
Building An End-To-End BAD Application
Shahrzad Haji Amin Shirazi
University of California, Riverside

shaji013@ucr.edu

Michael J. Carey
University of California, Irvine

mjcarey@ics.uci.edu

Vassilis J. Tsotras
University of California, Riverside

tsotras@cs.ucr.edu

ABSTRACT
Traditional big data infrastructures are passive in nature, passively
answering user requests to process and return data. In many appli-
cations however, users not only need to analyze data, but also to
subscribe to and actively receive data of interest, based on their sub-
scriptions. Their interest may include the incoming data’s content
as well as its relationships to other data. Moreover, data delivered
to subscribers may need to be enriched with additional relevant
and actionable information. To address this Big Active Data (BAD)
challengewe have advocated the need for building scalable BAD sys-
tems that continuously and reliably capture big data while enabling
timely and automatic delivery of relevant and possibly enriched
information to a large pool of subscribers. In this demo we show-
case how to build an end-to-end active application using a BAD
system and a standard email broker for data delivery. This includes
enabling users to register their interests with the bad system, in-
gesting and monitoring data, and producing customized results
and delivering them to the appropriate subscribers. Through this
example we demonstrate that even complex active data applications
can be created easily and scale to many users, considerably limiting
the effort of application developers, if a BAD approach is taken.

CCS CONCEPTS
• Information systems → Data management systems.

KEYWORDS
big active data, active dataset,end to end active application
ACM Reference Format:
Shahrzad Haji Amin Shirazi, Michael J. Carey, and Vassilis J. Tsotras. 2021. 
Building An End-To-End BAD Application. In The 15th ACM International
Conference on Distributed and Event-based Systems (DEBS ’21), June 28-
July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 4 pages. https: 
//doi.org/10.1145/3465480.3467840

1 INTRODUCTION
With the ever-increasing amounts of data being generated daily by
social, mobile, and web applications, as well as the prevalence of the
Internet of Things, it is critical to shift from passive to ‘active’ Big
Data, to enable efficient data monitoring and timely delivery of per-
sonalized information to subscribers based on their subscriptions
(indicated interests). In particular, a Big Active Data platform should
address various BAD desiderata [5]; namely: (i) Incoming data items

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8555-8/21/06.
https://doi.org/10.1145/3465480.3467840

might not be important in isolation, but due to their relationships
to other items in the data as a whole. That is, subscriptions need to
consider data in context, not just a newly arrived item’s content.
(ii) Important information for users may be missing in the incoming
data items, yet it may exist elsewhere in the data as a whole. Hence,
the results delivered to subscribers must be able to be enriched
with other existing data in order to provide actionable notifica-
tions that are individualized per user. (iii) In addition to on-the-fly
processing, later queries and analyses over the collected data may
yield important insights. Thus, retrospective Big Data analytics
must also be supported. To this end, we have recently built a BAD
platform supporting the above desiderata [8, 9, 13], using Apache
AsterixDB [1] as its data serving foundation.

While BADhas similarities to continuous queries, triggers, stream-
ing engines and pub/sub systems, these technologies do not offer
all BAD desiderata or may not scale. In order to fully support BAD
applications without BAD system, one would have to glue multi-
ple existing systems together. This attempt would result in added
management complexity, limited functionality, and integration dif-
ficulty [14]. These limitations and the time needed to glue different
components together would further increase the difficulty of devel-
oping BAD applications. In contrast, in this demo we exhibit the
easiness of creating active applications through BAD. We create as
an example the My_Vaccine app which enables users to learn about
their turn for getting the vaccine and nearby vaccine stations with
vaccine availability based on their personal info.

Interactions between the BAD system and its end-users are pos-
sible through a broker network which delivers the data to the actual
users. Depending on the application, a broker systemwith advanced
caching and load-balancing strategies can be used to deliver data
to subscribers. In this demo, we use for simplicity an email-based
broker [11]. EMBA (Email Broker for BAD) is responsible for han-
dling clients, subscriber registration, managing subscriptions, and
delivering results to subscribers through emails. We proceed with
Section 2 that discusses the limitations of related work. Section
3 introduces the My_Vaccine example application and Section 4
offers a quick overview of the main parts of the BAD system. EMBA
and its layers are described in Section 5 while Section 7 presents
conclusions.

2 RELATEDWORK
Having users register their requests as persistent queries and sub-
sequently being notified whenever new results become available
is similar in context to work on Continuous Queries [6, 12]; nev-
ertheless, big data poses new challenges for classic continuous
query approaches due to their complexity and computational cost.
Similarly, Triggers from traditional databases offer users the capa-
bility to react to events in a database under certain conditions [15];
however, triggers do not scale as the volume of data/users grows.

DEBS 2021 Demonstration

184

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3465480.3467840
https://doi.org/10.1145/3465480.3467840
https://doi.org/10.1145/3465480.3467840
https://creativecommons.org/licenses/by/4.0/


DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Shahrzad Haji Amin Shirazi, Michael J. Carey, and Vassilis J. Tsotras

Recently, Streaming Engines have been widely used in many
active-data-related use cases [4, 10, 16]. Data is ingested and op-
tionally processed in streaming engines on-the-fly and then pushed
to other systems for later analysis. Streaming engines can be used
for creating data processing and data customizing pipelines, but
due to the nature of data streams, only a limited set of processing
operations are available. As a result, streaming engines would need
to be coupled with other systems for meeting the complete BAD
challenge at scale. This would introduce additional performance
overhead and integration complexity for users [14].

Delivering data of interest to many users also resonates with the
publish/subscribe communication paradigm [7]; here, subscribers
register their interests in incoming data items and will subsequently
be notified about data published by publishers. However, typical
pub/sub systems only forward data items from publishers to sub-
scribers without offering the capability to process it. Also, each
data item is treated in isolation, so users’ interests are limited to the
data item itself (its topic, type, or content), but not its relationship
to other data. In addition, pub/sub systems have to be integrated
with other Big Data engines for supporting analytical queries[14].

3 MY_VACCINE APPLICATION
In this demo we will mimic building an application for Covid vacci-
nations (referred below as the My_Vaccine app). We consider two
groups of users, the vaccine station managers (or content providers)
who publish available vaccine information about their station and
patients (the end users) who want to be notified about vaccine
availability. For versatility purposes we let the two user groups
interact with the app in different ways (interface vs EMBA).

When appointments become available in a vaccine station, its
station manager will use the My_Vaccine application interface,
created using the Django framework [2], to publish the station’s
information (including station name, address, number of vaccine
appointments available and the eligible group for those vaccines).
We assume that the station manager updates a station’s information
which changes happen using the same interface.

In our example, there are two available notification services that
patients can subscribe to. The first allows patients to be notified
when new appointments are available within a distance (patient
specified, say 10 kilometers) from a given static location (also pa-
tient specified, say some landmark or the patient’s parents’ house).
Patients that subscribe to that service will also be notified if in-
formation changes (e.g. number of appointments) at an existing
station within the required distance. The second service allows
patients to be notified about appointments in currently nearby vac-
cine stations (based on the patient’s last known location) where
they can be vaccinated based on group eligibility (patient speci-
fied, say based on a given age range or profession). As patients
move around (and update their locations) the notifications they
receive may contain different stations. Patients interact with the
My_Vaccine app through emails to and from EMBA. Using emails
they can learn about available notification services (in our example
two), register their interests on these services (by specifying the
notification service they are interested in and their parameters),
update their location and, get back notifications.

Figure 1: An overview of an application implemented using
BAD and EMBA system

Figure 1 shows an overview of the users, the app, and its interac-
tions with BAD. BAD has five basic blocks: (i) Data Feeds, (ii) Data
Channels, (iii) Persistent Storage, (iv) Analytical Engine, and (v)
Broker Network. We use Data feeds to capture the incoming data
created by the station managers (when new appointments appear or
are updated) and the patients’ personal information (when patients
register in the system or when their location changes). Each Feed is
connected to a dataset so that the ingested data can be persisted in
storage. Data Channels provide a scalable mechanism that allows
users to subscribe to data they are interested in. Data Channels
translate user subscriptions into parameterized queries and effi-
ciently retrieve the appropriate data on behalf of the subscribers.
The Analytical Engine supports declarative queries and enables
analysts to reveal useful information from incoming data and its
relationships with other stored data. Subscribers communicate with
BAD through brokers connected with the Broker Network. Any
data that needs to be sent to the subscribers of channel is sent
through a broker which is registered as an HTTP or socket end-
point in the BAD system. In our demo we use EMBA as the broker;
in general, one can use other brokers to deliver data in different
ways, say by text, etc.

Using the BAD system and EMBA, application development is
greatly simplified. To create the My_Vaccine app, a developer would
have to: (1) create an online user interface for the station managers,
(2) create the application datasets, the feeds and channels, and (3)
adapt the mail broker (EMBA) to the application’s channels. The
creation of the appropriate datasets, feeds and data channels for
the My_Vaccine app is described in Section 4 while the description
of EMBA’s layers appears in Section 5.

4 CREATING BAD FEEDS AND CHANNELS
For the My_Vaccine app, we defined an open datatype Station to
describe the required attributes about vaccination stations; such at-
tributes include the station id, the station’s name, address, telephone
and GPS coordinates (the DDL appears in Figure 2 using SQL++
statements). We have created an active dataset Stations (with key
sid) to persist such data. The available appointments in each station
are described by the open datatype AvailableAppt, containing at-
tributes like station id, number of appointments and the eligibility
group. The active dataset AvailableAppt is created for persisting
this data. Here we assume that a station can offer vaccines for
different eligibility groups, thus the key is the combination of sid

185



Building An End-To-End BAD Application DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

and eligibility group. We also defined an open datatype Patient
to describe the minimum required attributes for each Patient (in-
cluding first and last name, patient id and location coordinates)
and created an active dataset Patients to persist this data. Active
datasets, different from normal datasets, enable continuous query
semantics [12] in channels (discussed below).

CREATE TYPE Station AS OPEN {sid: bigint ,

stationName: string ,

stationAddress: string ,

phoneNumber: string ,

latitude: double ,

longitude: double };

CREATE ACTIVE DATASET Stations(Station)PRIMARY KEY sid;

CREATE TYPE AvailableAppt AS OPEN {sid: bigint ,

NumOfAppts: bigint ,

eligibilityGroup: String };

CREATE ACTIVE DATASET AvailableAppts(AvailableAppt)

PRIMARY KEY sid ,eligibilityGroup;

CREATE TYPE Patient as {patient_FirstName:string ,

patient_LastName:string ,

patientID:bigint ,

latitude: double ,

longitude: double };

CREATE ACTIVE DATASET Patients(Patient)PRIMARY KEY patientID;

Figure 2: DDL for Datasets

CREATE FEED AvailableApptsFeed WITH {

"adapter -name": "socket_adapter",

"sockets ": "127.0.0.1:10001" ,

"address -type": "IP",

"type -name": "AvailableAppt",

"format ": "JSON "};

CONNECT FEED AvailableApptsFeed TO DATASET AvailableAppts;

START FEED AvailableApptsFeed;

CREATE FEED PatientsFeed WITH {

"adapter -name": "socket_adapter",

"sockets ": "127.0.0.1:10004" ,

"address -type": "IP",

"type -name": "Patient",

"format ": "JSON "};

CONNECT FEED PatientsFeed TO DATASET Patients;

START FEED PatientsFeed;

Figure 3: DDL for Data Feeds

Data Feeds. In any application, data of interest may arrive rapidly.
To capture such data, BAD provides data feeds, an ingestion facility
to help continuously ingest data from various external data sources
reliably and efficiently. In this example, we assume that datasets
AvailableAppts and Patients are updated rapidly and thus we
create feeds AvailableApptsFeed and PatientsFeed for them.
The feed DDLs are depicted in Figure 3. Each feed populates the
relevant dataset using a socket adapter and specifying the incoming
data’s format as JSON. In contrast we assume that the Stations
dataset is updated infrequently and thus no feed is created.
Data Channels. To simplify creating applications using the BAD
system, we extract the shared structure among subscriptions and of-
fer it as a service, namely a data channel, for subscribers to subscribe

to with parameters. When creating a channel, developers construct
a channel query to describe the data of interest for subscribers and
specify the channel’s period to indicate how often 1 the channel
query should be evaluated for subscribed users. Data channels can
be created using declarative queries and are managed by the BAD
system. All subscriptions of a channel are periodically evaluated
together to allow the system to exploit shared computations.

CREATE CONTINUOUS PUSH CHANNEL
AllStationsNearAddress (latitude ,longitude ,distance)

PERIOD duration (" PT10S "){

SELECT s.stationName , s.stationAddress ,s.phoneNumber ,

a.NumOfAppts ,a.eligibileGroup

FROM Stations s,AvailableAppts a

WHERE a.sid=s.sid AND is_new(a) AND spatial_distance(

create_point(latitude ,longitude),

create_point(s.latitude ,s.longitude))<distance };

CREATE CONTINUOUS PUSH CHANNEL StationsForMe

(patientID ,eligibility) PERIOD duration ("PT10S "){

SELECT s.stationName , s.stationAddress ,s.phoneNumber

,distanceFromPatient

FROM Stations s,AvailableAppts a,Patients p

LET distanceFromPatient=spatial_distance

(create_point(s.latitude ,s.longitude),

create_point(p.latitude ,p.longitude ))

WHERE p.patientID=patientID AND is_new(a) AND
a.eligibilityGroup=eligibility AND a.sid=s.sid

ORDER BY distanceFromPatient LIMIT 5};

Figure 4: DDL for Channels

For the My_Vaccine application, we have created the channel
AllStationsNearAddress, as shown in Figure 4, which allows pa-
tients to learn about available appointments in stations within a
certain distance from a location. A patient can subscribe to this chan-
nel by providing three parameters: the latitude and longitude of the
location of interest and the required distance. As an example, a user
might only be interested in available appointments within 5 kilo-
meters from her parents’ house. The channel will run repetitively
based on the period provided (in this case every 10 seconds– shown
in the channel’s PERIOD). After subscribing, the results delivered
to her include the stations with available appointments, their eligi-
bility group and number of available appointments, for all stations
within the user-specified distance from the user-specified address;
results are also enriched with existing data about these stations, in-
cluding the station’s name, telephone, and address. In general, this
enrichment could also include other data, like directions to each
station from the subscribed address, etc. The channel definition uses
the is_new function to look for the new data which has not been
sent to the user yet. The active dataset AvailableAppts provides
the support for continuous query semantics to make sure every
qualified new information about an appointment will be delivered
to subscribed users. BAD provides two different channel modes for
delivering data, Push and Pull. In the Push mode (as in our example),
the complete new data of interest is sent to the subscriber, while
in the Pull mode, the subscriber will only receive a notification
from the channel that new data is available (and it is then up to the
1Channels are evaluated in a batched continuous manner, similar to the batches in
Spark Streaming [16].

186



DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy Shahrzad Haji Amin Shirazi, Michael J. Carey, and Vassilis J. Tsotras

user whether he/she wants to get the data). For this application we
have also created the channel StationsForMe, which allows users
to get the name, address, phone number and distance to the five
closest stations (to the patient’s current location) with available
appointments for the patient’s eligibility. Users subscribe with their
patientID and eligibility.

5 EMBA OVERVIEW
EMBA (BAD email broker) enables users to get info about available
channels, register for channels, and get related notifications, by just
sending and receiving emails. Figure 5 summarizes EMBA’s layers.
The Receiver Layer. This layer is responsible for processing in-
coming email requests. EMBA deals with the following requests:
(1) users ask about available channels and/or the characteristics of
an existing channel, (2) users ask to register on available channels,
and, (3) users update their location information. For collecting a
users’ registration information, EMBA provides two options: the
standard approach is by email; there is also the possibility of col-
lecting that information directly on Google Forms [3] and passing
it to AsterixDB.
Interacting With BAD. This layer sends subscribe and unsub-
scribe requests to the BAD system as well as requests asking for
information about a channel. As an example, when a patient (with
id 222 and interest in eligibility “65 and older”) requests by email
to subscribe to the StationsForMe channel, this layer will send to
the BAD system the statement in Figure 6. It is also responsible for
receiving new notifications from channels and forwarding them
to the Sender Layer. Finally, this layer will send patient location
updates received via emails to the BAD feed.
The Sender Layer. The sender layer uses four different types of
email to the users. (1)Overview Email:which summarizes the info an
email should contain for the different services. For instance, when a
user wants to ask about all available channels, it is enough to write
the sentence “All channels” as the subject of the email. (2) Available
Channels: EMBA uses this email to send the name and the descrip-
tion (describing the aim of the channel and the possible outputs) of
all available channels. (3) Subscription Information: which contains
the parameters needed for registering with a specific channel. As an
example, if a user asks about the StationsForMe channel, he/she
will receive an email with the two parameters (eligibility, patientID)
needed for subscribing to this channel. (4) Channel Results: results
from different channels will be emailed to the relevant users.

6 DEMO DESCRIPTION
Our demo enables the audience to witness the functionalities and
efficiency of the BAD system through the My_Vaccine app. We
will have imaginary patients who want to register with different
channels and receive their info when a new suitable appointment
pops up. The audience will be able to participate as vaccine station
managers or as patients and receive notifications by email. The
demo video appears at: https://youtu.be/T3V_vN9GuTY .

7 CONCLUSIONS
In this demo we showcase how to create an end-to-end application
over Big Active data.We present how a developer can create such an
application using the BAD system that we have developed and an

Figure 5: EMBA Layers

email broker (EMBA) which enables users to register their interests,
update data and receive notifications, all through emails. We created
an email broker so as to showcase the easiness of completing such
an end-to-end application (from data arriving into BAD to data
received by the users). Other brokers (i.e. sending texts) could be
used as well. Overall, creating a BAD application is quite easy; the
developer needs only work on creating the appropriate services
(through channels) and adapting the broker at hand. In return, the
BAD system deals with data storage and manipulates, and creating
notifications, while guaranteeing that the application can scale to
large numbers of users (in the thousands) over terabytes of data.
Acknowledgements:This research was partially supported by
NSF grants IIS-1838222, IIS-1838248, CNS-1924694 andCNS-1925610.

SUBSCRIBE TO StationsForMe (222 ,"65 and older ")ON EmailBroker;

Figure 6: DDL for creating a channel subscription

REFERENCES
[1] Apache AsterixDB (https://asterixdb.apache.org/).
[2] Django (https://djangoproject.com).
[3] Google forms (https://www.google.com/forms).
[4] A. Alexandrov et al. The Stratosphere platform for big data analytics. VLDB J.,

23(6):939–964, 2014.
[5] M. J. Carey, S. Jacobs, and V. J. Tsotras. Breaking BAD: a data serving vision for

big active data. In Proc. of ACM DEBS, pages 181–186, 2016.
[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous

query system for internet databases. In Proc. ACM SIGMOD, pages 379–390, 2000.
[7] P. T. Eugster et al. The many faces of publish/ subscribe. ACM Comput. Surveys,

35(2):114–131, 2003.
[8] S. Jacobs, M. Y. S. Uddin, M. J. Carey, et al. A BAD demonstration: Towards Big

Active Data. PVLDB, 10(12):1941–1944, 2017.
[9] S. Jacobs, X. Wang, M. J. Carey, V. J. Tsotras, and M. Y. S. Uddin. BAD to the

Bone: Big Active Data at its Core. VLDB J., 29(6):1337–1364, 2020.
[10] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for

log processing. In Proc. of NetDB, pages 1–7, 2011.
[11] H. Nguyen, M. Y. S. Uddin, and N. Venkatasubramanian. Multistage adaptive

load balancing for big active data publish subscribe systems. In Proc. of ACM
DEBS, pages 43–54, 2019.

[12] D. B. Terry et al. Continuous queries over append-only databases. In Proc. of
ACM SIGMOD, pages 321–330, 1992.

[13] X. Wang, M. Carey, and V. Tsotras. Bridging BAD islands: Declarative data
sharing at scale. In IEEE BigData - Workshop on Scalable Cloud Data Mngmt, 2020.

[14] X. Wang, M. J. Carey, and V. J. Tsotras. Subscribing to big data at scale, CoRR
abs/2009.04611, 2020.

[15] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996.

[16] M. Zaharia et al. Discretized streams: fault-tolerant streaming computation at
scale. In Proc. of ACM SOSP, pages 423–438, 2013.

187

https://youtu.be/T3V_vN9GuTY

	Abstract
	1 Introduction
	2 Related Work 
	3 My_Vaccine Application
	4 Creating BAD Feeds and Channels
	5 EMBA OVERVIEW
	6 Demo Description
	7 Conclusions
	References

