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that was determined to have a return period of 115 years for the entire 
island and 152 years in smaller regions within the island. (Keellings and 
Hernández-Ayala, 2019). There are many factors affecting event rainfall 
throughout the island, especially given the interaction of the orographic 
effects from the mountains, a process that has been studied in very 
limited basis, and there is a possibility that it contributed more towards 
the rainfall totals when compared to other hurricanes (Colón-Pagán 
et al., 2009). This, in addition to the previously discussed data, it shows 
that Maria was a significant outlier. 

The underlying factors for the long-term trends in tropical Atlantic 
warmth and tropical cyclone activity is the increase in sea surface 
temperatures (SST), which are related to anthropogenic activity and 
greenhouse gases manifested in a global warming (Mann et al., 2006). 
The SSTs in the Caribbean have been increasing over the past 35 years 
(1980–2015) (Glenn et al., 2015) and it is projected to further increase 
(Jury., 2011). Furthermore, NOAA reports that 2017 was the hottest 
year on record at the time, for land and ocean surface temperatures 
without the El Nino boost (NOAA, 2017). SSTs are not the single key 
variable affecting hurricanes (Henderson-Sellers et al., 1998; Holland, 
1997; Emanuel, 1999). Other factors may include amplified 
high-pressure ridge in the upper troposphere across the central and 
eastern North Atlantic (Chelliah. et al., 2004), reduced vertical wind 
shear (Henderson-Sellers et al., 1998) over the central North Atlantic 
and African easterly lower atmospheric winds, and atmospheric stability 
(Tang. et al., 2004) which favors the development of hurricanes. As 
there are many variables to fuel the storm, it is essential to understand 
the common synoptic and local conditions to anticipate the storm’s 
strength. In this study, we discuss two synoptic variables SST and ver
tical wind shear during H-Maria. 

The ability to anticipate the damage that a storm will likely cause is a 
research area that has been getting attention as a predictive indicator of 
damage to aid in better preparing and respond to disasters. The main 
impact a tropical storm could have can be essentially distilled into three 
categories: wind, landslides, and flooding both coastal and inland. With 
the documented rise of SST, higher intensity storms become more 
frequent and more powerful (Bjarnadottir et al., 2013). It thus becomes 
more important to quantify the impacts caused by these storms. 

In Puerto Rico during H-Maria, the extreme conditions by the storm 
caused the electric power infrastructure to fail to full collapse. Failures 
of parts of the electrical system due to storms are not uncommon, and 
there have been detailed studies on the statistical failure of wooden 
power poles under changing climate conditions (Bjarnadottir et al., 
2013). Larger scale impact assessments have been done in test cases to 
make a probabilistic assessment of an entire power infrastructure system 
and how to improve its damage resiliency on the multi-regional scale 
(Panteli et al., 2017). Statistical models for future scenarios are not 
ignored either, as models have shown an increase of wind speed in
tensity will be in general experienced in the future on the Northeastern 
Coast of the U.S. (Mudd et al., 2014; Comarazamy et al., 2020). 

Winds also impact the forest canopy and, in historical studies, it has 
been shown that using the Fujita damage rating one can go back in 
history and estimate the general strength of a hurricane by analyzing 
some of the damage caused to the forest canopy (Boose et al., 2004). In 
this case, F2 (Extensive tree blowdowns) and F3 (Most trees are downed) 
are of interest because those levels are where the forest canopy gets 
damaged. Historical records reported that an F3 event hits western 
Puerto Rico every 150 years and Eastern Puerto Rico every 50, forming a 
gradient (Boose et al., 2004). Recent study analyzes and reflects in the 
impacts of changes in forest canopy in convective activity and precipi
tation prior and after H-Maria (Hosannah et al., 2020). One of the more 
dangerous effects of hurricanes for coastal areas is the storm surge as the 
storm causes the local sea level to rise and severely damage the local 
area. A storm in 1970 in Bangladesh with a storm surge of 10.6 m killed 
300,000 people, after which the government began to build shelters to 
help reduce the casualties, and the risk areas were identified using 
computer simulations (Karim and Mimura, 2008). A hybrid 

statistical/deterministic approach to identifying future storm surge 
events have been used in New York City by making synthetic tracks over 
the Atlantic Ocean and recording the results while comparing them to 
real life (N. Lin et al., 2010a,b). Determining where landslides occur is 
not a simple task as there are a large number of factors that are needed to 
determine including topography, vegetation, and water saturation, and 
rainfall to be able to predict future landslides (Philpott et al., 2008). 

In order to use these experiences as learning events for damage 
assessment on the society and the infrastructure, reliable metrological 
variables are required at high temporal and spatial scales across the 
islands. This by itself is a challenging task for H-Maria as the National 
Weather Service (NWS) NEXRAD collapsed in the first hours of the 
storm. In this research, we use the Weather Research and Forecast 
(WRF) model, a non-hydrostatic model that works well on the mesoscale 
level (ten to a few hundred kilometers) that allows for the physical 
representation of cloud radiation processes and planetary boundary 
layer dynamics throughout all of the assigned vertical levels and has 
been used for Hurricane modeling in a number of cases (Zhang and 
Villarini et al., 2018; Patricola et al., 2018; Davis et al., 2008a; Khain 
et al., 2010; Chen et al., 2011; Moon and Nolan 2015). This modeling 
tool has been used to determine that flooding was exacerbated by ur
banization during hurricane Harvey in the Gulf of Mexico in 2017, 
delineating how the effects of urbanization contributed to higher 
di-adiabatic heating, which in turn fed the storm (Zhang and Villarini 
et al., 2018). WRF has also been used to estimate the relative strength of 
various storms, including H-Maria, in various future scenarios to simu
late anthropogenic climate change to estimate how high SST would 
affect storm strength (Patricola et al., 2018). In this research, H-Maria is 
simulated in WRF, and the outputs of the models (at 1-km spatial and 1-h 
temporal resolution) are compared and validated with the limited 
observational records available for storm tracks, rainfall, and wind 
speed. The model outputs are used to understand the vertical and hor
izontal movement that enhanced the precipitation at the mountain 
range. The output was further utilized to assess the damage on the 
electric power poles. 

2. Methods 

2.1. Recreating Hurricane Maria with WRF simulation 

This study employs a single-layer urban canopy version of WRF v 
3.8.1 model (Skamarock et al., 2008), a numerical weather prediction 
system developed by the National Center for Atmospheric Research 
(NCAR). WRF is well suited for this study due to three main reasons. 
First, lateral boundary conditions allow us to conduct a two-way nesting 
permitting an interaction between the outer and inner simulations 
domain. It also allows us to prescribe a tighter constraint on large scale 
circulations of the tropical cyclone than if a global model were used 
(Patricola et al., 2018). This is suitable because the simulations to 
reproduce hurricane track, maximum winds, and precipitations are 
sensitive to underlying SST and the surrounding environmental condi
tions. Second, WRF uses a non-hydrostatic approximation to solve ver
tical momentum equations, whereas the global model uses simplified 
hydrostatic approximation. Third, the regional domain allows us to 
perform ensembles of simulations at convection-permitting resolution 
(less than 3 km as WRF can resolve convective process explicitly at these 
resolutions), which would be computationally less feasible with a global 
model. 

Three two-way nested domains were used for domain configuration. 
The parent domain of 25 km (144 points by 100 points) contains the 
entire Mesoamerican and Caribbean region. The second domain con
tains the Caribbean Sea, Dominican Republic, and the island of Puerto 
Rico at a spatial resolution of 5 km (306 points by 191 points), and the 
third domain contains the entire island of Puerto Rico at a spatial res
olution of 1 km (336 points by 156 points). The domain configuration is 
presented in Fig. 1 (left panel), whereas Fig. 1 (right panel) also shows 
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the geophysical conditions that led to the storm during its passage across 
the Island using mesoscale weather models (WRF) for a limited 
ensemble arrangement that considers input variables and physical pa
rameterizations. The ensemble results are compared with limited 
observational records for this particular extraordinary event. Our syn
optic analysis of conditions that led to the storm indicate record high 
SSTs and low vertical wind shear during September 2017, which fed to 
the storm causing historic high precipitation and stream flows. The 
model results compare well with the limited observational records 
available for wind speed and are also validated for the rainfall in the 
entire Island with a normalized RMSE of 0.2. Results also demonstrate 
that high horizontal wind produces a high upward vertical motion at the 
central mountain range of the Island with peaks above 1300 m, 
enhancing convection that eventually produces high rain water mixing 
ratios along the same column, thereby increasing the total precipitation. 
It is also simulated that the orographic variation enhances the rainfall by 
more than four times along the central mountains as the storm passes 
through the same region. As an example of damage assessment due to 
extreme wind, a simplified risk of failure analysis of the electric distri
bution poles is carried out. The results demonstrate that high risk of 
electric poles’ failure occurred at the north and center of the Island 
where high wind speed and high precipitation are simulated. The vali
dated meteorological variables can be further utilized for further impact 
assessments such as hydrological modeling (for flood risk) and resiliency 
model (for impact on critical infrastructures). Future works will be 
focused on generating reliable data sources for other hurricanes in the 
Island and utilizing the data for impacts on critical infrastructures. 
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Daly, C., Helmer, E.H., Quiñones, M., 2003. Mapping the climate of Puerto Rico, Vieques 
and Culebra. Int. J. Climatol. 23, 1359–1381. https://doi.org/10.1002/joc.93. 

Davis, C.A., Jones, S.C., Riemer, M., 2008. Hurricane vortex dynamics during Atlantic 
extratropical transition. J. Atmos. Sci. 65, 714–736. https://doi.org/10.1175/ 
2007JAS2488.1. 

Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon 
experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46 (20), 
3077–3107, 1989.  

Emanuel, K.A., 1999. Thermodynamic control of hurricane intensity. Nature 401, 665. 
Puerto Rico Aqueduct and Sewer Authority., and Geological Survey (U.S.) Gellis, A.C., 

1999. Effects of land use on upland erosion, sediment transport, and reservoir 
sedimentation, Lago Loíza Basin, Puerto Rico. Water-resources Investig. Rep. 
99–4010, 60. vii.  
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