5 shows the cross-device prediction results of the Seq2Seq
model from the power signals of true multiple activities on three
IP Cameras. During this cross-device prediction, we normalize the
signals from different devices and mix them together to train a
single model for different devices. For the short sequence (L, PU
and CU), our model is able to predict multiple activities with a high
accuracy. The reason is that short sequences have a greater chance
of being transferred between the signal patterns with the same
activity. And it is relatively easy for the model to capture context
dependency of their relationships when there are less activities.
For the long sequence (DWWU, CMMU and WUU), our model can
correctly predict the vast majority of activities. It indicates that
the model tends to focus on the unique features of signals while
ignoring irrelevant parts introduced by data synthesis.

We further demonstrate the alignment results between the power
signals and the executed activities using Mirai malware. Figure 8
shows the prediction results of DeepPower. DEEPPOWER can exactly

42

locate and recognize each command of the corresponding power
signal. During the prediction of Figure 8(a), we find that the first 30
ms power signal is mapped to the wget command, and the remaining
part can be identified as two METADATA operations. In addition,
the model estimates a high probability that the power signal could
be mapped to the login operation in Figure 8(b). The experimental
results show that it is feasible to utilize power analysis to detect
the infection activities of Mirai malware. Our approach is able to
identify each activity and decide its location from the corresponding
power signal. To further confirm the effectiveness of our solution,
we evaluate this method on more real-world IoT malware.

5.5 Infection Detection of Real-world Malware

After inferring the activities from the power signals, we map the
activity sequence to the state sequence. The correlation analysis
of the state sequence enables us to understand the semantics of
the entire sequence and reach a reasonable conclusion about the
malware infection. We employ a weighted threshold scoring method
that aggregates the total scores S of each detected state (Figure 3).
DeepPower observes a sufficient number of states and calculates a
minimum threshold € to determine whethe an IoT device is infected.
S represents how likely these states belong to the malware infection
process, and can be expressed as:

S = Zslw,- - Si,
i=1

where w; indicates whether a state S; is detected (1 and 0 represent
presence and absence, respectively), and S; represents the score of
the state i.

(6)

Table 6: The scores of individual states.

S1
0.1067

S2
0.2845

S3
0.1421

S4
0.3197

S5
0.1470

State
Score

To make our scoring system reasonable, we collect 887 Linux
malware Bash scripts from VirusShare [56] and 974 Linux Bash
scripts for normal usage from GitHub, and map the commands in
these scripts to the corresponding states according to Table 2. Then,
the desired weight of each state is estimated from the regression
model as shown in Table 6. This table doesn’t include the state

Session 1: loT Security and Privacy

3.0 A

2.8 A

Voltage (V)

2.6 A

0.00 0.06

3.0 A

2.9 A

Voltage (V)

2.8 A

0.05 0.10
Time (second)

0.00

Figure 8: The alignment between power signals and exe-
cuted activities of IoT Mirai malware (L: login, W: wget, M:
METADATA), (a) and (b) are for different activities.

So, because the Bash scripts don’t contain information for intru-
sion processes. Thus, our correlation analysis only considers five
states (S1-Ss5) contained in the infection process. In fact, DEepPowER
can accurately identify the state Sy. In section 5.3, we still consider
this state during inferring activities from signals, but ignore its
contribution to the detection results when performing correlation
analysis.

We apply these weights to estimate the threshold between the
malware Bash scripts and normal Bash scripts. As illustrated in Fig-
ure 9, we observe that all but 8 malware scripts score are below 0.6,
and all but 38 normal scripts score are above 0.6. Thus, it is reason-
able to set the threshold to 0.6 in our system, which only introduces
1.3% false positives and 0.3% false negatives. In order to further
reduce the false positive rate, we perform a more comprehensive
analysis of these false positive scripts. We find that these scripts can
be divided into two categories: installation scrips and upgrading
scripts according to their purposes of usage. For the former one, it
is reasonable to mark the installation process as known normal ac-
tivities and exclude it from the detection results. For the latter one,
taking the open-source OpenWrt system as an example [45], the
most obvious difference between a normal upgrading process and
a malware infection process is that the upgrading process typically
utilize two more commands: the sha256sum command for checking

43

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

1.0 A
0.8 1
o) *
o o O Q
* *
%]
L
IS 0.6 -
o W Rty [l Ui B W M AR MR W % W
o
%] u
< % urh 7
S 0.4 4 Wdr dier W BT R S T O YRy VR o ey TR TRy Ty e
v o * oW ww
7 W W frf 7
0.2 1
o % % * * ®ww MWW A
0.0 4 “ridtr Crilr e
T T T T T T
0 200 400 600 800 1000

Normal (bottom) and Malicious (top) Bash Scripts

Figure 9: The scoring plot of 887 malware Bash scripts (yel-
low color) and 974 normal Bash scripts (blue color).

the firmware checksum and the reboot command for restarting
during upgrading. Because the reboot command will free up RAM,
this command is unlikely to appear in the malware infection pro-
cess. This unique upgrading pattern can be used by our system to
eliminate false positives caused by firmware upgrades.

Based on the score of each state (Table 6) and the threshold, we
evaluate DeepPowER on 5 representative real-world [oT malware [56]
that represent 5 different malware types. Especially, Mirai and
Lizkebab are two typical open-source malware, which infects IoT
devices in order to launch DDoS. BASHLITE is another open-source
malware, which affects IoT devices using security bugs in Unix
Bash Shell [30]. Tsunami is a reported IoT bot malware that can
launch web-based attacks [57]. Bourne-Again shell (BASH) Script is
a general Malware DownLoader with size of 1KB and can be used to
download and execute any real-world malware. Table 7 illustrates
our detection results. The detection experiments are repeated for
160 times for each malware. The results show an average accuracy
of 90.4% for all 3 devices on 5 representative real-world malware,
suggesting that our approach is promising for the detection of
real-world malware.

Table 7: The detection accuracy of real-world IoT malware’s
infection activities of DEepPower on three devices.

IoT Malware D-934L E-G02 X-1S Average
Mirai 92.9% 94.6% 90.6% 92.7%
Tsunami 92.6% 91.8% 88.5% 91.0%
Lizkebab 90.6% 89.7% 88.1% 89.5%
BASHLITE 88.9% 88.2% 87.5% 88.2%
BASH Script 92.3% 89.1% 89.7% 90.4%

To demonstrate the benefit of our fine-grained detection ap-
proach, we compare DeepPower with other side-channel based de-
tection solutions in detecting infection activities of real-world IoT
malware. Many existing side-channel analysis approaches mainly

Session 1: loT Security and Privacy

focus on the anomaly detection for Programmable Logic Con-
trollers (PLC) [60] and microcontroller unit (MCU) [33]. WattsUp-
Doc [9] is the most closest work to DeepPower, which uses power
side channels for anomaly detection to identify malware in Windows-
based embedded systems. WattsUpDoc simply categorizes anoma-
lous activities as a malware without considering internal details
of those anomalous activities. In contrast, DEepPowEr could con-
duct a fine-grained analysis of suspicious signals to output specific
executed activities. We reproduce WattsUpDoc and evaluate its
effectiveness of detecting IoT Malware, Mirai, on three IoT devices.
Table 8 shows our comparison results, which indicate that our Deep-
Power system could achieve a significant improvement in both of
true positive rate (TPR) and false positive rate (FPR), which are
92.7% and 2.9%, respectively, comparing with WattsUpDoc that can
only achieve 84.2% TPR and 15.3% FPR in detecting Mirai’s infection
activities.

Table 8: The detection accuracy of Mirai’s infection activities
from two different side-channel methods.

Method TPR FPR
WattsUpDoc 84.2% 15.3%
DEEPPOWER 92.7% 2.9%

5.6 Evasion Analysis

DeepPower focuses on the detection of infection activities based
on power signals. Benefiting from the fine-grained analysis, our
method could be resistant to potential attacks. To ensure the robust-
ness of our solution, we examine several possible evasion attacks.

First, the attackers may attempt to evade the detection system
by injecting several random or invalid commands. To maintain
the effectiveness of their attacks, the random commands injected
by the attackers will not change the patterns of the original infec-
tion. Because our fine-grained analysis is based on the sequence to
sequence translation, which is from power signals to commands
sequence, both of injected random commands and original com-
mands can be identified by the order, in which they are executed.
By conducting a correlation analysis of these identified commands,
DeepPower can still focus on the original infection patterns and
identify these activities as malicious. Considering the case of in-
valid commands injection, all of these invalid commands can be
identified as unknown commands by the corresponding signals.
Therefore, our method is still able to filter out these unknown com-
mands and obtain the original infection patterns. We perform some
preliminary experiments to test the robustness of our approach
with respect to the detection of IoT malware Mirai. We randomly
inject 1 and 3 valid/invalid commands and repeat each experiment
50 times. As shown in Figure 10, there is no significant change in
the detection accuracy of our approach in each case after injecting
random/invalid commands.

Second, it may be subject to an evasion attack that leverages
customized binaries instead of system commands to reach the same
purpose. For example, by analyzing the infection process of Mirai
and Hajime, we find that echo command can also be used to transfer
malware to a victim’s device, in addition to wget and tftp. Especially,
the Hajime malware [1] first uses echo command to drop a hex

44

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

100

80 -
60
40
20
0l

Original Random 1 Random 3 Invalid 1 Invalid 3
Number of random or invalid commands injected

Detection Accuracy (%)

Figure 10: The comparison between original detection and
detection after injecting 1 and 3 random/invalid commands.

string to a very small file as an ELF binary. Then this ELF binary
is executed to connect a pre-defined server to download the real
malware. In other words, to achieve such an evasion attack, attack-
ers still need to drop and execute their own tools on the victims’
devices. Our previous experiments show that these dropping and
execution activities are still detectable even when the attackers rely
only on minimal operations.

6 RELATED WORK

The increasing threats of IoT malware have attracted significant
attention in security research community. Despite network-based
detection method is still a dominant research direction, there are
other solutions that focus on low-overhead host-based detection.

6.1 Network-based Solution

Network-based solutions have been commonly used for protecting
10T systems [17, 25, 42, 44]. Gu et al. [19] presented BotHunter, a
dialog correlation method that utilizes malware-specific signatures
to recognize the malware infection for botnet detection in tradi-
tional networks. However, IoT network traffic is device-specific and
depends on different environmental settings. Due to the diversity of
IoT devices and manufacturers, it is impractical or non-scalable to
create malware signatures [61]. It is also challenging to define nor-
mal baselines of IoT networks for anomaly detection. In addition,
IoT Botnets have continued to evolve and adapt to the advanced
techniques. For example, a newer version of Mirai, DvrHelper, is
the first malware designed to bypass an anti-DDoS solution by
using challenge-response policies and shared Google reCAPTCHA
response token [54]. Although new network-based detection meth-
ods for IoT malware are constantly being proposed [42, 44], they
still cannot identify more detailed activities that occur in IoT devices.
Our detection approach is able to discovery detailed information
about infection activities of IoT malware, which could be a promis-
ing complement to existing network-based solutions.

Session 1: loT Security and Privacy

6.2 Host-based Solution

To secure IoT devices, one preferred solution is to update and patch
buggy firmware for these vulnerable devices. However, due to lack
of suitable facilities, it is difficult to keep track of the available
patches and apply them to all unpatched devices. Also, not all de-
vices are compatible with the available updates due to their outdated
hardware. Considering the constraints of limited resources, only a
few studies have focused on host-based IoT security solution. Sun et
al. [51] proposed a cloud-based detection with reversible sketch
for resource-constrained IoT devices to improve the security of the
devices. Abbas et al. [2] presented a simple signature-based method
that leverages a subset of signatures to detect a group of malware
for IoT devices. Su et al. [50] proposed a light-weight detection
method for IoT malware, based on a local and cloud-based malware
detector. However, all those solutions require the installation of
software in IoT devices, but not all devices can afford such runtime
overhead.

6.3 Side-channel Analysis

The side-channel analysis has been recently developed to distin-
guish malicious and legitimate behaviors based on the power con-
sumption of Supervisory Control And Data Acquisition (SCADA)
devices [9], Programmable Logic Controllers (PLC) [60], and Mi-
croController Unit (MCU) [33]. Especially, WattsUpDoc [9] utilizes
an anomaly-based analysis to detect malware on medical devices.
However, most of the existing side-channel analysis approaches
focus on differentiating normal and abnormal patterns. They don’t
consider the internal details of anomalous cases and cannot identify
the anomalous cases as specific malicious activities (i.e., commands).
To achieve the goal of non-intrusive detection, DeepPower can ef-
fectively infer specific infection activities and conduct a correlation
analysis among activities to output final detection results. Apart
from the power signals, Electromagnetic (EM) signals [21, 43] and
radio-frequency (RF) emissions [49] have also been used for the
anomaly detection of program execution. Our work selects the
power side-channel signal because of its favorable properties: easy
to collect, less susceptible to environmental influence, and closely
correlated with the system’s workload.

7 CONCLUSION AND FUTURE WORK

In this paper, we have conducted a systematic study of the IoT
malware infection process. Based on an in-depth understanding
of IoT malware infection patterns, we have introduced DEepPOWER,
a non-intrusive and deep learning-based detection solution based
on power side-channel analysis to discover IoT malware infection.
We have first verified whether the processed signals of different
individual activities are distinguishable. Based on our experiments,
the mel-scaled spectrogram features are used to distinguish fine-
grained power characteristics of activities accurately. Then, we
have trained a Seq2Seq model to infer activities from the power
signals. To examine its feasibility, we have conducted experimental
verification on the real-world malware infection process, and our
experimental results show that most of the infection processes can
be accurately detected. For our future work, we will further improve
the detection accuracy of IoT malware by choosing more effective

45

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

detection models. Besides, due to the lack of effective score calcu-
lation method for state Sy, our current work doesn’t consider the
influence of this state on the detection results. An interesting future
work is to estimate the score of Sy, and also combine DEePPOWER
with network traffic analysis for a more comprehensive detection
of IoT malware.

ACKNOWLEDGEMENT

This material is based upon work supported in part by the Na-
tional Science Foundation (NSF) under Grant No. 1846291, 1700499,
2031002, 1642143, and 1759856, and the U. S. National Institute of
Food and Agriculture (NIFA) under Grant No. 2017-70016-26051.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of NSF and NIFA.

REFERENCES

[1] IoT Malware Droppers (Mirai and Hajime). https://0x00sec.org/t/iot-malware-
droppers-mirai-and-hajime/1966, 2017.

[2] Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan. Low-complexity
signature-based malware detection for iot devices. In International Conference on
Applications and Techniques in Information Security, pages 181-189, Singapore,
2017. Springer Singapore.

[3] Kishore Angrishi. Turning internet of things (iot) into internet of vulnerabilities
(iov): Iot botnets. arXiv preprint arXiv:1702.03681, 2017.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric,] Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 1093-1110, 2017.

[5] Wemo Insight Smart Plug. https://www.belkin.com/us/p/P-F7C029/, 2019.

[6] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and
spell: A neural network for large vocabulary conversational speech recognition.
In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 49604964, 2016.

[7] Huawei Home Routers in Botnet
https://research.checkpoint.com/good-zero-day-skiddie/, 2017.

[8] IoTroop Botnet: The Full Investigation. https://research.checkpoint.com/iotroop-
botnet-full-investigation/, 2017.

[9] Shane S Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber,

Wenyuan Xu, Kevin Fu, A Rahmati, M Salajegheh, D Holcomb, et al. Wattsupdoc:

Power side channels to nonintrusively discover untargeted malware on embedded

medical devices. In HealthTech, 2013.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.

Understanding linux malware. In 2018 IEEE Symposium on Security and Privacy

(SP), pages 161-175. IEEE, 2018.

CVE-2012-1823. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-1823,

Recruitment.

2012.

[12] CVE-2014-6271. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
6271, 2014.

[13] CVE-2014-9583. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
9583, 2014.

[14] Hacking the D-Link DSP-W215 Smart Plug.
http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/,
2014.

[15] Hey Zollard, leave my Internet of Things alone!

http://www.deependresearch.org/2013/12/hey-zollard-leave-my-internet-
of-things.html, 2013.

Fei Ding. Iot malware. https://github.com/ifding/iot-malware, 2017.

Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machine learning ddos de-
tection for consumer internet of things devices. arXiv preprint arXiv:1804.04159,
2018.

Xiaomi-Dafang-Hacks. https://github.com/EliasKotlyar/Xiaomi-Dafang-Hacks,
2019.

Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee.
Bothunter: Detecting malware infection through ids-driven dialog correlation.
In USENIX Security Symposium, volume 7, pages 1-16, 2007.

Michael Haag. Kaiten - Linux Backdoor.
http://blog.michaelhaag.org/2013/12/kaiten-linux-backdoor.html, 2013.

Yi Han, Sriharsha Etigowni, Hua Liu, Saman Zonouz, and Athina Petropulu.
Watch me, but don’t touch me! contactless control flow monitoring via electro-
magnetic emanations. In Proceedings of the 2017 ACM SIGSAC Conference on

https://github.com/ifding/iot-malware

Session 1: loT Security and Privacy

[22]

[23

[24

[25

[26]

[27]

[28]

[29

[30]

[31

[32]

[33

[34

[35]

[36]

[37

[38]

[39]

[40

[41]

[42

[43]

[44]

[45]

[46]

[47]

Computer and Communications Security, pages 1095-1108. ACM, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770778, 2016.

Ben Herzberg, Dima Bekerman, and Igal Zeifman. Breaking Down Mirai: An
IoT DDoS Botnet Analysis. https://www.incapsula.com/blog/malware-analysis-
mirai-ddos-botnet.html, 2016.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Ionut Indre and Camelia Lemnaru. Detection and prevention system against
cyber attacks and botnet malware for information systems and internet of things.
In 2016 IEEE 12th International Conference on Intelligent Computer Communication
and Processing (ICCP), pages 175-182. IEEE, 2016.

Rhena Inocencio. BASHLITE Affects Devices Running on BusyBox.
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-
devices-running-on-busybox/, 2014.

Multiple vulnerabilities found in Wireless IP Camera (P2P) WIFICAM cameras
and vulnerabilities in custom http server. https://pierrekim.github.io/blog/2017-
03-08-camera-goahead-0day.html, 2017.

Marta Janus. Heads of the Hydra. Malware for Network De-
vices. https://securelist.com/heads-of-the-hydra-malware-for-network-
devices/36396/, 2011.

James A Jerkins. Motivating a market or regulatory solution to iot insecurity
with the mirai botnet code. In Computing and Communication Workshop and
Conference (CCWC), 2017 IEEE 7th Annual, pages 1-5. IEEE, 2017.

Swati Khandelwal. BASHLITE Malware leverages ShellShock Bug to Hijack De-
vices Running BusyBox. https://thehackernews.com/2014/11/bashlite-malware-
leverages-shellshock.html, 2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

Bing Liu. TheMoon - A P2P botnet targeting Home Routers.
https://blog.fortinet.com/2016/10/20/themoon-a-p2p-botnet-targeting-home-
routers, 2016.

Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang, Wenyuan Xu, and Qiang Xu.
On code execution tracking via power side-channel. In Proceedings of the ACM
SIGSAC conference on computer and communications security, pages 1019-1031,
2016.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

Michal Malik and Marc-Etienne M.Léveillé. Meet Remaiten - a Linux
bot on steroids targeting routers and potentially other IoT devices.
https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-
on-steroids-targeting-routers-and-potentially-other-iot-devices/, 2016.
MMD-0037-2015 - A bad Shellshock & Linux/XOR.DDoS CNC "under
the hood". http://blog.malwaremustdie.org/2015/07/mmd-0037-2015-bad-
shellshock.html, 2015.

MMD-0052-2016 - Overview of "SkidDDoS" ELF++ IRC Botnet.
http://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-elf-
distribution.html, 2016.

MMD-0059-2016 - Linux/IRCTelnet (new Aidra) - A DDoS botnet aims IoT w/ IPv6
ready. http://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-
new-ddos.html, 2016.

MMD-0058-2016 - Linux/NyaDrop - a linux MIPS IoT bad
news. http://blog.malwaremustdie.org/2016/10/mmd-0058-2016-elf-
linuxnyadrop.html, 2017.

Alessio Merlo, Mauro Migliardi, and Paolo Fontanelli. On energy-based profiling
of malware in android. In High Performance Computing & Simulation (HPCS),
2014 International Conference on, pages 535-542. IEEE, 2014.

Leaked mirai source code for research/ioc development purposes.
https://github.com/jgamblin/Mirai-Source-Code, 2016.

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An
ensemble of autoencoders for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos
Prvulovic. Eddie: Em-based detection of deviations in program execution. In
Proceedings of the 44th Annual International Symposium on Computer Architecture,
pages 333-346. ACM, 2017.

Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang Dang,
N Asokan, and Ahmad-Reza Sadeghi. Diot: A federated self-learning anomaly
detection system for iot. IEEE International Conference on Distributed Computing
Systems (ICDCS), 2019.

Upgrading OpenWrt firmware via CLL
user/installation/sysupgrade.cli, 2019.

Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. Iotpot: analysing the rise of iot com-
promises. In 9th USENIX Workshop on Offensive Technologies (WOOT 15), 2015.
“brickerbot” results in pdos attack.

https://openwrt.org/docs/guide-

46

(48]

[49

[50

[51

I
3

=
2

ASIA CCS 20, October 5-9, 2020, Taipei, Taiwan

Why the World is Under the Spell of IoT_Reaper.
https://blog.radware.com/security/2017/10/iot_reaper-botnet/, 2017.

Samuel Stone and Michael Temple. Radio-frequency-based anomaly detection
for programmable logic controllers in the critical infrastructure. International
Journal of Critical Infrastructure Protection, 5(2):66-73, 2012.

Jiawei Su, Danilo Vasconcellos Vargas, Sanjiva Prasad, Daniele Sgandurra, Yaokai
Feng, and Kouichi Sakurai. Lightweight classification of iot malware based on
image recognition. arXiv preprint arXiv:1802.03714, 2018.

Hao Sun, Xiaofeng Wang, Rajkumar Buyya, and Jinshu Su. Cloudeyes: Cloud-
based malware detection with reversible sketch for resource-constrained internet
of things (iot) devices. Software: Practice and Experience, 47(3):421-441, 2017.
New Linux Malware Exploits CGI Vulnerability.
http://blog.trendmicro.com/trendlabs-security-intelligence/new-linux-
malware-exploits-cgi-vulnerability/, 2017.

Persirai: New Internet of Things (IoT) Botnet Targets IP Cameras.
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-
internet-things-iot-botnet-targets-ip-cameras/, 2017.

The Reigning King of IP Camera Botnets and its Challengers.
http://blog.trendmicro.com/trendlabs-security-intelligence/reigning-king-
ip-camera-botnets-challengers/, 2017.

Jornt van der Wiel, Vicente Diaz, Yury Namestnikov, and Konstantin Zykov.
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/, 2017.
VirusShare.com - Because Sharing is Caring. https://virusshare.com/, 2019.
Zack Whittaker. Hacker explains how he put “backdoor” in hundreds of Linux
Mint downloads. https://www.zdnet.com/article/hacker-hundreds-were-tricked-
into-installing-linux-mint-backdoor/, 2016.

Linux.Wifatch source repository. https://gitlab.com/rav7teif/linux.wifatch, 2015.
Claud Xiao and Cong Zheng. New IoT/Linux Malware Targets DVRs, Forms Bot-
net. https://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-
malware-targets-dvrs-forms-botnet/, 2017.

Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, and Dong-lian Qi. Ni-
pad: a non-invasive power-based anomaly detection scheme for programmable
logic controllers. Frontiers of Information Technology & Electronic Engineering,
18(4):519-534, 2017.

Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
Handling a trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things. In Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, HotNets-XIV, pages 5:1-5:7, New York, NY, USA, 2015.
ACM.

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep
autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 665-674. ACM, 2017.

	Abstract
	1 Introduction
	2 Threat Model and Deployment Scenarios
	2.1 Threat Model
	2.2 Deployment Scenarios

	3 Identifying Intrusion and Infection Activities of IoT Malware
	3.1 Intrusion Process of IoT Malware
	3.2 Infection Process of IoT Malware

	4 DeepPower Design
	4.1 System Overview
	4.2 Detection of Suspicious Signals
	4.3 Preprocessing of Suspicious Signals
	4.4 Inferring Activities from Suspicious Signals
	4.5 Infection Process Modeling & Correlation Analysis

	5 Implementation and Evaluation
	5.1 Experimental Setup
	5.2 Detection of Suspicious Activities
	5.3 Discriminative Analysis of Activities
	5.4 Multiple Activities Prediction
	5.5 Infection Detection of Real-world Malware
	5.6 Evasion Analysis

	6 Related Work
	6.1 Network-based Solution
	6.2 Host-based Solution
	6.3 Side-channel Analysis

	7 Conclusion and Future Work
	References

