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Abstract

Three dimensional (3D) object recognition is becoming

a key desired capability for many computer vision systems

such as autonomous vehicles, service robots and surveillance

drones to operate more effectively in unstructured environ-

ments. These real-time systems require effective classifica-

tion methods that are robust to various sampling resolutions,

noisy measurements, and unconstrained pose configurations.

Previous research has shown that points’ sparsity, rotation

and positional inherent variance can lead to a significant

drop in the performance of point cloud based classification

techniques. However, neither of them is sufficiently robust

to multifactorial variance and significant sparsity. In this

regard, we propose a novel approach for 3D classification

that can simultaneously achieve invariance towards rota-

tion, positional shift, scaling, and is robust to point sparsity.

To this end, we introduce a new feature that utilizes graph

structure of point clouds, which can be learned end-to-end

with our proposed neural network to acquire a robust latent

representation of the 3D object. We show that such latent

representations can significantly improve the performance

of object classification and retrieval tasks when points are

sparse. Further, we show that our approach outperforms

PointNet and 3DmFV by 35.0% and 28.1% respectively in

ModelNet 40 classification tasks using sparse point clouds

of only 16 points under arbitrary SO(3) rotation.

1. Introduction

As commodity cameras and laser based sensors become

more affordable, point cloud based object classification is

becoming the default approach for 3D sensing. For example,

autonomous vehicles rely on point cloud maps sampled by

Lidar sensors or depth cameras for effective navigation. One

challenge often faced in such applications is that the density

of sampling points decreases significantly as the distance

from the vehicle embedded sensor to the object increases.

This makes it hard to recognize objects that are far from

such sensors due to their sparse inherent point structure [2].

As reported in the literature [18, 19, 1], the classification

Figure 1. Point cloud of car, airplane, earphone and guitar model

with size 2048, 256, 64, 32, 16 and 8 (from left to right). The object

recognition is challenging even for human when the point cloud

size is smaller than 16. Our developed algorithm can recognize

objects from 40 categories at 70.35% using 16 points and 48.19%

using 8 points even under arbitrary SO(3) rotation.

accuracy of these algorithms drop radically as the density

of the point cloud decreases, and is further affected when

the pose configuration of the object is not known in advance.

Similarly, consider the scenario of tactile based object recog-

nition using a robotic hand. The time complexity of sampling

is proportional to the number of points sampled along the

manipulator’s trajectory [38, 20, 7]. This implies that in

addition to performance degradation, there is an additional

cost related to the amount of sampling required to make

an acceptable prediction. Thus, it is necessary to come up

with new 3D machine learning techniques that can classify

objects based on “limited” sparse point cloud data and that

can operate in real-time, whether for effective navigation

(e.g. autonomous driving case) or for user’s meaningful

perception (e.g. tactile sampling).

Unfortunately, object recognition on sparse point clouds

with pose uncertainty has not been well addressed. To con-

vey this issue visually, refer to Fig. 1. Most of the ma-

chine learning techniques are designed for objects with at

least 1024 points, in which features are quite distinguish-

able [40, 18, 19, 29, 44, 13]. Conversely, finding salient

features from sparse points is extremely difficult because

salient features such as corners, edges and wrinkles are hard
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to discern with fewer than 128 points; The shape envelop be-

comes indistinguishable even for humans when the number

of points decreases to 16 and below. Further, the ambiguity

is aggravated when arbitrary SO(3) rotation is involved. [22]

shows how two objects can be nonrigidly aligned after rota-

tion, even they are from two different categories. This calls

for a new solution for recognizing sparse points with high

discriminability under pose uncertainty.

Although some pioneer point cloud recognition methods

have been focusing on the robustness to sparsity [1, 33]

and pose variance [42, 4, 12], almost all previous works

regard the sparsity and pose variance as two independent

tasks and fail to consider them as a whole. However, in real

applications, different variations are generally combined.

For example, applications such as tactile recognition [39]

or low-resolution outdoor 3D scans (e.g. Sydney Urban

Objects, involving point clouds with less than 50 points [6])

involves both sparsity and unknown pose variation, which

are still intractable tasks for the existing approaches. The

only known work that is capable of addressing both concerns

(sparsity and rotation) is [38]. The latter work recognizes

sparse points by a simple histogram feature created through

bin-counting triangle parameters. However, this method is

not scalable to large datasets due to the limited resolution

of bins, and also cannot generate point-wise features for

segmentation. Instead, we utilize the graph neural network

to learn latent representation with high discriminability in

an end-to-end fashion, enabling various machine learning

applications to be built on top of sparse and rotated point

clouds. We summarize our contributions as follows:

• Propose a point-wise feature that has invariance towards

arbitrary positional and rotational transformations.

• Propose a graph-based encoder to learn the object level

representation that can simultaneously be invariant to

positional shift, rotation, and scaling. We show by ex-

periments that the object representation can remain dis-

criminative even for significant sparse points combined

with arbitrary rotation and noise jittering.

• Propose Triangle-Net, an end-to-end deep learning net-

work that utilizes our proposed feature. Our network

allows for versatile 3D machine learning tasks to be con-

ducted on point clouds with multifactoral disturbances

that cannot be robustly learned by previous methods.

2. Related Work

2.1. 3D Object Recognition

Existing approaches for point cloud classification mainly

include but not limited to: 1) Directly performing classifica-

tion on point cloud data [18, 19, 44]. 2) Projecting the point

cloud data into other formats that can extract features expres-

sively, such as voxelized objects [17, 3], grid cells [10, 9],

spherical shells [43], images taken from multiple view an-

gles [24, 25, 26], or graph representation [40, 29, 37, 16].

3) Learning from hand-crafted features created by point

cloud data [1, 38, 42, 39]. 4) Building classifiers on top of

the learned latent representations using self-supervision e.g.

self-reconstruction [30, 23, 5]. Our approach falls into the

category of graph based deep learning, because the graph is a

particularly suitable technique to utilize the unique structural

properties between points.

2.2. Position and Orientation Invariance

Real-world objects can be found in arbitrary shapes and

poses and therefore it is necessary to learn the corresponding

invariance. However, authors, such as [42, 4] showed that the

variance in orientation may lead to significant performance

drops in most mainstream techniques used for point cloud

object classification and segmentation.

Various approaches have been developed to alleviate this

hurdle. For example, robustness to positional and rotational

changes can be either learned [18, 19, 1] or manually im-

ported through hand-crafted features [42, 4, 12]. However,

the learned robustness shows degraded performance when

generalized to scenarios where the object rotation is not

present in the training set (for example, instances with only

rotation around z-axis during training, but in the testing set

with arbitrary SO(3) rotations). To add more meaningful

variations in training demands more complex network archi-

tectures (e.g. more layers, neurons and connections) which

increase the training complexity, and thereby limited the

ability to generalize to combined variations of many stages.

For example, training on a combination of rotation and spar-

sity can drastically degrade the recognition accuracy both in

training and testing, as shown in Sec. 4.3.

A different approach, as used in [42, 4, 12] exploits local

features with rotational invariance, but all of them are sta-

tistically significant only in dense point clouds. However,

when the dense point cloud is available, there is not really a

need for learning rotation invariance because pre-processing

techniques such as alignment by PCA [32] can effectively

address this problem. In this paper, we focus on addressing

the challenge of the point cloud’s sparsity with an ambigu-

ous shape envelop. In such cases [42, 4, 12, 32] are not

applicable.

2.3. Robustness to Sparsity

The two categories of a sparse point cloud representa-

tion are: locally sparse and globally sparse. The prior case

corresponds to dense point clouds associated with low den-

sity regions. This category has been well-studied by either

utilizing shape completion [20, 34, 36] or exploiting local

features in regions that are not sparse [28].

The second case of category is a more general case, in

which local signatures cannot help with object classification.
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Therefore, the results can only have been conditioned on the

sparse points only. In this paradigm, [18, 19, 1, 16, 33] con-

ducted experiments using a randomly downsampled Model-

Net 40 dataset [31]. However, all evaluation results indicate

a significant performance drop when the number of points

falls below a threshold. To be specific, methods that exploit

local features [19, 16, 37] require statistical significance of

correlated points (for example, the points in the k-nearest

neighbourhood). However, the significance level is reduced

as the number of points in a local region decreases. Recently,

a new family of approaches based on 2D convolutions on

rendered images [24, 25] or 3D convolutions [17] have been

suggested. However, they have been found not suitable when

the points are too sparse due to the low correlations between

neighboring regions (most regions are void). In addition,

none of the above approaches are rotational invariant and

therefore the performance would be potentially impacted

when the object pose is unknown.

3. Methodology

In this section we explain our method on object recog-

nition, which is robust to point sparsity, positional shifts,

scaling and arbitrary rotations. To effectively extract the

spatial relationship between points, we utilize a hypergraph

based feature proposed in Sec. 3.1-3.3. We then integrate

the feature into a deep learning architecture in Sec. 3.4.

3.1. Graph Representation

For a point cloud denoted by X = {x1, . . . ,xn} and

its corresponding surface normals S = {s1, . . . , sn}, an

undirected hypergraph G = (V, E) can be built to represent

geometric features; where V are the vertices that corresponds

to the points; and E are the edge set of the graph, which

contains the spatial relationship between points.

We will first explain the process for building the edges

representation. Inspired by [8], we use hypergraph for con-

necting more than 2 points at once, which gains two ad-

vantages: 1) The extracted features have higher dimensions,

making each feature to be distinctive from others. 2) A larger

number of edges can be constructed when compared to those

obtained by only connecting two nodes. This contributes to

the statistical significance, which is crucial when the point

cloud is sparse.

Fig. 2 (a) introduces, for the first time, a feature function

that utilizes two points x1, x2 and its surface normal s1,

s2. We denote this function as f(x1,x2), which serves

as a building block of our hypergraph representation. The

function is given as:

DA = f(x1,x2) = [dx1,x2
, θz12,s1 , θz21,s2 , θs1,s2 ] (1)

Where [·] is the concatenate function, z12 = x1 − x2, d12 =

z122, and θu,v = arccos
u,v

u2·v2

. At most P2
n non-

repetitive DA features can be constructed for a point cloud

of size n.

Based on the feature function, our proposed type B hy-

peredge is defined as DB :

DB (x1,x2,x3) =[f (x1,x2) , f (x1,x3) , f (x2,x3) ,

θz12,z13
, θz21,z23

, θz31,z32
]

(2)

which corresponds to the illustration of Fig. 2 (b). Note

that DB not only includes three feature functions but also

emphasizes the superimposed spatial relationship between

them, meaning the extra elements θz12,z13
, θz21,z23

, θz31,z32
.

This shows that hyperedges can be used for building highly

discriminative feature sets.

We found that, through experimentation, by including

extra hand-crafted features, the accuracy can be improved

while reducing convergence time. Therefore, we also pro-

pose a feature function DC , as illustrated at Fig. 2 (c). A

center point between three vertices xm = 1

3
(x1 + x2 + x3)

is computed, and then additional angular and distance values

can be extracted. The math description is given as:

DC (x1,x2,x3) = [DB (x1,x2,x3) ,

dx1,xm
, θz1m,z12

, θz1m,z13
,

dx2,xm
, θz2m,z21

, θz2m,z23
,

dx3,xm
, θz3m,z31

, θz3m,z32
]

(3)

Robustness to point sparsity can be achieved when the

triangle’s vertices x1,x2,x3 are chosen independently to the

point cloud’s local density. For example, when x1 is given,

x2 and x3 can be chosen by either Farthest Point Sampling or

uniform sampling so that our method can exploit the global

level geometric relationship.

An extra robustness, scale invariance can be achieved

after introducing the scale normalization. To be spe-

cific, for each distance entry in DC (x1,x2,x3), we divide

it by max (dx1,x2
, dx1,x3

, dx2,x3
, dx1,xm

, dx2,xm
, dx3,xm

),
resulting the largest distance to be 1. For an object

scaled by factor α, DC (αx1, αx2, αx3) is strictly equal

to DC (x1,x2,x3) after scale normalization. However, this

normalization is optional because object size is also a prior

for recognition, while losing scale information is detrimental

to the performance.

3.2. Proof of Invariance

It can be proved that all DA, DB , DC proposed above are

invariant to arbitrary SO(3) transformations without loss of

generality. We denote the rotation transformation as R and

the positional transition vector as t. The SO(3) transforma-

tion does not change the distance between points.

dx1,x2
=x1 − x22 = (Rx1 + t)− (Rx2 + t)2 =

R(x1 − x2)2
(4)
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(a) (b) (c)

Figure 2. We propose three functions of feature extraction: (a) DA , which can be constructed using only 2 points with the attached surface

normal vectors. (b) DB that can be constructed using 3 points with surface normal vectors. (c) DC , which is built on the top of DB but has

more pre-computed information.

The angle θu,v between vectors u = x2 − x1 and

v = x3 − x1 are also invariant to rotation, because:

cos θ =
u,v

|u||v|
=

uR
T
Rv

|Ru||Rv|
=

u∗,v∗

|u∗||v∗|
(5)

where u
∗ = (Rx2 + t) − (Rx1 + t) and u

∗ = (Rx3 +
t)− (Rx1 + t). The invariant property can be generalized

to surface normal vectors since a surface normal vector s1
can be rewritten as (x1 + s1)− x1.

In brief, since all entries in DA, DB , or DC are either dis-

tance between two points x1, x2, or angular value between

two vectors, the extracted feature is invariant to SO(3). 

3.3. Hyperedge Convolution

Given the hyperedge features being extracted, we leverage

on graph aggregation to get the latent feature representation.

The aggregate function A (xi) of point xi is given as:

A (xi) = max
j,k∈E

HΘ (Dm (xi,xj ,xk)) (6)

Where HΘ is a mapping function parameterized by Θ im-

plemented by a deep neural network. Dm,m∈{A,B,C} is the

proposed feature function described earlier in Sec. 3.1. The

dimension-wise max function is used to aggregate all the

transformed features that are correlated with point xi. A (xi)
is the point-level feature that can then be used for tasks such

as point segmentation. Note that only a partial number of

features can be extracted when the point cloud size is large

due to the computational complexity. Therefore, we only

use a feature subset of size F created by random sampling.

To get the global representation of the whole object, we

aggregate all the latent features corresponding to all points

in the sampled point cloud. The aggregation can be accom-

plished by another max function. The global feature from

aggregation is then written as:

A (x1, ...,xn) = max
i∈E

A (xi) (7)

Note that the max aggregation function also relaxes the per-

mutation restriction over the input points [18].

3.4. Network Architecture

We integrate the feature extraction (Sec. 3.1), point/global

feature aggregation (Sec. 3.3), and mapping function HΘ

into an end-to-end architecture in Fig. 3. The mapping func-

tion HΘ is implemented as a neural network, an efficient

structure that extracts the feature progressively. We show

the number of neurons in each layer in Fig. 3. Our goal is to

utilize deep features that are known to be capable of reducing

the inductive bias [11]. Neurons in each layer receive the

concatenated feature from the previous layer as well as the

graph feature in Sec. 3.1. This design not only benefits the

performance by mitigating the gradient vanishing problem

through additional shortcuts but also avoids loss of infor-

mation with deeper structures. The final representation is a

summed feature of the deepest feature and the concatenated

feature from shallower layers.

The point level feature and global level feature allows for

various machine learning tasks to be conducted using sparse

point clouds. While these tasks can be learned separately, we

leverage multi-task learning to improve the generalization.

The multi-task learning rewards the network to learn the

underlying data distribution of the input data and also works

as a regularization technique to prevent overfitting [41]. We

show the network design of each task as follows.

Classification The classification network takes in the ob-

ject global feature A(x1, ...,xn) and predicts the likelihood

of target categories. An MLP network with 3 hidden layers

is adopted, with 512 and 256 units per hidden layer. Each

hidden layer is followed by batch normalization, dropout

layer with p = 0.3 and uses ReLU activation function.

Part Segmentation We implemented the segmentation

network as an MLP network that has 3 layers, with 256, 128,

50 output units, respectively.

Voxel Reconstruction The voxel reconstruction was con-

ducted by performing upsampling based on A(x1, ...,xn).
The upsampling network has four 3D transposed convolu-

tional layers with 1024, 256, 128, 64 kernels, respectively.

The network produces voxels with sizes from 4× 4× 4 to

32×32×32 sequentially, with 2× upsampling rate per stage.

4. Experiments and Results

4.1. Experimental Setting

We evaluate our approach under two scenarios: 1) global

sparsity and 2) combined sparsity from both partial and

global level. We evaluate two scenarios on ModelNet 40 [31]
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Figure 3. Triangle-Net, Our proposed deep learning architecture that extracts features from the parameters of the generated triangles. We

leverage on a neural network encoder for extracting point-wise and global features, facilitating classification, segmentation and reconstruction.

and ScanObjectNN [28] datasets, respectively. ModelNet

40 has 12,311 CAD models in 40 categories while ScanOb-

jectNN has 14,510 scanned point clouds in 15 categories.

As oppose to ModelNet 40, objects in ScanObjectNN has

a point distribution from real optical scanning that has par-

tial sparsity and even missing regions. For ScanObjectNN,

our experiments are conducted on the most difficult variant

(PB-T50-RS) without background.

We acquire the data for evaluating global sparsity accord-

ing to the evaluation protocol in literature [18, 19, 1], by

which random downsampling is applied to reduce the num-

ber of points without changing the original point distribution

pattern. The rotation invariance is evaluated under the same

protocol as [42, 4], in which a random SO(3) rotation around

the object center is applied.

4.2. Ablation Study 1: PointNet’s Lack of Robust­
ness Towards Rotation and Sparsity

Since PointNet is a basic building block for many 3D

machine learning algorithms, it is necessary to use an ex-

periment to show that the performance of PointNet will de-

grade when classifying arbitrarily rotated objects with sparse

points. For this, we both trained and tested the PointNet

on ModelNet 40 under 3 conditions in different point cloud

sizes: a) Point clouds with no rotation b) Only rotate around

z-axis or c) Arbitrary SO(3) rotations.

The results are shown in Table 1. PointNet performs well

with dense points cloud under all 3 rotational conditions,

as indicated in the first column. The result also shows that

PointNet scales well to sparsity when no rotation is applied,

Table 1. The experiment shows the performance degradation of

PointNet (in %) when using a) No rotation b) Only rotated around

z-axis or c) Arbitrary SO(3) rotation (as indicated in different rows)

under different point cloud densities (as shown in columns).

No. of points 1024 256 64 16

(1) No rotation applied 88.51 86.89 82.49 76.40

(2) Rotated around z-axis 86.62 77.33 69.31 53.33

(3) Arbitrary SO(3) rotation 79.08 72.01 56.79 35.28

Accuracy drop (1)-(3) 9.43 14.88 25.80 41.12

as indicated in the first row. However, performance decays

as rotation is applied to the data. It can be observed that

rotation around the z-axis affects overall performance, and

this is further aggravated when arbitrary SO(3) rotations are

applied. The T-Net module fails to learn robustness towards

SO(3) transformation when the point is extremely sparse.

4.3. Classification on Sparse and Rotated Points

In this experiment, we compare the classification accuracy

of our method to other approaches under various point den-

sity configurations. The objects in the ModelNet 40 dataset

undergo arbitrary SO(3) transformations both in training

and testing sets. The results are shown in Table 2. The last

row of the table shows our result with F = 4096 features

per object. The highest performance is highlighted in bold

digits. Note that 3DmFV and PointNet are known models

without a lower boundary for the number of points required.

Conversely, PointNet++ and RI-Conv have a lower boundary

for the number of points required, thus, is not applicable to

cases with fewer than 64 points.

Last, PointNet was tested under two conditions. The first

relies on vanilla PointNet1 which was trained with 1024

points with random input dropout [19]. Second, PointNet2

was trained and tested using the same number of points. The

results indicate that both PointNet models fail to generalize

sufficiently well to sparse point clouds. From Table 2, we can

see that 3DmFV [1] can perform better than PointNet when

the input points are sparse. However, the accuracy decays

with the point cloud size. We compared our algorithm with

RI-CONV [42] as well, an architecture that has rotational

invariance and therefore is robust to SO(3) transformation.

However, we found that it is not sufficiently robust to sparsity

and displays a performance drop with an increase in the point

size. Other recent methods such as KCNet[21], KPConv[27],

require a higher lower boundary for the minimum number of

points, and therefore we found not useful to compare with.

The above comparisons show that our approach can out-

perform others by a large margin when points are sparse.

Conversely, the advantage is not significant when using

dense points. We believe this is mainly due to 2 reasons.
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1) Part of relative positional information between points is

discarded, as each feature is constructed using 3 points rather

than all points. 2) When the point cloud is dense, there is an

immense number of triangles that can be constructed (e.g.

1× 109 possible triangles when using 1024 points) and, in

that case, the subset of triangles chosen by our method may

be sub-optimal to represent the object of interest.

Table 2. Comparison of ModelNet 40 classification accuracy (in

%) on both globally dense and sparse points under arbitrary SO(3)

rotation. Our algorithm shows the advantage when points become

sparse.

Dense Sparse

Num of points 1024 512 256 128 64 32 16 8

PointNet1[18] 73.09 72.67 64.48 39.93 21.08 9.79 2.65 2.07

PointNet2[18] 79.08 75.14 72.01 72.64 56.79 48.34 35.28 23.91

PointNet++[19] 84.76 83.87 83.31 78.60 N/A N/A N/A N/A

3DmFV[1] 86.63 85.69 84.70 82.32 76.56 63.45 42.26 23.68

RI-CONV[42] 86.5 84.4 80.8 76.0 N/A N/A N/A N/A

Ours 86.66 85.73 85.32 83.41 81.53 79.28 70.35 48.19

We observe a similar trend in the benchmark on ScanOb-

jectNN [28] dataset that has combined sparsity from global

and partial regions, as in Table 3. Our approach shows advan-

tages in all point densities when objects are under arbitrary

SO(3) rotations. But when SO(3) rotation and sparsity were

not applied, DGCNN [29] outperformed both PointNet and

our approach. We also notice the DGCNN has the most dras-

tic accuracy drop among 3 approaches when the resolution

decreases, while ours drops most gracefully among them.

In this context, we believe that DGCNN is benefited from

the “EdgeConv” operation that exploits the local informa-

tion from the dense parts when the rest is less informative,

but this operation may not be effective when points become

globally sparse, as evidenced by [14, 15].

Table 3. Comparison of classification accuracy (in %) on ScanOb-

jectNN dataset. Our algorithm shows the advantage when combined

variations are applied. Otherwise DGCNN performs the best.

w/o SO(3) SO(3)

Num of points 2048 256 32 2048 256 32

PointNet[18] 74.4 73.73 69.91 67.38 64.92 54.85

DGCNN[29] 81.5 78.7 70.7 71.58 69.6 55.4

Ours 73.77 71.82 70.16 73.77 71.82 70.16

4.4. Segmentation on Sparse and Rotated Points

We conducted a part segmentation experiment based on

the ShapeNet part dataset [35]. This dataset has 14,006 train

samples and 2,874 test samples that belong to 16 object

categories. Each point was annotated with a label, with 50

types of labeled parts in total. The segmentation task is to

predict the label for each point conditioned on both point

feature A (xi) and global feature A (x1, ...,xn).
We built the segmentation network on top of our learned

representation. For a fair comparison with PointNet, we

used a network that has the same classifier head as [18].

While PointNet can use an arbitrary number of input points,

DGCNN requires at least k points for k-nearest neighbour-

hood search. For experiments with 1024, 64, 16 and 8 points,

we set k as 20, 16, 8, 4 respectively. The result is shown in

Table 4. Note that our reported IoU value is the IoU averaged

over all instances in the test set.

Our approach also shows an advantage in the segmen-

tation task when the point cloud is sparse. We outperform

PointNet and DGCNN with only 8 or 16 points. However,

as expected, the IoU decreases as the point cloud becomes

denser. Because the number of DC features used was too

small (only 4096) when compared to the point cloud size,

the point-level feature did not represent the target category

sufficiently well.

Table 4. The averaged instance IoU of part segmentation experiment

under SO(3) rotation and given point cloud size. The result shows

that our approach performs better when points are sparse.

No. of points 1024 64 16 8

PointNet[18] 80.52 80.47 75.59 70.30

DGCNN[29] 80.43 77.94 69.27 64.38

Ours 72.53 80.09 78.74 75.83

4.5. Object Retrieval by Shape Similarity

Our learned representation can be used as a metric for

comparing shape similarity even when the point cloud is

sparse and rotated. The experiment below shows the perfor-

mance of the learned shape similarity metric using only 16

points. Both the query object and the candidate objects are

from the test set of ModelNet 40 dataset (i.e. unseen objects).

The top 5 similar objects are found within the test dataset us-

ing the k-nearest neighborhood with the L2 distance metric.

The retrieval results of our approach is shown in Fig. 4 (a).

The comparison with PointNet is shown in Fig. 4 (b).

(a) (b)

Figure 4. Results of the retrieval operation of our approach (a) vs

PointNet model retrieval results (b) using only 16 points under

arbitrary SO(3) rotation.

We use retrieval mAP (mean averaged precision) as a

metric for a quantitative comparison of our approach to

PointNet. Our approach achieves 59.97% and 56.67% in

top-5 and top-10 retrieval results respectively, outperforming
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PointNet that achieved 34.80% and 35.04% correspondingly.

We believe that the boost in performance is from a better

discriminative ability of our feature and a better similarity

metric learned by object reconstruction.

4.6. Embedding Analysis

In order to validate rotational and positional invariance,

we observed the feature invariance in the embedding space.

First, 3 models were trained with point clouds of size 16

using the feature functions DA, DB , DC respectively. Then,

an arbitrary object xi was chosen, and all the non-repetitive

features using DA, DB , DC were created (P2
16 = 240 fea-

tures for DA, P3
16 = 3360 features for DB and DC) and

its embedding vectors were extracted by the encoder. The

embedding vector of xi remained unchanged after having

the input xi being subject to random rotation and position

transformations, showing that our proposed approach is both

rotational and positional invariant.

It is observed that the embedding space between cate-

gories remained distinctive even when the point cloud was

extremely sparse. Further, we compared the data distribution

in the feature space under different point cloud size. We

used PCA to reduce feature dimensionality from 1024 to 50

and then performed t-SNE in order to create a 2-dimensional

visualization. For each plot, 10,000 samples from 10 cat-

egories were used. The results shown in Fig. 5 showcase

that our point features are distinctive for all the learned rep-

resentations. Yet, the margin between categories becomes

ambiguous when the points get sparser (e.g. 8 points).

4.7. Voxel Reconstruction Using Sparse Points

We show object reconstruction results from the multi-task

learning branch using only 16 input points, as Fig. 6. A voxel

is placed when the output (binary Sigmoid function) is larger

than 0.2 (instead of 0.5, as the normal Sigmoid case) because

we found the network output becomes less "confident" as

the input points become sparse. While the reconstruction

result resembles the original object, some reconstruction

artifacts can still be seen. These include cluttered voxels and

inaccurate shape details. We believe this is mainly due to the

limited discriminative ability of sparse points.

Figure 6. Voxel reconstruction using only 16 input points. Even

though the input information is very scarce, reasonable reconstruc-

tion results can still be achieved.

4.8. Robustness to Jittering

Sensor measurements include noisy data due to outliers,

errors induced from the tactile sensor (e.g. inaccurate contact

normals), or erroneous surface normals estimations (when

not accessible from the sensor directly). To answer whether

our approach can be robust to such noisy inputs, we con-

ducted noise injection experiments.

The noisy surface normal vector ŝ is generated using the

following procedure. First, a random 3D vector wn with

a given magnitude ms is computed: v = ms
wn

wn
where

w ∼ N (0, I). v is then being added to the original surface

normal s and re-normalized to an unit vector: ŝ =
s+v

s+v
.

A noisy point p̂ is generated by adding a Gaussian noise

wp ∼ N (0,mpI) to each separate position p: p̂ = wp+p.

Our approach is validated using the ModelNet 40 classifi-

cation task with both dense points (1024 points), and sparse

points (64, 16, 8 points). For a fair comparison, the model is

trained without noise at all. During testing, we inject noise

to the surface normal’s channel and the position’s channel

separately. The robustness is evaluated by obtaining the clas-

sification accuracy as a function of magnitude ms and mp ,

as shown in Fig. 7. Overall, it can be seen that our network

is more robust to noise in both point position’s channel and

surface normal’s channel. For the noisy point position case,

our approach only drops 28.5% when the noise standard

deviation reached 10 centimeters in each dimension, while

PointNet degrades around 58% with the same scenario (re-

fer to literature [18]). For the noisy surface normal case, it

shows that robustness varies with point cloud size. When

using 8 points (the harshest test scenario), there is only 6.6%

accuracy drop when the random noise component v reaches

20% magnitude of the original surface normal u.

(a) position (b) surface normal

Figure 7. Robustness experiment under jittering in (a) point position

(b) direction of surface normal vector, showing that our approach

is robust to a wide range of input noise.

4.9. Scale Invariance

Scale invariance can be achieved with the proposed scale

normalization trick. We train 2 models for this experiment.

The first model is trained and tested with the scale normal-

ization trick (refer to Sec. 3.1), while the second model is

trained and tested without scale normalization. In neither

case, data augmentation is used to enhance robustness. The

evaluation is conducted under a combination of 3 variants:

arbitrary SO(3) rotation, sparsity (16 points) and scaled by

a given ratio from 0.5 to 1.5. The result is shown in Fig. 8.

The blue curve corresponds to the model after the scale nor-

malization trick, showing performance resiliency to changes
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(a) 1024 points (b) 64 points (c) 16 points (d) 8 points

Figure 5. t-SNE visualization of learned embedding space using point cloud of size (a) 1024, (b) 64, (c) 16, (d) 8. The learned features

remain to be distinctive even when the point cloud is extremely sparse e.g. 16 or 8 points.

in scale. Nevertheless, this comes at the price of overall

inferior performance than the peak performance achieved

by the model without the scale normalization trick (orange

curve), as the scale information is lost.

Figure 8. Robustness to scaling by the normalization trick (blue

curve), otherwise it is sensitive to the object scale (orange curve).

4.10. Ablation Study 2: Network Components

Inference and Training Time: Our proposed feature can

be computed quickly using parallel computing on a GPU, as

shown in Table 5. For ModelNet 40, training with a number

of features F = 4096 can be completed within 8.5 hours on

a single Nvidia Tesla P100 GPU.

Table 5. Model size and inference time under 1024 points.

Method # of parameters Inference time

PointNet[18] 3.5M 2.1ms

DGCNN[29] 1.8M 22.7ms

Ours 2.0M 6.9ms

Number of Features: The algorithm performance is cor-

related with the number of generated features F . Table 6

shows the ModelNet 40 classification accuracy versus the

number of features F under SO(3) rotation by 1024 points.

Table 6. The ModelNet 40 classification accuracy (in %) versus

number of features F under 1024 point and SO(3) rotation.

Num of F 1024 2048 4096 8192

Accuracy 85.29 86.06 86.66 86.99

We compare several variations of our approach quantita-

tively using 16 points on ModelNet 40, as shown in Fig. 7.

Classification results increase as more information is added

to the feature. Accuracies of 60.08%, 69.04%, and 69.48%

are achieved using DA, DB , DC feature functions when only

trained on the classification task, and the accuracy is further

boosted to 70.35% when classification is trained together

with object reconstruction. The latter scenario corresponds

to the highest accuracy we achieved.

Table 7. ModelNet 40 classification accuracy (in %) of several

variations of our proposed algorithm.

Descriptor Reconstruction Accuracy

DA feature function No 60.08

DB feature function No 69.04

DC feature function No 69.48

DC feature function Yes 70.35

5. Conclusions

While a rich variety of 3D object recognition methods

have been proposed over recent years, very few of them can

work on point clouds with a combination of disturbances

such as low resolution, unaligned pose, and varied object

scale. To address this problem, we evaluated state-of-the-art

approaches under arbitrarily rotated sparse point clouds, and

found most approaches only achieve limited performance or

cannot work under this setting altogether.

In this paper, we propose a robust feature extraction

method for point cloud that can generate invariant features

towards positional, rotational and scaling disturbances. Such

type of feature can remain discriminative when the point

cloud is of significant sparsity and even being perturbed with

noise. Furthermore, the feature extraction mechanism is in-

tegrated into Triangle-Net, a deep neural network that can

learn in an end-to-end fashion. Experiments were conducted

to show that our learned representation can remain robust to

multifactorial variations, and is resilient to jittering, facilitat-

ing universal 3D machine learning tasks to be conducted on

imperfect measurements and limited resources.
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