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LARGE ANNIHILATOR CATEGORY O FOR sl(c0), 0(c0),sp(c0)

IVAN PENKOV AND VERA SERGANOVA

ABSTRACT. We construct a new analogue of the BGG category O for the infinite-
dimensional Lie algebras g = sl(c0), 0(00),sp(c0). A main difference with the cat-
egories studied in [N] and [CP] is that all objects of our category satisfy the large
annihilator condition introduced in [DPS]. Despite the fact that the splitting Borel
subalgebras b of g are not conjugate, one can eliminate the dependency on the
choice of b and introduce a universal highest weight category OLA of g-modules,
the letters LA coming from ”large annihilator”. The subcategory of integrable
objects in OLA is precisely the category Ty studied in [DPS]. We investigate the
structure of OLA, and in particular compute the multiplicities of simple objects
in standard objects and the multiplicities of standard objects in indecomposable
injectives. We also complete the annihilators in U(g) of simple objects of OLA.

2010 AMS Subject classification: Primary 17B65, 16537, 17B55
Keywords: BGG category O, finitary Lie algebra, highest weight category, large annihilator condi-
tion, standard object, stable Kazhdan-Lusztig multiplicity, Kostka numbers.

1. INTRODUCTION

Let gl(co) denote the Lie algebra of finitary infinite matrices over C, and let
sl(00) C gl(co) be the Lie subalgebra of traceless matrices. One can consider the
representation theory of sl(co) as a way to study stabilization phenomena for rep-
resentations of the Lie algebras sl(n) when n — oco. In fact, the very language of
representation theory suggests what kind of stabilization features it is natural to con-
sider. In particular, the theory of tensor sl(co)-modules developed in [PStyr] shows
that Weyl’s semisimplicity theorem for sl(n) does not stabilize when n — oco. This is
because some morphisms of tensor modules over sl(n) “persist at co” while others do
not. For instance, the tautological morphism sl(n) — gl(n) persists at infinity and
induces the tautological injective morphism sl(co) — gl(co). However the morphism
of sl(n)-modules C — gl(n) which induces the splitting gl(n) = sl(n) © C is lost “at
oo” as gl(co) has no nonzero invariants as a module over sl(co). Similarly, if one
considers the Lie algebras 0(2n) or sp(2n), and denotes their natural representations
by Van, the respective morphisms S?(V5,) — C and A2(Va,) — C persist at oo, while
the (respective) morphisms C — S?(V5,) and C — A?(V4,) are lost at oo.

An intrinsic viewpoint on these phenomena is presented in the paper [DPS] where
a category of tensor modules Ty is introduced, and it is established that the tensor
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products of copies of the natural and conatural representations are injective objects
of this category.

Let g = sl(00), 0(00), sp(00). The purpose of the present paper is to introduce and
study an interesting category OLA of g-modules which is an analogue of Bernstein-
Gelfand-Gelfand’s category O [BGG], and contains the category of tensor modules
T, as a full subcategory. In the papers [N] and [CP], other "analogues at co” of
the category O have been studied, however these categories are essentially different
from the category OLA. In particular, the integrable subcategories of the categories
studied in [N] and [CP] are semisimple.

Recall that the category T, consists of integrable g-modules (i.e., modules which
decompose as sums of finite-dimensional modules over any finite-dimensional simple
subalgebra of g) of finite length, satisfying the following three equivalent conditions:

(a) M is a weight module for any splitting Cartan subalgebra of g (absolute weight
module);

(b) M is (Aut g) °_invariant, where (Aut g)o is the connected component of the group
of automorphisms of g;

(c) the annihilator Anngm of every vector m € M contains the derived algebra of
the centralizer of a finite-dimensional Lie subalgebra of g.

When one tries to extend Ty to an analogue of the BGG category O, one notices that
conditions (a) and (b) must be dropped as they no longer hold in the BGG category
O. On the other hand, condition (c) is empty for category O, and therefore, it is the
only condition among the three that can lead to an interesting “category O for g”.

More precisely, we fix splitting Cartan and Borel subalgebras h C b = h3 n and
define the category OLA, by the conditions that its objects are h-semisimple, satisfy
condition c¢), and are locally finite under the action of any element of n. The first
problem we address, is the dependence of OLA, on b. The BGG category O is
independent, up to equivalence, on the choice of a Borel subalgebra as all Borel
subalgebras of a finite-dimensional reductive Lie algebra are conjugate. In our case
the situation is more complicated and the main result of Section 3 is that there exist
Borel subalgebras b, called perfect, such that for any other splitting Borel subalgebra
b’ C g the category OLAy is naturally equivalent to OLA, or to a proper full
subcategory of OLA,.

In Sections 4-6 we fix a perfect Borel subalgebra b of g and study the category
OLA = OLA,. We show that every simple object of OLA is a highest weight
module and that OLA is a highest weight category. We also prove that every finitely
generated object of OLA has finite length and that any object of OLA has an
exhaustive socle filtration. Furthermore, we describe the blocks of OLA and prove
that any finitely generated object of OL.A has nonzero annihilator in U(g). These
results manifest further differences with the categories studied in [N] and [CP].

Let us point out that, as a highest weight category, OLA admits only standard
objects and no costandard objects. Costandard objects (analogues of Verma modules)
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are replaced by certain approximations which do not ”converge” in OL.A, nevertheless
provide stable Kazhdan-Lusztig multiplicities for a version of BGG-reciprocity which
we establish. The indecomposable injectives in OLA admit finite filtrations whose
successive quotients are standard objects, while the standard objects have infinite
filtrations whose quotients are simple objects. It is essential that the multiplicities of
simple objects in standard objects are finite. Interestingly, these latter multiplicities
are a mixture of finite-dimensional Kazhdan-Lusztig numbers and Kostka numbers.

Acknowledgments. We are thankful to the referee for pointing out several inac-
curacies in the first version of paper, and also for making suggestions for improving
its readability. IP has been supported in part by DFG grants PE 980/6-1 and PE
980/7-1. VS has been supported in part by NSF grant 1701532.

2. THE SET-UP

The base field is C. The notations S(-) and A(-) stand respectively for symmetric
and exterior algebra. The superscript * indicates dual space. Span over a monoid A
is denoted by (-)4. If 41 is a partition, then S, denotes the Schur functor associated
with . In particular, Sy (-) = S*(-) and S<1 1 1)() = A¥(.). The sign @ stands
for semidirect sum of Lie algebras (the round part points to the respective ideal).

We fix a nondegenerate pairing of countable-dimensional vector spaces p: V x V, —
C, and define the Lie algebra gl(co) as the Lie algebra arising from the associative
algebra V' ®@ V,. Both spaces V and V, carry obvious structures of gl(oco)-modules.
It is a well known fact (going back to G. Mackey [Mac]) that there exist dual bases
{vi}ier of V and {w; }ier of Vi (i.e. a basis {v;}ier of V and a basis {w; }ies of Vi such
that p(v;, w;) = d;;, where ¢;; is Kronecker’s delta) where I is a fixed countable set.
Then clearly gl(oco) = (v; @ w;li, j € I)c.

By sl(o0) we denote the Lie algebra kerp; this is a codimension-1 Lie subalgebra
of gl(co). Moreover, we fix the abelian subalgebra

h:=(h; :=v, @wli € I)c Nsl(oo) C sl(c0).

Next, assume that V' is endowed with non-degenerate symmetric or antisymmetric
formb: V®V — C. If b is symmetric, we define the Lie algebra 0(c0) as the vector
space A%(V) with commutator satisfying

[u Nv,wA z] = =b(u,w)v A z +b(u, z)v Aw + b(v,w)u A z — b(v, 2)u A w.
According to [Mac] there exist a basis {u, v;, w; }ie; of V such that
(2.1) b(u,v;) =b(u,w;) =b(v;,v;) =b(w;, w;) =0, blu,u) =1, b(v;,w;) = d;j,
and a basis {v;, w; };cr of V such that

(22) b(U,‘, ’Uj) = b(wi,wj) = 07 b(vi,wj) = 51]
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In both cases, we set
b= (hi :==v; Aw;li € I)¢ C 0(00).

If b is antisymmetric, we define the Lie algebra sp(oco) as the space S?(V) with
commutator satisfying

[uv, wz] = b(u, w)vz + b(u, z)vw + b(v, w)uz + b(v, 2)uw.
Furthermore, there exists a basis {v;, w; }ier of V satisfying (2.2). We set
b= (h; == vyw;li € I)¢ C sp(00).

We denote by g one of the Lie algebras sl(c0), 0(0c0) or sp(cc). In all four cases
above, b is a splitting Cartan subalgebra of g according to [DPS]. Furthermore, g has

a root decomposition
s=hoPa.

a€EA
where A is the root system of g. We define ¢; € h* by setting

ei(hj) = 0yj.
Then the root system of sl(c0) is
A=Aw={ei—gli,jel,i# 7},
and the root system of sp(oco) is
A=Cx={e;—¢jlt,jel,i#jU{x(e;+¢;)|i,7 €I}

The Lie algebra o(co) has two root systems depending on whether b is of type B or
type D:

A=By={ei—¢jli,jel,i#jU{x(e;+¢j)|i,jel,i#jtU{xe|iel}
if (2.1) holds, and
A:Doo:{gi—éju,jGI,i;’éj}U{ﬂ:(Ei—i—&Tj)li,jGI,Z'#j}

if (2.2) holds.
For a g-module M which is semisimple as an h-module, we put

supp M :={X € h* | M) := {m € M|hm = X(h)m Vh € b} # 0}.
Next, set

{te;|i € I}, for g=o0(c0), sp(c0).
Note that V, as well as V, for g = sl(c0) is a g-module which is semisimple as an
h-module. We refer to V' (respectively, V,) as the natural (respectively, conatural)
g-module. In all cases except A = B, we have suppV = I. If A = B then
suppV = I U 0. Finally, suppV, = —1I for g = s[(00) (note that the pairing p makes
Vi a g-submodule of V* = Hom¢(V, C)).

f;:{ {e;]|i € I}, for g = sl(c0)
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For g = 0(00), sp(00) we call a subset .J of I symmetric if J = —.J. For any subset
J C I, which we assume symmetric if g = 0(00), sp(c0), put
Ayi=AN(J)g

and let g; be the root subalgebra of g generated by g, for « € A;. By g5 we denote
the centralizer of gj ; in g. For the root systems Cy and Do we have g5 = g,.

This holds also for A under the assumption that J is not cofinite in I, otherwise
gs = (9, 95]. For the root system B, we have g5 C g: if g; has root system B/,
then g9 has root system D) /2 where |J| = card J (if |J| < oo, the root systems B,
and D)/, are the classical finite root systems of respective types B or D).

A splitting Borel subalgebra b containing b [DP], has the form

b=ho P ga
acAt
for an arbitrary decomposition A = AT LUA™ such that A~ = —At and a+ 5 € A*T
whenever o, 3 € AT, a+ € A.

All splitting Borel subalgebras containing h are in a natural bijection with the set
of total orders < on I, subject to the condition that a < b implies —b < —a in the
case g = 0(00) or sp(00). In what follows, we call such orders symmetric or Zs-linear.
Indeed, given a (symmetric) total order < on I, we set

( {Ei_5j|€i<5j} lfA:Aoo,
{a|la < —a}Uu{a+fla< —a,B < -FIU
H{a—pBla=<p}fora,fel if A = B,
At ={ {2a]la< —-a}lU{a+Bla<—a,f < —FIU
{a—Bla<p}fora,fel if A =C,,
{a+fFla<—a,f < —[}U
{ {a—Bla=<p}fora,Bel if A= D,.

In the remainder of the paper we assume that all total orders < on I considered are
symmetric for g = 0(00), sp(c0).

Given a total order < on the set [ , we define subsets S,,q, and S,,;, of I as follows:
Sin (respectively, S,,q.) is the set of all @ € I such that there exists a cofinite subset
A C T in which o is minimal (respectively, maximal). Note that for g = o(c0),
sp(00), we have Sy = —Smaz- A total order < on I is ideal if both S,,;, and S, ,us
are infinite; a total order < on Iis perfect if it is ideal and I = Smin U Simaz. The
corresponding Borel subalgebras are also called ideal or perfect. Note that all perfect
total orders on I are isomorphic, which implies that all perfect Borel subalgebras are
conjugate under Autg.

A root o € AT is simple if o cannot be decomposed as a sum 3+ for 5,7 € A*.
If a root can be written as a linear combination of simple roots we call it a b-finite
root. All other roots are infinite by definition. For instance, if b is perfect with
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positive roots ¢; — ¢ for ¢; < ¢; for g = sl(c0), then the b-finite roots are of the form
gi —¢; for g5, € Spin OF €5,€5 € Spnag-

If M is a g-module for g = sl(c0), 0(c0),sp(00), or for a finite-dimensional Lie
algebra g, the Fernando-Kac subalgebra g[M] of g consists of all vectors g € g which
act locally finitely on M, i.e. such that dim({m, gm, g°m,...)c) < oo for any m € M.
The fact that g[M] is indeed a Lie subalgebra has been proved independently in [K]
and [Fe].

We say that a g-module M satisfies the large annihilator condition if, for any m €
M, the annihilator in g of m contains the commutator subalgebra of the centralizer
of a finite-dimensional Lie subalgebra of g (i.e. if M satisfies condition (c) from the
Introduction).

Finally, recall that the socle of a g-module M, socM, is the sum of all simple
submodules of M. It is a standard fact that socM is the largest semisimple submodule
of M. The socle fltration of M is

0 C socM = soc® M C soc* M C soc?M C ...

where soc’M := m; '(soc(M/soc'"*M)) and 7; : M — M/soc""'M is the canon-
ical homomorphism. We say that the socle filtration of M is exhaustive it M =
Ui s0c" M.

3. THE CATEGORY OLA,

Let b be the fixed splitting Cartan subalgebra of g, see Section 2, and b =h & n
be a fixed splitting Borel subalgebra containing b and corresponding to a total order
< on I. We define OLA, as the full subcategory of the category of all g-modules,
consisting of g-modules M satisfying the following conditions:

(i) M satisfies the large annihilator condition;

(ii) M is h-semisimple;
(iii) every = € n acts locally nilpotently on M.

The first problem we address, is to what extent OLA, depends on the choice of b.

Set S := Spin U Spax C I. For a, b € Z>o, define Spin(a) C Spin and Spe(b) C
Smaz 10 be respectively the first a elements of .S,,;, and the last b elements of S,,4..
Here we assume Spin(0) = Spaz(0) = 0. Put gop := O\ (Syin (a)USman (b)): Where for

g = 0(oc0) or sp(co0) we suppose that a = b and that all subsets of I we consider are
symmetric.
The large annihilator condition can be rewritten in the form

(3.1) for every m € M there exists a cofinite set J C I such that gm = 0.

Lemma 3.1. Let M € OLA,.

(a) If M is finitely generated, then there exist a,b € Zsq such that g,, C g[M].
(b) For an arbitrary M, we have gj g C g[M].



LARGE ANNIHILATOR CATEGORY O FOR sl(c0), 0(c0), sp(c0) 7

Proof. 1t suffices to prove (a) for a cyclic module. Let M be generated by a vector
m € M. By (3.1) there exists a cofinite set J C I such that gGm = 0. Since the
action of adz on U(g) is locally finite for all x € g, and M = U(g)m, we conclude
that g5 C g[M]. On the other hand, by (iii) we have n C g[M]. It is easy to check
that the subalgebra of g generated by n and g5 equals g, where J' is the minimal
interval containing J. By the cofiniteness of J' we get g, = g, for some a,b € Zx.
Hence g, C g[M].

(b) is a consequence of (a) since gy g equals the intersection (1, , ga,b- O

Theorem 3.2. Assume that b is ideal, and let J and K be infinite (symmetric)
subsets of I such that I = JUK. Suppose further that S C K, and set by := gx Nb.
Let OLAy, be the category of gx-modules satisfying the conditions (i)—(iii) with
respect to bg.

(a)The categories OLAy,. and OLA, are equivalent.

(b) If the root system of g is B, there is also an equivalence of the categories
OL Ay, and OLA, where bg := b N g

Proof. (a) Consider the functor
Dy O[,Ab — OﬁAbK, CI)K(M) = ]\4937

where the superscript (-)97 indicates taking invariants. We shall prove that ® is an
equivalence of categories.

Let (’)EA‘;’I’ denote the full subcategory of OL.Ay consisting of modules such that
gap C g[M]. By Lemma 3.1(a),

OLA, = lim OLA.
—

Similarly, we define the category (’)EA‘;;? as the subcategory of modules M satisfying
Gapk = 0k N Gap C g[M] . Then

. a,b
OLAy, = IEI OLA, ..
Clearly, @k induces well-defined functors
3 OLAY" — OLALY,
and it suffices to prove that q)‘}gb are equivalences of categories for all a,b € Zx.
Denote by Ty, , the inductive completion of the category Ty, ,. Then, for any fixed
a, b € Z>p, we have the following commutative diagram of functors
(ba

OLAY 25y OLAY

Resga’bl J/Resﬂa,b,K

a,b
- % -

Ja,b Tga,b,K :
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We claim that ®% is an equivalence of symmetric monoidal categories downstairs.

This follows directly from Lemma 5.13 and 5.14 in [PS] which prove that ®%” es-
tablishes an equivalence between T, , and Ty , .. The passage to the respective
inductive completions Tga,b and T is automatic because ®%” commutes with di-
rect limits.

Next we show that (Iﬂ(’b remains an equivalence upstairs. Indeed, consider the
decomposition (of vector spaces) g = g, D t, where v is a g, p-stable subspace. The
objects of OLAY" are pairs (M, ) where M € Tga,b and ¢ : M ®tv = M is a
morphism satisfying a certain set of tensor identities. Note that gx = Px(g), and
set vy = Pg(v). We have gx = gapx P ti. The objects of OLAZ;I(’ are pairs (N, )
where N € ']NI‘gayb,K

tensor identities. Obviously, @‘}gb(t) — v and ®%°(¢) = 1b. This completes the proof

of (a).

To prove (b), define the functor
CI),K : Oﬁ.Ab — OE.A(,?{, (I)/K(M) = ng’

9a,b, K

and ¥ : N ® tg — N is a morphism satisfying the same set of

The proof that @’ is an equivalence of categories is similar to the proof of (a). O

Corollary 3.3. If b C g is an ideal subalgebra, the category OLA, is equivalent to
the category OL Ay for a perfect subalgebra b’ C g.

Proof. First we prove that OLA, is equivalent to OLA,,. If S is coinfinite in I, this
is established in Theorem 3.2(a). Therefore, assume that S is cofinite in I. Extend
I to a totally ordered set P by replacing the interval I \ S by an infinite interval
(symmetric in the case g = 0(c0) or sp(00)). Then g and gg are embedded into an
isomorphic copy gp of g in which the role of I is played by P. Let b be the Borel
subalgebra of g5 defined by the ordered set P. Now Theorem 3.2 implies that both
categories OL Ay, and OLA, are equivalent to OLA;. Hence, OL Ay, and OLA,
are equivalent.

Furthermore, bg is a perfect Borel subalgebra of g; and g, ~ g. Consider an
isomorphism ¢ : gs — g and set b’ := ¢(bs). This isomorphism extends to an
equivalence between OL A, and OLAy. The statement follows. O

Corollary 3.4. Assume that the root system of g is By, and the root system of g
is Do. Then, for any ideal Borel subalgebra b C g there exists a perfect subalgebra
b’ C ¢’ such that the category OLAy is equivalent to the category OL Ay .

Proof. The proof is similar to the proof of Corollary 3.3 via application of Theorem
3.2(b). O

In the rest of the section, b is an arbitrary splitting Borel subalgebra containing b.
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Proposition 3.5. Assume that S is finite. Then there exists a perfect Borel subal-
gebra b C g such that OLA, = OLAY® for some a,b > 0. In particular, if S = 0
then OEA[, = Tg.

Proof. Set a = |Sminl|, b = |Smaz|- Define a perfect order on I such that S,,;, C I
(respectively, Sy, C 1) are the first (respectively, the last) elements of 1. Denote by
b’ the Borel subalgebra corresponding to this order. Then (’),CAZ’b = (’)E.Ag}b, and
by Lemma 3.1(b) OLA, = OLAX". The assertion follows. O

Proposition 3.6. Let g = sl(c0). Suppose that exactly one of Sy, and Sy, is
finite.
(a) The categories OL Ay, and OLA, are equivalent.
(b) Set
OLAG™ := lim OLAL for b — oo,

OLA® = lin OLAL for a — oo.

Then there exists a perfect Borel subalgebra b’ C g such that

(1) if |Smin| = @ and Sy,a, Is infinite, then OLA, is equivalent to OLA,™;

(2) if Spin 1s infinite and |Sy,q.| = b, then OLA, is equivalent to OEAE?’b.
Proof. (a) can be proven in the same way as Corollary 3.3, and we leave the proof to
the reader.

Let us prove (b) in the case (1). Case (2) is similar. By (a) we may assume that
I = S. We include S, into an ordered set L isomorphic to Z>( such that Sy, is
identified with the first a elements of L. Set P := L U Smaz, L < Smaee and consider
the corresponding Lie algebra gp with Borel subalgebra b. Define the functor

(I)S : OﬁAE — OLA[], CI)S(M) := MO9\Smin

As in the proof of Theorem 3.2, one can show that the restriction of @5 to OLAZ™ is
an equivalence between the categories OEAZ’OO and OLA,. Since g is isomorphic to

g, the Borel subalgebra b’ C g can be chosen as the image of b under an isomorphism
gp 2 g, and the statement follows. O

Corollary 3.7. If b is an arbitrary splitting Borel subalgebra of g, there exists a
perfect Borel subalgebra b’ C g such that the category OLA, is equivalent to a full
subcategory of OL Ay .

Proof. Follows from Theorem 3.2, Proposition 3.5 and Proposition 3.6. OJ

4. OLA: SIMPLE AND PARABOLICALLY INDUCED MODULES

Corollary 3.7 suggests that it makes sense to restrict our study of the category
OLA, to the case when b is a fixed perfect Borel subalgebra. In the rest of the paper
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we do this and write OLA, omitting the subscript b. Furthermore, Corollary 3.4

allows us to disregard the case A = B, and assume that A = D, for g = 0(00).
By b = h3 n we denote the opposite Borel subalgebra, b N'b = h. In addition, for

g = sl(co0) we identify the ordered set I with Z-g U Z.o where i < —j for i, j € Zy,

so that Sy = {€ili € Zso}, Smaz = {€ili € Z<o}. For g = 0(00), sp(c0) we identify

Snin With Z~o, and write Sy, = {e;|i € Zso}; then Sy = —Smin = {—¢ili € Zo}.
Let €, be the centralizer of g, , in g. Note that g,,, >~ g and

s[(2n) for g = sl(oc0)
£, >~ ¢ 0(2n)forg = o(oc0)
sp(2n) for g = sp(c0).
Next, fix compatible nodegenerate invariant forms on &, which define a nondegen-
erate invariant form (-,-) on g. We will use the same notation when considering (-, -)

as a form on bh*.
In what follows we will use the family of parabolic subalgebras of g

pn = b+ In.n

with reductive parts [,, = h+g,,. By p, we denote the parabolic subalgebra opposite
to Pn, Pn N Ppn = . Furthermore, we define m,, as the nilpotent ideal of p,, such

In,n

that p,, = [, m,,. The space of g, ,-invariants m;"" is finite dimensional, and the

In,n

decomposition of g, ,-modules m,, = v, @ my"" defines t,, C m,,.
In addition, we introduce the subalgebras s C g and s,, C ¢, by setting

s:=ha @ 0o, Sni=s5N¢%,
OlGAfin
where Ay;, stands for the b-finite roots. We have
o~ sl(00) @ sl(00) @ Cfor g = sl(00)
| gl(c0) for g = 0(00), 5p(00)
and
_ Jsl(n) ®sl(n) & Cfor g = sl(c0)
" | ol(n) for g = o(c0), sp(c0)
Note that b, := h N ¢, is a Cartan subalgebra of ¢, as well as of s,,.
For g = 0(00), sp(0c0) we denote by V,, the natural gl,, = s,-module. For g = sl(c0)
we set V,, = VE@ VE where supp V.F = {g]1 <i < n} and suppV.E = {&g| —n <
i < —1}. Then there is canonical decomposition

V=V,a&V,

where V,, is the natural gn.n-module (the notion of natural module makes sense for
Onn @S Onn 1S isomorphic to g). Moreover, we have the following isomorphism of
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On,n-modules:

. Vor @ (V)8 for g = sl(c0)
" Vi for g = o(00), sp(c0)

4.1. Simple modules. We start with the following lemma.

In,n

Lemma 4.1. There exists a finite-dimensional ad(my"")-stable subspace u C t,, such
that S(u) generates S(t,,) as a module over g,.,.

Proof. Let g = sl(c0). Then
S(t,) =S((V,)E" @ V) = EB(SA«VH)*) ® S#(Vn))@c(’\’“)

Au

for some ¢(\, p) € Z>g, where the summation is taken over all partitions A,y with at
most n parts. Recall that, by Lemma 4.1(a) in [DPS], the g-module Sy((V,,).)®S,.(V;,)
is generated by S)(Z)) ® S,(Z,) for some n-dimensional subspaces Z! C (V,,). and
Z,, C V. Therefore, S(t,,) is also generated by S(u) for some finite-dimensional space
u C t,. As my"" is finite dimensional and its elements act locally finitely on t,, the
subspace u can clearly be chosen ad(mjy"")-stable.

In the orthogonal and symplectic case we have the decomposition

S(ra) = S(V,7) = P Sa(V)) >,

for some ¢(\) € Z>o, where A runs over all partitions with at most n parts. Here,
application of Lemma 4.1(b) from [DPS] leads to the result. O

By U(-) we denote as usual the enveloping algebra of a Lie algebra, and U*()
stands for the k-th term of the PBW filtration on U(-).

Proposition 4.2. Let M € OLA and 0 # v € M satisty g, ,v = 0.
(a) There exists m € Z~q such that m"v = 0.

(b) (U (my)v)™ # 0.

Proof. Let us prove (a). Since every element of m,, acts locally nilpotently on M,
it suffices to check that U*(m,,)v = U(m,)v for sufficiently large k. Then m can be
chosen as k + 1. Note that m,, is ad(g,.,)-stable, therefore U*(m,,)v is also ad(gy..)-
stable. Choose u C t, as in Lemma 4.1 and set a := u@ my*". Since a is a nilpotent
finite-dimensional Lie algebra we have U*(a)v = U(a)v for sufficiently large k. On
the other hand, U*(a) (respectively, U(a)) generates U*(m,,) (respectively, U(m,,))
as an adjoint g, ,-module. This implies that the g, ,,-submodules of U(g)v generated
respectively by U¥(a)v and U(a)v coincide. As these modules equal respectively
U*(m,)v and U(m,)v, we obtain U*(m,)v = U(m,)v.

(b) follows immediately from (a). O
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Theorem 4.3. Let L € OLA be a simple object. Then there exist n € Zx, and
a weight A € b*, such that Myng,, = 0 and L is isomorphic to the unique simple
quotient of the induced module Indgn Cy. In particular, L is a highest weight module
with highest weight A\, and we denote it by L(\).

Proof. The large annihilator condition ensures that for any v € L we have g ,v = 0
for some k € Z>(. Therefore Proposition 4.2(b) implies L™ # 0 for some k. Since
L is simple, L™ is a simple [;-module. Moreover, as a g -module, L™ is integrable
and satisfies the large annihilator condition. Hence, by Theorem 4.2 in [DPS], L™
has a highest weight vector u with respect to the Borel subalgebra b N gj 5. Since
n = m;& (nNggx), we obtain nu = 0. Denote by A the weight of u. By the large
annihilator condition, there exists n > k such that g, ,u = 0. This implies that Cu
is a one-dimensional p,-module isomorphic to C,. Then by Frobenius reciprocity L
is isomorphic a quotient of Indgn Ci. [l

In what follows, we call a weight A € b* eligible if A|yng, ,, = 0 for some n € Zx.

The set of eligible weights coincides with the subspace (I)c¢ C h*. Note that for
g = sl(oco) an eligible weight A has the form A + A% for uniquely determined eligible
weights A\l = Ziez” M\ig; and AR .= ZieZ<0 Aig; (recall that in this case Sy, =
{&ili € Z=o}, Smaz = {€ili € Zo} ). Furthermore, Theorem 4.3 claims that any
simple object of OLA is a b-highest weight module with an eligible highest weight.

A weight A is b-dominant if 2@‘;3 € Zso for all @« € AT. We observe that for

g = sl(oo) an eligible weight A is b-dominant iff \' := (AF > ... > X' > ) and
N o= (=AB > oo > —AB > ) are partitions where \; € Zsq for i € Zo,
Ni € Zicg for i € Zy. For g = 0(00), sp(co) an eligible weight A is b-dominant iff
A= (A1, ..., Ak, ... ) is itself a partition. In [DPS] the simple modules of the category
Ty are parametrized as Vi1 »2y for g = sl(0o), and as V) for g = 0(c0), sp(00), where
AL A2\ are partitions. As we pointed out in the introduction, Ty is a full subcategory
of OLA, and the simple modules V(,1 y2) are denoted in the present paper as L(X\)
where A = (A, \?) for g = sl(00), and where X is considered both as an eligible weight
and as a partition for g = 0(c0), sp(c0).

4.2. Parabolically induced modules Ind] C,. For an eligible weight A, we set
M,(A) :=1Ind] Cj,

where we always assume that n is large enough to ensure that C, is a trivial g, ,-
module.

Lemma 4.4. A nonzero integrable quotient of M, (\) is simple.

Proof. Since b C p,,, any quotient of M,()) is a b-highest weight module. An in-
tegrable quotient of M, ()) is an object Ty, and is hence isomorphic to a submod-
ule of a finite direct sum €, V¥ @ (V,)®™ for some m,n € Zso. (In the case
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g = 0(00),sp(0c0) we assume V = V,.) However, the explicit form of the socle fil-
tration of @@, V¥ @ (V,)¥™, see [PStyr| or [DPS], implies that a b-highest weight
submodule of @, V& @ (V,)®™ is necessarily simple. O

Lemma 4.5. The module M, ()), considered as an l,,-module, has a decomposition
@ M; such that each M; is a finite-length l,,-module. Moreover, the Jordan-Hélder
multiplicity of every simple l,,-module in M, (\) is finite.

Proof. We have an isomorphism of [,,-modules

where m,, is the nilpotent ideal such that p, = [, m,. Let z € [, be a cen-
tral element which defines a finite Z_y-grading on m,,. Consider the decomposition
M, (\) = €D, M, into adz-eigenspaces. Then every M; is isomorphic to a submod-
ule in (B _k<j<irkS’(M,)) ® Cy for sufficiently large k. Thus M; is a finite-length
[,-module, and the statement follows. [l

Corollary 4.6. There is a descending filtration
My (A) = (Mp(X)o D (Mn(A))1 D -+ D (Mn(A))i O ...

such that (;(M,,()\)); = 0 and (M,,(X));/(M,(X))it1 is simple for all i > 0. Further-
more, the subquotient multiplicity [M,()\) : L(p)] of any simple module L(u) defined
by such a filtration is finite and does not depend on the choice of a filtration.

Proof. Lemma 4.5 implies the statement if we consider M,,(\) as a module over .
Hence, the statement holds also for g D [. O

4.3. Jordan—Hoelder multiplicities for parabolically induced modules. Con-
sider the functor .

D, : OLA — Oy, ©,(M) := M,
@gn being the inductive completion of the BGG category O for the finite-dimensional
Lie algebra ¢,,. The large annihilator condition ensures that for any M € OLA

M = lim &, (M).
H

Lemma 4.7. For m > n we have an isomorphism of ¢,,-modules
®,,(M,(\) ~ Ind'"., C,.

pnNEm

Proof. Note that the result of application of ®,, depends only on the restriction to
Om,m. Lherefore, the statement follows from the isomorphism of g,, ,,,-modules

Mn()‘) = S(ﬁln) & (CA

and the fact that
S(m,)¥m = S(m, NE,).
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Lemma 4.8. Let M,N € OLA and U(g)®,(M) = M. Then the natural map
Homy(M, N) — Homg, (9, (M), P, (N)) is injective.

Proof. Straightforward. O

Corollary 4.9. Let m > n. The natural map
Homgy (M, ()\), N) — Hom,, (Ind%™

pnrt, Cxs P (N))

is injective.

Lemma 4.10. If Homy(M,,(X\), M, (1)) # 0 for X # p, then A\— p is a sum of positive
finite roots.

Proof. By Corollary 4.9, Homy(M,,(\), M,,(1)) # 0 implies
HOngp(IIldEp Cy, Ind” C,) #0

PNty PmNEp

for all p > m,n. Consequently ply, + pp, and |y, + p, lie in one orbit of the Weyl
group W, of £,, where p, denotes the half-sum of positive roots of €,. In other words,

Aly, = wp(paly,) = wp(pp) — pp
for some w, € W,. When p — oo the quantity [(A]y, —w,(u]s,), )| remains bounded
for any fixed o € A and any w, € W), while the quantity |(w,(p,) — pp, @)| remains
bounded if and only if w, is a product of reflections corresponding to simple roots
of £, which are finite as roots of g. Therefore w, must have the latter property, and
this implies the statement. O

Lemma 4.11. Let Ly, (1|, ) denote a simple ¢,,-module with a bN¥,,-highest weight
vector of weight ply,.. If [M,,(\) : L(p)] # 0, then [®,,(M, (X)) : Ly, (t]s,,)] # 0 for
sufficiently large m.

Proof. 1t [M,(\) : L(p)] # 0, then there exists a nonzero vector u € M,(\) of
weight © and a submodule X C M, () such that nu € X and v ¢ X. For all
sufficiently large m, we have u € ®,,(M,()\)). Then (nN ¢, )u € ®,,(X). Therefore

[ D (M () : L, 1]y, )] # 0. m

Lemma 4.12. If [M,(\) : L(u)] # 0 for A # u, then A\ — u is a sum of positive finite
roots.

Proof. The previous lemma implies [®,, (M, (N\)) : L, (¢t]s,,)] # 0 for all sufficiently
large m. Therefore we can use the same argument as in the proof of Lemma 4.10. [

Let W be the group generated by all reflections with respect to the simple roots
of our fixed Borel subalgebra b. Then W ~ 8§, x 8, for g = sl(c0) and W ~ 8, for
g = 0(00), sp(c0); here 8., denotes the infinite symmetric group. We fix p € h* such
that 2% =1 for any simple root a.

We define a partial order <;;,, on the set of eligible weights by setting pu <g;,, A if
= Xor A— pis a sum of positive simple roots and (A + p) = w(u + p) for some
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w € W. This order is interval-finite. In fact, the following stronger property holds:
for any eligible weight p, the set

it = DM i N}
is finite.
Lemmas 4.11 and 4.12 imply the following.

Corollary 4.13. If [M,,(\) : L(p)] # 0, then p <g; A

Lemma 4.14. Given two eligible weights A\ and p, there exists N € Z>q such that
the multiplicity [M,()\) : L(u)] is constant for n > N. We denote this constant
multiplicity by m(\, u).

Proof. Choose N such that A — p is a sum of roots of €5 . For n > N, consider the
canonical surjection homomorphism ¢ : M,(\) — My (A). We have u ¢ supp ker ¢.
Hence [ker ¢ : L(p)] = 0. This implies [M,,(\) : L(p)] = [Mn(A) : L(p)]. O

Lemma 4.15. The g-module M, (\) has finite length.

Proof. We claim that there are finitely many weights p for which [M,,(\) : L(u)] # 0.
Indeed, [M,(X) : L(p)] # 0 implies that g[L(x)] C g5, and hence the restriction of p
to b N g, is b N g, ,-dominant. On the other hand, by Corollary 4.13 u = w(A-p)—p
for some w € W. This is possible only for finitely many w, and hence for finitely
many /. 0

The following lemma shows that the multiplicities m(\, 1) can be expressed in
terms of Kazhdan-Lusztig multiplicities for the BGG category O, of the reductive
Lie algebra s,, for sufficiently large n.

Lemma 4.16. Let A, ;1 be eligible weights such that 1 <g;, A, and let Nyng, ,, =
tt]pngn.. = O for some n. Then

m(A, p) = [Ms, (Aly,) : Ls, (1o, )]

where M, (MNy,) and L, (f4]s,) denote the respective Verma and simple module over
Sp.

Proof. Consider the parabolic subalgebra q,, = s, +p,. Then M, (A) ~ Indg M, (Aly,)-
Since Ind] is an exact functor, we have m(\, u) > [Ms, (Aly,) © Ls, (#]p,)]. Choose
h € b such that [h,s,] = [h, g.n] = 0 and a(h) = 1 for the simple roots « which are
not roots of s, @ gn,. Then L)'= ~ Lo (uly,) and M, (A0 ~ M, (Mg,
the superscript indicating taking invariants. Hence m(\, ) < [Ms, (Aly,) © Ls, (14]n,,)]-
The statement follows. 0

Proposition 4.17. Any finitely generated module in OLA has finite length.

Proof. 1t suffices to check the statement for a cyclic module. Assume that M is
generated by some weight vector v annihilated by g, . Then m*v = 0 for some m
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by Proposition 4.2 (a). Therefore dim U(m,)v < oo, and there is a finite filtration
{(U(my,)v);} of U(m,)v such that every quotient (U(m,)v);/(U(m,)v);_; is annihi-
lated by m,,. Moreover, (U(m,)v);/(U(m,)v);_1 is an object of the category T
Hence one can refine this filtration of U(m,)v and obtain a finite filtration

On,n-*

0CFLC---CU(my,)v,

such that F;/F;_; is a simple integrable g,, ,-module annihilated by m,,.
Consider the induced filtration of M:

0OcU(g)Fy C---CcU(g)v=M.

Then U(g)F;/U(g)Fi-1 is isomorphic to a quotient of the induced module Ind} (F;/F;_1),
and the latter module is isomorphic to a quotient of M;(\) for some t > n and some
A. Since M;(A) has finite length, the same is true for U(g)F;/U(g)F;—1, and thus for
M. O

Corollary 4.18. (a) Any M € OLA is the union of finite-length submodules.
(b) Any M € OLA has an exhausting socle filtration.

Proof. Any module is the union of its finitely generated submodules. Therefore (a)
follows from Proposition 4.17. The same proposition implies (b) as any module of
finite length has a finite exhausting socle filtration.

O

4.4. Canonical filtration on OLA. For an eligible weight A = >
d()\) — %(Zi€Z>O )\Z ._ ZjEZ<0 )\]) lf g = 5[(00)
3 Zi€Z>o )\l if g = 0(00),5p(00).
Note that if X\ —p € (A%)z,,, then d(\) — d(p) € Zxo.
Lemma 4.19. Assume Exty, 4(L(A), L(i)) # 0. Then d(\) — d(p1) € Z<y.

Proof. Recall that if M is a g-module and A € bh*, then M) is the weight space of
weight A,

c.er Ni€i We set

M, :={m € M|hm = A(h)m Vh € b}.
Consider a nonsplit exact sequence in OLA
0— L(p) - M — L(\) — 0.

Since M is a h-semisimple, a standard argument shows that A # pu.

We claim that that either 4 — A € (AT)z_, or A — u € (AT)z_,. Indeed, assume
A—p & (At)z .. Then the weight space M, must be a subspace of U(b)M) as
otherwise the sequence would split. Therefore p— A € (AT)z_,.

If p— A€ (At)z,, then d(\) —d(p) € Z<o. It X —p € (At)z.,, then M is
isomorphic to a quotient of M, () for some n. Therefore m(\, u) # 0. By Corollary
4.13 X\ — p is a sum of simple positive roots, and hence d(\) = d(u). O
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Corollary 4.20. If M € OLA is indecomposable, then d(v) — d(v') € Z for any two
weights of M.

We say that a simple module L(\) € OLA has degree d if d(\) = d.

Lemma 4.21. Let M € OLA have a simple constituent of degree d € C an let the
degree of every simple constituent of M belong to d+Z<,. Then there exists a unique
submodule N C M such that any simple constituent of N has degree d, and every
simple constituent of M /N has degree lying in d + Z .

Proof. Let N be some maximal (possibly zero) submodule of M whose simple sub-
quotients have degree d. We claim that the degrees of all simple subquotients of
M/N lie in d + Z—o. Indeed, if we assume the contrary, then at some level of the
socle filtration of M there is a simple constituent L(u) of degree d’ = d+1 for | € Z,
and there is a simple constituent L(\) of degree d at the next level with a nontrivial
extension of L(A) by L(u). This contradicts Lemma 4.19. O

Corollary 4.22. Let M € OLA satisfy the condition of Lemma 4.21. Then M has
an exhausting canonical filtration

(4.1) 0= Dy(M) C Di(M) C Dy(M) C ...

such that all simple constituents of D;(M)/D;_1(M) have degree d — i + 1.

We define OLA(s) as the category of s-modules which satisfy conditions (i)-(iii)
of Section 3 for the Borel subalgebra b Ns of s where b is our fixed perfect Borel
subalgebra of g. Next, we denote by OL.A? the full subcategory of OLA consisting
of all objects whose simple constituents have degree d. Obviously, OLA? is a Serre
subcategory of OLA. For any M € OLA? we set

M= P M,
d(p)=d
Then clearly M* is an object of OLA(s). Furthermore (-)* : OLAY — OLA(s) is
an exact faithful functor.
Lemma 4.23. For any objects M and L()\) of OLA®, the multiplicity [M : L(\)]
equals the multiplicity [M™ : Lg(\)] in OLA(s), Ls(\) being a simple s-module with
b N s-highest weight .

Proof. The proof is similar to the proof of Lemma 4.16 and we leave it to the reader.
OJ

5 OLA AS A HIGHEST WEIGHT CATEGORY

In this section we show that OLA is a highest weight category according to
Definition 3.1 of [CPS|. In particular, this requires introducing standard objects
parametrized by the eligible weights, as well as specifying an interval-finite partial
order on eligible weights.
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5.1. Standard objects. Consider the endofunctor ® in the category g-mod
O(M) :=1lim D, (M), &, (M) := M.
H

The restriction of ® to OLA is the identity functor.

Recall also that, if I'y(M) stands for the largest h-semisimple submodule of a g-
module M, then I'y is a well-defined endofunctor on the category g-mod.

Let now M be a g-module such that the elements of n act locally nilpotently on
I'y(M). Then ® o I'y(M) is an object of OLA, and for any X in OLA we have a
canonical isomorphism

(5.1) Hom, (X, ® o I'y(M)) = Homgy (X, M).

Let Eth denote the ext-group in the category Cyy of g-modules semisimple over
h. As OE.A is clearly a Serre subcategory in Cyp, the equality

(5.2) Exty (M, N) = Exté4(M,N)

holds for any two objects M, N of OLA. Moreover, if X is an object of Cyp with lo-
cally nilpotent action of the elements of n and N = ®(X), we have Homy(M, X/N) =
0 and hence an embedding

(5.3) Exty (M, N) < Extg (M, X).
For any eligible weight A € (I)¢ let
W (A) == Iy (Coind Cy).

We define the standard object W(A) by setting W(A) := ®(W(N)). Since the
elements of n act locally nilpotently on W (A), we conclude that W () is an object in

OLA.

Lemma 5.1. (a) The g-module W () is indecomposable with simple socle L(\);
(b) dim Homgy(M,,(X), W () = 6, for sufficiently large n;
(c) Bxtyp 4 (M,(A), W(p)) = 0 for sufficiently large n.

Proof. As we already pointed out, the elements of n act locally nilpotently on W (\).
Therefore, by (5.1) and Frobenius reciprocity we have

Homg(L()), W (1)) = Homg(L()), Coind? C,,) = Homg(L()), C,).

Now (a) follows from the isomorphism of b-modules L()\)/bL()\) =~ C,.
Let us prove (b). We have

Homg (M, (\), W(u)) = Homg (M, (A), Coind? C,,) = Homg(M,()),C,),

and (b) follows from the isomorphism of b-modules M, (\)/fM,(\) ~ C,.
Next, we prove (c). By (5.2) and (5.3) it suffices to show that

Exty o (M, (A), W(X)) = 0.
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We use Shapiro’s Lemma:
Exty o (Ma(A), W(A)) = Exty  (M,(), C,).

Since M, () is free over the nilpotent ideal m,, we have Exty, g (M, (\),C,) = 0.
Therefore
Extg (Mn(A), Cp) = Extgy o0 (Cy,Cp).

For sufficiently large n, we have A|yng, . = it|sng,., = 0. This implies

Exti (Cy,C,) = Ext; (C,C) =0.

bmgn,n,hmgn,n bmgn,nybmgn,n

UJ
Lemma 5.2. If Exty, 4(L(\), W (1)) # 0 or Ext;h(L()\), W (w)) # 0, then i <pin .

Proof. Claim (c) of Lemma 5.1 implies the existence of the surjective map
Homg(N(A), W (u)) — Extoa(L(A), W ()
where N(A) is the kernel of the canonical projection M,(\) — L(A). The g-module

N(A) has finite length and all simple constituents L(r) of N(\) satisfy v <p, .
Hence p1 <gin A. The statement for W () is similar. O

Corollary 5.3. If \;,, = {\}, then W()) is injective in OLA.

Proof. By Corollary 4.18(a), it suffices to check that Exty . 4(L(i), W(\)) = 0 for
every eligible weight p. Thus, the statement is an immediate corollary of Lemma
5.2. OJ

5.2. Injective objects. Let us prove now that OLA has enough injective objects.
Recall that s denotes the subalgebra generated by h and by all root spaces corre-
sponding to finite roots. Let Lg(u) be the simple b N s-highest weight module in the
category O, studied in [N]. Since y is almost dominant, Ls(x) has an (indecompos-
able) injective envelope I;(u), see [N]. Furthermore, let

W, () := [y(Coind?; C,,).

sMb
It follows from [N] that I;(x) has a finite filtration
0=I(p)° C L(w)' C - C L(w)* = L),
such that I,(u)? /I, ()" ~ Wi () with py = p and p; > g o for i > 1.

Set p:=b+s and )
I(p) == Ty(Coind? ¢ Is(1)).

Since W (v) ~ I'y(Coindg C, ), we obtain that I(1) has a finite filtration
(5.4) 0= F(u)° € F(w)! € -+ € F(u)* = F(u),
such that T(u)'/T(p)" =" ~ W (u;) with gy = p and p; > g, g for i > 1.
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Now, consider L()) for an arbitrary eligible weight. Tf A ¢ 7, then Exty  (L(X), I(p) =
0 by Lemma 5.2, while A € puj,, implies d(\) = d(u). Therefore Shapiro’s lemma
implies
Bxtl (L), (1)) = Bxth o (L(V), L ().
Furthermore, there is an 1som0rphlsm of s-modules L(A\) = Ls(\) @ tL(\) where t is
the nil-radical of p. We have Exty ((FL(A), L;(1)) = 0 as d(v) < d(y) for any weight
v of tL()). Consequently,

EXt%,h (LO‘)a Is(ﬂ)) = EXt;,h<L5()‘)a IB(H)) = 0.

As a result, we obtain Extéjh(L()\), I(11)) = 0 for any A, and hence I(p) := ®(I(1))
is an injective object in OL.A with socle L(u).

Proposition 5.4. For any eligible weight p, the injective module I(p) admits a finite
filtration

0=1I(p)" CI(w)' - CI(p)* =1I(w),
such that I(p)"/I(p)"~' ~ W (w;) with py = p and p; > pin p for i > 1.

Proof. The ideais to apply ® to (5.4). If n is sufficiently large, there is an isomorphism
of g, n-modules:

W (p;) = Ty(Home (S(b/(gn.n N10)), Wy, ,(0)))
where W,  (0) is the obvious analogue of W (0). Moreover, S(b/(gnn N b)) is an

object of Tgm Since Extém b (L3 Wgn .(0)) for any object L of OLA,, ., we get
EXtén,n,hn,n(Q W () = 0. Hence &, = Homy,, . (C, ) induces a filtration

0=, (I(1)°) C @u(I(1)') C -+ C @u(I(1)") = PulI(p)),
such that @, (1(1)")/®,(I(p) ") =~ ®,(W (11;)) with gy = g and ji; > s pp for i > 1.
The statement follows by passing to the direct limit. O

Proposition 5.5. For any A € CI, the module W () has a finite injective resolution
R (X\) of length not greater than ])\j[m| and satisfying the following properties:

(1) if I(p) appears in R'(\) then p > i A;

(2) the multiplicity of I(\) in R'(\) equals 1;

(3) the multiplicity of I(u) in R () is finite for every p.

Proof. Immediate consequence of Proposition 5.4. 0

Corollary 5.6. (a) If Extl, (L(\), W () # 0 then p <pin A;
(b) dim Ext}, . 4(L(X), W (1)) < oo for all i > 0;
(¢) Exting (LN W (1)) = 0 for i > [uf, |

Proposition 5.7. (Analogue of BGG reciprocity) The multiplicity (I(u) : W(A))
equals m(\, p).
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Proof. Follows from the identity
[M(A) = L(p)] = dim Homg (M, (A), I (1)) = (I(p) : W(A)),
where the second equality is a consequence of Lemma 5.1, (c). O

5.3. Jordan—Holder multiplicities for standard objects. Now we calculate the
multiplicities of [W(\) : L(v)]. We start by computing ®,,(W(X)).
Recall the Lie subalgebra s, C ,. Consider the s,-module

Dcr, juj=p Sk (VE)y*®S,(V.E) for g = sl(c0)
R(n,p) = DB ep, |uj=p S2u(V;)) for g = 0(0)
@uep lul=p Suy (V) for g = sp(c0)
where V,,, V. and V.? are introduced in the preamble to Section 4, P stands for the set
of all partitions, and the superscript " indicates conjugating a partition (transposing

the corresponding Young diagram). Fix a decomposition of h,-modules b N ¢, =
(bNs,) 3, and set 3,R(n,p) = 0 in order to define a b N ¢,-module structure on

R(n,p).

Lemma 5.8. For sufficiently large n there is an isomorphism of ¥,,-modules
@ Comdf%e (n,p) ® Cy).
p>0

Proof. First, we have isomorphisms of ¢, @ g,, ,-modules

Coind? Cy ~ Comdk"@g""g . Hom¢(S(x,),Cy) ~

Coind?t»

ome, Home (S(rn), Coindggﬁmn Cy),
where the structure of b N (£, & gn,»)-module on Home(S(r,),Cy) comes from the
isomorphism t, ~ g/ (¢, + gn.n + b).

Recall that the result of application of ®,, depends only on the restriction to g, ,.
Therefore

®,,(Coind®"

bNe, bNe,

Hom¢(S(t,), Coindg;’g"n Cy) = ~ Coind¥, @, (Home(S(t,), Coind%g’;n ~Cy).

Furthermore, we have

®,,(Home(S(r,), Coindgg’;n Cy) =
Homy, , (S(ty), Coindgg‘;n C\) = Homgpg,  (S(ts), Cy).

Since S(t,) is a direct sum of objects from Ty, ., and C, is a trivial g, ,-module, we
have

Homgqg,  (S(tn), Cx) =~ Homy, , (S(t,), Cy).
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Next, we observe the following s,, ® g, ,-module isomorphism

. VER (V). ® (VE)* KV, for g = sl(c0)
" V, )V, for g = 0(c0), 5p(00).
To finish the proof we have to show that
(5.5) Homg, , (S(ta), Cx) = €D R(n,p) ® Ci.
p=>0
If g = sl(oco) then
SV B (Vo). @ (V)" BIV,) = €D (Su(Ve) KIS, (Vi) @ (S (V)" KIS, (Va)).
wVEP
Since
Homy,  (Su((Vi).) @S, (V,),C) = § <form ="
m n)x v\Vn), =
fron K 0foru # v,

we obtain

Homy, , (S(ta), C2) = P Su(V,)" @ S.(V,) @ Ca.

neP
If g = 0(00), sp(c0) then
S(V, ®V,) =EBs.(v; V,).
veP
Since
ify =2
City ‘,u for g = 0(0c0)
_ 0 otherwise
Homgn n (SV(V'”>7 C) =
| Citv = (2p) for g = sp(oc0)
0 otherwise 8= 5P ’
we obtain
f pu—
Hom,, (S(s,), €) = { Drer Sanlln) 86 for 9= c(c0),
@MGP S( 20)’ (Vn) ® C, for g= ﬁp( )
In both cases we have now established (5.5), and the statement follows. 0

Let W,(\) be a standard object in the category OLA(s): its definition is the
obvious analogue of the definition of W(A). Next, we define the s-modules R(oo, k)
by setting

@uep, |ul=k Su(V:F) ®S,(VT) for g = sl(o0)

R(00,k) :=  D,.cp, juj=r S2u(V5) for g = 0(c0)
D cp, ju=r Scany (V2) for g = sp(o0),
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where
VE . =lim(VE)*, VE .=1limVE
— —

We are now ready to describe the canonical filtration (4.1) of the standard objects
W(A). Let I'y, denote the endofunctor of h,-semisimple vectors on the category
£,-mod. Define the ¢,-module

S(n,p,\) := Ty, (Coind, (R(n,p) ® Cy)).

bNEs,
Proposition 5.9. There are isomorphisms of g-modules

W) = lim (€D S(n,p, ),

p=0
Dp(W (X)) ~ lim S(n,p,\)),
(W(N) _)(05_‘3_1 (n,p,A))
and
(Drsa (W) /Di(W (M) " = R(oo, k) @ We(N).
Proof. The first isomorphism follows from Lemma 5.8 and the identity ®, o I'y =
I'y od,.
K)nTo verify the existence of the second isomorphism, we first observe that

Homy, (S(n,p,A),S(n+1,¢,A)) =0if p > g,

as follows from a direct comparison of supports. Hence W(\) has an ascending
exhaustive filtration 0 = Fy C F} C F5 C ... with

F,JF, 1 ~limS(n,p — 1, \).
—
We claim that F, = D,(W(X)). To prove this it suffices to check that lim S(n, p, \)
—

is an object of OLA™™ where d = d()\). Indeed, S(n,p,\) has a filtration with
quotients isomorphic to We, (A + ) for all weights v of R(n,p). Note that d(y) = p.
If

lim S(n, p, A) = L(p)] # 0,

then there exists a weight v of R(n,p) such that [W, (A + ) : L, ()] # 0 for all
sufficiently large n. Since the character of W, (\) coincides with the character of
Mg, (), by the same argument as in Lemma 4.12 we obtain that A + v = p or
A+ — pis a sum of positive finite roots. Hence d(u) = d(A + ) = d + p.

Finally, let’s establish the third isomorphism. Define the functor 7" : Ofﬂ — O,
by setting

Td(N) = ®V65uppN, d(V):dNV'

Then M+t = li_rr>1 (Ty 0 ®,(M)) for M € OLA®. In particular,

(Di1 (W(A)/Dr(W(N)) " = lim (Tai(S(n, k, X)) 2 lim R(n, B)@Ws(A) = R(0o0, k)@W,(A).

—

O
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Before stating the main result of this subsection we need to introduce some further
notation. Consider the s-module

R:= @D R(c0, k),

k>0

and denote by R (respectively, Ry) the support of R (respectively, R(oo, k)).

If g = sl(c0), then all v € Ry, are of the form % + %, where vF = > ez, Wi
and 7 = > icz., bici for some a; € Z<o,b; € Z>o such that — 3 a; = 3 b; = k. For
g = 0(00),sp(c0), every v € Ry, can be written uniquely in the form v = > a;e;
with non-positive integers a; such that > a; = —2k.

Let p be a partition. By K(u,~y) we denote the multiplicity of a weight v in the
sl(oo)-module S, (V). If v is also a partition then K (u,7) are Kostka numbers by
definition. In fact, K(u,~y) are always Kostka numbers as K (u,v) = K(u, w(y)) for
w € W, and for any given v € supp S, (V') there is a suitable w € W for which w(y)
is a partition. By P, we denote the set of even partitions and by P, the set of all
partitions whose conjugates are even partitions.

1>0

Proposition 5.10. (a) If g = sl(co), then
(W) Lv)] = GPZGRK(M, =YK (1, v )m(A + 7, v).
(b) If g = 0(c0), then
W) L) = Y K, —1)m\+7,v).
HEPerER
(c) If g = sp(00), then
(W) Lv)] = EPZERK(u, —)mA+7,v).

Proof. The proposition follows from Proposition 5.9 and Lemma 4.23. Indeed, let
d(v) = d(\) + k. Then

(W)« Lw)] = (D (W) /De(W (M) + Le(v)] = [R(00, k) @ We(A) : Ls(v)].

Since R(00, k) ® W,(A) has a filtration with quotients isomorphic to Ws(A 4+ ) where
~ runs over Ry, the multiplicity (R(oo, k) @ W5(A) : W(A+7)) equals the multiplicity
cx(7y) of the weight v in R(oco, k). Therefore

(5.6) [R(oo, k)@W(A) : Le()] = Y cx(MIWe(A+7) : L®)] = Y ex(v)m(A+7,v).

Y Y
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The statement now follows from an explicit calculation of ¢ (7):

> iep, e I (1, =F) K (1, ™) for g = sl(o0),
Ck(fy) = Zuépeu, |u|=2k K(ﬂ’a _’7) for g= 0(00)7
ZHGP&}, |u|=2k K(/vbv _’7) for g= 5]3(00)
U

5.4. Highest weight category. We are now ready to define a new partial order
<ins on the set of eligible weights. This is the partial order needed for the structure
of highest weight category on OLA. We write p <;,,r v if one of the following holds:

(i) = v+ for some v € R,

(ii) p <fin v

By definition, the partial order <;,; is the reflexive and transitive closure of the
relation <ljs.

Remark 5.11. Note that p <;,r v whenever p <¢;,, v. Furthermore, p <;,,y v implies
d(p) < d(v). Finally, it is a consequence of the formula (5.6) that

(5.7) W) : L) #0 = v <ixs A

The condition (5.7) justifies introducing the partial order <;,; as the inequality
v <fin A does not necessarily hold when [W(X) : L(v] # 0.

Lemma 5.12. The order <;, is interval-finite.

Proof. Let g = o0(c0) or sp(co). Then we can take p = ., —ig;. For an eligible
weight A, set A = A + p and write A = Dot Nigi. Let i € Zog and m € Z be such
that -

(5.8) Re S\j >m for all j <i.

We claim that if £ <;,; ¢ and (5.8) holds for « that it also holds for p. Indeed, it
suffices to check this in two situations:

o i = s,(R) for some reflection s, € W such that i — & € ()
e (i =k — 7 for some v € R.

Z>o-

In both cases the checking is straightforward and we leave it to the reader.

Now we note that for any eligible A and p there exists n € Z- such that condition(5.8)
holds for both A and p whenever ¢ > n and m = —i. Then, if X\ <;,y K <;p p we
have 5\1 = R; = [i; = —1 for any ¢ > n. Therefore, in order to check that for fixed
A and g there are at most finitely many ~ satisfying A <;,; & <;y p, it suffices to
establish that there are at most finitely many possibilities for the restriction klg,.
But this follows from the well-known interval-finiteness of the standard weight order
for the finite-dimensional reductive Lie algebra &,.

In the case of s[(c0) we apply the same argument to the weights A\X and A" sepa-
rately. O
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Finally, the implication (5.7), Lemma 5.12 and Corollary 4.18(a) yield the follow-
ing.

Corollary 5.13. The category OLA is a highest weight category according to Defi-
nition 3.1 in [CPS], with standard objects W () and partial order <.

5.5. Blocks of OLA. Recall that (I)c is the set of eligible weights. Let @ = (A)z
denote the root lattice. For x € (I)¢/Q we define OLA, as the full subcategory of
OLA consisting of modules M with supp M C . Then obviously

OE.A - HNG<f)c/QO£AK/

The following theorem claims that blocks of OL.A are "maximal possible” as two
simple objects of OLA are in different blocks if and only if their supports are not
linked by elements of the root lattice. This result is a generalization of the description
of blocks of the category T, [DPS], and is in sharp contrast with the description of
blocks in the classical BGG category O.

Theorem 5.14. The subcategory OLA, is indecomposable for any r € (I)¢/Q.
Proof. We start by noticing that (R;)z = Q). Hence it suffices to prove that for any

A € (I)c and any v € R4, the simple modules L(A) and L(A + ) belong to the same
block. This follows immediately from (5.6) with k& = 1 since [W(\) : L(\)] = [W()) :
L(A+7v)] =1 and W(]) is indecomposable. O

A block OLA, is integral if it contains L(\) for some A € (I)z (equivalently, such
that 2(2\’&) € Z for any a € A).

7a)

Corollary 5.15. The integral blocks of OLA are parametrized by Z for g = sl(c0),
and by Z/27 for g = 0(c0), sp(00).

6. ANNIHILATORS IN U(g) OF OBJECTS OF OLA

In this short final section we discuss the annihilators in U(g) of the objects of OLA.
We restrict ourselves to the case g = sl(c0). Recall that, according to Theorem 7.1 in
[PP2], the primitive ideals of U(sl(c0)) are parametrized by quadruples (z,v, Y], Y;)
where z,y run over Zs( and Y}, Y, are arbitrary partitions. The parameter x comes
from the characteristic pro-variety of the ideal [PP1] and is called rank, while the
parameter y is the Grassmann number. In the paper [PP3] an algorithm for comput-
ing the annihilator of an arbitrary simple highest weight s[(co)-module is presented.
A significant difference with the case of a finite-dimensional Lie algebra is that the
annihilators of most simple highest weight s[(co0)-modules equal zero in U(sl(c0)).

Furthermore, it is a direct observation based on Theorem 7.1 in [PP2] that, for a
simple object L(\) of OLA the annihilator Anngg)L()) is nonzero and has the form
I(x,0,Y,,Y,) for some x, Y; and Y,. In particular, the annihilators of simple objects
of OLA have Grassmann number equal to zero.
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Corollary 6.1. Let g = sl(oo). If M is a finitely generated object of OLA, then
AnnU(g) M 7é 0.

Proof. By Proposition 4.17, any finitely generated module in OLA has finite length.
By the above observation, the annihilator in U(g) of any simple module in OLA is
nonzero. Finally, it is an exercise to check, using Theorem 5.3 in [PP2], that the
intersection of finitely many primitive ideals of U(g) is nonzero. U

We conjecture that Corollary 6.1 holds for g = 0(c0), sp(c0), but in these cases the
algorithm for computing the primitive ideal of a simple highest weight module is still
in progress.

If L(\) € OLA is integrable, then Annyg)L(A) = 1(0,0, A", \?) where A' and \?
are the two partitions comprising A, see Subsection 4.1. Moreover, a simple module
L(\) € OLA is not integrable precisely when Anng ) L(X) = I(2,0,Y;,Y;) for z #
0. This follows from a result of A. Sava [S] but also from a direct application of
the algorithm of [PP2]. In fact, all primitive ideals of the form I(z,0,Y},Y;) are
annihilators of simple objects of OLA. Indeed, the reader will verify immediately
using Theorem 7.1 in [PP3] that, given x € Zs( and partitions Y; = (4,44, ...,9L),
Y, = (7,95, Y), we have

Anng ) L(N) = 1(,0,Y;,Y,)

for A := M 4 AN = S ae + SO yleas, A= =300yl e, where
ai,...a, are complex numbers satisfying the conditions a;, € Z, a; — a; ¢ Z for all
i g
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