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Abstract
Bacteria across many scales are involved in a dynamic process of information exchange to
coordinate activity and community structure within large and diverse populations. The molecular
components bacteria use to communicate have been discovered and characterized, and recent
efforts have begun to understand the potential for bacterial signal exchange to gather information
from the environment and coordinate collective behaviors. Such computations made by bacteria to
coordinate the action of a population of cells in response to information gathered by a multitude of
inputs is a form of collective intelligence. These computations must be robust to fluctuations in
both biological, chemical, and physical parameters as well as to operate with energetic efficiency.
Given these constraints, what are the limits of computation by bacterial populations and what
strategies have evolved to ensure bacterial communities efficiently work together? Here the current
understanding of information exchange and collective decision making that occur in microbial
populations will be reviewed. Looking toward the future, we consider how a deeper understanding
of bacterial computation will inform future direction in microbiology, biotechnology, and
biophysics.

1. The computational potential of
microbial communities

Bacteria interact with their environment in aston-
ishing ways and to perform complex, coordinated
tasks. We now know that bacterial cells have devel-
oped mechanisms to monitor and respond to changes
in physical and chemical conditions as well as com-
municate with each other to work as multicellu-
lar collectives. Coordination of such behavior is an
example of collective or swarm intelligence, as groups
of cells gather information to collectively compute a
response.

Recently the ability to gather and respond to infor-
mation is gaining attention as the essential feature
of living systems. Biological molecules change struc-
ture as they interact with other molecules and these
changes transmit information. Bacteria receive and
process information from their extracellular environ-
ment in order to compute an adequate response or
‘make a decision’ [1]. What does it mean for bac-
teria to compute? By ‘compute’ we mean a process
by which groups or individuals gather and use infor-
mation to change the composition, spatial structure,

or activity of a community of cells. A population of
multiple species or strains of cells and their interac-
tions through the exchange and detection of small
molecules constitutes a ‘network’. The coordinated
behaviors that emerge from bacterial networks can
be viewed as microbial intelligence. These behaviors
confer to the population metabolic and informative
benefits that improve fitness. Here we review recent
work examining how signal exchange is used to gather
information from the local environment to compute
collective responses. We then examine how such bac-
terial computations are efficient means of informa-
tion processing by bacterial collectives.

Information is gathered by microbes using molec-
ular sensors. Bacterial cells express a variety of sen-
sors, many in the form of two-component systems,
although one-component systems are widely dis-
tributed among prokaryotes [2]. Two-component
systems are composed of a sensor embedded on the
membrane that detects a variety of chemical and
physical changes in the environment, and a response
regulator that modulates patterns of gene expres-
sion based on such stimuli [3]. The ability of bacte-
rial species to utilize a collection of two-component
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systems, and several other signal transduction path-
ways, to sense and respond to a variety of external
inputs has even been used to quantify bacterial IQ [4].
In addition to being able to passively detect changes in
the molecular environment around each cell, bacte-
ria actively probe their immediate surroundings and
communicate with each other through the exchange
of molecular signals.

A well-known example of this active process of
gathering information from the environment to reg-
ulate cellular behavior is through a process known
as quorum sensing. Quorum sensing is the ability
to emit chemical signals, called autoinducers, and
respond to high concentrations of these signals by
enacting large changes in gene expression profiles
[5–9]. Despite decades of work uncovering and char-
acterizing molecular components related to quorum
sensing, debate remains over what specific types of
information and collective benefits bacteria gain in
the process of quorum sensing [10].

Historically quorum sensing has been described as
a mechanism to monitor population size, as a large
population of signal producing cells leads to a high
concentration of signals, as depicted in figure 1(a).
Quorum sensing-regulated gene expression usually
occurs as signal concentration exceeds a threshold. As
the density of well-mixed populations exceeds around
107 cells/mL [11], a switch-like activation [12], typ-
ically results in major changes in gene expression
[13, 14]. Genes differentially expressed when quo-
rum sensing is activated often are related to high
cell density behaviors and cooperativity within large
populations [15]. Quorum sensing-regulated genes
control biofilm formation and horizontal gene trans-
fer [14, 16], and the expression of exoenzymes for
harvesting shared, public nutrients [17, 18]. Given
the fitness advantage of cooperation, quorum sensing
mechanisms are common to many bacterial species
[19].

Over the years, the simple perspective of quorum
sensing as a way to measure population density has
evolved to encompass more sophisticated views of the
computational potential of bacterial signal exchange.
Here we highlight two such computations that bac-
teria perform as the result of quorum sensing, effi-
ciency sensing and monitoring bacterial community
composition.

2. Computation of the spatial
environment

2.1. Computing the efficiency of signal exchange
The ability of quorum sensing signals to probe the
propensity for released biomolecules to act locally has
been referred to as efficiency sensing [20]. In this
reframing, bacterial quorum sensing is a measure-
ment of the local accumulation and reabsorption of
any externally released biomolecule, see figure 1(b).
This perspective focuses on the importance of mass

transfer and the spatial distribution of cells within
populations that are not well mixed.

An example of efficiency sensing is quorum sens-
ing in confined spaces. Confinement of even small
numbers of cells restricts loss of released autoin-
ducers due to diffusion, as would occur in large
volumes. When Pseudomonas aeruginosa cells were
confined in microfluidic droplets, quorum sensing
was achieved even in populations with only a sin-
gle cell, see figure 1(c) [21]. The ability of cells to
detect confinement via quorum sensing has also been
observed in Staphylococcus aureus, both in microflu-
idic experimental systems and in the realistic context
of cells engulfed by phagosomes [22, 23].

Quorum sensing in the presence of flow is another
context in which cells could calculate the efficiency to
retain released molecules [24–26]. Emge et al [24],
studied the quorum sensing of wild type P. aeruginosa
and an engineered Escherichia coli carrying the same
quorum sensing gene circuit under controlled flows.
High flow rates suppressed the expression of quorum
sensing-regulated genes by sweeping away signal that
would otherwise be taken up by the cells, despite cells
being located in a high cell density environment, as
shown in figure 1(d). Cells are keenly attuned to their
extracellular environment through quorum sensing.

As demonstrated in these examples, bacteria use
cell-to-cell signaling pathways to gain information
about the local environment. A mathematical model
by Cornforth et al [27], also demonstrated how quo-
rum sensing systems with multiple autoinducers with
distinct half-lives could enable bacteria to infer both
their density and mass-transfer environment at the
same time. In this model, the production of two
autoinducers by P. aeruginosa enabled distinction
between four possible combinations of high and low
mass transfer and cell density.

2.2. Pattern formation in response to spatial
structure
Pattern formation is symptomatic of bacteria engaged
in coordinated, regulated behavior. Quorum sens-
ing plays an important role in bacterial self-sorting
into specialized, physically localized domains that in
some cases resemble multi-cellular organisms [28].
Myxococcus xanthus, for example, leverages quorum
sensing to initiate the formation of elaborate, self-
organized fruiting bodies [29].

The distribution of cells in space strongly influ-
ences cellular communication. The dynamics of dif-
fusion set the spatial and temporal scale over which
cells interact with neighbors. Space also introduces
additional nonlinearity to the interactions within bio-
logical networks [30]. In well-mixed conditions, all
cells see the same chemical environment, within small
molecular fluctuations. The response of cells within
these populations is approximately uniform. Contrast
this behavior with that of cells in a biofilm, where
cell–cell communication is spatially dependent and
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Figure 1. Bacteria use quorum sensing to gather information from the environment. (a) An illustration of a canonical quorum
sensing scheme whereby a cell synthesizes a signal with a synthase, the signal diffuses into the extracellular environment, and
signal re-enters the cell to bind to a receptor, which then regulates gene expression. (b) An illustration of quorum sensing as a
means to count cells and to compute the efficiency of signal accumulation. In large populations, signals (blue dots) accumulate to
a high concentration and cells respond by altering gene expression (green cells). Signal also accumulates to high concentrations in
contexts of low advection, confinement, or clustered spatial distributions leading to expression of quorum sensing regulated
genes. (c) An experiment to trap a single cell in a high cell density microdroplet, from Boedicker et al (2009) [21]. Optical (left)
and fluorescent (right) microscopy images of a single cell expressing gfp after accumulation of released quorum sensing signals in
the microdroplet. (d) Data from Kim et al (2016) [25], demonstrating that flow impedes quorum sensing. Fluorescent
microscopy images showing cells with a quorum sensing-regulated fluorescent reporter grown with and without flow.

localized, potentially giving rise to complex and intri-
cately structured communication networks. Years of
experimental and theoretical studies provide insight
into the ways molecular exchange enables cells to
monitor and respond to the microscale spatial struc-
ture which they inhabit [31–33].

A simple example of cells responding to spatial
structure is colony formation on solid media plates.
When a small population of cells is spread onto a solid
agar plate to grow into individual colonies, the num-
ber of cells and interactions between the cells influ-
ence the size and shape of the colonies that form. In
this way, the larger scale patterns of growth are deter-
mined by the spatial distribution of cells on the plate.
The patterns are shaped by depletion of nutrients as
well as the exchange of signaling molecules, as in the
case of Paenibacillus dendritiformis where the pro-
duction of secondary metabolites by sister colonies
biased the direction of colony growth [34]. Anyone
that has spread cells onto an agar plate has observed
an inverse relationship between the number and size
of the colonies that grow. More colonies deplete the
shared nutrient source inside the agar gel resulting in
smaller colonies [35].

Spatial computations can also be programmed
using synthetic biology. In one system, a mixture of
positive and negative feedback on the production of
diffusible signals self-regulated the relative size of the
activated region of cells. For example, a cell was pro-
grammed to sense—in space and time- the amount
of space available for growth and to scale the spatial

Figure 2. Signal exchange for spatial computations. Data
and fluorescent microscope images (inset) from Cao et al
(2016) [36], illustrating synthetically engineered colonies
use signal exchange to calculate the spatial structure of the
environment and form a scale invariant spatial pattern of
gene expression. Distance refers to either colony radius
(green data) or ring width (red data).

pattern of activity accordingly [36]. The emer-
gent bulls-eye pattern exhibited scale-free behavior
between the width of the ring and the initial colony
size, as shown in figure 2.

3. Computation of community
composition

Signaling in realistic contexts is more than just
production and detection of a single signaling
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molecule. Not only do many bacterial species contain
multiple signaling pathways, but multiple species
or strains in the same environment use chemically
similar signals for communication. Recent work has
examined how bacteria within diverse populations
are able to integrate information from mixtures
of signals, and in the process, gain informa-
tion about the composition of the local bacterial
community.

3.1. Signal crosstalk and interference
The majority of bacterial signaling studies have
focused on individual signaling pathways in isola-
tion. It has been recognized for many years, how-
ever, that many signaling pathways can be influenced
by the activity of neighboring cells [37]. In some
cases neighboring cells produce enzymes that chemi-
cally modify or destroy released signaling molecules,
thereby interfering with signal transduction [38].
Other species may detect molecular signals from their
neighbors without producing any signals of their own
[39]. It is also known that receptor proteins bind
and respond to multiple chemical variants of a sig-
nal molecule, resulting in crosstalk between bacte-
rial species producing distinct yet chemically similar
signaling molecules

Crosstalk generally refers to the response of a cel-
lular signaling network to a non-cognate signal from
either the same species or strain or to signals from
different species or strains. In the context of quorum
sensing, signaling crosstalk refers to the binding of a
receptor by a chemically similar but distinct signal-
ing molecules that alters the downstream response of
the cell. For example, when cocultured together, sig-
nal from P. aeruginosa induced expression of quorum
sensing-regulated genes within Burkholderia cepacia
[40]. Signaling crosstalk can excite or inhibit gene
activation and does so to variable degree, dependent
on the signal and receptor molecules. Such is the
case in figure 3(a), where a receiver strain expresses
quorum sensing-regulated genes sooner (excitatory
response) or later (inhibitory response) depend-
ing on signal produced by a neighboring strain.
Receptor proteins may exhibit promiscuous behavior,
integrating a mélange of signaling molecules from
various species. Early work on the promiscuity of
quorum sensing receptors revealed that receptor pro-
teins are capable of recognizing and responding to
multiple signal variants [41]. Signal crosstalk has
been reported in a variety of bacterial signaling sys-
tems, including acyl-homoserine lactones (AHL) and
autoinducing peptides [42–44], and the strength of
crosstalk has been quantified in detail for several
systems [42, 45]. These studies reveal a rich diver-
sity of excitatory and inhibitory crosstalk of varying
strength, including neutral crosstalk in which a sig-
nal variant has no measurable influence on gene reg-
ulation. Crosstalk has not been accurately predicted
from molecular structure and receptor sequence, but

Figure 3. Quorum sensing to gather information about
community composition. (a) (Top) An illustration of the
sender–receiver experiment from Silva et al (2017) [42].
(Bottom) Measurements revealed neighboring strains
inhibit or excite quorum sensing. (b) An illustration of
quorum sensing as a neural net, whereby signals (inputs) of
different concentrations with varying weights are integrated
by a cell to compute a response of ‘ON’ or ‘OFF’ [51]. (c) A
hypothetical illustration of a multilayer signaling network
within a 4-species bacterial community. Each node
represents a bacterial species, and each layer represents an
orthogonal type of signal. Strains utilizing multiple signals
appear on multiple layers. Arrows represent activation, flat
headed arrows represent repression. Such models should
aid in understanding the consequences of signal exchange
within complex, microbial communities.

general trends have emerged such as the degree of
chemical similarity tends to indicate stronger activat-
ing crosstalk [43].

An open question remains about whether recep-
tors have evolved specifically to take advantage of
crosstalk. It has been proposed that crosstalk will
naturally evolve due to the fitness cost of signaling
and the presence of cheating within bacterial com-
munities [46]. Crosstalk would provide additional
information about the species or strains of cells that
may be present. Theoretical work has shown that

4



Phys. Biol. 17 (2020) 061002 Topical Review

inference of local community composition is a key
benefit to populations which utilize quorum sensing
[47]. Signaling pathways may have evolved to activate
earlier or not at all in the presence of specific neigh-
boring strains. For example, it has been suggested that
crosstalk between Streptococcus pneumoniae might
enable individual strains to anticipate production of
antibiotic compounds by neighboring strains [48].
While a degenerate or non-cognate response to sig-
nal may appear sub-optimal, crosstalk can improve
the ability of cells to sense their environment.
Carballo-Pacheco et al demonstrated that crosstalk
is a broadly optimal strategy for signaling [49].
Crosstalk might also enable some bacteria to coop-
erate, by activating specific phenotypes only in the
presence of combinations of signals from neighbor-
ing cells. For example, crosstalk between three species
found on olive trees was found to increase the abil-
ity of one of these species, Pseudomonas savastanoi,
to cause an infection [50]. More work is needed
to fully elucidate the potential benefits of crosstalk
within diverse bacterial communities.

3.2. Microbes as a neural network
Looking beyond signal exchange between two species
or strains, recent work more formally analyzed how
signal exchange within diverse cellular communi-
ties influences collective decision making [51]. Dis-
tributed, diverse bacterial communities adaptively
integrating and processing information constitute
a neural network. Neural networks were originally
inspired by networks of interconnected neurons
[52], whereby nodes are connected to each other
to reflect their mutual influence. The population of
each species or strain of bacteria is a node, the con-
nections between nodes represent signal exchange,
and the weight of each connection represents the
strength and type of signal crosstalk. Each cell within
the network measures the mixed concentration of
external signals, thereby probing the activity state
and density of each cell type in the network, as
depicted in figure 3(b). The model can be used
to predict the quorum sensing activity of multi-
ple bacterial strains within a mixed community of
cells.

The utility of this neural network model to pre-
dict the community-level signaling state of a bacterial
network was shown in a recent publication by Silva
and Boedicker [51]. In this study, communication
was analyzed in a naturally occurring community of
Bacillus subtilis strains, each producing a different
variant of the ComX quorum sensing signal [53]. The
pairwise crosstalk terms were measured for each com-
bination of species, enabling full reconstruction and
prediction of activity within the 5-strain network.
Quorum sensing activity of each strain was accu-
rately predicted for different combinations of all five
signals, revealing that even small changes in one
of the signals could modulate the community-level

signaling state. These results demonstrate how the
community of strains uses a combination of mul-
tiple signals to compute an activity state for each
member of the community, thus setting an activ-
ity pattern for the community. Further theoret-
ical developments applying the neural network
model to bacterial quorum sensing revealed how
the number of attractor states, the community-
level profile of quorum sensing activity, depended
on the strength of interactions and the community
composition [54].

Through the same approach, response to multi-
ple types of signals in a single species also could be
analyzed. For example, in P. aeruginosa intracellular
levels of c-di-GMP are altered in response to extracel-
lular stimuli such as chemoattractants, which could
be a signal for motility, or mechanical contact with
surfaces, which could be a signal for biofilm forma-
tion. As a response to the levels of c-di-GMP, genes
controlling flagella needed for swarming motility and
extracellular matrix genes needed for biofilm forma-
tion are either repressed or activated. Yan et al [55],
modeled the binary response to the intracellular sec-
ondary messenger c-di-GMP in P. aeruginosa as a
bow-tie network. The network integrates each signal
with a different weight and responds to the net sig-
nal through a nonlinear function. Through this per-
spective, the architecture of c-di-GMP works as a
machine learning classifier whose function is to deter-
mine, from a set of stimuli, to which of two cate-
gories an environment belongs—biofilm—favoring
or motility-favoring. The fittest network is the one
with the highest geometric mean of fitness across
multiple environments, equivalent to a logistic regres-
sion criterion. A result of such analysis, knowledge of
the number of sensors in the network enables predic-
tion of the evolutionary history of P. aeruginosa.

The theoretical approach of neural networks may
be widely applicable to the study of natural quo-
rum sensing communities. Natural bacterial ecosys-
tems are extremely diverse, containing thousands of
species and strains of bacteria capable of diffusive sig-
nal exchange. Estimates made using metagenomics
approaches found that 8% of cells in one soil ecosys-
tem were capable of participating in the exchange of
AHL signals [56]. In another study, the potential to
participate in AHL signaling was found in 40% of
the 129 bacterial species isolated from the cotton-
wood tree [57]. It would appear typical that individual
cells receive signaling input from several neighbor-
ing species. Examples of crosstalk between multiple
strains has been reported for both S. pneumoniae
and S. aureus [58, 59]. Given that in many con-
texts quorum sensing is associated with outcomes
such as virulence or biofilm formation, under-
standing community-level influences on activity pat-
terns and the potential benefits of such regulatory
schemes will be an important direction for future
research.
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3.3. Integration of stimuli in multilayer networks
Mapping the exchange of several chemically related
signaling molecules to a network of interactions
between multiple species or strains of bacteria will
facilitate the prediction of output states of the com-
munity. Real systems, however, include interdepen-
dencies that are not easily understood as a single
layer network: many species or strains may partici-
pate in multiple signaling networks simultaneously.
To account for this complexity, a more general frame-
work, in which different networks evolve or inter-
act with each other, is needed. These are known as
multilayer networks, in which each layer encodes a
specific type of information about the system [60].
Adding an additional degree of freedom to the sys-
tem, namely layers, might reveal the information
encoded in the network that cannot be captured
otherwise.

From this view, one might be able to map commu-
nication in a diverse bacterial community to a mul-
tilayer network, as depicted in figure 3(c). In such
a network, each layer represents a class of signaling
molecules. Nodes on each layer represent bacterial
species or strains that directly respond to or pro-
duce the type of signal specified for that layer linked
through weighted, directed edges. Layers of such a
network might represent orthogonal types of chem-
ical signals that cells use to communicate. It is known
that some bacteria, such as Vibrio harveyi, utilize mul-
tiple types of chemical signals and integrate those
input signals into a common pathway [61]. There-
fore some bacterial species will appear as connected
nodes on multiple layers of the network. Although
signal crosstalk within microbial communities has not
yet been analyzed using a multilayer network frame-
work, work on biological communication in eukary-
otic cells, including neurons, reveals the utility of this
approach.

The multilayer network formalism more clearly
captures the myriad of connections present within
complex interaction networks. A multilayer networks
framework has been applied to study tissue develop-
ment in Caenorhabditis elegans, cancer complexomes,
and protein-protein interaction networks [62–64].
Not surprisingly, complex interaction networks such
as the human brain have been modeled as a mul-
tilayer network. De Domenico et al [65, 66] ana-
lyzed the connectivity among different regions of the
human brain through multilayer network analysis.
Different brain regions are nodes connected through
the exchange of signals, represented as edges. Lay-
ers correspond to different frequency intervals corre-
sponding to these signals. The results of their study
revealed that hubs in multilayer networks are, in
general, different from the hubs identified by stan-
dard methods based on single-layer network analysis.
Such hubs enabled distinction between the brain of
a schizophrenic patient from a healthy brain in rest-
ing state. Could similar clusters of species within a

microbial ecosystem play an important role in set-
ting the activity of large groups of bacterial species?
For bacterial signaling networks, a multilayer ana-
lytical approach should elucidate how coupled sig-
nal transduction within individual species impacts
the community-wide response to signal exchange and
perturbations. Analysis of bacterial networks may
identify new examples of emergent phenomena and
criticality, thought to be ubiquitous among living
networks [67].

4. Optimization of signaling

The computations performed by bacterial signal
exchange have an energetic cost, suggesting that evo-
lution has likely increased the efficiency of signal
exchange. Efficient signal exchange involves reduction
in the cost of signaling components, and also incor-
porates aspects of optimizing information transfer.
How is quorum sensing an efficient mechanism of
information transfer? Recent work has begun to ana-
lyze bacterial communication from the perspective of
information transfer and energetic efficiency.

4.1. Energetic costs of communication
Gathering meaningful information from the envi-
ronment carries a significant expense. Broadly, stor-
ing information in a biomolecule or macromolecule
demands a change in free energy in the system, which
may be gathered from the environment through
metabolism. Berg and Purcell [68], famously demon-
strated that the information gathered by a cell is
proportional to the cell’s uncertainty in the exter-
nal concentration and limited by the stochastic flux
in the occupancy of the outer membrane receptors.
Mehta and Schwab [69], build on that work by exam-
ining the tradeoff between energy spent by the cell
and the information gathered by a two-component
system. Their work revealed a limit on chemosensing,
namely, the metabolic budget of the cell, as shown in
figure 4(a). As the uncertainty in the measurement of
the external signal concentration decreases the power
consumption likewise increases. The important find-
ing overall is that learning requires energy, which
places a strong constraint on biochemical networks in
bacteria.

A similar cost for bacterial signal exchange has
also been measured. Ruparell et al [70], examined the
metabolic strain of autoinducer synthesis by compar-
ing growth rates of wild-type E. coli and two strains
expressing LasI and RhlI, quorum sensing signal syn-
thases native to P. aeruginosa. The strains expressing
LasI and RhlI grew slower than the strain that did
not, as shown in figure 4(b). This study revealed that
participation in the production of quorum sensing
signals had the cost of a reduced growth rate.

Given that the computations performed by bac-
terial signal exchange are both energetically costly
and typically involve large populations of cells
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Figure 4. Energetic aspects of gathering information. (a) Theoretical results from Mehta and Schwab (2012) [69] representing
the idea that cells use energy to reduce the uncertainty in information collected from their environment, in this case using a
two-component system (inset). (b) Experimental data from Ruparell et al (2016) [70], showing that cells that express the RhlI and
LasI enzymes, which produce autoinducer signal, have reduced growth rates.

working in a coordinated fashion, it is likely that
cheaters would emerge. Cheaters are cells that do not
contribute to the production of public goods but still
benefit from the work of others, thus gaining a fit-
ness advantage over the cooperators. In the context
of bacterial computations, the information gained
from signal exchange can be viewed as a public good,
and cheater cells potentially monitor signal concen-
trations without the energetic investment into the full
information gathering process. In a theoretical study
Schuster et al [71], showed cooperation is evolution-
arily selected for when the metabolic burden of a
public good is low. At intermediate metabolic costs,
cooperators and cheaters coexist. At high cost, all cells
abandon cooperation. Given that information gath-
ering via quorum sensing is viewed as having a rel-
atively low cost, that would suggest quorum sensing
cheaters are tolerated in most contexts. It is inter-
esting to note that the majority of quorum sensing
components identified in genomes contain only a
receptor protein, an orphan receptor, without an asso-
ciated synthase protein [72]. Cheating in the context
of public goods is a well-established field [73–75], and
future work should consider quorum sensing signals
in the environment, from which cells can learn about
local physical and biological conditions, as a form of
public good.

4.2. Measuring information flow
Information theory framework enables us to better
address questions related to the efficiency of signal
exchange. From this perspective, signaling process is
assumed to be a black box with external concentra-
tions as input and phenotypic response as the out-
put of the system. Mutual information is commonly
used to quantify how much information cells can
extract from an external stimulus [76–78]. Calcu-
lating mutual information often requires a precise
knowledge of the input signal distribution which,
for individual bacteria, is typically not known. To
resolve this issue with mutual information, chan-
nel capacity is used instead. Channel capacity is
defined as the maximum possible information that a

communication channel can carry, the supremum
of mutual information over all possible choices of
the input probability distributions [79]. Both mutual
information and channel capacity are generally calcu-
lated in bits, which gives a sense for how many yes or
no decisions can be made by the cell.

Theoretical work has examined information
exchange within biological systems. Hong et al [105],
modeled the response in a generic signaling system
as a sigmoid function of signal concentrations, with
a Gaussian noise term centered at zero to account
for intrinsic noise. Such simplified dose–response
analysis is ubiquitous in many real signaling motifs.
Having intrinsic noise dependent on protein copy
numbers in such system, the authors estimated the
channel capacity for a variety of transmembrane
proteins, with copy numbers per cell ranging from
102 to 105. Their results showed signaling motifs
prone to intrinsic noise can transmit of 4–6 bits
of information. Experimental measurements of the
signaling systems studied to date encode less than 2.5
bits of information, with the majority transmitting
significantly less than 1 bit (capacity of a binary
switch). As a result, extrinsic noise plays the major
role in information integration.

Although noise presumably diminishes the infor-
mation transmission in signaling systems, it has
been shown that noise affects information trans-
mission in a more convoluted way. Rodrigo and
Poyatos [80], modeled the output of a simple
signaling motif as ordinary differential equations with
addition of Gaussian noises terms accounting for
intrinsic and extrinsic noises. The authors showed
mutual information between the distribution of such
noisy output and a given uniform distribution of
inputs does not always decrease with noise, however
mutual information always decreases with respect to
the amplitude of extrinsic noise. Certain amplitudes
of intrinsic noise can even amplify the information
transmission.

A few experimental efforts to date have examined
the information capacity of bacterial communi-
cation [45, 81, 82]. Mehta et al [81], applied an
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information theoretic approach to resolve why
V. harveyi possess two similar quorum sensing chan-
nels responsible the same downstream regulator. The
channels differ in their use of input, AI-1, specific to
V. harveyi, and AI-2, shared among many bacterial
species. Because the cells respond almost equivalently
to both signals, the channel, at first glance, encoded
0.8 bits, which is not sufficient to detect two envi-
ronmental states. Upon further inspection, however,
V. harveyi increases the channel capacity to ∼1.5 bits
by producing AI-1 and AI-2 at the same rate, which
ensures that the extracellular concentration of AI-2
is greater than or equal to the concentration of AI-1,
which only V. harveyi produces. Moreover, V. harveyi
could increase the channel capacity to ∼1.5 bits by
positively regulating the number of AI-2 receptors.
This strategy allows V. harveyi to preferentially learn
about AI-2 at low cell density and about AI-1 at high
cell density.

Pérez et al [45] studied noise and crosstalk Vibrio
fischeri, which produces two quorum sensing signals.
Their experimental measurements along with mutual
information analysis showed the mutual information
between the signal inputs and the lux output is less
than one bit. Furthermore, they showed the lux genes
in V. fischeri do not appear to distinguish between the
two HSL inputs, and even with two signal inputs the
regulation of lux is extremely noisy. Hence the role
of crosstalk from the C8-HSL input may not improve
sensing precision, but rather suppresses the sensitiv-
ity of the switch for as long as possible during colony
growth.

A recent paper examined how reducing noise
in the output signal might improve information
transmission [102]. The study focused on the tran-
scription factor LacI, which responds to changes in
lactose availability. The authors implemented a
minimal model for the information processed by a
repressor gene circuit. They related channel capacity,
repressor copy number, and repressor-DNA binding
affinity, as shown in figure 5(a). A circuit with zero
repressors is a circuit with zero channel capacity, since
the gene is constitutively expressed. As the number of
repressors increases the channel capacity increases. At
a very high repressor number, however, the channel
capacity decreases since the gene would be indefi-
nitely repressed. A complementary interpretation is
that zero-channel capacity is a consequence of the
circuit having an overlapping input–output function
whereas more separated input and output distribu-
tions imbue higher channel capacity to the circuit.
The change in channel capacity and number of bits
encoded strongly depends on the binding affinity of
the repressor to the DNA. Notably they find that as the
repressor concentration increases the cell to cell vari-
ation in the number of repressors, the intrinsic noise,
decreases. There remains more to discover regard-
ing the ability of biological systems to exchange
information, and continued dialogue between

information theory and quantitative single-cell
measurements should prove fruitful in the coming
years.

4.3. Single-cell heterogeneity in communication
Heterogeneity in the activity of individual cells
impacts the efficiency of communication within cel-
lular populations. Single-cell variability can be the
result of both genotypic variation and phenotypic
variation of genetically identical cells [83]. Hetero-
geneity has been reported in bacterial communica-
tion systems. In the studies of quorum sensing of
confined cells, significant variability in the expression
of quorum sensing-regulated genes was observed in
P. aeruginosa cells [21]. Only 20% of cells upregulated
quorum sensing-controlled genes within small pop-
ulations, although the molecular mechanism caus-
ing such variability was not reported. Measurements
of heterogeneity in the expression of quorum sens-
ing related genes have been shown for V. harveyi
[84]. V. harveyi strains lacking the genes for sig-
nal production were engineered to contain a tran-
scriptional fusion of gfp fused to a quorum sensing
responsive reporter. Upon addition of exogenously
added signal, the response of individuals within the
population varied, as shown in figure 5(b). Variabil-
ity in quorum sensing activation has been shown to
benefit group behaviors, such as biofilm formation
[85]. Similar variability was observed in V. fischeri
and Listeria monocytogenes [86, 87]. Heterogeneity in
expression of quorum sensing-regulated genes was
also examined in genetically identical population of
Sinorhizobium fredii. Here the amount of hetero-
geneity in expression levels depended on the gene
analyzed, and the extent of variability in single-cell
expression levels were modulated by environmental
factors [88]. In wild quorum sensing populations,
genetic variation has been reported, with about 20%
of P. aeruginosa isolates containing variability in the
genomic sequence of the lasR receptor protein [89].
It remains unclear exactly how information trans-
mission within bacterial populations is affected by
heterogeneity at the single-cell level.

A relatively unexplored aspect of single-cell vari-
ability is the coupling of phenotypic variability within
multi-species populations. Are there important
consequences for populations when two rare phe-
notypes of different species interact? One recent
experiment to report on this concept [90], examined
the coupling of growth rates within small, mixed
populations of E. coli and Enterobacter cloacae. Using
a microwell device to create replicate groups contain-
ing only a few cells of each species, it was found that
the mean and variability of growth rates was higher
in co-cultures than single strain cultures. More work
is needed to understand how single-cell variability,
specifically heterogeneity in communication path-
ways, changes in diverse environments composed of
multiple species. These effects would be enhanced

8



Phys. Biol. 17 (2020) 061002 Topical Review

Figure 5. The efficiency of collective behaviors in bacteria. (a) Information content of a gene circuit in E. coli, as reported by
Razo-Mejia and Phillips (2019) [92]. Theoretical predictions closely matched experimental measurements of the channel capacity
as a function of the number and binding strength of the repressor protein. Given the energetic costs of gathering information,
cells may evolve to maximize information theoretic metrics such as channel capacity. (b) (Top) Overlaid phase and fluorescence
microscopy images of V. harvyei from Long et al [84]. The cells were engineered to express gfp in response to exogenously added
quorum sensing signal AI-1, which represses gene expression. The concentration is stated above each image. (Bottom)
Normalized histograms depicting the fluorescence per cell highlighting heterogeneity of gfp expression among genetically
identical cells. (c) Overlaid fluorescent microscope images (inset) from Larkin et al [93], revealed heterogeneity in the opening of
potassium channels within B. subtilis biofilms. Cells achieved long-range communication even when only a fraction of the cells
participated in potassium ion exchange. Wild-type cells operated near a percolation transition, which maximized the cost to
benefit ratio of communication. (d) Data and fluorescent microscope image (inset) from Silva et al (2019) [94], demonstrating a
percolation transition in the expression of quorum sensing-regulated genes. Beyond a critical number of cells that degraded the
signal, connected regions of activated cells no longer spanned the network.

in fragmented populations in which individual cells
are not sampling population averages, but instead
interact locally with neighbors sampling their own
phenotypic distributions [91].

4.4. Spatial self-organization and percolation
improve the efficiency of cellular communication
Given the strong influence of spatial structure on
the activity of cellular populations, it is not sur-
prising that many populations have been shown to
self-regulate spatial structure to optimize molecu-
lar exchange. Such modulation of spatial structure
impacts the efficiency of information flow within bac-
terial populations.

Most examples of emergent spatial structures are
in the context of nutrient acquisition. A population of
B. subtilis utilizing an extracellular public good relied
on mobility of the cells to self-organize into a spa-
tial pattern that optimized growth [95]. The impact
of the public good, an enzyme that processed a com-
plex food source, was highly non-linear, requiring a
high density of cells before enzyme production influ-
enced the growth rate. When seeded at low density,

cells were driven to motile states and self-organized
into high density colonies in order to survive. The
same study examined the relationship of spatial pat-
terning and cooperation by growing cells in an envi-
ronment with glucose, a resource that could be used
without community wide action. In these conditions,
no distinct colonies form. Decreasing the concen-
tration of glucose, however, drove the cells toward
distinct high-density colonies.

In other examples, spatial structures optimized
the diffusive exchange of metabolites within mixed
microbial populations [96, 97]. A coculture of
Pseudomonas putida and Pseudomonas veronii was
found to spatially segregate and organize as a result
of food and oxygen gradients [98]. The spatial orga-
nization of marine bacteria was essential for degra-
dation of external food particles [99]. Cocultures of
engineered yeast strains also exhibited self-generated
spatial structure related to metabolic interactions
between strains [100]. A pair of bacterial species with
linked metabolic pathways have even been found to
have coevolved mechanisms to adopt specific spatial
structures when cocultured on surfaces [101].
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These are a few of the many reported exam-
ples of the intimate connection between metabolite
exchange and spatial structure. Signaling efficiency is
also strongly dependent on spatial structure. Darch
et al studied quorum in aggregates of P. aeruginosa
cells which were confined and spatially positioned
using a microscale 3D-printing platform. Aggregates
containing 2000 signal-producing cells were unable to
signal neighboring aggregates, while those containing
�5000 cells communicated with neighbors as far away
as 176μm. These findings highlighted the dependence
of efficient communication on spatial structure [32].
Work on V. harveyi cells loaded into hydrogel micro-
capsules of various sizes reached a similar conclusion.
Large aggregates of cells, with a size of approximately
25 μm, accumulated many more autoinducers than
did small aggregates with a size of approximately 10
μm, thus demonstrating that the process of quorum
sensing relies on the spatial structure of the popula-
tion [31]. These studies manipulated spatial structure
using laboratory methods, but there are likely simi-
lar examples of spatial self-organization to optimize
signaling and group coordination within bacterial
ecosystems.

Recently the concept of percolating networks has
been discussed in the context of cellular commu-
nication. Cells operating near the threshold of a
percolation transition can improve the efficiency of
long-distance communication within a population of
cells. In a percolating network, nodes or cells are dis-
tributed on a spatial grid. Each cell has an activ-
ity level, and the percentage of activated cells on the
grid strongly influences the spatial range and over-
all activity level of the entire network. When only
a few cells are activated, activated cells are isolated
and do not form large patches. Above a critical per-
centage of activated cells, the activated cells form an
interconnected network that spans a very large range,
often the entire length of the network. This tran-
sition in the connectivity of activated regions has
been reported in several biological contexts, includ-
ing embryo development [102]. Percolation networks
often operate near a critical threshold or phase tran-
sition, below which only short-range clusters inter-
act and above which long-range or system-spanning
conduits emerge. Here we will focus on two exam-
ples of percolating networks involving bacterial signal
exchange.

Larkin et al explored such behavior in biofilms
of B. subtilis [93], where individual cells open and
close ion channels to communicate. Starved cells in
the interior of the biofilm send K+ to neighbors,
stalling their metabolism, until the signal wave meets
the edge of the biofilm where resources are available.
The reduced consumption along the ion wave pro-
vides more nutrients for the stressed, interior cells,
increasing the fitness of the entire population. A min-
imal threshold percentage of cells participating in

K+ signaling led to the formation of system span-
ning channels. A wild type B. subtilis biofilm operated
near criticality, balancing the linear cost of signal-
ing with the highly non-linear benefit received, see
figure 5(c).

Quorum sensing similarly can exhibit a perco-
lation transition. Spatial patterns of the expression
of quorum sensing-regulated gene expression were
studied in a synthetic two-strain community com-
posed of a signal producing strain and a signal degrad-
ing strain [94]. The signal producing strain released
C4-AHL and responded to a high concentration of
signal by producing a fluorescent reporter protein.
The signal degrading strain produced an enzyme that
degraded the signal, thus acting as a sink for the sig-
nal. When mixed together, the size and connectivity
of the activated regions producing GFP depended on
the ratio of two strains. Above a critical ratio, the acti-
vated cells formed a connected region that spanned
the entire system, as shown in figure 5(d). The acti-
vated regions also followed scaling laws expected for
such percolating networks [103], demonstrating that
the size and distribution of active regions within
a spatially dispersed population could be predicted
from fundamental physical concepts. Long-range
coordination of signaling states was also demon-
strated, even in the presence of interference from a
neighboring strain.

5. Future perspectives

Recent insights into the ability of bacterial commu-
nities to gather information from the environment
and coordinate large-scale behavior should enable the
development of strategies to both control diverse pop-
ulations of microbes and design multispecies commu-
nities for new applications in biotechnology. In recent
years the advantages of division of labor within both
synthetic and natural microbial consortia have been
reported [104–108]. The viability of these approaches
requires that communities are able to maintain rel-
atively stable community composition over time.
Several strategies have been proposed to balance inter-
actions within multispecies communities, including
designed cross feeding of metabolites and the use
of spatial niches to maintain diversity [109, 110].
What is often missing in this focus on metabolic bal-
ance, is whether or not cells will maintain cellular
activities of interest, other than growth of course,
due to often poorly defined regulatory interactions
between community members. As highlighted here,
signaling interactions between species are likely com-
monplace in natural biological contexts. Much more
work is needed to reveal how populations of cells
learn about their surroundings to modify their behav-
iors, and how such regulation within a community
context is beneficial to both individual species or
strains and the community as a whole. Theoretical
approaches described above should help advance our
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understanding and prediction of how communities of
cells communicate and regulate activity within bio-
logically diverse contexts. Analysis of how popula-
tions of cells gather information and regulate activity,
bacterial computations, will help identify strategies
that maintain functional characteristics as well as
species composition within communities. A deeper
understanding of how regulatory interactions are
influenced by both spatial structure and single-cell
heterogeneity will be essential in many contexts and
may lead to new strategies for control and stability.
Next steps should include engineered communities
capable of self-regulating and adapting to changes in
biological, chemical, and physical conditions. These
approaches should incorporate cells using signal
exchange to gather information about local physical
and biological conditions to calculate an appropri-
ate response, a process that has already evolved in
many natural communities to maintain both diver-
sity and function despite significant uncertainty in
conditions.

A lofty goal, which hopefully will become more
realistic from advances in the design of engineered
communities, is the prediction and control of com-
munity function in the wild. Given the tremendous
diversity of real microbial ecosystems, it would appear
that an exhaustive mapping of species interactions,
whether metabolic or regulatory, is impractical. An
ideal solution to this problem would be the iden-
tification of the general rules for how cells gather
information to set activity levels for each species and
strain [82, 111], regardless of the specific community
composition or the activity of interest. Future work
focused on universal strategies and limitations of bac-
terial community computation should help elucidate
such rules.
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