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Abstract. It is well known that symplectic integrators lose their near energy preservation
properties when variable time-steps are used. The most common approach to combining adaptive
time-steps and symplectic integrators involves the Poincaré transformation of the original Hamil-
tonian. In this article, we provide a framework for the construction of variational integrators using
the Poincaré transformation. Since the transformed Hamiltonian is typically degenerate, the use of
Hamiltonian variational integrators based on Type II or Type III generating functions is required
instead of the more traditional Lagrangian variational integrators based on Type I generating func-
tions. Error analysis is provided, and numerical tests based on the Taylor variational integrator
approach in [J. M. Schmitt, T. Shingel, and M. Leok, BIT, 58 (2018), pp. 457-488] to time-adaptive
variational integration of Kepler’s 2-body problem are presented. Finally, we use our adaptive frame-
work together with the variational approach to accelerated optimization presented in [A. Wibisono,
A. Wilson, and M. Jordan, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. E7351-E7358] to design
efficient variational and nonvariational explicit integrators for symplectic accelerated optimization.
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1. Introduction. Symplectic integrators form a class of geometric numerical
integrators of interest since, when applied to Hamiltonian systems, they yield dis-
crete approximations of the flow that preserve the symplectic 2-form (see [19]). The
preservation of symplecticity results in the preservation of many qualitative aspects of
the underlying dynamical system. In particular, when applied to conservative Hamil-
tonian systems, symplectic integrators show excellent long-time near-energy preser-
vation. However, when symplectic integrators were first used in combination with
variable time-steps, the near-energy preservation was lost and the integrators per-
formed poorly (see [8, 17]). Backward error analysis provided justification both for
the excellent long-time near-energy preservation of symplectic integrators and for the
poor performance experienced when using variable time-steps (see Chapter IX of [19]).
Backward error analysis shows that symplectic integrators can be associated with a
modified Hamiltonian in the form of a power series in terms of the time-step. The use
of a variable time-step results in a different modified Hamiltonian at every iteration
where the time-step is changed, which is the source of the poor energy conservation.
There has been a great effort to circumvent this problem, and there have been many
successes. However, there has yet to be a unified general framework for constructing
adaptive symplectic integrators. In this paper, we contribute to this effort by demon-
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strating how Hamiltonian variational integrators [33] can be used to systematically
construct symplectic integrators that allow for the use of variable time-steps.

The use of variable time-steps is motivated by the observation that the global error
estimates for a numerical method depend in part on the maximum local truncation
error, and this in turn is related to both the time-step and the magnitude of the (r+1)-
derivatives of the solution for an r-order numerical method. For a fixed number of
time-steps, the maximum local truncation error is minimized if the local truncation
error is equidistributed over the time intervals. In turn, this can be achieved if, for
example, the time-step is chosen to be an appropriate function of the reciprocal of the
relevant derivative of the solution. This derivative can be estimated a posteriori by
comparing methods with different orders of accuracy, or methods with the same order
of accuracy but different error constants. Alternatively, in the Kepler 2-body problem,
for example, Kepler’s second law states that the line joining the planet and the Sun
sweeps out equal areas during equal intervals of time, so the angular velocity of the
planet is proportional to the reciprocal of the radius squared, which gives an a priori
bound. In essence, variable time-steps are chosen to control the error incurred at each
time-step, which in turn affects the global accuracy of the numerical trajectory.

The goal of this paper is to develop an analogue of the methods derived using
the framework of [18, 47], but directly in terms of generating functions of symplectic
maps. These prior results are based on symplectic (partitioned) Runge-Kutta meth-
ods, which are related to Type I generating functions [54], but we desire an explicit
characterization of the flow maps of time-adaptive Hamiltonian systems so that we
can employ the Hamiltonian variational integrator framework instead.

Variational integrators provide a systematic method for constructing symplectic
integrators of arbitrarily high order based on the discretization of Hamilton’s princi-
ple [34, 20] or, equivalently, by the approximation of generating functions, but there
has not been a systematic attempt to incorporate time-adaptivity into the setting of
variational integrators. This is due to the fact that the Poincaré transformed Hamil-
tonian that is used is in general degenerate, so there is no corresponding Lagrangian
analogue, which prevents the use of traditional variational integrators that are based
on a Lagrangian formulation of mechanics and involve the construction of a discrete
Lagrangian that approximates a Type I generating function given by Jacobi’s solution
of the Hamilton—Jacobi equation. Instead, we propose the use of Hamiltonian varia-
tional integrators [33], which are based on Type II and Type III generating functions
that have no difficulty with this degeneracy.

After a brief introduction to variational integrators in section 2.1, we will review
the construction of Type II and Type III Hamiltonian Taylor variational integrators
from [50] and present a new theorem concerning their order of accuracy in section
2.2. We will then present a framework for variable time-step variational integrators
in section 3.1, derive corresponding error analysis results in section 3.2, and test
our approach with Hamiltonian Taylor variational integrators on Kepler’s 2-body
problem in section 3.3. Finally, in section 4, we will design efficient variational and
nonvariational explicit integrators for symplectic accelerated optimization, using our
adaptive approach applied to the variational framework for accelerated optimization
introduced in [58].

2. Hamiltonian variational integrators.

2.1. Variational integration. Variational integrators are derived by discretiz-
ing Hamilton’s principle, instead of discretizing Hamilton’s equations directly. As a
result, variational integrators are symplectic, preserve many invariants and momen-
tum maps, and have excellent long-time near-energy preservation (see [34]).
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Type I. Traditionally, variational integrators have been designed based on the
Type I generating function known as the discrete Lagrangian, Ly : Q x Q — R. The
exact discrete Lagrangian of the true flow of Hamilton’s equations can be represented
in both a variational form and in a boundary-value form. The latter is given by

h
(2.1) LE(qorqus h) = / L(q(t), 4(t)dt,

where ¢(0) = qo, g(h) = q1, and ¢ satisfies the Euler-Lagrange equations over the time
interval [0, h]. A variational integrator is defined by constructing an approximation
L;:QxQ—Rto LdE and then applying the discrete Euler—Lagrange equations,

(2.2) pr = —D1La(qr, k1), Pr+1 = DaLq(qr, qr+1),

which implicitly define the integrator Fr, : (qr,px) — (Qes1,Prs1), where D; de-
notes a partial derivative with respect to the ith argument. The error analysis is
greatly simplified via Theorem 2.3.1 of [34], which states that if a discrete Lagrangian,
Lq: Q x @ — R, approximates the exact discrete Lagrangian LY : Q x Q@ — R to
order r, i.e.,

(2.3) La(q0,q1;h) = LE (g0, q1; 1) + O(R™T1),

then the discrete Hamiltonian map FLd 2 (qr, pr) = (Qr+1, Pr+1), viewed as a one-step
method, has order of accuracy r. Many other properties of the integrator, such as
momentum conservation properties of the method, can be determined by analyzing
the associated discrete Lagrangian, as opposed to analyzing the integrator directly.

More recently, variational integrators have been extended to the framework of
Type II and Type III generating functions, commonly referred to as discrete Hamilto-
nians (see [29, 33, 49]). Hamiltonian variational integrators are derived by discretizing
Hamilton’s phase space principle.

Type II. The boundary-value formulation of the exact Type II generating func-
tion of the time-h flow of Hamilton’s equations is given by the exact discrete right
Hamiltonian,

h
(2.4) HEE (g0, push) = plas — / [p(t) Td(t) — H(q(t), p(t))] dt,

where (¢,p) satisfies Hamilton’s equations with boundary conditions ¢(0) = gy and
p(h) = p1. A Type II Hamiltonian variational integrator is constructed by using an
approximate discrete Hamiltonian Hj, and applying the discrete right Hamilton’s
equations,

(2.5) po = D1H (q0,p1), q1 = D2H} (g0, p1),

which implicitly defines the integrator, FH; : (go,po) = (q1,p1)-

Theorem 2.3.1 of [34], which simplified the error analysis for Lagrangian varia-
tional integrators, has an analogue for Hamiltonian variational integrators. Theorem
2.2 in [49] states that if a discrete right Hamiltonian Hd+ approximates the exact
discrete right Hamiltonian H;"E to order r, i.e.,

(2.6) Hj (qo,p1;h) = H " (go, prsh) + O™,
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then the discrete right Hamilton’s map FH; : (qk,pr) — (Qr+1,Pr+1), viewed as a
one-step method, is order r accurate.

Type III. The boundary-value formulation of the exact Type III generating
function of the time-h flow of Hamilton’s equations is given by the exact discrete left
Hamiltonian,

h
(2.7) H; " (q1,p03h) = —pg g0 — /O [p(t)T4(t) — H(q(t),p(t))] dt,

where (g¢,p) satisfies Hamilton’s equations with boundary conditions ¢(h) = ¢; and
p(0) = pp. A Type III Hamiltonian variational integrator is constructed by using an
approximate discrete left Hamiltonian H; , and applying the discrete left Hamilton’s
equations,

(28) 1= _DIH;(QMPO)a qdo = _DQH; (qlapo)a

which implicitly defines the integrator, F,,— : (go,po) — (q1,p1). As mentioned in
d

[49], the proof of Theorem 2.2 in [49] can be easily adjusted to prove an equivalent

theorem for the discrete left Hamiltonian case, which states that if a discrete left

Hamiltonian H; approximates the exact discrete left Hamiltonian H;’E to order r,

ie.,

(2.9) H; (q1,p0:h) = Hd_’E(Ch,po; h) + O(h™ 1),

then the discrete left Hamilton’s map F S (qk,pr) = (Qk+1,DPr+1), viewed as a

one-step method, is order r accurate.

Examples of Hamiltonian variational integrators include Galerkin variational in-
tegrators [33], prolongation-collocation variational integrators [32], and Taylor vari-
ational integrators [50]. In many cases, the Type I and Type II/III approaches will
produce equivalent integrators. This equivalence has been established in [50] for
Taylor variational integrators provided the Lagrangian is hyperregular, and in [33]
for generalized Galerkin variational integrators constructed using the same choices
of basis functions and numerical quadrature formula provided the Hamiltonian is
hyperregular. However, Hamiltonian and Lagrangian variational integrators are not
always equivalent. In particular, it was shown in [49] that even when the Hamil-
tonian and Lagrangian integrators are analytically equivalent, they might still have
different numerical properties because of numerical conditioning issues. Even more to
the point, Lagrangian variational integrators cannot always be constructed when the
underlying Hamiltonian is degenerate, and in that situation, Hamiltonian variational
integrators are the more natural choice. Depending on the form of the Hamiltonian
and the method used to design the corresponding approximate discrete Hamilton-
ian, one of the Type II or Type III approaches might be more convenient than the
other, in the sense that it might allow for an explicit algorithm or might allow for
higher-order methods given some constraints on the type of methods permitted. In
section 3, we will examine a transformation commonly used to construct variable
time-step symplectic integrators, which results in a degenerate Hamiltonian in most
cases of interest, such as the optimization application considered in section 4. We will
apply Hamiltonian variational integrators to the resulting transformed Hamiltonian
system. For the optimization application presented in section 4, we will prefer Type II
Hamiltonian Taylor variational integrators to their Type III analogues, and this choice
will be justified carefully based on the order and explicitness of the resulting methods.
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2.2. Hamiltonian Taylor variational integrators (HTVIs). We now pres-
ent HTVIs [50], together with a new theorem concerning their order of accuracy,
which is analogous to Theorem 3.1 in [50] for their Lagrangian counterpart. A dis-
crete approximate Hamiltonian is constructed by approximating the flow map and
the trajectory associated with the boundary values using a Taylor method and by
approximating the integral by a quadrature rule. The HTVI is then generated by
the discrete Hamilton’s equations associated with that discrete Hamiltonian. More
explicitly, we first construct the r-order and (r + 1)-order Taylor methods \IIE:) and
\IIELTH) approximating the exact time-h flow map ®; : T*Q — T*(@Q corresponding to
Hamilton’s equation Z = ¢(z), where z = (¢,p):

r —~hE
(2.10) U (20) = 20+ Y 250" (z0).
k=1 """

Let mp«q : (¢,p) — p and 7 : (q,p) — ¢q. Given a quadrature rule of order s
with weights and nodes (b;,¢;) for i = 1,...,m, the Type II and Type III integrators
are then constructed as follows.

Type II:

(i) Approximate p(0) = po by the solution py of the problem p; = mp«g o

‘I’;(:) (90, Do)-

) Generate approximations (g.,, pe,) = (q(c;h), p(c;ih)) via (qe;, pe;) = ‘I’g?L(QO,ﬁO)
(iii) Approximate ¢; via §1 = mg o ‘I’,(:H)(QO,ﬁo)- o
(iv) = Dpe,

) Apply the quadrature rule to obtain the associated discrete right Hamiltonian

Use the continuous Legendre transform to obtain ¢,

m
Hy(go,p1;h) =pl a1 —hY_bi [plde, — H(ge,,e,)]-
=1

(vi) The variational integrator is then defined by the implicit discrete right Hamil-
ton’s equations

g1 = DZHI(QO,M)» Po = DlH;r(QO»pl)
Type III:
(i) Approximate g(0) = go by the solution g of the problem ¢; = on\IJyH) (Go, Po)-

(ii) Generate approximations (qe,, pe,) & (q(cih), p(cih)) via (¢e,, pe,) =€), (d0, po)-
(iii) Use the continuous Legendre transform to obtain ¢., = 2
)

T Ope;
(iv) Apply the quadrature rule to obtain the associated discrete left Hamiltonian

HJ(Qlapo;h) = _PJ@) - hzbz [p;EQQ - H(qcl’pCI)}
i=1

(v) The variational integrator is then defined by the implicit discrete left Hamil-
ton’s equations

p1 =—D1H (q1,p0), g0 = —D2H; (q1,p0)-

Taylor variational integrators were inspired by a resurgence of interest in high-
order Taylor methods for celestial mechanics that has been fueled by the continued
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progress in automatic differentiation software (see [25, 4, 1, 45, 3, 37, 39]). Implicit
modified Taylor methods have been proposed to deal with stiff ODEs [28], while Taylor
variational integrators provide a class of Taylor-based integrators to deal with conser-
vative Hamiltonian systems, and can be viewed as a predictor-corrector method that
applies a symplectic correction to the Taylor method. For high-order Taylor methods,
the key to an efficient implementation relies upon efficient automatic differentiation
software to compute higher-order gradients.

We now present a theorem specifying the order of accuracy of the resulting HTVIs.

THEOREM 2.1. If the Hamiltonian H and %—Ig are Lipschitz continuous in both

variables, then the discrete Hamiltonian H;t obtained using the above construction

approzrimates Hj’E with at least order of accuracy min (r + 1,s). By Theorem 2.2 in
[49] (or its analogue for the left Hamiltonian case), the associated discrete Hamiltonian
map has the same order of accuracy.

Proof. See Appendix A. ]
3. Adaptive integrators and variational error analysis.

3.1. The Poincaré transformation and discrete Hamiltonians. Given an
autonomous Hamiltonian H(q,p), and a desired transformation of time ¢ — 7 de-
scribed by the monitor function g(g,p) via

dt

(3.1) =

=g(a.p),
a new Hamiltonian system is constructed using the Poincaré transformation,
(3.2) H(g,p) = g(¢,p) (H(q,p) + '),

where ¢ = [;t:l and p = [;t]. We will make the common choice ¢ = ¢ and pt =
—H(q(0),p(0)), so that H(g,p) = 0 along all integral curves through (g(0),5(0)). The
time ¢ shall be referred to as the physical time, while 7 will be referred to as the fictive
time.

In general, along an integral curve through (g(0), p(0)),

_ . .
(3.3) PH _\9Y,9(q,0)" + 9(a,0) 55 + Vpg(a,0) 5L Vpy(a,p)
op* Vya(g,p) " 0

3

which can be singular for many initial Hamiltonians H and choices of monitor function
g.

Most of the prior literature on variable time-step symplectic integrators cited
in this paper focuses exclusively on monitor functions that are only a function of

o, . . . 2 . . . .
position, in which case %}g is singular, and the associated Legendre transformation,

FH : T*Q — TQ is noninvertible, which is to say that the resulting transformed
Hamiltonian is degenerate and there is no corresponding Lagrangian formulation.
Therefore, the Type II and Type III Hamiltonian variational integrator frameworks are
the most general and natural way to derive variable time-step variational integrators.

The exact Type II generating function for the transformed Hamiltonian is given
by

h
(3.4) H (G0, 13 h) = By G1 — /0 (p()"q(r) — H(q(r),p(r))) dr,
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where (q(7),p(7)) satisfy the Hamilton’s equations corresponding to the Poincaré
transformed Hamiltonian H with boundary conditions g(0) = gy and p(h) = p1. This
exact discrete right Hamiltonian implicitly defines a symplectic map with respect to
the symplectic form @(pk, gx) on T*Q via the discrete Legendre transforms given by
(3.5) _ 9H" ) pat
: Po=—F—, Q1=
9o Op1
Similarly, the exact Type III generating function for the transformed Hamiltonian
is given by

h
(36)  HyE(q.pi:h) = —pgdo — / (B(r)Td(r) — H(q(r), p(r))) dr,

where (g(7),p(7)) satisfy the Hamilton’s equations corresponding to the Poincaré
transformed Hamiltonian A with boundary conditions g(h) = g; and p(0) = po. This
exact discrete left Hamiltonian implicitly defines a symplectic map with respect to
the symplectic form @ (P, Gr) on T*Q via the discrete Legendre transforms given by

) oH; " _ om; "

(3.7) m=-—pg =
Our approach is to construct Hamiltonian variational integrators using a discrete
Hamiltonian ﬁj that approximates the corresponding exact discrete Hamiltonian

}_I;t’E to order r. The resulting integrator will be symplectic with constant time-step
in fictive time 7 and more importantly with the desired variable time-step in physical
time ¢ via j—i = g(q,t,p). It is important to note that this method will be symplectic
in two different ways. It will be symplectic both with respect to the symplectic form
dp A dg and with respect to the symplectic form dp A dg. Since p* = 0, p* is constant
and dp}, A dgl, = 0, the symplectic form in generalized coordinates is given by

n+1 n
(38)  @(P,Gk) = dpx AdGx = Y dpri NG = Y dpri Adari = (P, )-
=1 =1

A symplectic variable time-step method was proposed independently in [18] and
[47], which applied a symplectic integrator to the Poincaré transformed Hamiltonian.
In [18], it is noted that one of the first applications of the Poincaré transformation
was by Levi-Civita, who applied it to the three-body problem. A more in-depth
discussion of such time transformations can be found in [52]. Further work using this
type of transformation has been published, such as [5, 6], which focused on developing
symplectic, explicit, splitting methods with variable time-steps.

The novelty of our approach consists in discretizing the Type II or Type III gener-
ating function for the flow of Hamilton’s equations, where the Hamiltonian is given by
the Poincaré transformation. Therefore, we are constructing variational integrators,
and in particular Hamiltonian variational integrators (see [29, 33]). The use of Type
IT or Type III integrators is justified by the degeneracy of the Hamiltonian, which
implies that there is no corresponding Type I Lagrangian formulation. This approach
works seamlessly with existing methods and theorems of Hamiltonian variational in-
tegrators, but now the system under consideration is the transformed Hamiltonian
system resulting from the Poincaré transformation. The methods of [18, 47] include
the possibility of applying a given variational integrator to the transformed differential
equations. Our approach gives a framework for constructing variational integrators at
the level of the generating function by using the Poincaré transformed discrete right
Hamiltonian.
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Remark 3.1. Other approaches to variable time-step variational integrators can
be found in [26, 35, 36]. In particular, [26] is inspired by the result of [16], which states
that constant time-step symplectic integrators of autonomous Hamiltonian systems
cannot exactly conserve the energy unless it agrees with the exact flow map up to a
time reparametrization. Therefore, they sought a variable time-step energy-conserving
symplectic integrator in an expanded nonautonomous system. However, symplecticity
is with respect to the space-time symplectic form dp A dqg + dH A dt. The time-step is
determined by enforcing discrete energy conservation, which arises as a consequence
of the fact that energy is the Noether quantity associated with time translational
symmetry. An extended Hamiltonian is used, similar in spirit to the Poincaré trans-
formation. An approach that builds off this idea and space-time symplecticity was
presented in [36], and a less constrained choice of time-step was allowed. In [35], adap-
tive variational integrators are constructed using a transformation of the Lagrangian,
which is motivated by the Poincaré transformation, but it is not equivalent. The
lack of equivalence is not surprising since the Poincaré transformed Hamiltonian is
degenerate for their choice of monitor functions. As a consequence, the phase space
path is not preserved.

Note that our framework can be extended to the case where the original Hamil-
tonian H and the chosen monitor function g depend explicitly on time ¢ (inspired
by [18]). Given a time-dependent Hamiltonian H(g,t,p), consider a desired trans-

formation of time t — 7, given by j—i = ¢(g,t,p). Then, we can define § = [jt],
where ¢ = t and p = [;], where p' is the conjugate momentum for ¢ = ¢
with p'(0) = —H(q(0),0,p(0)). Consider the new Hamiltonian system given by the

Poincaré transformation

(3.9) H(q,p) = 9(¢,4"p) (H(g,q",p) +1") -

The corresponding equations of motion in the extended phase space are then given
by

oH . oH

1 G=221
(3.10) =5

Suppose (Q(7), P(r)) are solutions to these extended equations of motion, and let
(q(t), p(t)) solve Hamilton’s equations for the original Hamiltonian H. Then,

(3.11) H(Q(r), P(1)) = H(Q(0), P(0)) = 0.

Therefore, the components (Q(7), P(7)) in the original phase space of the solutions

(Q(1), P(1)) satisfy
(3.12)

H(Q(r), 7, P(r)) = —p'(r),  H(Q(0),0,P(0)) = —p'(0) = H(q(0),0,p(0)).

Then, (Q(7), P(7)) and (¢(t), p(t)) both satisfy Hamilton’s equations for the original
Hamiltonian H with the same initial values, so they must be the same. As before,

7 _ _ 2 _ T _
(3.13) PH _ | 9Y,9(q,0)" +9(a.0) 55 +Vp9(@.0) % Vipg(a,p)
op* Vp9(a,p)" 0

will be singular in many cases, so Hamiltonian variational integrators are the most
general and natural way to derive variable time-step variational integrators.
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. Variational error analysis. The standard error analysis for Hamiltonian
Varlatlonal integrators assumes a nondegenerate Hamiltonian, i.e. det( ) # 0 (see
[49]), which might not be the case for the Poincaré transformed Hamlltoman. The
nondegeneracy of the Hamiltonian ensures that we can apply the usual implicit func-
tion theorem to the discrete Hamilton’s equations, and the proof of the standard error
analysis theorem relies upon Lemma 2.3 of [49].

LEMMA 3.2. Let f1,91,€1, fa,92,e2 € C" (r-times continuously differentiable) be
such that

(3.14)  fi(xz,h) = g1(x,h) + h”lel(ac, h), fa(z,h) = ga(z, h) + hr+1€2($, h).
Then, there exist functions e1s and €1 bounded on compact sets such that

(3.15) F2(fr(@,h), h) = ga(gu (@, h), h) + W™ ew(gi(w, ), h),

(3.16) [ W) = g7 (y) + e (y).

Given a discrete Hamiltonian Hdi7 we introduce the discrete fiber derivatives (or
discrete Legendre transforms), FiHjE:

F+H D (Qprl) pl)a
a1, —D1Hy (g1, o)),
quD (QO7p1))

DyH; (m,po) Po)-

do, P1
q1, Po
do,P1
q1,Po

qo,P1
d1,Po
do,P1
q1,Po

(
Hy (
Hy(
Hy (

o —
~ o~~~

)= (
)= (
)= (
)= (=

We observe that the following diagrams commute:

(qo,po) ———— (q1,p1) (g0, p0) ——— (q1.p1)
F-H} FTHS F-H; FTH;
(q0,p1) (q1,p0)

As such, the discrete left and right Hamiltonian maps can be expressed in terms
of the discrete fiber derivatives,

(317) FHdi (QO,pO) = FJFH; © (F_Hc:it)_l(Q[hpO) = (thl)u

and this observation together with Lemma 3.2 ensures that the order of accuracy of the
integrator is at least of the order to which the discrete Hamiltonian H;lt approximates
the exact discrete Hamiltonian H;t’E.

However, the Poincaré transformed Hamiltonian might be degenerate, so we can-
not apply the usual implicit function theorem, and we need to establish the invert-
ibility of the discrete Legendre transform IF’H;E in a different way.

The strongest general result we have been able to establish involves the case where
the original Hamiltonian is autonomous, i.e., H = H(q,p), and nondegenerate, and
the monitor function is autonomous as well. These assumptions hold for an interesting
and useful class of problems, and we will show that the exact discrete left and right
Hamiltonians can be reduced to a particular form and that the extended variables p}
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and ¢! can be solved for explicitly. As a result, the implicit function theorem is not
needed with respect to these variables.
Hamilton’s equations of the Poincaré transformed Hamiltonian

H(q,p) = 9(q,p) (H(q,p) + p")

are given by

3

;= [Vrote-PH(ap) + 95 + %’Zg(q,p)]

_ [ng(q,p)(H(q,p) +1") + 53 9(a,p)
9(q,p)

0

Using these equations, the corresponding exact discrete Hamiltonians are of the
form

(3.18)

h
H (g0, p13h) = pi a1 + pldl */0 (p(m)"d(r) — g(a(r),p(7))H (q(7),p(7))) dr,

(3.19)

Hy (a1, posh) = —pg do — hab — /0 (p(m) "d(r) = g(a(r), p(r))H (q(1),p(7))) dr.

As a result, only one part of these exact discrete left and right Hamiltonians
requires approximations of the extended variable ¢t and p’. Furthermore, pt = 0
implies that p! = p.

Now, let }_Ij be approximations to the exact discrete left and right Hamiltonians
of the form

(3.20) HF (Go,pr; k) = p{ @1(qo, p1; h) + pidt (ab, g0, p1: h) — 11(qo, p1s ),
Hy (q1,p0; ) = —pg dolqr, po; h) — phab(ah, a1, pos ) — In(qu, po; h),

where * denotes an approximation and where I7(qo,p1;h) and I2(g1,po; h) both ap-
proximate

h
(3.21) /0 (p(7)"d4(7) = gla(r), p(7)) H(4(7), p(7))) dr.

Then, the discrete right Legendre transforms give the following relations for pt

and q}:
(3.22)
o4, T 04 on e T 0o T s
[p‘t)} = [0 P P1Ge T de | {q%} _ |G+ GE i+ p -5
Po Bat A an i

Now, since theaa}tnalytic solution satisfies p! = pf, there is no need to approximate

4 _
dqt =
p! = pl, then implicitly solving for p; in terms of (g, qo, p},p1), explicitly solving for
q1, and finally explicitly solving for ¢}. Since p; is not determined by ¢}, the implicit

p}. Therefore, 1. The resulting two systems can both be solved by first setting

function theorem is simply needed for finding p;. Therefore, we need det (%;Ifj ) #0,

and from (3.3), this is the same as det (%—gvpg(q,p)T —I—g(q,p)B;TI;I +Vpg(q,p)%%T) #
0. Note that this holds for nondegenerate Hamiltonians H and p-independent monitor
functions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/06/21 to 137.110.35.37 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

VARIATIONAL ACCELERATED OPTIMIZATION A2959

Similarly, the discrete left Legendre transforms give the following relations for p}

and q}:
(3.23)
240 " 104G | oI e T e, T ,
[Pg}: aut P+ Poga * Gur || [qg} _ o+ 22 po + 2 Tph 4 212
P1 3P0 9o aé

which can be solved provided det (%—I;Vpg(q,p)T + g(q,p)a;Tg + Vpg(q,p)%—g—r) £ 0.
The results that we have established are summarized in the following theorem.

THEOREM 3.3. Consider a nondegenerate Hamiltonian H, and a monitor func-
tion g € C*([0,h]), such that det (%—Igvpg(q,p)—r + g(q,p)a;Tg + Vpg(q,p)%—gT) £ 0.
Then, if the discrete Hamiltonian f[j approximates the exact discrete Hamiltonian
I:I;lt’E to order r, i.e.,

(3.24) HE(Go, pr; h) = Hy " (Go, pr; h) + O™,

then the discrete Hamiltonian map ngi : (Gry Dr) = (Qrt1, Ph+1), viewed as one-step
method, is order r accurate.

Remark 3.4. It should be noted that the assumptions that the original Hamil-
tonian is nondegenerate and autonomous fail to hold in the application we consider
of time-adaptive variational integrators to the discretization of the Bregman Hamil-
tonian associated with accelerated optimization, as it is time-dependent. This is
unavoidable, as it models a system with dissipation, which cannot be described with
an autonomous Hamiltonian, as the Hamiltonian would otherwise be an integral of
motion, as it is the Noether quantity associated with time translational symmetry. In
the cases when the original Hamiltonian is degenerate or nonautonomous, we need to
analyze the solvability of the discrete Hamiltonian equations on a case-by-case basis,
but as we demonstrate, this can be done in the case of the Bregman Hamiltonian with
the given choices of monitor function g(t) and discrete Hamiltonians that we consider.

3.3. Numerical tests on Kepler’s planar 2-body problem. We will now
demonstrate the approach using HT'VIs, presented in section 2.2, on Kepler’s planar
2-body problem. For a lucid exposition, we will at first assume that g(g,p) = g(q)
and H(g,p) = 3p" M~'p+ V(q). Consider the discrete right Hamiltonian given by
approximating q; with a first-order Taylor method about gy, approximating py with
a zeroth-order Taylor expansion about pg, and using the rectangular quadrature rule
about the initial point:

_ 1 B
(3.25) Hi =p| (qo + hg(a0)M 1p1) +11(a5 + hg(g0)) + hg(a0)V (g0)-
The corresponding variational integrator is given by

{Po — hg(q0)VV (q0) — Wg(qot) (2p{ M~1p1 + V(qo) + pb)

p1 = s

(3.26) )
@ = {QO + hg(qo)M pl} .
a6 +hg(qo)

This integrator is merely symplectic Euler-B applied to the transformed Hamil-
tonian system

OH (q0,p OH (q0,p
(%0, 1) PL=po—h (%0 p1).

2 q1 =
(3.27) G1=q +h ap ) ag
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In fact, this is precisely the adaptive symplectic integrator first proposed in [18]
and presented in [31, page 254]. Most existing symplectic integrators can be in-
terpreted as variational integrators, but there are also new methods that are most
naturally derived as variational integrators. We will also consider a fourth-order
Hamiltonian Taylor variational integrator (HTVI4), which is distinct from any exist-
ing symplectic method.

One of the most important aspects of implementing a variable time-step symplec-
tic integrator of this form is a well-chosen monitor function, g(g). We need g to be
positive-definite, so that we never stall or march backward in time. Noting that the
above integrator is first-order, a natural choice is to use the second-order truncation

error given by —@M “1VV(qo). Let tol be some desired level of accuracy. Then,
using ¢t — ¢& = hg(qo), one choice for g would be
tol tol
(3.28) 9(q0) = T 02 = Tz 3 .
| g(q0) MOV (qo)]| I MV (o)
Thus,
tol !
(3.29) 9(q0) = :
1% M =19V (qo)|

Experimentally, the fourth root did not affect results very much, but required
messier computations, which is the reason why we have chosen the simpler yet very
similar monitor function

tol
2 ’
1 M=V (qo)|

(3.30) 9(q0) =

which achieves an error which is comparable to the chosen value of tol.
Alternative choices for the monitor function g(gq), proposed in [18], include the
p-independent arclength parametrization

(3.31) 9(q) = (2(Ho = V(g) + VV(9) TM~'VV ()7,
and a choice particular to Kepler’s 2-body problem,

(3.32) 9(@)=q"q

which is motivated by Kepler’s second law, which states that a line segment joining
the two bodies sweeps out equal areas during equal intervals of time.

We have tested the algorithm given by (3.26) on Kepler’s planar 2-body problem,
with an eccentricity of 0.9, using the three choices of monitor function g given by
(3.30), (3.31), and (3.32). Of these three choices, (3.32) is specific to Kepler’s 2-body
problem, while (3.30) and (3.31) are more general choices. Unlike (3.31), which is
independent of the order of the method, (3.30) is based on the truncation error, and
thus the corresponding cost of computing this function will increase as the order of
the method increases. Simulations using Kepler’s 2-body problem with an eccentricity
of 0.9 over a time interval of [0,1000] were run using the three different choices of g
and the usual symplectic Euler-B. Results indicate that symplectic Euler-B takes
the most steps and computational time to achieve a level of accuracy around 107°.
To achieve this level of accuracy, the choice of the truncation error monitor function,
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(3.30), resulted in the least number of steps and the second lowest computational time.
The lowest computational time belonged to (3.32), but it used significantly more steps
than (3.30). The lower computational cost can be attributed to the cheaper evaluation
cost of the monitor function and its derivative. Finally, the monitor function (3.31)
required the most steps and computational time of the adaptive algorithms, but it is
still a good choice in general given its broad applicability. Figures 1 and 2 present
the energy and angular momentum errors for the fixed time-step method versus the
adaptive time-step method and the time-steps for the different monitor functions,
respectively.

x10 “

(LLLLIAAALL HRALAALAL,

Energy Error
Energy Error

0 10 20 30 40 50 60 70 80 90 0

x

Angular Momentum Error
Angular Momentum Error

(a) Symplectic Euler-B (b) Adaptive method with monitor function (3.30)

Fic. 1. Symplectic Euler-B and the adaptive algorithm with monitor function given by (3.30)
were applied to Kepler’s planar 2-body problem over a time interval of [0,100] with an eccentricity
of 0.9.

_§67& T T “\ T \n T ‘\ ‘V \‘ T T
i .
B AL AL L
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FiG. 2. Time-steps taken for the various choices of monitor functions. The top, middle, and
bottom plots correspond to the monitor functions (3.30), (3.31), and (3.32), respectively. All of
the monitor functions appear to increase and decrease the time-step at the same points along the
trajectory, but clearly (3.30) allowed for the larger steps to be taken.

Next, we consider a Type IT HTVI4 constructed using the strategy from section

2.2 and the automatic differentiation package from [38, 44]. We will drop the assump-
tion of p-independent monitor functions and counsider g(q,p). The following monitor
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functions were considered:

(3.33) 9(q) = (qTq)'Y for y =0.5 and 1 (Gamma),
(834)  glg) = (20Ho—V(g) + VV(@) M7'VV(g)) *  (Arclength),
(335)  glg,p) = lp' — L(g, M~ 'p)[|5"! (Energy).

The monitor function (3.35) was originally intended to be ||p* + H(q,p)||5 ", but ex-
perimental results suggested that (3.35) is the better choice. We will discuss the
shortcomings of using the inverse energy error in the next paragraph. Note that
| L(g, M~'p)||l5" also performs decently, but the addition of p* = —H(go,po) showed
noticeable improvement. It was noted in [18] that the inverse Lagrangian has been
considered as a possible choice for g in the Poincaré transformation but not in the
framework of symplectic integration. While the choice of (3.33) was generally the
most efficient, (3.35) was very close in terms of efficiency and offers a more general
monitor function. This also implies that efficiency is not limited to only ¢- or p-
independent monitor functions. However, various attempts to construct separable
transformed Hamiltonians (see [5, 6]) required the use of ¢- or p-independent monitor
functions, so this is where such monitor functions are most useful.

In the case of monitor functions involving the gradient, higher-order derivatives
will be required for higher-order Taylor variational integrators, but there are efficien-
cies to be had when leveraging the higher-order derivatives already being calculated
for the underlying Taylor method and Hessian-vector multiplication that can be done
efficiently without needing to explicitly construct the full Hessian [10]. The calcula-
tion of higher-order derivatives do come with a higher cost, and in the case of Kepler’s
2-body problem there is a clear computational advantage in using the gradient-free
gamma monitor function (3.33), as shown in Tables 1 and 2. However, the gamma
monitor function (3.33) is more specific to Kepler’s 2-body, while the energy and
arclength monitor functions are applicable to a wider range of problems. Monitor
functions that are both general and efficient would be highly desirable.

Figure 3 displays the time-steps taken for the different choices of monitor functions
for this HTVI4.

Step Size

X Energy
O Gamma 4

Arclength

I I
0 1 2 3 4 5 6 7 8 9 10
Step

F1a. 3. Time-steps taken for the various choices of monitor functions. The energy (3.35) and
gamma (3.33) monitor functions performed better, in terms of fewest steps, lowest computational
cost, and lowest global error, than the arclength monitor function (3.34). Note that (3.35) did not
take the largest or the smallest steps.

The truncation error monitor function, (3.30), performed quite well for first-order
methods, and this motivated the choice of using Taylor variational integrators, since
derivatives would be readily available. However, its success cannot as easily be applied
to higher-order methods. This is due to the fact that for higher-order truncation
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errors, one obtains an implicit differential-algebraic definition of the monitor function.
This deviates from the first-order case, where the monitor function can be solved for
explicitly. Another seemingly natural choice for the monitor function is the inverse of
the energy error. However, Taylor variational integrators are constructed using Taylor
expansions about the initial point, and consequently the monitor function is mostly
evaluated at or near the initial point. If the initial point is at a particularly tricky
part of the dynamics and requires a small first step, then the energy error at the first
step will not reflect this since initially the energy error is zero. In contrast, the inverse
Lagrangian will be small at an initial point that requires a small first step. The inverse
energy error may work well for methods that primarily evaluate the energy error at
the end point rather than the initial point. It is also often advantageous to bound
the time-step below or above. As noted in [31, page 248], this can be done by setting
a= % and b = % and defining the new monitor function as g = b%.

Tables 1 and 2 display a comparison of bounds, computational time, steps, and
error. We note that for methods such as the Taylor variational integrator, bound-
ing g(g,p) bounds the time-step, but not directly. Also, compared to nonadaptive
variational integrators, such as the nonadaptive Taylor variational integrator and the
Stormer—Verlet (SV) method, the adaptive methods showed a significant gain in effi-
ciency for Kepler’s 2-body planar problem with high eccentricity, while low eccentricity
models do not need nor do they benefit from adaptivity. A Hamiltonian dynamical
system with regions of high curvature in the vector field and its norm will in general
benefit from an adaptive scheme such as the one outlined here.

TABLE 1
Kepler’s planar 2-body problem; eccentricity = 0.9.

Method  Monitor g(q, p) h min step max step ming maxg Energy error Global error  Steps  Time
HTVI4 Gamma 0.1 0.0020 0.2493 0.01 8 1.43E-05 7.09E-06 181 26.9
HTVI4 Energy 0.1 0.0051 0.1809 1E-04 2 1.93E-06 4.76E-06 146 28.3
HTVI4 Arclength 0.1 0.0040 0.1458 3E-03 0.3 1.10E-04 3.69E-05 185 70.2
HTVI4 - 0.0025 0.0025 0.0025 - - 2.50E-06 2.89E-05 4000 120
SV - 5E-05 5E-05 5E-05 - - 3.12E-06 4.68E-05 2E05 1.9
TABLE 2

Kepler’s planar 2-body problem; eccentricity = 0.99.

Method  Monitor g(g, p) h min step max step ming maxg Energy error Global error  Steps  Time
HTVI4 Gamma 0.1 6E-05 0.2648 5E-04 8 4.88E-05 5.60E-06 372 49.3
HTVI4 Energy 0.03 1.5E-04 0.1462 1E-06 5 9.13E-06 4.63E-06 383 58.4
HTVI4 Arclength 0.1 5E-05 0.1379 8E-04 10 1.31E-05 1.49E-05 691 146.0
HTVI4 - 5E-04 5E-04 5E-04 - - 1.38E-01 7.83E-01 2E04  525.2

SV - 5E-07 5E-07 5E-07 - - 3.34E-06 2.68E-05 2E07  189.2

4. Application to symplectic accelerated optimization.

4.1. Accelerated optimization. Efficient optimization has become one of the
major concerns in data analysis. Many machine learning algorithms are designed
around the minimization of a loss function or the maximization of a likelihood func-
tion. Due to the ever-growing scale of the data sets and size of the problems, there
has been a lot of focus on first-order optimization algorithms because of their low cost
per iteration. The first gradient descent algorithm was proposed in [9] by Cauchy
to deal with the very large systems of equations he was facing when trying to sim-
ulate orbits of celestial bodies, and many gradient-based optimization methods have
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been proposed since Cauchy’s work in 1847. In 1983, Nesterov’s accelerated gradient
method was introduced in [41],

kE+2

(4.1) Ty =Yp—1 — hVf(yk—1),  yp =+ (T — T—1),

which converges in O(1/k?) to the minimum of the convex objective function f,
improving on the O(1/k) convergence rate exhibited by the standard gradient descent
methods. This O(1/k?) convergence rate was shown in [42] to be optimal among
first-order methods using only information about Vf at consecutive iterates. This
phenomenon in which an algorithm displays this improved rate of convergence is
referred to as acceleration, and other accelerated algorithms have been derived since
Nesterov’s algorithm, such as accelerated mirror descent [40] and accelerated cubic-
regularized Newton’s method [43]. More recently, it was shown in [53] that Nesterov’s
accelerated gradient method limits to the second order ODE;,

(4.2) #() + %:’c(t) V() =0,

as h — 0. The authors also proved that the objective function f(x(t)) converges to its
optimal value at a rate of O(1/t2) along the trajectories of this ODE. It was then shown
in [58] that in continuous time, the convergence rate of f(z(t)) can be accelerated to
an arbitrary convergence rate O(1/tP), by considering flow maps generated by time-
dependent Lagrangian and Hamiltonian systems. We will present this result in more
detail in the next section together with the variational framework introduced in [58]
for accelerated optimization, which will be at the heart of our approach.

4.2. Variational framework for accelerated optimization. In this section,
we will review the variational framework introduced in [58] for accelerated optimiza-
tion which will be the basis for the methods we will design. In a general space X, given
a convex, continuously differentiable function h : X — R such that | Vh(x)|| — oo as
||z|| = oo, its corresponding Bregman divergence is given by

(4.3) Du(z,y) = h(y) — h(z) = (Vh(z),y — ).
We then define the Bregman Lagrangian and Hamiltonian

(4.4) Lo pn(z,0,1) = OO [Dh(x +e Wy, 1) — eﬁ(t)f(a:)] ,

(45)  Hapqle.rt) = 000 (D (Th(z) + 7 0r, Vh(z) + 7O f ()]

which are scalar valued functions of position z € X, velocity v € R?, momentum
r € R%, and time ¢, which are parametrized by smooth functions of time, o, 3,7, and
where h* = sup, ¢y [(r,v) — h(v)] is the Legendre transform (or convex dual function)
of h. These parameters «, 3, are said to satisfy the ideal scaling conditions if

(4.6) Bty <e*® and  A(t) =@,
If the ideal scaling conditions are satisfied, then by Theorem 1.1 in [58],
(47) f(2(®) = @) < 0@,

Another very important property of this family of Bregman Lagrangians is its closure
under time-dilation, proven in Theorem 1.2 of [58].
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THEOREM 4.1. If 2(t) satisfies the Euler—Lagrange equations corresponding to the
Bregman Lagrangian Lo g, then the reparametrized curve y(t) = x(7(t)) satisfies the
Buler—Lagrange equations corresponding to the Bregman Lagrangian L 3.5 where

(4.8) a(t) = a(r(t)) +log7(t),  At) =p(r(), () =(7(1),

and
(4.9) Lo i@ 0,t) = H(t)Lapn <x 7,_(1?5)1},7'@)) .

Furthermore, o, B, satisfy the ideal scaling equation (4.6) if and only if &, 3,4 do.

A subfamily of Bregman Lagrangians of interest, indexed by a parameter p > 0,
is given by the choice of functions

(4.10) a(t) =logp —logt, B(t) = plogt +logC, ~(t) = plogt,

where C' > 0 is a constant. The Bregman Lagrangian and Hamiltonian become

(4.11) Lla,v,t) = pt2= [Dh (x + ;v,x> _ Ctpf(a;)] ,

(4.12) H(w,r,t) = ptP ™1 [Dy« (Vh(x) + tPr, Vh(z)) + Ct? f(2)] .

These parameter functions are of interest since they satisfy the ideal scaling equation
(4.6), and the resulting evolution z(t) of the corresponding dynamical system was
shown in [58] to satisfy the aforementioned O(1/t?) convergence rate,

(4.13) f(z(t)) = f(z7) < O(1/t7),

where z* is the desired minimizer of the objective function f.

4.3. Adaptive variational integrators for symplectic accelerated opti-
mization. For simplicity of exposition, we will consider the case where h(z) =
%(x,x) Our new approaches will make use of the adaptive framework developed
in section 3 via carefully chosen Poincaré transformations. Recalling the discussion
of section 3.1, there might not be a Lagrangian formulation for the future Poincaré
transformed systems, so we will need to work from the Hamiltonian point of view to

1

design variational integrators. When h(z) = 5(z,z), the Bregman Hamiltonian with

parameters «, 3, given by (4.10) for a specific value of p > 0 becomes

(4.14) Mg, 1.1) = s () + Cpt™ 1 f(g).

As mentioned in the previous section, the solution to the corresponding Hamilton’s
equations was shown in [58] to satisfy the convergence rate

(4.15) flq(®) = f(q") < O(1/t7),

where ¢* is the desired minimizer of the objective function f. Together with the time-
dilation result from Theorem 4.1, this implies that this entire subfamily of Bregman
trajectories indexed by the parameter p can be obtained by speeding up or slowing
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down along the Bregman curve in spacetime corresponding to any specific value of
p. We will present two new approaches based on the adaptive framework developed
in section 3 to integrate the Bregman Hamiltonian dynamics, thereby solving the
optimization problem, and then compare their performance.

Direct approach. Our first approach will use our adaptive framework with mon-
itor function g(q,r) = 1 to design a variational integrator for the Bregman Hamil-
tonian given in (4.14) for a given value of p > 0. This choice of monitor function
will convert the time-dependent Bregman Hamiltonian into an autonomous Hamil-
tonian in extended phase space. More precisely, given a value of p > 0, the time
transformation ¢ — 7 given by j—i = g(q,t,r) = 1 generates the Poincaré transformed
Hamiltonian,

(4.16) H(@.7) = st (r,r) + Cplg)* 1 f(q) + 1,

2(q")

in the phase space with extended coordinates (g,7). This strategy is equivalent to
the usual trick to remove time-dependency by considering time ¢ as an additional
position variable and adding a corresponding conjugate momentum variable, which is
the energy (see [2] for an example with Hamiltonian given by (4.5)). This shows that
our adaptive framework is very general and can also be used for purposes other than
solely enforcing a desired variable time-stepping.

Adaptive approach. Our second approach will exploit the time-dilation prop-
erty of the Bregman dynamics together with our adaptive framework with a carefully
tuned monitor function. More precisely, we will use adaptivity to transform the
Bregman Hamiltonian corresponding to a specific value of p > 0 into an autono-
mous version of the Bregman Hamiltonian corresponding to a smaller value p < p
in extended phase space. This will allow us to integrate the higher-order Bregman
dynamics corresponding to the value p while benefiting from the computational effi-
ciency of integrating the lower-order Bregman dynamics corresponding to the value
p < p. Explicitly, solving (4.8) for 7(¢) to transform the Bregman dynamics corre-
sponding to the values of «, 3,7 as in (4.10) for a given value of p into the Bregman
dynamics corresponding to the values of @, 3,4 as in (4.10) for a given value p < p
yields 7(t) = tP/P. The corresponding monitor function is given by

dt p,_B
4.17 — = t =—t »
(4.17) 7 = 9(at.r) 5

and generates the Poincaré transformed Hamiltonian

(4.18) H(g,r) = = (r.r) + CPR ()75 f(g) + prt(a")'TF

2(qt)Pte

Do | =

4.4. Presentation of numerical methods. In this section, we will test the
performance of our new adaptive framework by implementing variational and non-
variational integrators in the case where X = R? and (r,2) = 2"z, and we will
discuss the results obtained. Keeping in mind the machine learning application where
data sets are very large, we will restrict ourselves to explicit first-order optimization

algorithms.
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Looking at the forms of Hamilton’s equations in both the direct and the adaptive
approaches, we note that the objective function f and its gradient Vf only appear
in the expression for # and are functions of ¢ only. Looking back at the construction
of HTVIs from section 2.2, denoting the order of the Taylor methods by p instead
of r to avoid confusion with the extended momentum variable 7, we note that both
the Type II and the Type III approaches require p-order Taylor approximations of r
and (p + 1)-order Taylor approximations of . This means that the highest value of p
that we can choose to obtain a gradient-based algorithm is p = 1. Now, the starting
point of the Type III approach is a (p+ 1)-order Taylor approximation ¢y of gy around
qo- As a consequence, the subsequent steps in the Type III method with p = 0 and
p = 1 will contain evaluations of the objective function f and its gradient Vf at
this approximation ¢y. Aside from the inconvenience of the function evaluations not
being at the iterates gqg and ¢; themselves, if f is a nonlinear function, this will also
generate nonlinearity in the equations for the updates. As a result, we will not be
able to design an explicit algorithm, or at least not a general explicit algorithm that
would work for all the functions f considered. On the other hand, the starting point
of the Type II approach is a p-order Taylor approximation py of pg around py. A
similar issue as for the Type III case arises when p = 1 due to the approximations
(Ge; s Pe;) = \IIEP ,)1((10, po). Therefore, we cannot design a general explicit algorithm for
the Type II case with p = 1. The remaining possibility is to construct a Type II
HTVI using p = 0. This will produce explicit gradient-based algorithms, where all
the evaluations of the objective function f and its gradient V f are performed at the
iterates qp and ¢;. Note that when p = 0, we have (q.,,pe,) = \Ili%(cjo,po) = (go,Po)
for all i, so for given values of p and p, every quadrature rule generates the same
integrator. Following the method of section 2.2, with time-step h, we will derive
explicit gradient-based HTVIs.

Type II Hamiltonian Taylor variational integrators (HTVIs) with p =
0. As mentioned earlier, since p = 0, the choice of quadrature rule does not matter,
so we can take the rectangular quadrature rule about the initial point (¢; = 0 and

by = 1). We approximate 7(0) = 7o via 71 = mp.g © \Ilgo) (qo,70) = 7o and generate
mations (6. 7. ) — v (5 7y (a7
approximations (e, ,7e,) = ¥}, (4o, 70) = (4o, 70)-
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Other types of first-order variational integrators can be constructed for Poincaré
transformed Hamiltonians, such as prolongation-collocation variational integrators
[32], Galerkin variational integrators [33], and higher-order HT'VIs. We will not con-
sider these integrators here since they require that one solves systems of nonlinear
equations and cannot be implemented explicitly in general. Having said that, in prac-
tice, implicit methods for the numerical solution of ODEs that can be solved using
fixed-point iterations (as opposed to Newton iterations) can be quite competitive, as
there is a good initial guess which may allow them to converge in a small number of
iterations, and the iterations are inexpensive, as they do not require the assembly of
a Jacobian. The convergence of the fixed-point iteration depends on the conditioning
of the system of equations and may impose a stringent time-step restriction. This can
be overcome by the use of exponential integrators [21], in particular, symplectic and
energy-preserving exponential integrators [51].

We have also implemented nonvariational methods based on these direct and
adaptive approaches (the classical 4th-order explicit Runge-Kutta method and the
explicit adaptive ODE solvers (ode23, oded5) of MATLAB), and more traditional
optimization methods have been tested as well, such as Nesterov’s accelerated gradient
(4.1) and adaptive optimization algorithms.

Nonvariational symplectic integrators based on the direct and adaptive

approaches.

(i) Direct and adaptive approaches with splitting of the Hamilton-
ian. The direct approach with splitting of the Hamiltonian is the approach
presented in [2]. The three terms of the Poincaré transformed Hamiltonian
(4.16) are considered separately. They generate dynamics in the extended
phase space via six vector fields, and a symmetric leapfrog composition of
the corresponding component dynamics is constructed to obtain a symplectic
integrator (referred to in the numerical results section as “direct splitting”).
A new symplectic integrator can also be obtained by adapting the approach
presented in [2] to the adaptive Poincaré transformed Hamiltonian (4.18) to
obtain a symplectic integrator (referred to in the numerical results section as
“adaptive splitting”).

Direct approach:

t—t4
= 5
hp(p+1) h _
t_ .t !t T._ I _ 2p—2
rErt s e T T 2C’p(2p Dt f(q),
h
r=r - ROpPr IV f(),
_ p
q—q—l—htpﬁr,

r=r - ROpPrV A,

hp(p+1) h _
t__ .t " T, o 2p—2
rEr s T T 5 Op(2p — DI (g),

t*tJrh
= 5"
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Adaptive approach:

A h P/ﬁ
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(ii) Phase-space cloning and splitting. A very natural approach to integrate
these nonseparable Hamiltonian dynamics consists in defining a new Hamil-
tonian via two copies of the Poincaré transformed Hamiltonian in an extended
phase space of dimension twice as large [46]:

(419) H((jv 5; 777 7%) Hl(q7 ) +H2(Qa )7
where H, = Hy = H. Hamilton’s equations are then given by
(4.20) G§=V;Hs, §=V:H, — V. H,, F=V:H.

We can then integrate this new Hamiltonian system explicitly using a Strang
splitting or a Yoshida 4 or Yoshida 6 splitting, for instance (referred to as
“CloningStrang,” “CloningY4,” and “CloningY6” in the numerical results
section). This approach will usually require a larger number of evaluations of
the objective function f and of its gradient at each step.

4.5. Numerical results. The numerical methods presented in the previous sec-
tion have been conducted to minimize the quartic function

2
(121) f@) = [ - )T S@ - 1),

where 2 € R and %;; = 0.9/"79l. This convex function achieves its minimum value
0atx*=1.

Unless specified otherwise, the termination criterion used was

(4.22) |f(zr) — fxp—1)] <0 and ||Vf(zk)|| <6, where & = 10710,
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Direct HTVI p = 4 Direct Cloning Y4 p = 4
Direct HTVI p = 10 Direct Cloning Y4 p = 10
Adaptive HTVI p = 4 Adaptive Cloning Y4 p = 4
Adaptive HTVI p = 10 5 Adaptive Cloning Y4 p = 10

10g10 (Exrror)
1og10 (Error)

. . . . . . . . .
1.5 2 2.5 3 3.5 4 4.5 1.5 2 2.5 3 3.5 4 4.5 5
10910 (Iterations) 1ogl0 (Iterations)

Fi1G. 4. Comparison of the rates of convergence between the direct and adaptive approaches for
the HTVI method and the cloning method with a Yoshida 4 splitting. We can clearly see that the
adaptive approach outperforms the direct approach.

TABLE 3
Comparison of the direct and adaptive approaches for the HTVI method and the cloning method
with a Yoshida 4 splitting. The adaptive approach clearly outperforms the direct approach in terms
of number of iterations required.

Approach p P h Iterations | Approach p P h Iterations
Direct HTVI 4 - 8.00E-04 77 878 | Direct CloneY4 4 - 9.00E-04 106 530
Adap. HTVI 4 0.5 1.21E-04 6 867 Adap. CloneY4 4 0.5 1.15E-04 7 101
Direct HTVI 10 - 4.00E-04 13 872 | Direct CloneY4 10 - 3.30E-04 15 498
Adap. HTVI 10 0.5 1.95E-05 5 564 Adap. CloneY4 10 0.5 1.62E-05 6 300

4.5.1. Adaptive versus direct approach. Numerical experiments conducted
with all the symplectic algorithms presented in section 4.4 showed that a carefully
tuned adaptive approach enjoys a significantly better rate of convergence and a much
smaller number of steps required to achieve convergence than the direct approach, as
can be seen in Figure 4 and Table 3 for the HTVI and CloningY4 methods. Although
the adaptive approach requires a smaller fictive time-step h than the direct approach,
the physical time-steps resulting from ¢ = 77/? in the adaptive approach grow rapidly
to values larger than the physical time-step of the direct approach.

4.5.2. Comparison of methods within direct and adaptive approaches.
Numerical experiments were conducted to compare the various algorithms presented
in section 4.4, and the results are presented in Figure 5 and Table 4. Although the
number of iterations for all methods were of the same order of magnitude, the HTVI
method and the splitting method based on the idea of [2] performed much better
than the methods based on the phase-space cloning idea of [46]. This is mostly due
to the fact that these phase-space cloning methods require several evaluations of the
objective function f and of its gradient V f at each iteration (3 for Strang splitting, 7
for Yoshida’s 4th order splitting, and 19 for Yoshida’s 6th order splitting), while the
HTVI and splitting methods only required one such evaluation at each iteration. As
a result, these phase-space cloning methods also required much more computational
time to achieve convergence. It might be possible to improve the performance of these
phase-space cloning methods by adding an extra term in the final Hamiltonian which
binds the two copies of the Poincaré transformed Hamiltonian, as was done in [55].
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10910 (Error)
10910 (Error)

——HIVI
Splitting
CloningStrang

——HTVI
Splitting
CloningStrang
CloningY4
CloningY6

CloningY4
CloningY6

2 2.5 3 3.5 4 4.5 5 5.5 6 1.5 2 2.5 3 3.5 4 4.5 5 5.5
logl0(GradientEvaluations) logl0 (GradientEvaluations)

F1G. 5. Comparison of the convergence, in terms of gradient evaluations needed, of the different
symplectic integrators within the direct (on the left) and adaptive (on the right) approaches.

TABLE 4
Number of iterations needed until convergence of the different symplectic integrators within the
direct (on the left) and adaptive (on the right) approaches.

Method

Direct HTVI
Direct splitting
Direct CloneStrang
Direct CloneY4
Direct CloneY6

h Iterations | Method
8.7E-04 57 504 | Adaptive HTVI
9.5E-04 60 881 | Adaptive splitting
9.7E-04 81 367 | Adaptive CloneStrang
8.9E-04 74 747 | Adaptive CloneY4
7.9E-04 87075 |Adaptive CloneY6

h Iterations
2.4E-04 9 361
2.9E-04 8 313
2.4E-04 10 638
2.9E-04 10 721
2.0E-04 11 549

QI NQIF NEINNQINN (54

NN SOINNEIR NN | S}
e bS]

However, this additional term is likely to require a larger number of compositions
when splitting the final Hamiltonian, which would require more gradient evaluations
of the objective function at each step. Thus, even though the trick presented in
[55] could reduce the number of iterations required to achieve convergence, it seems
very unlikely that the resulting algorithm would be competitive against the HT'VI
and splitting methods, in terms of computational time and total number of gradient
evaluations needed.

4.5.3. Dependence on p and p in the adaptive approach. We conducted
numerical experiments with the HT'VI method to study the evolution of the perfor-
mance of the adaptive approach as the parameters p and p are varied. We can see
from the results presented in Figure 6 and Table 5 that the adaptive HTVI method be-
comes more and more efficient as p is increased and p is decreased. The improvement
in efficiency is very important as we increase p from p = 2 to p = 4, while it is minor
but still noticeable as we increase p from p = 4 to p = 8. A possible explanation for
this behavior is that the integrator might not be of high enough order to distinguish
between the p = 6 and p = 8 Bregman dynamics. Note that the fictive time-step h
must be reduced as p increases or p decreases, but the time relation ¢t = 7P/P ensures
that the resulting physical time-steps do not become significantly smaller.

4.5.4. Comparison to nonsymplectic integrators. We will now present the
results of numerical experiments investigating the role that symplecticity plays when
integrating the Bregman dynamics in the direct and adaptive approaches.

We first implemented fixed time-step integrators such as the 4th-order explicit
Runge-Kutta method, but these failed to converge both in the direct and adaptive
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p=2

p=4
—p—6
—p=8

10910 (Error)
10g10 (Error)
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1og10 (Iterations) 10g10 (Iterations)

Fiac. 6. Ewvolution of the rates of convergence of the HTVI method as p is increased (on the
left) and as p is decreased (on the right).

TABLE 5
Evolution of the fictive time-step h and number of iterations until convergence for the HTVI
method as p increases (left) and as p decreases (right).

Method

Adaptive HTVI
Adaptive HTVI
Adaptive HTVI
Adaptive HTVI

h Iterations | Method
8.0E-04 77 855 | Adaptive HTVI
2.4E-04 9 361 Adaptive HTVI
9.4E-05 7785 Adaptive HTVI
6.1E-05 6 133 Adaptive HTVI

D h Iterations
2  3.8E-04 22 128
1 24E-04 9 361
0.5 1.2E-04 7 099
0.1 2.4E-05 5 689

o O NI
e = L]

INQNSEF SRS S

approaches. The reason why convergence cannot be achieved may have to do with the
nonautonomous aspect of the differential equation. More precisely, explicit Runge—
Kutta methods are conditionally stable, where stability intervals for the time-steps
depend on the expansivity of the differential equation. Since the differential equations
considered here are not autonomous, the stability intervals are time-dependent, and
thus any fixed choice of time-step may eventually violate the stability condition. It
might be possible to achieve low accuracy convergence using these methods, but the
fact that they cannot achieve higher accuracy and are likely to lose stability eventually
makes them undesirable.

We then considered variable time-step explicit Runge-Kutta methods. To this
end, we tested the differential equation solvers ode45 and ode23 of MATLAB, which
are explicit variable time-step Runge-Kutta pairs, and the corresponding numerical
results are presented in Figure 7. The HTVI method required a significantly smaller
number of iterations than the MATLAB solvers. Furthermore, an inherent part of
the time-step control in embedded Runge-Kutta methods is that, at each iteration,
the underlying Runge-Kutta method may be executed several times to determine the
appropriate time-step that satisfies the prescribed tolerances. For this reason, the
MATLAB solvers require more evaluations of f and V f at each iteration, and since
they also required more iterations than the HTVI method, these MATLAB solvers
are much less competitive.

It should also be noted that the MATLAB solvers did not exhibit any improve-
ments when used with the adaptive approach instead of the direct approach, while
the HTVI method improved significantly. This is not surprising since the MATLAB
solvers ode23 and ode45 both use a variable time-step strategy, regardless of the
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Fia. 7. Comparison of the HTVI method with the ode23 and ode45 MATLAB functions in
the direct (left) and adaptive (right) approaches with p = 10 and p = 0.5. The HTVI method
outperforms the MATLAB solvers.

approach chosen.

Note that our adaptive approach and the embedded Runge—Kutta methods use
adaptivity in two fundamentally different ways. Our approach uses a priori adaptiv-
ity based on known global properties of the family of differential equations considered
(i.e., the time-dilation symmetry of the family of Bregman dynamics). In contrast,
embedded Runge-Kutta methods use adaptivity based on a posteriori local error esti-
mates. This could explain why the embedded Runge-Kutta methods do not perform
as well as our adaptive approach: a posteriori estimators might focus mostly on the
fast local oscillations of the Bregman dynamics and not on the slower global decay,
and these fast oscillations might be forcing the embedded Runge-Kutta methods to
adaptively take smaller time-steps than necessary.

We can also see from Figure 7 that for both the symplectic and the nonsymplec-
tic adaptive methods, a significant number of iterations are needed before the error
effectively starts decaying. The fact that this slow initial behavior persists with those
two approaches, which use time-adaptivity in the two fundamentally different ways
described in the previous paragraph, suggests that this behavior might be intrinsic
to the continuous trajectory being discretized and that time-adaptivity might not be
able to help accelerate this initial phase.

4.5.5. Comparison to popular optimization methods. Finally, we have
compared the performance of our adaptive HTVI method to Nesterov’s accelerated
gradient (NAG) (4.1) with the same initial time-step h = 2 x 107%, and to popular
adaptive optimization algorithms such as trust region steepest descent (TRUST),
ADAM [27], AdaGrad [12], and RMSprop [57].

Figure 8 and Table 6 present the numerical results obtained when applying these
algorithms to the quartic objective function (4.21). Although the adaptive HTVI
method is not the most efficient method, we can see that it significantly outperformed
certain popular optimization algorithms on this particular convex problem. This
suggests that the adaptive HTVI method might be a competitive first-order explicit
algorithm, and that it might be worth considering it as one of several possible options
to use in practice, as the relative performance often depends on the specific choice of
objective function.
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Fic. 8. Comparison of HTVI, NAG, and other adaptive optimization algorithms to achieve con-
vergence on the quartic objective function (4.21), with different values of § as termination criterion
(4.22). Note that HTVI and NAG were implemented with the same initial time-step.

TABLE 6
Comparison of the number of iterations needed for HTVI, for NAG, and for other adaptive
optimization algorithms to achieve convergence on the quartic objective function (4.21), with differ-
ent values of § as termination criterion (4.22). Note that HTVI and NAG were implemented with
the same initial time-step. For all these algorithms, the number of gradient evaluations equals the
number of iterations.

5= 102 10—3 10—4 10-5 10-F 10—7 10~ 10~9 10—10
HTVI | 2182 2 486 2 750 3233 3434 3 593 4014 4097 4566
NAG | 4143 10 949 27660 65724 154258 341928 745292 1.7E6 >1EI10
ADAM | 29665 32733 35802 38871 41939 45008 48 076 51 145 54 215
AdaGrad | 520 482 24E06 1.1E07 5.2E07 2.4E08 — — — —
RMSprop 276 305 334 363 393 422 452 498 682
TRUST 32 48 71 106 154 215 288 366 455

Remark 4.2. In [2], the authors noted that Nesterov’s accelerated gradient algo-
rithm transitions into an exponential rate of convergence once it is sufficiently close
to the minimum of certain objective functions and suggested that this behavior re-
quires strong convexity of the objective function in the neighborhood of the minimum.
Similarly to the strategy presented in [2], a gradient flow can be incorporated into
the updates of the direct and adaptive algorithms presented so that for certain objec-
tive functions, the same exponential rate of convergence can be achieved close to the
minimum.

Remark 4.3. In very high dimensional nonconvex optimization problems of prac-
tical interest, it has been noted empirically that a main source of difficulty is not the
presence of local minima but rather the ubiquity of saddle points surrounded by high
error plateaux [11, 23]. These saddle points can significantly slow down gradient-
based algorithms and give the illusion of the existence of a local minima. It was
demonstrated in [24] via a variant of Nesterov’s accelerated gradient algorithm that
momentum techniques can escape saddle points faster than standard gradient meth-
ods and can thereby accelerate convergence in the nonconvex setting as well. This
suggests that the variational framework for accelerated optimization and our adaptive
approach to obtain symplectic optimization algorithms may also be promising with
regards to nonconvex optimization.
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5. Conclusions. Due to the degeneracy of the Hamiltonian, adaptive variational
integrators based on the Poincaré transformation should be constructed using discrete
Hamiltonians, which are Type II or III generating functions. This has potential impli-
cations for the numerical properties of such integrators and might explain why there
has only been a limited amount of work on the construction of adaptive variational
integrators based on the traditional Lagrangian perspective. The efficiency of the
resulting integrator is largely based upon a proper choice of the monitor function g,
and more research is needed to find a general choice of g that maintains a decent level
of efficiency.

We have also noted that the gain in efficiency provided by adaptivity depends on
the properties of the Hamiltonian dynamical system and tends to be more significant in
regions of high curvature of the Hamiltonian in the vector field. We focused primarily
on Taylor variational integrators, but Galerkin variational integrators are likely to
be very promising as well since the cost of evaluating the monitor function and its
derivatives should be low. In addition, the Galerkin approximation scheme may help
inform a better choice of monitor function, due to the extensive literature on efficient
a posteriori error estimation. A posteriori error estimation, in general, would be a
nice addition to give some guarantees on global accuracy.

Finally, we used our adaptive framework together with the variational approach
to accelerated optimization presented in [58] to design efficient Hamiltonian varia-
tional and nonvariational explicit integrators for symplectic accelerated optimization.
We noted that a careful use of adaptivity and symplecticity can result in significantly
faster algorithms, and it could also play an important role for nonconvex optimiza-
tion problems. It would be desirable to understand at a theoretical level the role that
adaptivity and symplecticity plays in the accurate and stable discretization of flows
that correspond to accelerated optimization algorithms, which could better inform
the choice of monitor functions, and the convex function used to define the Bregman
divergence that arises in the construction of the Bregman Hamiltonian. This direc-
tion seems particularly promising for constructing novel optimization algorithms with
superior computational efficiency and performance. Another possible future research
direction is to consider how these variational and adaptive frameworks extend to more
general spaces such as Lie groups [56, 30] and Riemannian manifolds [15, 13, 14]. It
could also be interesting to consider the implications of this work for stochastic gra-
dient descent methods [48], by considering it in the context of a Bregman Lagrangian
or Hamiltonian, but with a stochastic perturbation of the potential. This naturally
leads to considering stochastic generalizations of the adaptive Hamiltonian variational
integrators considered in this paper, by extending the existing work on stochastic vari-
ational integrators [7, 22].

Appendix A. Proof of Theorem 2.1. The proof of Theorem 2.1 is similar to
the one presented in the Appendix of [50] for Lagrangian Taylor variational integra-
tors. We first start with the right HT'VI case. Let ¢(¢) and p(t) denote the solutions
of Hamilton’s boundary-value problem

q(t) = g(q(t),p(t), 1), ()= fla(t),p(t),t),  q(0)=qo, p(h)=p1.
Let g1 = q(h) and py = p(0).

LEMMA A.1. Given an r-order Taylor method \Ilgf) approrimating the exact time-
h flow map corresponding to Hamilton’s equations, let py solve the problem p; =
TT=Q © ‘I/ELT)((Joﬁo)- Then,
Po =po+O(R").
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Proof. Solving the equation p; = 7+ © \I/y) (go, Do) for po yields

r

. h* .
Po = D1 _Zﬁf(k 1)((]07]7070)'
k=1 "

The exact solution p(t) belongs to C"*1([0, h]), so Taylor’s theorem gives
—~
po=p1 = "V (a0,p0, 0) + Ry (h).
k=1

Now, since p(t) belongs to C™1([0, h]), f*~1) is Lipschitz continuous in its arguments
for k = 1,...,7 — 1. Let M be the largest of the corresponding (r — 1) Lipschitz
constants with respect to the second argument over the compact interval [0, C]. Then,
using the triangle inequality,

lPo — poll =

r hk
Rr(h) - Z ﬁ [f(kil)(q()vﬁ(h 0) - f(kil)(q()vav 0):| ||
k=1 "

,
L.
SAATEE:‘E?Hpo-pOH‘FHfﬂ(h)W
k=1
Thus, (1 -MY;_, %T)Hﬁo —poll < |R-(h)|| = O(h"*1Y), and by continuity, 3C €
(0,C) such that Yk € (0,C), the term (1-MY,_ %17) is bounded away from zero,
which concludes the proof. ]

We now show that starting the r-order Taylor method with initial conditions
(go, Do) rather than (qo,po) will not affect the order of accuracy of the method.
LEMMA A.2. The r-order Taylor method \Ilg) with initial conditions (qo, po) and

where Py solves p1 = Tp=g o \Ilg)(qo,ﬁo) is accurate to at least O(h™+1) for the Hamil-
tonian boundary-value problem.

Proof. Let (¢(t),p(t)) denote the exact solution to Hamiltonian’s equations with
initial values (qo, o), and let (g4(t), pa(t)) denote the values generated by the r-order
Taylor method with initial conditions (qg, po). The Hamiltonian initial-value problem
is well-posed, so denoting the Lipschitz constant with respect to the second argument
by M, we get

[(q(t), p(t)) — (qa(t), pa(O))Il < [l(a(t), p(2)) — (q(£), BN + [1(4(2), B(t)) — (qa(t), pa(t))]]
< Mllpo — fol| + O(h" ™) < O(A"™),
where we have used the triangle inequality and the fact that the local truncation error
of an r-order Taylor method is O(h"*1) to bound ||(G(t),5(t)) — (qa(t), pa(t))]|- 0
We are now ready to prove Theorem 2.1 for right HT'VIs.
THEOREM A.3. Consider a Hamiltonian H such that H and %—IZ are Lipschitz

continuous in both variables. Given an r-order accurate Taylor method \IIELT) and
an s-order accurate quadrature formula with weights and nodes (b;,c;), define the
associated Taylor discrete right Hamiltonian

Hi(qo,p1;h) =pl a1 —h Y bi [plde. — H(ge,,pe,)]
=1
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~ - - 1 -
where pg solves p1 = ﬂT*QO\IJE:) (go, Do), where 3 = on\IIEIH_ )(qo,po) and (ge,,De,) =
\Ilgziz(qo,ﬁo), and where we use the continuous Legendre transform to obtain g, .

Then, H; approximates HJ’E with order of accuracy at least min (r + 1,s). By
Theorem 2.2 in [49], the associated discrete right Hamiltonian map has the same order
of accuracy.

Proof. From Lemma A.2 we have that ¢(c;h) = q., + O(h""1) and p(c;h) = p., +
O(h™1), and since %—IZ is Lipschitz in both variables, ¢(¢;h)—q., = %—g(q(cih),p(cih))—

%(Qc”pci) = O(h™1). Since the quadrature formula is of order s accurate, (2.4) for

H " (g0, p1; h) gives
H" (g0, p1; h)

=pla—hY_bi[plesh)T(eih) = H (ge, + OB, pe, + O(h™)] + O(h*T1).
=1

Now, since ¢; = mg o \IJEJH)(qO,ﬁO), it follows from Lemma A.2 that §; = ¢1 +

O(h™*2). Therefore, combining this with the fact that H is Lipschitz continuous in
both variables yields

Hy % (qo,p1;h) =pi @1 — h Y _bi [plde, = H (e, pe,)] + O™ %) + O(h*T1)

i=1
- Hj(QOaPl% h) + O(hmin (r+1,s)+1).
Therefore, Hd+ approximates H; £ with order of accuracy at least min (r +1,s). 0O

Theorem 2.1 can be proven in a similar way for left HTVIs. Now, ¢(t) and p(t)
denote the solutions of the Hamilton’s boundary-value problem

q(t) = g(q(@),p(t), 1), p(t) = fq(t),p(t),t),  q(h)=q, p(0)=po,
and we let go = ¢(0) and p; = p(h). Lemma A.1 is replaced by the following.
LEMMA A4. Given an (r + 1)-order Taylor method \IIEIT-H) approximating the
exact time-h flow map corresponding to Hamilton’s equations, let gy solve the problem

q1 = 7TQ o \I/§LT+1)(Qo,p0). Then,
do=qo+O(h"*?).

Proof. We proceed as in the proof of Lemma A.1. We first solve ¢ = 7mg o

\IIElTH) (Go, po) for Go and then Taylor expand the exact solution ¢(¢) which belongs to
C"™*2(]0,h]). Now, q(t) is Lipschitz continuous in its arguments for k = 1,...,r, so

we can let M be the largest of the corresponding r Lipschitz constants with respect
to the first argument over the compact interval [0,C]. Then, as before, the triangle

inequality can be used to get that (1 — M 3 ;1) hk—):)||q~0 — qo|| = O(h™*2), and by
continuity, the term inside the parentheses is bounded away from zero. 0
In analogy to Lemma A.2, we now show that starting the r-order Taylor method
with initial conditions (go, po) rather than (qg, po) will not affect the order of accuracy
of the method.
LEMMA A.5. The r-order Taylor method \I'gf) with initial conditions (4o, po) and

where Gy solves g1 = Tg © \Ifgf)(q]),po) is accurate to at least O(h"™+) for the Hamil-
tonian boundary-value problem.
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Proof. Let (¢(t),p(t)) denote the exact solution to Hamiltonian’s equations with
initial values (Go, po), and let (gq(t), pa(t)) denote the values generated by the r-order
Taylor method with initial conditions (go, pg). The Hamiltonian initial-value problem
is well-posed, so denoting the Lipschitz constant with respect to the first argument
by M, we get

1(a(t),p(t)) — (qa(t), pa(®))]l < [I(a(t), p(t)) — (G(£), B + 1(@(t), B()) — (qa(t), pa(t))]l
< Mligo — ol + O(h") < O(R™),

where we have used the triangle inequality and the fact that the local truncation error
of an r-order Taylor method is O(h"*1) to bound ||(G(t),5(t)) — (qa(t), pa(t))]|- O

We are now ready to prove Theorem 2.1 for left HT'VIs.
THEOREM A.6. Consider a Hamiltonian H such that H and % are Lipschitz

continuous in both variables. Given an r-order accurate Taylor method \I/;LT) and
an s-order accurate quadrature formula with weights and nodes (b;,c;), define the
associated Taylor discrete left Hamiltonian

m
H;(QhPO; h) = _pg)rq() - hzbz [p;EQQ - H(qciapci)L
i=1
where Gy solves the problem ¢ = mg o \Ilgfﬂ)((jo,po), where (ge;, Pe;) = \Ilgl(qo,ﬁo),
and where we use the continuous Legendre transform to obtain g, .
Then, H; approzimates H;’E with order of accuracy at least min (r + 1, s). By a
result analogous to Theorem 2.2 in [49], the associated discrete left Hamiltonian map
has the same order of accuracy.

Proof. From Lemma A.5 we have that ¢(c;h) = g., + O(h™1), and p(c;h) = p, +
O(h"*1), and since %—IZ is Lipschitz in both variables, ¢(¢;h)—q., = %—I;(q(cih),p(cih))—
%%(QCmpci) = O(h"*1). Since the quadrature formula is of order s accurate, (2.7) for

H, " (q1,po; h) gives
H, " (q1,po; h)

= —pg qo — thi [p(cih)T(j(cih) — H (ge, + O 1), pe, + O(K" )] + O(R°H).
i=1

Now, since g1 = mg o \IIELTH)((jo,pO), it follows from Lemma A.4 that §o = ¢o +
O(h™*2). Therefore, combining this with the fact that H is Lipschitz continuous in
both variables yields

Hy " (g1, p0; h) = Hy (q1,po; h) + O(h™ (THHo L), 0
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