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We prove that a finite braided tensor category A is invertible in the Morita 4—category
BrTens of braided tensor categories if and only if it is nondegenerate. This includes
the case of semisimple modular tensor categories, but also nonsemisimple examples
such as categories of representations of the small quantum group at good roots of
unity. Via the cobordism hypothesis, we obtain new invertible 4—dimensional framed
topological field theories, which we regard as a nonsemisimple framed version of the
Crane—Yetter—Kauffman invariants, after the Freed—Teleman and Walker construc-
tions in the semisimple case. More generally, we characterize invertibility for E—
and E;—algebras in an arbitrary symmetric monoidal co—category, and we conjecture
a similar characterization of invertible E,—algebras for any #. Finally, we propose
the Picard group of BrTens as a generalization of the Witt group of nondegenerate
braided fusion categories, and pose a number of open questions about it.
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1 Introduction

In [11], we introduced a symmetric monoidal 4—category BrTens whose objects are
braided tensor categories, and whose morphisms encode their higher Morita theory,
following Haugseng [36] and Johnson-Freyd [39], and gave sufficient conditions for 3—
dualizability (“cp-rigidity”’) and 4—dualizability (fusion) in BrTens. Here we consider
the related question of invertibility in BrTens. We also treat both dualizability and
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invertibility in the more general setting of Ej—algebras in an arbitrary background
symmetric monoidal 2—category S.

1.1 Main results

Finite braided tensor categories are linear and abelian braided monoidal categories
satisfying strong finiteness and rigidity conditions (see Section 3 for more details).
Such an A is called nondegenerate if the Miiger center of A is trivial, ie if for every
nontrivial object X € A, there exists an object ¥ € A such that the double braiding
oy,x ©0x,y on X ® Y is not the identity. Our main result is:

Theorem 1.1 A finite braided tensor category A is an invertible object of BrTens if
and only if A is nondegenerate.

We note that Theorem 1.1 includes semisimple modular tensor categories, whose invert-
ibility is known to experts (see Section 1.3), but we emphasize that we require neither
semisimplicity nor a ribbon structure. In particular, our results include representation
categories of small quantum groups for good roots of unity, which are nondegenerate
but not semisimple.

Theorem 1.1 has an application to the construction of topological field theories via the
cobordism hypothesis; see Baez and Dolan [4], Lurie [45], Bergner [9], Freed [31] and
Ayala and Francis [3]. Namely, we obtain a 4—dimensional fully extended framed TFT
attached to every nondegenerate finite braided tensor category, which we may regard
as a framed and nonsemisimple analog of the fully extended Crane—Yetter—Kauffman
topological field theory [16; 15] (see also Walker and Wang [65], Birenz and Barrett [5],
Kirillov and Tham [42]) envisioned by Freed, Teleman and Walker and recalled in
Section 1.3. These TFTs are invertible in the sense of Freed [32], Schommer-Pries [56]
and Debray [19].

We believe that this aspect of the work will be important for applications, as it was
not generally expected that nonsemisimple braided tensor categories would give rise
to 4—dimensional TFTs due to the heavy reliance on semisimplicity in the traditional
state-sum approach to Crane—Yetter—Kauffman TFTs. In future work we plan to study
SO(4)—fixed point structures (hence the associated oriented TFTs), and to give a
reformulation of nonsemisimple Witten—Reshetikhin—Turaev theories of Costantino,
De Renzi, Gainutdinov, Geer, Patureau-Mirand and Runkel [14; 18] as field theories
relative to our nonsemisimple Crane—Yetter—Kauffman theory, following the proposal
of Freed, Teleman and Walker.
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Theorem 1.1 also gives rise to a generalization of the Witt group of nondegenerate
braided fusion categories from Davydov, Miiger, Nikshych and Ostrik [17], via the
Picard group of BrTens. In Section 4, we discuss this Picard group, its relation to the
Witt group, and a number of natural open questions related to it.

Braided tensor categories define E,—algebras in the symmetric monoidal 2—category
S8 = Pr of locally presentable linear categories. Our approach is to work as much as
possible in the more general (co, 4)—category Alg,(8) of E,—algebras in an arbitrary
ambient closed symmetric monoidal (oo, 2)—category 8.

In this generality we have analogs Zo(A), Z1(A) and Z,(A), respectively, of the
endofunctors, the Drinfeld center and the Miiger center of A (see Section 2.1 for
detailed definitions). We will also use the Harish-Chandra category HC(A) (a variant
of the monoidal Hochschild homology with the annulus/bounding framing rather than
cylinder/product framing), and we will denote by A®° and AP the E,—algebras
obtained as reflections of the E5—structure through the x—and y—axes (see Section 2.1).
We first prove the following result:

Theorem 1.2 An E,-algebra A € Alg,(8) is 3—dualizable if and only if A is dualiz-
able as an object of 8, as an A°¢ —-module and as an HC(A)-module.

Turning next to invertibility we prove:

Theorem 1.3 A 2-dualizable E—algebra C € Alg,(8) is invertible if and only if it is

(1) central: the natural morphism 1g — Z1(C) is an equivalence; and

(2) Azumaya: the natural morphism C X C®° — End(C) is an equivalence.

In the case § is the category of R—modules for R a commutative ring, Theorem 1.3
reduces to a characterization of Azumaya algebras; see Example 2.29. More generally,
conditions (1) and (2) will be equivalent under mild conditions, eg if an analog of the
classical double commutant theorem holds.

Our main general result is the following characterization of invertible E,—algebras:

Theorem 1.4 A 3—dualizable E;—algebra A € Alg,(8) is invertible if and only if it is

(1) nondegenerate: the natural morphism 1g — Z,(A) is an equivalence;
(2) factorizable: the natural morphism A X A°°P — 71 (A) is an equivalence; and

(3) cofactorizable: the natural morphism HC(A) — End(A) is an equivalence.
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Our proof of Theorem 1.1 is an application of Theorem 1.4 in the case BrTens =
Alg, (Pr). For this we require two additional claims: that finite braided tensor cate-
gories are 3—dualizable, and that, for finite braided tensor categories, nondegeneracy,
factorizability and cofactorizability are mutually equivalent. The first claim follows
from the main result of [11] since finite tensor categories are cp-rigid. For the second
claim, we have the following two theorems, the second of which we prove in Section 3
(see Theorem 3.21 for the complete statement).

Theorem 1.5 (Shimizu [58]) A finite braided tensor category is factorizable if and
only if it is nondegenerate.

Theorem 1.6 A finite braided tensor category is factorizable if and only if it is co-
factorizable.

Remark 1.7 Outside of finite braided tensor categories, nondegeneracy does not
imply factorizability, nor cofactorizability. For example, the category of integrable
representations of a semisimple quantum group at generic quantization parameter
is nondegenerate, but is clearly not factorizable. We do not know whether either
factorizability or cofactorizability imply finiteness (see Question 4.6).

Besides clarifying proofs, the generality of Theorem 1.4 makes it possible to consider
invertibility of E,—algebras in contexts other than finite braided tensor categories. For
instance, the 3—dimensional Rozansky—Witten TFT [54] associated to a holomorphic
symplectic manifold X gives rise to a ribbon braided tensor structure on the bounded
derived category of coherent sheaves Dé’oh(X ); see Roberts and Willerton [52]. We
expect that this braided tensor category is invertible in the suitably derived version
of BrTens, and hence defines an invertible 4D topological field theory. In addition,
we expect that one may formulate the Rozansky—Witten TFT as a field theory relative
to the resulting 4D theory, in precisely the way that the Witten—Reshetikhin—Turaev
3D TFT [67; 51] is constructed relative to the 4D Crane—Yetter—Kauffman theory. We
hope to return to this in future work.

1.2 Conjectural extension to E,—algebras

Let us now collect two conjectures generalizing our results for dualizability and invert-
ibility of Ej— and E,—algebras to E,—algebras. An important theorem of Gwilliam
and Scheimbauer [35] (cf Lurie [45, Claim 4.1.14]) states that every E, algebra
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A € Alg, (8) is n—dualizable. The following characterization for (n+1)—dualizability
of E,—algebras was formulated in [45, Remark 4.1.27], where it is remarked that it
would follow from an unpacking of the proof of the cobordism hypothesis. It is formu-
lated in terms of the factorization homology (or topological chiral homology) |, y A of
a framed n-manifold M, with coefficients in an E, —algebra A (see Definition 2.2 for
a brief recollection, or Ayala and Francis [2] and Lurie [45] for complete definitions).

Let us fix the framing on S k=1 R which bounds an k—disk, and its product framing
on S¥1 x R"~k+1 with the trivial framing on R™~k . This induces an action of the

E,_i11-algebra fSk_IXR”_k'H Aon [pn AxA.

Conjecture 1.8 An E, —algebra A € Alg, (8) is (n+1)—dualizable if and only if it is
dualizable over the factorization homologies [¢x—1y gn—k+1 A fork =0,....n.

We note that the forward implication is clear. The case n = 1 of the conjecture is
proved in [45], and recalled in Theorem 2.15. We prove the case n = 2 relevant to the
present paper in Theorem 2.22.

Recall that the Ej—center Z; (A) of an E,—algebra A for k <n is

Zi(A):=End; (A

The pattern of Theorem 1.4 leads us to make the following analog of Conjecture 1.8:

Conjecture 1.9 An E,—algebra A is invertible if and only if it is (n+1)—dualizable
and the canonical maps

/ A—=>Z,_1(A)
Skfl X]R”*kJrl

are equivalences fork =0,...,n.

Again the forward implication is clear. Theorems 2.27 and 2.30 confirm the conjecture
in the cases n = 1 and n = 2, and the same techniques should work in the general
case provided one has a sufficiently general calculus of mates (see Remark 2.28). We
therefore expect Conjecture 1.9 to be significantly easier to prove than Conjecture 1.8.
In particular, in contrast to Conjecture 1.8, we expect it can be proved independently
from the proof or even the statement of the cobordism hypothesis. In order to apply
this conjecture to any examples, however, one must verify (n+ 1)—dualizability, which
involves the previous more difficult conjecture.
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1.3 Related results in the semisimple case

Let us now discuss how our results fit with those in the literature. The existence of
a (3,4)-TFT based on a semisimple modular tensor category was first proposed by
Crane, Yetter and Kauffman [16; 15]. This led Walker many years later to propose a
skein-theoretic extension of the Crane-Yetter—Kauffman theory as a fully extended 4D
TFT in his unpublished notes [63]. Subsequently, Freed and Teleman gave an alternative
proposal in the framework of the cobordism hypothesis [29; 30]; their construction was
never published. A complete proof of the required full dualizability appeared in [11],
however it remains an open question to determine SO(4)-fixed point structures, in
particular to show that they arise from ribbon structures.

Turning to invertibility, Freed and Teleman reduced the question of invertibility of
an oriented 4—dimensional fully extended theory to invertibility of its value on the
2—sphere. The invertibility of Crane—Yetter—Kauffman-type theories associated to
semisimple modular tensor categories would hence follow from their criterion, given the
SO(4)-fixed point structure discussed above, and a fairly straightforward identification
of the value of the 2—sphere with the Miiger center (see Proposition 3.8 below). The
orientability question is important, however, since their proof hinges on the homotopy
theory of classifying spaces of special orthogonal groups.

Alternatively, in [57] Schommer-Pries reduced the question of invertibility of any once-
extended (in particular, any fully extended) 4—dimensional (not necessarily oriented)
TFT to the invertibility of its value on any single torus Tk .= (SHk for k =11, 2
or 3. All three invertibility statements were known to Walker and Wang (see [65; 64]),
however proofs were never published. For kK = 2, a complete proof appears in Kirillov
and Tham [42], and for k = 3 it is an easy consequence of the tensor product formula
in Gunningham, Jordan and Safronov [34]. The k =1 case is item (4) of Theorem 3.21
proved below.

Remark 1.10 In Section 3 we equate nondegeneracy, factorizability and cofactorizabil-
ity of finite braided tensor categories, by working algebraically in BrTens, following
Shimizu [58]; by contrast, Freed and Teleman and Schommer-Pries work topologically
with bordism groups. The two approaches are mirrored somewhat through the cobor-
dism hypothesis, which suggests that it may be possible to generalize Shimizu’s — and
hence our —results, in two independent directions: by removing assumptions on the
ground field — that it be algebraically closed of characteristic zero— and by relaxing
compact-rigidity to cp-rigidity. In particular, Schommer-Pries’s techniques indicate
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that factorizability may imply nondegeneracy in greater generality, while Freed and
Teleman’s techniques indicate that nondegeneracy may imply factorizability in greater
generality. See Remarks 1.7 and 3.1 for more discussion on these points.

Finally, in [38], Johnson-Freyd has given a proof that Karoubian (not necessarily
ribbon/modular) nondegenerate braided tensor categories are invertible in BrTens —
in particular, he gives independent proofs of the Karoubian case of Theorems 1.1
and 1.3, and also generalizes these results to (braided) fusion n—categories. However,
the classes of braided tensor categories treated in his work and ours intersect only
in the semisimple/braided fusion case discussed above: if the free cocompletion of
a unital Karoubian tensor category is equal to the ind-completion of a finite tensor
category (so is in particular compact-rigid), then, by a standard argument with rigidity,
all compact objects are projective. This implies that the category at hand is in fact the
ind-completion of a fusion category.

We wish therefore to emphasize that the novel aspect of our work as compared to those
discussed above, regarding applications, is our ability to treat nonsemisimple finite
braided tensor categories, as well as to work in derived settings, such as arise in a
treatment of Rozansky—Witten theory.
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2 Dualizability and invertibility of E{— and E,-algebras

In this section we recall some fundamental definitions and results about the Morita
category of E,—algebras, and we prove our main general results about dualizability
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and invertibility for E,—algebras. To clarify notation, we will keep a running example
S = Pr, but we stress that the results in this section are all general, and that any results
which are specific to braided tensor categories are delayed until the next section.

2.1 E,-algebras and higher Morita categories

We begin by briefly recalling the notion of an E,—algebra in a closed symmetric
monoidal (oo, 2)—category & which admits geometric realizations. We denote its
symmetric monoidal structure by X. We refer to [46, Chapter 5; 2] for more details on
the following definitions.

Definition 2.1 Let Mﬂd};r denote the topological category whose objects are framed
n—manifolds, and whose space of morphisms between M and N is the topological
space Emb™(M, N) of framed embeddings.! We equip Mﬂd};r with the structure of
a symmetric monoidal category under disjoint union. We denote by Diskf,r the full
subcategory consisting of finite disjoint unions of the standard open disk (0, 1)”.

Definition 2.2 An E,—algebra in § a symmetric monoidal functor A: Disk — §.
The factorization homology with coefficients in A is the left Kan extension of the
functor A along the inclusion of Disk!" into MfldiF, and is denoted by M > S A-

Example 2.3 In the familiar example & = Pr (see Section 3), an Ej—algebra is a
locally presentable category, with a colimit-preserving monoidal structure. Henceforth
we will call this a “tensor category”, without a further requirement of rigidity, and
will make explicit any notion of rigidity (eg compact-rigid or cp-rigid) we assume.
Similarly, an E,—algebra in Pr is a braided tensor category, and an Ej —algebra for
k > 3 is a symmetric tensor category.

When we identify E,—algebras in Pr with braided tensor categories, we use these
conventions, following [11]: the tensor multiplication is in the x—direction, and the
braiding is given by counterclockwise rotation.

Let us fix some more notation for later use. An E;j—algebra C has an opposite E£;—
algebra C®°P coming from precomposing by reflection. The notation ®op is intended
1Recall that a framed embedding of M into N is an embedding of topological manifolds, together with

an isotopy y between the framing on M and the framing pulled back from N. In particular, a framed
embedding is not required to preserve the framing strictly.
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to emphasize that we are taking the dual in the multiplication direction, and not taking
a dual in the underlying category 8. An Ej—algebra A has two a priori distinct notions
of opposite: A®°P where we reflect in the x—direction, and A%°P, where we reflect in
the y—direction. We have two canonical equivalences of E,—algebras

(1) ABP ~ AP,
given by a 180° rotation in the clockwise and counterclockwise directions.
Example 2.4 Consider the case § = Pr and suppose A € Alg,(8) is a braided tensor

category. The braided tensor category A® has the same underlying category, the
tensor product x ®°P? y = y ® x and the braiding

—1
x®°py=y®x0x—’y>x®y=y®°px.

The braided tensor category A°°P has the same underlying tensor category and the
braiding o 1:x®y — y ® x. The two canonical equivalences in this case are each
given by equipping the identity functor id: A®°P — AP with a braided tensor structure
given by the braiding, and its inverse.

Definition 2.5 (see [33, Section 7]) Let A be an E,—algebra. Its enveloping algebra

e[
Sn—IxR

where S”~! xR carries the framing bounding the n—ball.

is the Ej-algebra

The enveloping algebra Uﬁ” has a natural left module action on fR" A = A, coming
from the sphere bounding the ball.
Definition 2.6 Let A be an E,—algebra. Its E,—center is the object

Zn(A) = Endyr, (A) €58.

By [28, Proposition 3.16], we have an equivalence of co—categories
~ En
LMOdUgn ~ MOdA

between the co—category of left UE” —modules and the co—category of E, —A-modules.
Moreover, the notion of a center introduced in [46, Definition 5.3.1.6] is shown in [46,
Theorem 5.3.1.30] to coincide with End, oEn (A). So, Z, (A) is indeed the center of
the E,—algebra in the sense of Lurie.
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In addition, by [46, Theorem 3.3.3.9], Modﬁ” is an Ej;-monoidal co—category with
Ae Modﬁ” the unit object. So, by the Dunn—Lurie additivity theorem [46, Theorem
5.1.2.2] (cf [22; 27)), Zn(A) is an E,1—algebra.

Example 2.7 Suppose C is an Ej—algebra. We write
e =U' = eme®™,

In the case 8§ = Pr, it is shown in Proposition 3.7 that the E1—center Z;1(C) coincides
with the Drinfeld center of the tensor category C.

Example 2.8 Suppose A is an Ey—algebra. We write
HC(A) = UE? = AR 54000 AP,

where we regard A (resp. A®°P) as an Ej—algebra in right (resp. left) AKX.AP—
modules, hence the relative tensor product inherits again an £ —structure. In the case
8 = Pr, it is shown in Proposition 3.8 that the E—center Z;(A) of coincides with the
Miiger center of the braided tensor category A.

The collection of E,—algebras in a fixed & carries the structure of a symmetric monoidal
(o0, n+2)—category Alg, (8). We refer to [39; 36; 55; 13] for a rigorous construction
of Alg, (8) in the model of iterated complete Segal spaces, and to [35] for a digestible
exposition, and a treatment of dualizability. Let us remark for experts that we will

require Haugseng’s “unpointed” model in order to treat questions of higher dualizability
and invertibility (see [35, Section 1.4]).

While the works cited above are required in order to make rigorous sense of the com-
position laws of higher morphisms and their compatibilities, it is possible nevertheless
to give an informal description of objects and morphisms themselves, in Alg;(8) and
Alg,(8):

Definition 2.9 (sketch) The (oo, 3)—category Alg,(S) has

e asobjects Eq—algebras A, B,...;
e as l-morphisms the (A, B)-bimodules M, N, ...
e as 2—morphisms the bimodule 1-morphisms;
¢ as 3—morphisms the bimodule 2—morphisms.
The symmetric monoidal structure, as well as the composition of 2— and 3—morphisms,

are those inherited from §. Composition of 1-morphisms is the relative tensor product
of bimodules.
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Definition 2.10 (sketch) The (0o, 4)—category Alg,(8) has

e as objects E,—algebras A, B,...;

e as l-morphisms the E;-algebra objects C, D, ... in (A, B)-bimodules;

e as 2-morphisms the (€, D)-bimodule objects M, N, ... in (A, B)-bimodules;
¢ as 3—morphisms the bimodule 1-morphisms;

¢ as 4—morphisms the bimodule 2—morphisms.

The symmetric monoidal structure, as well as the composition of 3— and 4—-morphisms,
are compatible with those in §. For example, to compose 3—morphisms we endow
the composition of the underlying 1-morphisms with the structure of a bimodule
I—morphism in an appropriate way. Composition of 1— and 2—morphisms is given by
the relative tensor product of bimodules, equipping the resulting composition in the
case of 1-morphisms with a canonical E-algebra structure.

There is a potential ambiguity in the notion of (A, B)—bimodule appearing above, since
A and B each admit multiplications in both the x— and y—directions. Hence let us fix
some conventions, following [11]:

¢ The (A, B)-bimodule structure on a 1-morphism is with respect to multipli-
cation in the y-direction for both A and B, whereas (by Example 2.3) the
underlying E;—algebra associated to an Ej—algebra is in the x—direction. This
means that an (A, B)-bimodule is an AXB-module (rather than an AXBP—
module).

e Hence the data of an Ej—algebra in (A, B)-bimodules is equivalent to the data
of an Ej—algebra € in 8, together with a morphism A X Bo°P — Z(C). We
call such data an (A, B)—central algebra.

e Given E,-algebras A and B and (A, B)—central algebras € and D, a (C, D)-

bimodule object M in the monoidal category of (A, B)-bimodules is an (A, B)-
centered (C, D)—bimodule.

2.2 Dualizability for E;— and E,-algebras

Recall from [45, Definition 2.3.16] that a symmetric monoidal (oo, k)—category has
duals if every object has a dual, and every i —morphism has a left and right adjoint for
1 <i <k. An object in an (oo, n)—category is called k—dualizable if it belongs to a
full sub- (o0, k)—category which has duals.
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In this section we discuss dualizability and adjointability in the Morita categories
Alg,(8) and Alg,(8). The case of Alg;(8) is well known, but in the case of Alg,(8)
Theorem 2.22 is new. We begin by looking at dualizability in Alg,(S).

Proposition 2.11 Every E;-algebra C € Alg,(8) is 1—dualizable with dual €% =
@®°P | and with evaluation and coevaluation given by versions of the regular bimodule:

e evisCasa (C®PXRE, 1g)-bimodule.
e coev is C as a (1g, CKC®°P) —bimodule.

It turns out that a bimodule having a left adjoint or a right adjoint depends only on the
left action or the right action, respectively, as explained in the following definition and
proposition:

Definition 2.12 Let C be an Ej—algebra in §. A right (resp. left) C—module M
is called dualizable if it has a right (resp. left) adjoint as a (C, 1g)—bimodule (resp.
(1, ©)—bimodule).

Proposition 2.13 [46, Proposition 4.6.2.13] A 1-morphism M : C — D in Alg,(S)
has a right (resp. left) adjoint if and only if M is dualizable as a ‘D—module (resp.
C—module).

In order to give a complete characterization of 2—dualizable objects in Alg;(8), we
first recall the following result (see [45, Proposition 4.2.3; 50, Theorem 3.9]), which
reduces 2—dualizability to a finite number of conditions.

Theorem 2.14 A 1-dualizable object X of a symmetric monoidal 2—category is
2—dualizable if and only if the evaluation and coevaluation maps each admit a right
adjoint.

We may finally state the following well-known characterization of 2—dualizable objects
in Alg;(8):

Theorem 2.15 An E-algebra C € Alg,(8) is 2—dualizable if and only if it is dualiz-
able as an object of 8, and as a C¢ —-module.

Proof We recall from Proposition 2.11 the 1-dualizability data €V, ev and coev. By
Theorem 2.14, C is 2—dualizable if and only if ev and coev both admit right adjoints.
Then, by Proposition 2.13, these right adjoints exist if and only if C is dualizable as a
1s—module (ie as an object of 8) and as a C¢-module. O
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Now we turn to 2— and 3—dualizability of E,-—algebras. In particular, we prove the
n =2 case of Conjecture 1.8.

Lemma 2.16 If C is an E,-algebra, there is a canonical equivalence of E,—algebras

) Z1(C®%P) =~ 7, (C)®°P,

Theorem 2.17 (see [35, Section 4]) Let C: A — B be a 1 -morphism in Alg,(8)
given by an Ey-algebra C equipped with an (A, B)—central structure A X BP —
Z1(C). Its right adjoint is C®°P equipped with a (B, A)—central structure via the

composite
BR AP s Zl(e)aop ~7, (e)®op o~ Zl(e®op),

where the penultimate equivalence is given by a 180° clockwise rotation (1) and the
last equivalence is given by (2). The unit of the adjunction is C viewed as an (A, A)—
centered (A, CR3C®°P)—bimodule. The counit of the adjunction is C viewed as a
(B, B)—centered (C®°PR 4 C, B)—bimodule.

Remark 2.18 The right adjoint constructed above used clockwise rotation; the left
adjoint would use counterclockwise rotation.

Theorem 2.19 (see [35, Section 4]) Every E,-algebra A € Alg,(8) is 2—dualizable
with dual AY = A°°P and with evaluation and coevaluation given by the regular central
algebra:

e evis A asan (A°°PRA, 1g)—central algebra.

e coev is A as a (1s, AXA?°P) —central algebra.

The right adjoints to evaluation and coevaluation are given (as in Theorem 2.17) by:
o vk is A®P a5a (15, A°°PKIA)—central algebra.
e coevR is A®°P a5 an (ARAP, 15)—central algebra.

Their unit and counit morphisms are given by:

*  Neoev IS A as a (1g, HC(A))—bimodule.

*  €coey is A as an (AKAP, ARAP) —entered (A®PRA, AXRA)-bimodule.
* ey is A as an (APKRIA, A7PRA)—centered (ARA, ARA®P)_bimodule.
* € is A asan (HC(A), 1g)—bimodule.
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Next, we have the following analog of Proposition 2.13, establishing dualizability for
2—morphisms in Alg,(S):

Proposition 2.20 [11, Proposition 5.17] Let C,D: A — B be 1-morphisms in
Alg,(8), ie (A, B)—central algebras, and let M : € — D be a 2—morphism in Alg,(§),
ie an (A, B)—central (C, D)-bimodule. Then M has a right (resp. left) adjoint in
Alg,(8) if and only if it has a right (resp. left) adjoint in Alg,(8), when regarded as
a (€, D)-bimodule. The adjoints in Alg,(8) are given by equipping the adjoints in
Alg, (8) with canonical central structures.

We recall the following analog of Theorem 2.14, which reduces 3—dualizability to a
finite list of conditions:

Theorem 2.21 [1, Proposition 1.2.1] Let X be an object in a symmetric monoidal
3—category C. Suppose that X has a dual and that the evaluation and coevaluation
1—morphisms have right adjoints. Then X is 3—dualizable if and only if the unit and
counit 2—morphisms witnessing each of these two adjunctions (four maps in total) have
right adjoints.

We may finally prove a complete characterization of 3—dualizable objects in Alg,(S):

Theorem 2.22 An Ej-algebra A € Alg,(8) is 3—dualizable if and only if A is
dualizable as an object of 8, as an A°® —module and as an HC(A)-module.

Proof We recall from Theorem 2.19 the 2—dualizability data AV, ev, coev, evR and
coevk, together with their units and counits ey, Neoev, €ev aNd €coey. By Theorem 2.21,
A is 3—dualizable if and only if these last four morphisms have right adjoints. By
Proposition 2.20, these exist if and only if the underlying bimodules have right adjoints
which can be analyzed using Proposition 2.13:

* 7y has aright adjoint if and only if A is dualizable as an A°-module.
* 7Neoev has a right adjoint if and only if A is dualizable as an HC(A)-module.
® €., has aright adjoint if and only if A is dualizable as an object of S.

®  €coev has aright adjoint if and only if A is dualizable as an AK.A-module via the
right AKX A—action on A. Using the braiding we may identify AXA =~ AK.A®P
as monoidal categories, so that under this identification the AX.A-action on A
goes to the canonical A€ —-action on A. |
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Remark 2.23 Recall that the main result of [11] was the construction of a 3—dualizable
subcategory of BrTens based on the notion of cp-rigidity, showing in particular that
every cp-rigid braided tensor category A is 3—dualizable. As a byproduct, we gave a
sufficient condition for dualizability of higher morphisms, not just those appearing as du-
alizing data for A. On the other hand, there was no proof that cp-rigidity was necessary
for 3—dualizability of a braided tensor category, just that it was sufficient. Indeed, since
cp-rigidity is not a priori a Morita invariant, we do not expect it is a necessary condition.

By contrast, Theorem 1.2 gives a complete characterization of 3—dualizability; it is
Morita invariant, and the characterization holds for a general §. However, in the case
S = Pr, let us underscore that it remains an open question to characterize necessary
conditions for 1—-dualizability in Pr [10, Remark 3.6], let alone as A¢— and HC(A)-
modules, so that in practice one must still appeal to the method of [11] to establish the
conditions in Theorem 1.2.

2.3 Invertibility for £;— and E,-algebras

The goal of this section is to give a complete characterization of invertible objects in
Alg,(8) and Alg,(8). We begin with an elementary lemma.

Lemma 2.24 Suppose C is a bicategory and f:x — y a 1-morphism. It is invertible
if and only if it is right-adjointable and the unit and counit of the adjunction are
isomorphisms.

By an iterated application of this lemma, we may give a straightforward characterization
of invertible objects in Alg,(8). We begin with a characterization of invertible 1—
morphisms in Alg,(S).

Notation 2.25 Given C € Alg,(8), let @' = Homee (G, €¢) and €* = Homg(C, 1g).

Theorem 2.26 Suppose B € Alg,(8) is an E,—algebra and C a B—central algebra
viewed as a 1-morphism B — 1g. Then C is invertible if and only if C € Alg,(8) is
2—dualizable and the following maps are equivalences:

(1) The evaluation map Homee (C, C¢) Kp C — €€,

(2) The map B — Z1(C) given by the B —central structure on C.

(3) The evaluation map Hom(C, 1g) Meg,, e®e C — 1s.

(4) The map C®° Xy @ — Hom(C, C) given by the left and right action of € on
itself.
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Proof By Theorem 2.17, € admits a right adjoint G®°P: 1g — B. The unit of the
adjunction 7 is C viewed as a (B, B)—centered (B, CKC®°P)_bimodule. The counit
of the adjunction € is € viewed as a (C®°PRl3C, 15)-bimodule.

By Lemma 2.24, the 1-morphism C: B — 1 is invertible if and only if n and € are
invertible. We will now analyze the invertibility of these 2—morphisms separately:

¢ By Lemma 2.24, the unit 7 is invertible if and only if it is right-adjointable with
the unit and counit being isomorphisms. By Propositions 2.20 and 2.13, 5 is
right-adjointable if and only if C is dualizable as a @€ —module, with dual C'. The
unit of this adjunction is B — €' Kee € = Z1(C). The counit of this adjunction
is C'Xp € — €.

e By Lemma 2.24, the counit € is invertible if and only if it is right-adjointable
with the unit and counit being isomorphisms. By Proposition 2.13, € is right-
adjointable if and only if € is dualizable as an object of 8, with dual C*. The
unit of this adjunction is C®° Ky € — Hom(C, 1g) X € = Hom(C, €). The
counit of this adjunction is €* Reg,, con € — 1s. O

The previous theorem recovers a well-known characterization of invertible objects in
Alg, (8) (see [49; 62; 40] for related characterizations).

Theorem 2.27 An E;-algebra C € Alg,(8) is invertible if and only if it is 2—
dualizable and the following maps are isomorphisms:

(1) €®PX e — Hom(C, Q) given by the left and right action of € on itself.
(2) The inclusion of the unit 1g — 7Z1(C).

Proof We have an equivalence Alg;(8) = Homyyg,(s)(1s, 1s) of monoidal (oo, 3)—
categories. Hence, C € Alg,(8) is invertible if and only if it is invertible when viewed as
a 1-morphism 1g — 1g in Alg,(8). By Theorem 2.26, it is equivalent to C € Alg,(8)
being 2—dualizable and satisfying the four conditions of the theorem. Let us analyze

them in pairs:

 The evaluation map €' &K C — ©¢ is a map of right C¢—modules, where on the
left-hand side C¢ acts on C'. Since C € § is dualizable and €' is dualizable as a
©¢—module, @' X € is dualizable as a €¢—module. In particular, the evaluation
map is an isomorphism if and only if its C¢-linear dual map is an isomorphism.
But the dual map is €¢ — C* K € =~ Hom(C, C), which is the map in the fourth
condition of Theorem 2.26.
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o Inthe map 1s — Z1(€) = €' Kee C both sides are dualizable in §; the dual of
the right-hand side is

Hom(C' Kee €, 1g) = Homee (€', C*) = C* Ke C.

In particular, the dual of this map is the map C* Kee © — 1g in the third condition
of Theorem 2.26. |

Remark 2.28 In the preceding proof an essential role was played by the dual 1-
morphisms. Recall that the dual of a morphism f:x — y between dualizable objects
is the composite

v 1d® coev

y —>yv®x®x

v ev®id

v id®¢®id Wey®x o

In fact, if we view modules as 1-morphisms in the (oo, 3)—category Alg;(8), mor-
phisms of modules are 2—morphisms. The dual module is the adjoint 1-morphism and
the dual of a morphism of modules is called a “mate” of the 2—morphism.

Example 2.29 Let R be a commutative algebra and § = Modg the symmetric
monoidal category of R—modules. Theorem 2.27 characterizes invertible objects
in Alg; (Modg) as R—-algebras A satisfying the following four conditions:

(1) A is dualizable as an R—module (ie A is finitely generated and projective as an
R-module).
(2) A is dualizable as an A°-—module (ie it is separable).

(3) The natural morphism A°° ® A — Hompg (A, A) given by the left and right action
is an isomorphism.

(4) The morphism R — Z(A) is an isomorphism (ie A is a central R—algebra).
In this case one may prove a stronger claim that some of these conditions are equiva-

lent to each other. Concretely, invertible objects in Alg; (Modg) are R-algebras A
satisfying either of the following equivalent conditions (see [20, Theorem I1.3.4]):

e Azumaya A is a faithful dualizable R—module and the morphism A? ® A —
Hompg (A, A) is an isomorphism.

¢ Central separable A is a dualizable A°-module and the morphism R — Z(A)
is an isomorphism.

Finally, we come to the main result of this section:

Algebraic € Geometric Topology, Volume 21 (2021)



2124 Adrien Brochier, David Jordan, Pavel Safronov and Noah Snyder

Theorem 2.30 An E,-algebra A € Alg,(8) is invertible if and only if it is 3—
dualizable and the following maps are isomorphisms:

(1) Cofactorizability HC(A) — Hom(A, A).
(2) Factorizability AKX A°P —7;(A).
(3) Nondegeneracy The inclusion of the unit 1 — Z5(A).

Proof Clearly, an invertible E,—algebra is 3—dualizable, so, by Theorem 2.22, du-
alizability of A as an HC(A)-module is necessary. From now on we make this
assumption. Recall that A € Alg,(8) is 1—dualizable with the dual given by A°P.
The evaluation map ev associated with this duality is A viewed as an AKXA?°P—central
algebra. Therefore, A € Alg,(8) is invertible if and only if ev: A K AP — 15 is an
isomorphism. By Theorem 2.26, this is equivalent to the four conditions listed there.

Since A is assumed to be dualizable over A€, condition (1) is equivalent to the
condition (2) after taking the dual over A¢. Condition (2) is precisely the condition
that A X A%P — Z;(A) is an isomorphism. Since A is dualizable over HC(A),
condition (3) is equivalent after applying Hom( -, 1g) to the condition that 1g —
Homyc(a) (A, A) =Z3(A) is an isomorphism. Finally, the condition (4) is the condition
that the map HC(A) — Hom(A, A) is an isomorphism. a

3 Invertibility of finite braided tensor categories

In this section we show that for finite braided tensor categories (in the sense of [25]), the
three conditions for invertibility given in Theorem 1.4 are already mutually equivalent.

3.1 Categorical setup

We begin by recalling some categorical background. All categories we consider are
k-linear (ie enriched and tensored over k), where k is an algebraically closed field of
characteristic zero, and all functors are k—linear functors.

Remark 3.1 We work over an algebraically closed field, because that is an essential
running assumption in the work of Shimizu [58]. However, no results in Section 2 use
assumptions on the base field. In the present section, over a field of characteristic p
one must replace any mention of fusion with “separable” as in [21], but otherwise the
results hold for algebraically closed fields of characteristic p. We do not know whether
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Theorem 3.21 below holds without assuming an algebraically closed base field; at a
minimum one needs to require the unit to be absolutely simple since Shimizu’s proof
relies on Frobenius—Perron dimensions.

We will consider the symmetric monoidal 2—category Pr of locally presentable cat-
egories, their colimit-preserving functors and their natural transformations. By the
special adjoint functor theorem, a functor between locally presentable categories is
colimit-preserving if and only if it is a left adjoint; to emphasize this, we will use the
notation Fun (€, D) in place of Homp,(C, D). The symmetric monoidal structure
is given by the so-called Deligne—Kelly tensor product. For recollections about the
notion of local presentability see [11]. The most important class of locally presentable
categories for us are those which have enough compact projectives.

Definition 3.2 An object X of a locally presentable category C is compact projective
if the functor Hom(X,-): € — Vect is colimit-preserving. The category C has enough
compact projectives if every object of € can be expressed as a colimit of compact
projective objects.

A category € has enough compact projectives if and only if it is equivalent to the free
cocompletion Fun(C°P, Vect) of a small category C, ie if it is a presheaf category.

Remark 3.3 It is shown in [10] that categories with enough compact projectives are 1—
dualizable as objects of Pr, and conjectured there that these are the only 1—dualizable
objects.

Definition 3.4 A category C has a compact projective generator if the category ¢
may be taken to have a single object, and is finite if the endomorphism algebra of that
object is finite-dimensional.

Equivalently, a category with a compact projective generator is one which is equivalent
to A-mod for some associative algebra A, and a finite category is one for which A may
be taken to be finite-dimensional. The following proposition gives a characterization
of these notions internally to Pr. The proof is straightforward.

Proposition 3.5 Suppose that € € Pr has enough compact projectives.

(1) The identity endofunctor ide € Endp,(C) is a compact object if and only if C
admits a compact projective generator.

(2) The identity endotunctor ide € Endp,(C) is a projective object if and only if C
is semisimple.
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(3) Under assumption (1) (resp. (1) and (2)), C is finite (resp. finite semisimple) if
and only if Hom spaces between compact objects are finite-dimensional.

Remark 3.6 It follows easily from Proposition 3.5 that amongst categories with
enough compact projectives the 2—dualizable categories are precisely the finite semi-
simple categories. This also follows from [6, Appendix A; 60], because their category
Bim (of Cauchy complete categories, bimodules and bimodule maps) is equivalent—
via taking the free cocompletion of categories — to the full subcategory of Pr whose
objects are those with enough compact projectives.

We will use the term tensor category to mean an Ep-algebra in Pr, and the term
braided tensor category to mean an Ej—algebra in Pr. In particular, we will always
assume that the underlying category in each case is locally presentable, and that the
tensor product bifunctor A x A — A preserves colimits in each variable, so that it
defines a morphism A XA — A in Pr. We introduce the notation Tens = Alg; (Pr)
and BrTens = Alg, (Pr).

Let us begin by relating the Drinfeld and Miiger centers to the more general notions
introduced in Section 2.1. The following statement is proved in [23, Proposition 7.13.8]:

Proposition 3.7 Let C € Alg,(Pr) be a tensor category. Then Z1(C) is equivalent to
the Drinfeld center: the category of pairs (x,y), where x€C and y: (- )Qx =>x®(+)
is an associative natural isomorphism.

We may also analyze the E,—center of a braided tensor category.

Proposition 3.8 Let A € Alg,(Pr) be a braided tensor category. Then Zj(A) is
equivalent to the Miiger center: the full subcategory of A consisting of objects x € A
such that 0y, x 00x,,: X ® y — x ® y is the identity forevery y € A.

Proof Suppose B € Alg,(Pr) and A is a B—central algebra. The central structure boils
down to the data of a tensor functor 7: B — A together with a natural isomorphism
:T(z) @ x > x®T(z) for every z € B and x € A. By [43, Proposition 3.34],
Hom ., 400 (A, A) is a full subcategory of the Drinfeld center Z; (A) consisting of
objects (x,y), where yr(;): T(z) ® x = x ® T'(z) coincides with t for every z € B.

The E;—center Z,(A) is given by this construction with B = AKA°P. The B—central
structure on A sends zX 1€ B to z € A with v givenby 0, x:z®x - x ®z and
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1Xz e B to z € A with T given by ox_’; :Z2®x —> x ®z. Therefore, Z(A) CZ1(A)
is a full subcategory consisting of objects (x,y), where

-1
)/Z = UX,Z = OZ,X’

ie of objects lying in the Miiger center. O
Let us recall some standard rigidity and finiteness assumptions on tensor categories.

Definition 3.9 Suppose a tensor category A has enough compact projectives.

e We say A is ¢p-rigid if all compact projective objects of A are dualizable.

e We say A is compact-rigid if all compact objects of A are dualizable.

e Wessay A is a finite tensor category if it is compact-rigid, its underlying category
is finite, and its unit is simple.

e We say A is fusion if it is a finite tensor category and the underlying category is
semisimple.

e We say A is a finite braided tensor category (resp. braided fusion category) if
it is braided and its underlying tensor category is a finite tensor category (resp.
fusion category).

These definitions are compatible with the most standard definition of [25] in the
following sense: a tensor (resp. braided tensor) category is finite in the above sense
if and only if it is the ind-completion of a finite tensor category (resp. finite braided
tensor category) in the sense of [25; 58]. The next proposition is proved in [11], by
verifying closure under composition.?

Proposition 3.10 We have higher subcategories of Tens and BrTens, defined as
follows:

e Fusion categories, semisimple bimodule categories, compact-preserving co-
continuous bimodule functors and natural transformations form a subcategory
Fus of Tens.

e Braided tusion categories, fusion categories equipped with central structures,
finite semisimple bimodule categories, compact-preserving cocontinuous bi-
module functors and bimodule natural transformations form a subcategory BrFus
of BrTens.

2Both parts of this proposition require characteristic zero, otherwise one needs to restrict to fusion
categories and braided fusion categories of nonzero global dimension.

Algebraic € Geometric Topology, Volume 21 (2021)



2128 Adrien Brochier, David Jordan, Pavel Safronov and Noah Snyder

Remark 3.11 We warn the reader that although there is a 3—category of finite tensor
categories, finite bimodule categories, compact-preserving cocontinuous bimodule
functors and bimodule natural transformations, which was the main object of study
in [21], we do not know of a similar 4—category whose objects are finite braided tensor
categories. The issue is that the relative tensor product of finite tensor categories over a
finite braided tensor category will not again be finite (because it will only be cp-rigid
and not compact-rigid).

Remark 3.12 It is shown in [21; 11], respectively, that finite tensor categories and
cp-rigid tensor categories are 2—dualizable in Tens. It is shown in [11] that cp-rigid
braided tensor categories are 3—dualizable in BrTens. Finally, it is shown in [21; 11]
that fusion categories are 3—dualizable in Tens and braided fusion categories are 4—
dualizable in BrFus. We expect that a finite braided tensor category is 4—dualizable in
BrTens if and only if its Miiger center is semisimple, but we do not know a proof.

Remark 3.13 Consider a nonsemisimple and nondegenerate braided tensor cate-
gory A, such as the category of representations for the small quantum group at a
primitive £® root of unity, where £ is odd, not divisible by the lacing number and
coprime to the determinant of the Cartan matrix [53; 61, Chapter X1.6.3; 44]. This
example is not braided fusion, and so its 4—dualizability does not follow from [11].
Furthermore, its underlying category of A is not 2—dualizable by Remark 3.6. However,
simply because invertibility implies full dualizability, we may conclude in particular that
A is fully dualizable. In particular, we see that an E,—algebrain § can be 4—dualizable
even when the underlying object is not 2—dualizable in S.

We end this section with a result identifying HC(A) and Z;(A) as plain categories.

Proposition 3.14 Let A be a cp-rigid braided tensor category. Then there is an
equivalence of categories HC(A) = Z1(A).

Proof Consider the monoidal equivalence L :.A — A®° which sends every compact
projective object x to the left dual ¥ x. By [8, Proposition 3.13; 21, Theorem 3.2.4],
we may identify

71 (.A) = Homye (.A, .A) =~ AQye id-ALLa

where jgAyr 1 is the (A, A)-bimodule A which has a regular left A—action, but whose
right A—action is given by LL.
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Now consider the identity functor id: A — A equipped with the monoidal structure
X,y

02:x®y 2 y@x 25 x ® y. By [7, Lemma 3.9], we may identify

HC(A) = A Q¢ i (i4,02)

where g AGq,42) is the (A, A)-bimodule A which has a regular left A-action, but
whose right A —action is given by the monoidal functor (id, 0'2).

But, by [23, Proposition 8.9.3], we have a natural monoidal isomorphism (id, 02) =
(LL: X +— YVX) which identifies the two bimodules. O

Note that in the cp-rigid case the natural monoidal structures on HC(A) and Z; (A) are
nevertheless different, as illustrated in Example 3.15. In the symmetric fusion case the
compatibility between the two tensor structures on HC(A) = Z; (A) is studied in [66].

From a TFT perspective, these monoidal structures may be understood as follows: the
monoidal structure on HC(A) is obtained by embedding annuli inside one another
(see [7, Figure 1]), while the monoidal structure on Zj(A) comes from the embedding
of the two incoming and one outgoing annuli as the boundary of the pair of pants
cobordism. From this point of view it becomes clear that the latter tensor product is
braided monoidal, while the former is only monoidal in general.

Example 3.15 Suppose G is a finite group and let A = Rep(G) be the category of
G —representations. Then HC(A) =~ Z(A) =~ QCoh(%) is the category of adjoint-
equivariant quasicoherent sheaves on G. The tensor structure coming from HC(A)
corresponds to the pointwise tensor product of quasicoherent sheaves, while the braided
tensor structure coming from Z; (A) corresponds to the convolution tensor structure.
In this case HC(A) is braided, and in fact symmetric; this is because A was itself
symmetric, and not merely braided.

3.2 The canonical coend and end

Let A be a cp-rigid braided tensor category and denote by AP C A the full subcategory
of compact projective objects. The tensor product functor 7: A XA — A admits a
colimit-preserving right adjoint TR: A — AKA (see eg [11, Section 5.3]), so that we
have a coend formula

XEAP
TR(1A)=/ YV RxeARA.
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x xVv XYV xV
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|
yoy xY xV x X

Figure 1: Multiplication m, coproduct A, counit € and antipode S on .

Definition 3.16 The canonical coend is the object F € A defined as

XEAP
?:TTR(1A)=/ xV ®x.

We denote by 7y : x¥ ® x — F the natural projection. The canonical coend F admits
a natural structure of a braided Hopf algebra in A illustrated in Figure 1. These have
been studied extensively; see eg [48; 47; 12; 58].

Moreover, J is equipped with the following additional algebraic structures. There is a
Hopf pairing w: FQ®JF — 14 and an isomorphism 7 : FQV — VQTF forevery V e A
illustrated in Figure 2. The isomorphism ty allows one to identify left F—modules
with right F-modules, so the category Mods(A) inherits a monoidal structure given
by the relative tensor product over F. We denote by

triv, : A — Modg(A)

the functor which sends an object V' € A to the trivial right F—module. The following
is proved in [7, Section 4] for compact-rigid categories, and can be extended to cp-rigid
categories using [11, Proposition 5.10].

Proposition 3.17 We have an equivalence of monoidal categories HC(A) = Modg(A).
Under this equivalence the HC(A)-module structure on A is given by

M,V > M ®gtriv, (V).

AT

xV ox yV oy

Figure 2: Hopf self-pairing  and the isomorphism ty .
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Dually, we may also consider the canonical end. Recall that Fun’ (A, A) denotes the
category of colimit-preserving functors A — A. Consider the tensor product functor
tens: A — Fun® (A, A) given by x > x ® (+). It admits a right adjoint [37; 59]

tens®(F) =/ F(x)®x".

XEACP

Definition 3.18 The canonical end is the object € € A defined as

& = tens®(id) = / x®x".

XEACP

The object & is naturally an algebra via the lax tensor structure on tens® . We will use
the following result:
Proposition 3.19 Let A be a finite compact-rigid braided tensor category. Then

tens®: Fun’ A A - A
is monadic and it identifies

Fun® (A4, A) = Modg (A4).
Proof Let A° C A be the full subcategory of compact objects. Since A is locally
finitely presentable, we may identify

Fun® (A4, A) 2 Ind Fun™* (A€, A°),

where Fun™*(-, ) is the category of right exact functors.

Since A is compact-rigid, A€ is rigid. So, A€ is an exact A°-module category in
the sense of [25, Definition 3.1]. Clearly, it is also indecomposable. According to [59,
Theorem 3.4], tens® restricts to an exact and faithful functor

Fun™* (A€, A¢) — A°.
So, tens®: Fun(A, A) — A is cocontinuous.

Since A is compact-rigid, tens® carries an A—module structure, so that the composition
tens®otens is canonically isomorphic to the endofunctor of A given by tensoring with €.
The result then follows from the standard monadic argument (see [7, Section 4.1]). O

3.3 Cofactorizability and the Drinfeld map

There is a canonical Drinfeld map Dr: F — € shown in Figure 3.
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\'
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|

Figure 3: Drinfeld map Dr: F — €.

In this section we establish that in the finite setting cofactorizability is equivalent to
invertibility of the Drinfeld map.

Proposition 3.20 Let A be a finite compact-rigid braided tensor category. It is co-
factorizable if and only if the Drinfeld map Dr: § — & is an isomorphism.

Proof Let free: A — HC(A) be the functor x > x ® F sending x € A to the free
right F—module; its right adjoint is the forgetful functor forget: HC(A) — A.

Consider the commutative diagram

HC(A) ————— Hom(A, A)

A

Passing to right adjoints of vertical functors, by Propositions 3.17 and 3.19 we get
monadic functors. Therefore, the functor HC(A) — Hom(A, .A) is an equivalence
if and only if the associated functor of monads forgeto free = tens® o tens is an
equivalence. Since both monads are given by tensor product with an algebra, it is
enough to show that the value of the above functor on 14 is an isomorphism, ie that
the map

(forgetofree)(1q) =F — (tens® otens)(14) = &

is an isomorphism.
For V € A we have a commutative diagram
Homy (V, &) Homy(V, €)

Hompyca)(V ® F, F) —— Hompoma,a)(V ® (-),1id)
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y yY
x y X

\ \2

X X

Figure 4: The action map F ® triv,(y) — triv,(y) and the corresponding
map F— yyV.

where the map at the bottom sends f': V ®F — F to the bottom map in the commutative
diagram
S ®id
(VRN @5y —— T @5y
Vey ——y
Taking V = F equipped with the identity map F — F, the induced map FQ® y — y is

given by treating y € A as a left F-module via triv,. The map F— y® y" is therefore
given by the y®y"Y —component of the Drinfeld map Dr: F — &; see Figure 4. |

We can now collect all results about invertibility of finite braided tensor categories in
the following statement:

Theorem 3.21 Let A be a compact-rigid finite braided tensor category. The following
conditions are equivalent:

(1) A isinvertible.
(2) A is nondegenerate: the natural functor Vect — Z>(A) is an equivalence.
(3) A is factorizable: the natural functor A X A°°P — Z1(A) is an equivalence.

(4) A is cofactorizable: the natural functor HC(A) — Hom(A, A) is an equiva-
lence.

(5) The Hopf pairing w: F ® F — 14 is nondegenerate.
(6) The Drinfeld map Dr: & — € is an isomorphism.

Proof Theorem 1.1 of [58] establishes an equivalence between conditions (2), (3)
and (5). Proposition 4.11 of [26] establishes an equivalence between conditions (5)
and (6). Proposition 3.20 establishes an equivalence between conditions (4) and (6).
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Finally, Theorem 2.30 asserts that condition (1) is equivalent to a combination of
conditions (2), (3) and (4), which finishes the proof. O

4 The Picard group of BrTens and the Witt group

In this section we recall the Witt group of nondegenerate braided fusion categories [17],
and identify it with the Picard group of BrFus. We then state a number of questions
concerning the Picard group of BrTens, which we regard as a nonfusion generalization
of the Witt group.

Recall that nondegenerate braided fusion categories form a monoid under the Deligne—
Kelly tensor product. Nondegenerate braided fusion categories A and B are Wirt
equivalent if there exist fusion categories € and D with AKZ,(C) ~ BXZ;(D) as
braided tensor categories. That is, Witt equivalence is the equivalence relation generated
by equating categories which are braided tensor equivalent, and setting Drinfeld centers
to be trivial.

Definition 4.1 [17] The Wizt group of nondegenerate braided fusion categories is
the quotient monoid of nondegenerate braided fusion categories, by Witt equivalence.
The inverse operation is [A]~! = [A?°P], due to the factorizability property Z;(A) ~
A AP of nondegenerate braided fusion categories.

Recall that the Picard group Pic(7T) of a symmetric monoidal n—category 7 is the group
whose elements are equivalence classes of invertible objects and whose composition is
given by tensor product. The main results of this paper give a concrete description of
the elements of the Picard group of BrTens and its subcategory BrFus. In the latter
case, we have:

Theorem 4.2 The Picard group of BrFus is naturally isomorphic to the Witt group
of nondegenerate braided fusion categories.

Proof By Theorem 3.21, the nondegenerate braided fusion categories are exactly
the invertible objects of BrFus, so it only remains to show that an A—central fusion
category C gives an equivalence between A and Vect if and only if the natural map
A — Z1(C) is an equivalence. This was already proved in [41, Theorem 2.23].

We also give an alternative proof using our techniques. Let us apply Theorem 2.26 in the
case S =Pr and B = A. Note that C is dualizable as an A— and as a C®°P[X ; C—module
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(eg by [11, Theorem 5.16]). Then we obtain that an A—central fusion category € gives
an equivalence between A and Vect if and only if the following four functors define
equivalences of categories:

(1) € — Homy(C, C) given by the left and right action of € on itself.

(2) A —Z,(C) given by the A—central structure on C.

(3) Vect > Homeswg ,e(C, C) given by the inclusion of the identity.

(4) @®PKX, € — Hom(C, C) given by the left and right action of € on itself.

Condition (2) holds by assumption. Using (2), condition (3) reduces to the triviality of
Homegop Ry, e(C, €). Asin the proof of Proposition 3.8, we use [43, Proposition 3.34]
to rewrite Horn@@;opgz1 ) C)@(G, @) as the full subcategory of Z;(C) consisting of objects
(x,y), where for every other pair (y,y’) we have y, = (y’,)”! as maps x ® y —
y ® x. Equivalently, y’, oy, = idxgy, ie (x,y) lies in the Miiger center. Thus,
condition (3) becomes the triviality of Z»(Z1(C)), which automatically holds for finite
tensor categories; see [24, Proposition 4.4].

We then have that (2) implies (1) and (3) implies (4) by the double commutant theorem
[23, Theorem 7.12.11]. O

According to Theorem 4.2, we may regard Pic(BrTens) as a natural generalization
of the Witt group, without the finite and semisimple assumptions. The inclusion of
BrFus into BrTens induces a group homomorphism

p: Pic(BrFus) — Pic(BrTens).

This observation leads to a number of interesting and apparently nontrivial questions.
Let us stress that we are not venturing conjectural answers to any of these questions.

Question 4.3 Is the homomorphism p injective? In other words, can it happen that
two nondegenerate braided fusion categories are equivalent in BrTens, via a central
algebra which is not itself fusion, hence not a 1-morphism in BrFus?

Question 4.4 If a finite tensor category is trivial in the Witt group, must it be the
center of a finite tensor category?

Question 4.5 Is the homomorphism p surjective? In other words, is every invertible
braided tensor category in fact equivalent in BrTens to a nondegenerate braided fusion
category?
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Question 4.6 Is every invertible braided tensor category equivalent in BrTens to a
finite braided tensor category?

Question 4.7 Is the Drinfeld center of any finite tensor category trivial in Pic(BrTens) ?
We note that Drinfeld centers of infinite tensor categories are not typically invertible,
let alone trivial in Pic(BrTens). We note also that condition (2) in Theorem 2.26
establishes the reverse implication, that trivial elements of Pic(BrTens) necessarily
represent Drinfeld centers. However, the argument from Theorem 4.2 showing that
centers of fusion categories are trivial does not apply, a priori. This is because the
relative tensor product of finite tensor categories over a centrally acting braided tensor
category might not be finite (in particular, might not be compact-rigid) and so the
double commutant theorem does not apply.

Recall that the higher Picard groupoid Pic(7) of a symmetric monoidal n—category
is the subgroupoid of invertible objects and invertible higher morphisms in 7. By
definition, we have 7o(Pic(7)) = Pic(T) but it is then interesting to study higher
homotopy groups. It is known that 71, 7w and 73 of Pic(BrFus) vanish (the proof of
this uses the notion of FP-dimensions), and that 74 = k™.

Question 4.8 What is the Postnikov k—invariant relating 7¢ and 74 of Pic(BrFus)?
Question 4.9 What is the homotopy type of Pic(BrTens)?

A symmetric tensor category may be regarded as an Ej—algebra in Pr for any k& > 3.
Moreover, as noted in [36, Section 1.2], one has Q2Pic(Algy (Pr)) = Pic(Alg;_, (Pr)).
So, the collection of symmetric monoidal co—groupoids Pic(Alg; (Pr)) forms a spec-
trum.

Question 4.10 What are the homotopy groups of this spectrum?
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