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Abstract: Flooding during extreme weather events damages critical infrastructure, property, and
threatens lives. Hurricane María devastated Puerto Rico (PR) on 20 September 2017. Sixty-four deaths
were directly attributable to the flooding. This paper describes the development of a hydrologic
model using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA), capable of simulating
flood depth and extent for the Añasco coastal flood plain in Western PR. The purpose of the study
was to develop a numerical model to simulate flooding from extreme weather events and to evaluate
the impacts on critical infrastructure and communities; Hurricane María is used as a case study.
GSSHA was calibrated for Irma, a Category 3 hurricane, which struck the northeastern corner of
the island on 7 September 2017, two weeks before Hurricane María. The upper Añasco watershed
was calibrated using United States Geological Survey (USGS) stream discharge data. The model
was validated using a storm of similar magnitude on 11–13 December 2007. Owing to the damage
sustained by PR’s WSR-88D weather radar during Hurricane María, rainfall was estimated in this
study using the Weather Research Forecast (WRF) model. Flooding in the coastal floodplain during
Hurricane María was simulated using three methods: (1) Use of observed discharge hydrograph
from the upper watershed as an inflow boundary condition for the coastal floodplain area, along with
the WRF rainfall in the coastal flood plain; (2) Use of WRF rainfall to simulate runoff in the upper
watershed and coastal flood plain; and (3) Similar to approach (2), except the use of bias-corrected
WRF rainfall. Flooding results were compared with forty-two values of flood depth obtained during
face-to-face interviews with residents of the affected communities. Impacts on critical infrastructure
(water, electric, and public schools) were evaluated, assuming any structure exposed to 20 cm or more
of flooding would sustain damage. Calibration equations were also used to improve flood depth
estimates. Our model included the influence of storm surge, which we found to have a minimal
effect on flood depths within the study area. Water infrastructure was more severely impacted by
flooding than electrical infrastructure. From these findings, we conclude that the model developed in
this study can be used with sufficient accuracy to identify infrastructure affected by future flooding
events.

Keywords: flood; hydrologic modelling; simulation; GSSHA; storm surge; Hurricane María; Hurri-
cane Irma; Puerto Rico (PR); Añasco watershed; critical infrastructure; resilience; WRF

1. Introduction

Worldwide, floods affect more people than any other natural disaster, costing $104
billion annually on average [1]. Harmsen and Goyal [2] cited several historically significant
floods that resulted in extreme loss of life, for example, 12,000 lives lost in China in floods in
1980, 1996, and 1998, 30,000 in Venezuela in 1999, 2600 in Haiti in 2004, 2379 in Bangladesh
in 1988, 2311 in Somalia in 1997, and 2001 in India in 1994. Other references to flood impacts
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are presented by [1,3,4]. Nicholls et al. [5] describe various impacts caused by flooding
as direct and indirect, immediate and long-term, and tangible and intangible. The latter
impact (intangible) is not often taken into account and can include psychological effects of
the loss of loved ones, displacement, and property damage.

In addition to threatening human life, flooding also impacts critical infrastructure.
The U.S. Department of Homeland Security (DHS) defines critical infrastructure as the
“vast network of highways, connecting bridges and tunnels, railways, utilities and build-
ings necessary to maintain normalcy in daily life.” [6]. Electricity, water, commerce, and
transportation rely on these vital systems. Failure of critical infrastructure (CI) can lead
to severe economic and social disruption. CI is especially prone to flood damage [7]. Al-
though usually not considered, natural infrastructure, defined as the coastal and marine,
freshwater, and forest resources, is recognized as critical to the health and functioning of a
region [8]. The National Oceanic and Atmospheric Administration (NOAA) encourages
green or nature-based infrastructure as part of disaster planning and mitigation [9].

Most flood protection efforts have focused on household property and less on the pro-
tection of CI [7]. Plant et al. [10] reported a CI network analysis case study for the flooding
in the Thames catchment, England. They introduced the concept of direct and indirect
customer disruption estimates. The CI could be exposed to disruption by direct flooding or
indirectly to dependencies of the infrastructure on the affected electrical network. Their
case study describes how the interdependent infrastructure footprint extends well beyond
the flooded area and across multiple governance boundaries. Numerous studies have
attempted to develop strategies for enhancing the resilience of CI. Several studies have
been conducted to assess the impacts on critical infrastructure to assist policymakers in
prioritizing resources for recovery and hardening of CI (e.g., [11–16]).

1.1. Background

When Hurricane María hit Puerto Rico (PR) in September 2017, most large and small
powerlines were knocked down. Eighty percent of the island’s electrical and communi-
cation systems were destroyed [17,18]. Downed powerlines and landslides made roads
impassable for weeks or even months in specific locations. The water utility was not
prepared for the hurricane and lacked power generators for running pumps. Water intakes
on rivers were damaged due to extensive river meandering and sedimentation. Wastew-
ater treatment facilities were damaged, resulting in the release of raw sewage into the
floodwaters. The dam at the Guajataca Reservoir in northwest PR was severely damaged,
threatening flash flooding and leaving the population without water for many months. As
a consequence of the devastation of Hurricane María, the Joint Operational Catastrophic
Incident Plan of PR [19] was developed. The plan represented the input from thirty State
agencies, four Federal agencies, and representatives of the private critical infrastructure
sectors.

The threat of flooding has increased with the relentless advance of climate change.
The number of record-breaking precipitation events has increased by 12 percent between
1981 and 2010 [14]. Georgescu et al. [20] used WRF to dynamically downscale future mid-
and end-of-Century rainfall patterns across the United States, focusing on the effect of
weather and rainfall on metropolitan areas.

The study concluded that urban areas could expect to receive more extreme weather
events and consequent increased flooding risk in the future. In general, the Caribbean
region has a well-documented warming trend [21], and it is expected to experience a drying
climate in the future [22], combined with more extreme rainfall [4] and drought-related
events. Recently, however, Jury [23], using high-resolution satellite and reanalysis products,
has hypothesized that mountainous island environments may become wetter in the future,
which could lead to greater flood risk in some Caribbean island watersheds. Flooding on
Caribbean islands will become aggravated with increasing sea-level rise from a warming
climate. Díaz et al. [22] reported that sea levels have been rising along the coast of PR at
a rate of 2 mm year−1 during the 20th Century. However, during the 2000s, the rate has
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increased by approximately a factor of 3. According to Hunter [24], the frequency of coastal
flooding will treble for every 0.1 m rise in sea level. This implies that with a 0.5 m rise in
sea level, the 1-in-100-year flood, a common recurrence interval used for the design of CI,
will occur every few months.

1.2. Flood Prediction Modelling

Flood prediction models can be used to evaluate numerous factors that influence the
depth and extent of flooding; factors such as land cover [25], which account for roughness
and infiltration characteristics, rainfall distribution and timing [26], and compounding
effects of high tide, sea-level rise, storm surge, and fluvial flooding [27–29]. Models can
also evaluate the damage caused by flooding [25,30]. Various approaches have been
used to simulate flooding. The authors of [25] used ICONOS-2 imagery to develop an
improved land roughness map for the Netherlands. The LISFLOOD-FP model was used to
simulate flooding based on the new land cover map. A method was described to create
property damage maps, which was applied to the 1995 flood in the southern part of The
Netherlands. The authors noted that the flood damage maps are helpful for decision-
makers and insurance companies. Various approaches are used for representing rainfall in
the hydrologic/flood models. The authors of [26] developed a SWAT model for the Polomet
river basin in northwest Russia. They performed simulations with rain gauge, radar, and
gauge-adjusted radar data. Comparing the observed and simulated hydrographs, the
model performed best for the rain gauge, gauge-adjusted radar data, and radar, in that
order. The authors of [31] provide a comprehensive overview of compound flood models
in low-gradient coastal watersheds. The authors of [27] proposed a bivariate flood hazard
assessment approach accounting for river flooding combined with elevated sea level, based
on greenhouse gas concentration pathways 4.5 and 8.5 for 2030 and 2050. The authors
of [28] developed the first compound flooding model for PR (see also [32]). They used
the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model coupled with the
Simulating Waves Nearshore (SWAN) and Advanced Circulation (ADCIRC) models to
predict the combination of storm surge and surface runoff along the eastern coast of PR
during Hurricane George. Although the storm surge and peak runoff did not coincide, the
combined processes did aggravate flooding.

Numerous studies around the world have performed flood prediction modelling,
applying various approaches; a few examples include Taiwan [33], UK [34], Southern
Louisiana, USA [35], India, Bay of Bengal [36], the Netherlands [25], Port Hedlund, Port
Phillip Bay, Australia [37], Bangladesh [38], Northern Vietnam [39], Central Caucasus,
Russia [40], and Chao Phraya River Basin, Thailand [41].

1.3. Previous Hydrologic Studies Conducted in Puerto Rico

Several hydrologic studies have been conducted in the Añasco watershed, includ-
ing [42–46]. Prieto [42] developed a surface water/groundwater MIKESHE model for the
Añasco, Yagüez, and Guanajibo watersheds. The surface and subsurface conceptual and
numerical models and GIS database resulted in a greater understanding of the complexities
of these systems in western PR. Rojas Gonzalez [43] (also [2]) performed an upscaling
experiment with the Vflo model [47] in PR to determine how the model grid spacing could
be made coarser using the same parameter settings without loss of accuracy. She found,
based on a stochastic analysis using the Generalized Likelihood Uncertainty Estimation
(GLUE, [48]) methodology, that the 10 m hydrologic model resolution can be upscaled to
100 m resolution without loss of accuracy and that the 100 m rainfall resolution can be
upscaled to 1000 m without loss of accuracy. Using the coarser grid resolution, improved
model computation efficiency can be achieved. Torres Molina [44] (also [2]) evaluated short-
term rainfall estimates in western PR, derived from a high-resolution radar (TropiNet, [49])
and stochastic analysis within the Mayaguez Bay drainage basin. The model served as a
potential prototype for predicting real-time flooding using the Vflo model.
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Ramos and Gilbes [45] developed a Soil Water Assessment Tool (SWAT) model for
the Añasco watershed. The study’s main objective was to simulate runoff and sediment
yields within the watershed and sediment transport to the coastal waters from 1998 to
2012. Neither the hydrologic model nor the sediment transport model were calibrated.
Nevertheless, the hydrologic model was able to capture 50 percent of the variability of
the observed discharge. The study showed a clear connection between coffee farms and
their practices and urbanization with large sediment plumes in the coastal waters near
the mouth of the Añasco River. Nilawar et al. [46] estimated soil moisture in the Añasco
and Guanajibo watersheds using the SWAT model, comparing the AMSR2 soil moisture
product results. The SWAT model was calibrated for 2010–2012 using USGS stream gauge
data from the two watersheds. The authors concluded that SWAT fusion with AMSR2 soil
moisture data can simulate streamflow in the two watersheds.

Several other hydrologic modelling studies have been conducted in PR for conditions
similar to those considered in this study, including [28,50–56]. The authors of [50] devel-
oped a real-time runoff model to evaluate runoff for the Loíza Basin in northeast PR. Water
from this basin is captured in the Carraizo reservoir and constitutes the primary water
source for the San Juan metropolitan area. The model was based on estimating excess
rainfall using the Green-Ampt infiltration equation. Hydraulic routing was accomplished
using the HYDRAUX model [57], which solves the unsteady one-dimensional discharge in
a network of open channels. The authors of [51] simulated streamflow for the Loíza Basin
to characterize forecast uncertainties and statistical measures of model performance as
part of a National Weather Service experiment in the Distributed Model Intercomparison
Project [58]. The authors of [53] applied the Water Supply Stress Index (WaSSI) model [54]
at the Luquillo National Rainforest in northeast PR. WaSSI estimates the monthly runoff
volume and routed water exiting a watershed outlet. The authors of [52] applied the Hydro-
logic Simulation Program–FORTRAN (HSPF) to a Río Caonillas watershed in north-central
PR. The three-year analysis goal was to better understand the hydrology, soil erosion, and
sediment transport of the watershed. Another purpose of the study was to evaluate the
ability of HSPF to perform under the PR’s extreme conditions (e.g., rainfall intensities
greater than 25 mm h−1 and average slopes of 38%). The model successfully captured
85% of the monthly streamflow variability and 75% of the monthly suspended sediment
concentration variability.

The authors of [55] used the Global Land Data Assimilation System (GLDAS) Noah
Land Surface model to evaluate differences in pre-and post-Hurricane María hydrology
over PR. GLDAS simulates overland and subsurface runoff based on 3 h and monthly
increments. The study revealed that the widespread removal of leaf cover by Hurricane
María resulted in elevated sediment losses for months after the passing of the hurricane.
The study also showed that Hurricane María caused a change in the atmosphere’s thermo-
dynamic structure and consequently affected cloud development and rainfall. As noted in
the previous section, [28] developed a GSSHA model to simulate compound flooding in
eastern PR during Hurricane George. The authors of [56] describe the Geostationary Op-
erational Environmental Satellite Puerto Rico Water and Energy Balance (GOES-PRWEB)
model. The operational model provides twenty-five hydro-agro-climate variables at a
1 km spatial resolution daily. Monthly and annual averages and totals are also available
online (https://pragwater.com). The authors of [56] describe several applications of the
model, including monitoring of the 2014–2016 drought in PR [59], evaluation of irrigation
requirements for a 7-day period for a sweet pepper crop in southern PR, and an analysis of
aquifer recharge in PR’s southern coastal aquifer from 2009–2020. Soil saturation data from
GOES-PRWEB was used to initialize soil saturation values in this study.

1.4. Study Objective

The objective of this study is to develop a methodology to quantify flood conditions
from extreme weather events and their impacts on critical infrastructure. As a case study, a
flood inundation model is applied to the Añasco coastal flood plain of western PR. The
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model simulates fluvial flooding and the effect of sea rise due to storm surge. Geographic
Information System (GIS) methods are used to identify potentially damaged critical in-
frastructure due to flooding. This study is part of a more extensive NSF-funded study to
establish a framework to evaluate and enhance critical infrastructure resiliency in islanded
communities. Output from the model will be incorporated into a water/power network
model to assess recovery scenarios under extreme weather events.

2. Case Study Description

This section presents a short description of the effects of Hurricane María on PR and
some characteristics of the study area such as location, land use land cover, and soil type
distribution, among others.

2.1. Hurricane María

Puerto Rico is located in a susceptible zone affected by hurricanes and tropical storms
(Figure 1). On 7 September 2017, Hurricane Irma hit northeast PR as a Category 3 hurricane.
The eyewall passed just above the northeast corner of PR. Just 14 days later, Hurricane
María passed over PR, entering the southeast corner and exiting from the northwest.
Hurricane María was a Category 4 when it passed over PR on 20 September 2017 [60]. The
maximum sustained wind speed was 69.3 m s−1 (249.5 km h−1) and the heavy precipitation
produced serious flooding and mudslides. One of the locations in PR had a storm total
of almost 38 inches (965 mm) [61]. The neutral El Niño Southern Oscillation (ENSO) and
unusually high sea surface temperature (SSTs) in 2017 [62] contributed to the strength
of Hurricane María. Glenn et al. [21] have observed a 0.015 ◦C year−1 rise in SSTs per
decade in the Caribbean region between 1982 and 2012, suggesting that the conditions that
enhanced Hurricane María will increase in the future.
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According to the National Weather Service, in 2017, there were 64 flood-related
fatalities in PR, while only 2.3 on average from 2010 to 2020 (not including 2017). For
comparison, Texas reported 70 flood-related fatalities during 2017 related to Hurricane
Harvey. The total estimated Hurricane María damages in PR were $90 billion [60], making
it the third most costly hurricane in U.S. history, after Hurricanes Katrina and Harvey.

2.2. Study Area

The study area is the Añasco watershed, which is located in Western PR within
the municipalities of Añasco, Las Marías, Maricao, Lares, and Adjuntas. The watershed
(Figure 2) is composed of a wide diversity of conditions, including urban, agriculture,
and forest landscapes, topographic relief of over 1000 m, a river course with extreme
meander, and a sizeable coastal flood plain, part of which includes marshland. There are
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four interconnected lakes located in the upper part of the watershed (Lagos Toro, Prieto,
Guayo, and Yahuecas), which transfer water to southwest PR, except during extreme
rainfall, when the water is released into the lower Añasco Watershed. A U.S. Geological
Survey stream discharge gauge is available within the watershed, which is used to calibrate
and validate the hydrologic parameters in this study. The stream discharge gauge is located
in San Sabastian, PR (USGS-50144000); however, no gauges are available in the watershed’s
coastal flood plain portion. The annual average rainfall in this watershed is 2160 mm.
Average, minimum, and maximum yearly air temperatures are 26.1, 18.9, and 37.2 ◦C,
respectively.
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In order to reproduce the flooding during Hurricane María in this study, it was
necessary to calibrate and validate some of the hydrologic parameters of the watershed;
therefore, the watershed was divided into two areas, as shown in Figure 2. Sub-watershed
2 represents the region above the USGS stream discharge gauge, which was used to
calibrate and validate the hydrologic parameters (essentially roughness and infiltration
parameters). Subsequently, Sub-watershed 1 was used to evaluate the flooding using the
calibrated parameters obtained in Sub-watershed 2. Figure 3 shows the variation of the
elevations within the Añasco watershed, ranging from 0 to 1203 m above sea level. The
rainfall event selected to calibrate the model was Hurricane Irma which happened days
before Hurricane María, and a similar rainfall event which occurred in 2007 was selected to
validate the results (this will be explained in more detail in the methodology section). It
is worth mentioning that the raster precipitation data for those two events were obtained
from the Next Generation Radar (NEXRAD), known as Weather Surveillance Radar 1988
Doppler (WSR-88D), which is located at 18◦06’56.16′′ N−66◦04’41.03′′ W. The star symbol
in Figure 2 represents the location of the radar in PR.
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Land Use Land Cover and Soil Distribution

Land use land cover and soil dataset maps are essential for hydrologic simulations,
allowing the association of land and soil properties into the model, such as roughness
values, hydraulic conductivity, porosity, capillary head, and field capacity. Figure 4a shows
the 30 m resolution land use land cover map for 2010 [63]. It was the most recent high-
resolution land use land cover classification map developed for PR. The predominant
land cover categories for the study area are Mixed Forest, Cultivated, and Low Intensity
Developed Areas. On the other hand, Figure 4b shows the Soil Survey Geographic Dataset
(SSURGO) over the Añasco watershed, which was acquired from the United States De-
partment of Agriculture (USDA [64]). For this dataset, Clay and Clay Loam are the most
representative soil categories in the Añasco watershed.
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3. Methodology

The following chart (Figure 5) summarizes the main steps used in this study:
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3.1. Hydrologic Model

The GSSHA is a process-based model, developed by the U.S. Army Engineer Research
and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL), and is a
multidimensional model that couples overland, surface, and subsurface flow. GSSHA
simulates two-dimensional (2D) overland and groundwater flow, one dimension (1D)
streamflow, and soil moisture [65]. A feature of GSSHA is the inclusion of spatial and
temporal precipitation, allowing the use of NEXRAD precipitation products. It should
be mentioned that GSSHA is approved by the Federal Emergency Management Agency
(FEMA) for hydrologic modelling [66]. Some of the hydrological processes and approxi-
mations simulated in GSSHA are precipitation distribution, snowfall accumulation and
melting, precipitation interception, overland water retention, infiltration, overland flow
routing, evapotranspiration, soil moisture in the vadose zone, lateral groundwater flow,
stream/ground water interaction, and exfiltration [67]. One of the key characteristics
of GSSHA is the detailed modelling of the soil water profile in the unsaturated zone;
this dynamic area partitions rainfall into infiltration, runoff, groundwater recharge and
ET [67], and the GSSHA solves the one-dimensional (vertical direction) head-based form of
Richards’ equation [68], as follows:
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where C is the specific moisture capacity, ψ is the soil capillary head (cm), z is the vertical
coordinate (downward positive) (cm), t is the time (hr), K(ψ) is the effective hydraulic
conductivity (cm h−1), and W is the source/sink term (cm h−1). It should be noted that the
Richards’ equation (RE) is highly nonlinear because C and K both depend on the soil water
content; therefore, in GSSHA, the RE is linearized by making C and the intercell K constant
during each time step [67]. In addition, GSSHA uses similar two-step, finite-volume
schemes to route water for both 1D and 2D overland flow, where flows are computed
based on heads and volumes and are updated based on the computed flows [67]. The
intercell flows Qn

i−1/2 and Qn
i+1/2 (m3 s−1) in the longitudinal x direction are computed

from the depths d (m) at the n time level using the Manning equation for the head discharge
relationship [67]:
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where n is the manning roughness coefficient, A is the cross-sectional flow area (m2), R
is the hydraulic radius (m), Sf is the friction slope, and So is the land surface slope in
the longitudinal x direction. GSSHA uses the same method described for the 1D channel
routing, but the calculation is made in two dimensions.

3.1.1. Calibration

The following steps describe the calibration process in GSSHA:

(1) Delineation of the watershed area above the USGS stream discharge station (Sub-
watershed 2): A Digital Elevation Model (DEM) of 10 m resolution was required to
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delineate the watershed and obtain the flow path accumulation. Subsequently, an
outlet point was placed in the exact location of the USGS stream gauge (Latitude
18◦17′03.00′′, Longitude 67◦03′03.46′′ NAD27) to obtain the delineated watershed
above the USGS station.

(2) Generation of the stream channel cross-section: The 3DEP Lidar Explorer tool was
utilized from the USGS website to download the Light Detection and Ranging (LiDAR)
data for the area of interest. The data acquired was from 2015 with a horizontal
resolution of 100 cm and a vertical resolution of 10 cm. Subsequently, the data were
processed using QGIS, and the cross-sections were created using QGIS and a python
script. It should be mentioned that Lake Guayo collects water that is diverted to
southwest PR through tunnels; however, water is released into the watershed when
there are events with high rainfall intensity and duration, such as hurricanes or
tropical storms. Thus, a downstream cross-section channel was used as the cross-
section of the lake; this hypothesis assumes that the precipitation that falls into the lake
area will be counted as a volume in the outlet point previously defined. Additionally,
the smooth stream option was used to prevent adverse slopes.

(3) Grid Selection: The grid spacing is essential to define the model’s resolution; small
grid cells lead to a high-resolution model, which requires high computational re-
sources and increases computational time. A 100 m grid spacing was chosen, based
on watershed size and the time required to run the simulation.

(4) Land Use and Soil Data: The soil type and land use maps were added to the model
using the datasets previously described. It should be noted from Tables A1 and A2
that the land and soil categories for Sub-watershed 1 (Figure 2) and Sub-watershed 2
(Figure 2) were predominantly Mixed Forest and clay, respectively. The percentages
were calculated using a python script. On the other hand, the initial values of the
roughness for each land class were assumed using the values in Table A1 [69]. In
addition, Table A3 shows the values of the soil parameters required to use the Green
Ampt method, such as hydraulic conductivity, capillary head, and porosity, among
others [70].

(5) Soil Moisture Saturation: The soil moisture saturation product from GOES-PRWEB
(pragwater.com, [56]) was employed to estimate the average initial soil moisture for
the study area, which was determined to be 98.9%. Therefore, initial soil moisture
saturation was assumed to be 98.9% of the soils’ porosity values.

(6) Precipitation Data: Hurricane Irma precipitation data was chosen to calibrate the
model, representing an extreme weather event for PR. Therefore, NTP (Storm Total
Precipitation) Level 3 product from NEXRAD was used to obtain the rainfall distribu-
tion from 6 September at 12:00 to 8 September at 11:00 of 2017 (AST). According to
NOAA, the NTP product, which uses the Precipitation Processing System (PPS) algo-
rithm, is useful for locating flood potential over urban or rural areas and estimating
the total basin runoff [71]. In addition, a python code was implemented to convert
the cumulative rainfall into hourly rainfall so that GSSHA can easily read it.

(7) Calibration process: The Secant Levenberg–Marquardt (SLM) method is an efficient
enhancement to the Levenberg–Marquardt (LM) method [72]. The Multilevel Single
Linkage (MLSL) method was created to reduce the probability of not finding a local
minimum. The SLM and the MLSL methods are implemented in GSSHA for con-
ducting model calibrations. These two methods use the observed and the simulated
hydrograph to find the objective function minimum, varying the parameters to be
calibrated, where the objective function consists of the sum of weighted squared
differences between modeled and transformed flow values, with all weights assigned
a value of 1 [73]. The Box–Cox transformation with λ = 0.3 [74,75] was employed to
transform the observed and modeled flows. Additionally, a time step of 10 s was
used for the computational process, and overbank flow was allowed. The following
parameters were selected to calibrate the model:
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◦ Roughness parameter for land use land cover: The Mixed Forest class was
selected because, as shown in Table A1, this class is the most representative
of the land classes for Sub-watershed 1 and Sub-watershed 2 of the Añasco
watershed. To define the ranges, it was assumed a range of values between
0.1 and 0.16 which corresponds to areas dominated by trees generally greater
than 5 m tall and greater than 20% of total vegetation cover. Neither deciduous
nor evergreen species are greater than 75 percent of total tree cover [76]. It
should be mentioned that the urban and suburban drainage systems were not
explicitly modelled in this study. Overland runoff in these areas was modelled
using roughness values associated with high and medium developed land use
land covers, respectively.

◦ Soil parameters: The hydraulic conductivity was identified in previous stud-
ies [28] as one of the most sensitive soil parameters. Therefore, it was decided
to calibrate the hydraulic conductivity for the most representative soil type
(clay) in the watershed.

◦ Streambed roughness values: Two-channel bed roughness values were pro-
posed for the Añasco watershed; channel roughness 1 corresponds to the
streams of the basin and subbasins surrounding the mainstream. Channel 1
values were assumed to be between 0.02 and 0.05, based on an initial value
used in previous studies [25]. On the other hand, channel roughness 2 was pro-
posed for the upper area of Sub-watershed 2 with values ranging between 0.051
and 0.075, because this area is composed of shallow water with some gravel
and rock and irregular cross-sectional channels, which generate significant
friction [77].

The following table (Table 1) shows a summary of the parameters that were selected
to calibrate the model.

Table 1. Parameters selected during the calibration process and initial, minimum, and maximum
values.

Parameters Selected Initial Value
Intervals

Minimum Maximum

Channel Roughness 1 0.03 0.02 0.05
Channel Roughness 2 0.6 0.051 0.075

Mixed Forest Roughness 0.12 0.1 0.16
Hydraulic Conductivity for Clay 0.03 0.02 0.06

3.1.2. Validation

For the validation process, a rainfall event was chosen with the criteria of having
a similar or higher peak discharge in the magnitude of Hurricane Irma, similar initial
soil saturation as Hurricane Irma, and similar volume of rainfall. After an exhaustive
search using the USGS stream discharge gauge historical data, a rainfall event was found
which occurred between 11–13 December 2007. The soil moisture could not be verified
using the PRAGWATER website, which has a starting date of 2009. Therefore, the NOAA
Advanced Hydrologic Prediction Service (AHPS) website was used to confirm that the
previous days experienced significant rainfall, and therefore, we assumed that the soil
was saturated. Table 2 shows a comparison of the spatial resolution, temporal resolution,
maximum discharge recorded in the USGS stream discharge station, the volume from the
observed hydrograph of the USGS stream discharge station, and the volume of the rainfall
that fell in both of the sub-watersheds using the NEXRAD data.
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Table 2. Comparison between the Hurricane Irma used in the calibration process and the Extreme Rainfall Event used in
the validation process.

Events Dates
Spatial

Resolution
(m)

Temporal
Resolution

(hr)

Maximum
Discharge Recorded
in the Station (cms)

Volume
Hydrograph (USGS

Station) (m3)

Volume of Rainfall from NEXRAD
(m3)

Sub-Watershed 2 Sub-Watershed
1

Sub-Watershed
2

Hurricane
Irma

9/6/2017
12:00–9/8/2017 11:00 769 1 594 26,727,374.00 13,337,010 35,293,9530

Extreme
Rainfall Event

12/11/2007
00:00–12/13/2007

00:00
632 1 468 22,888,190.00 9752,113 29,394,120

3.1.3. Performance Evaluation Criteria

The performance of the models was evaluated by measuring the coefficient of deter-
mination (R2), Nash–Sutcliffe efficient coefficient (NSE), and percentage of bias (PBIAS)
between the simulated discharge at the outlet of the Sub-watershed 2 and measured dis-
charge by the USGS stream gauge station. According to previous studies [78], a model
can be evaluated as satisfactory for flow simulations if daily, monthly, or annual R2 > 0.60,
NSE > 0.5, and PBIAS ≤ ±15%, where:

• The coefficient of determination (R2) indicates the degree of correlation between
the simulated and the observed data, describing the portion of the variance in the
observed data explained by the simulation; the ranges are between 0 and 1, where
1 indicates less error in variance [79].

R2 =

 ∑n
i=1

(
Yobs

i −Yobs
)(

Ysim
i −Ysim

)
√

∑n
i=1

(
Yobs

i −Yobs
)2
√

∑n
i=1

(
Ysim

i −Ysim
)2


2

(4)

• The Nash–Sutcliffe efficiency coefficient (NSE) measures the perfect match between
the predicted values and the observed values; the ranges are between −∞ to 1, where
a value of 1 means a perfect match and values less than zero indicate unacceptable
performance [79].

NSE = 1−
∑n

i=1

(
Yobs

i −Ysim
i

)2

∑n
i=1

(
Yobs

i −Yobs
)2 (5)

• Percent Bias (PBIAS) measures the average tendency of the simulated data to be larger
or smaller than their observed counterparts, with the optimal value being 0; negative
values indicate overestimation bias and positive values underestimation bias [80].

PBIAS =
∑n

i=1

(
Yobs

i −Ysim
i

)
∗ 100

∑n
i=1
(
Yobs

i
) (6)

where, n is the number of observations, Yobs
i is each of the observed data, Ysim

i is each

of the simulated data, Yobs is the mean observed values, and Ysim is the mean of the
simulated values. Each of the metrics was used to evaluate the performance of the
calibrated and validated hydrographs.

3.2. Flooding Event

The general methodology implemented to reproduce the flooding event during Hurri-
cane María is described in the following steps:
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• Delineation of the watershed area below the USGS stream discharge station (Sub-
watershed 1): Using the same methodology as for Sub-watershed 2, a DEM of 10 m
resolution was utilized to delineate the area below the USGS stream discharge station
(Sub-watershed 1 of Figure 2). During this process, an outlet point was placed at the
end of the Añasco watershed in the coastal zone to obtain a first approximation of
the delineated area. Subsequently, the Arc tool from GSSHA was used to extend the
delineated area, ensuring the total cover of Sub-watershed 1. This process is required
for watershed delineation when the results from the automated delineation option
from GSSHA do not match the actual delineated area.

• The same procedure as described for Sub-watershed 2 was used to generate the cross-
sections of the stream channels for Sub-watershed 1 and define land use, soil type, and
grid selection. It should be mentioned that the best-calibrated parameters obtained
from Sub-watershed 2 were also used for Sub-watershed 1.

• Definition of the inflow hydrograph and rainfall during Hurricane María: An inflow
node was placed at the location of the USGS stream gauge in Sub-watershed 1 to
simulate the water coming from Sub-watershed 2. Additionally, the hourly time series
of the WRF simulated rainfall from Hurricane María was used as the precipitation
data.

• Definition of the storm surge: In the grid cells located along the coast, a variable stage
(water surface elevation) boundary condition was created to simulate the storm surge
during Hurricane María. For the simulations without using storm surge, a constant
stage boundary condition was used.

3.2.1. Rainfall and Inflow Hydrograph Definition during Hurricane María

During Hurricane María, the WSR-88D radar located in PR was damaged due to
extreme winds [60]; thus, level 3 NEXRAD data were unavailable. Therefore, the rainfall
was defined using data from a concurrent study [61]; a Weather Research and Forecasting
Model (WRF) was used to reproduce atmospheric variables during Hurricane María, such
as precipitation and wind speed. The WRF precipitation output has a 1 km spatial and 1 h
temporal resolution in this study, covering the period 09/19/2017, 12 pm to 09/21/2017,
11 am, a total of 48 h. The criteria used for choosing 48 h was to be consistent with the same
number of hours used in the calibration and validation process.

Figure 6a shows the cumulative rainfall from the simulated Hurricane María using
the WRF model. In addition, 63 different rain gauges from the National Weather Service
(NWS), which reported the cumulative rainfall for 48 h, were used to generate a rainfall
distribution map using the inverse distance weighted (IDW) interpolation method with a
spatial resolution of 700 m. Subsequently, this map was cropped to show the cumulative
rainfall for the Añasco watershed, as shown in Figure 6b. A comparison made between
these two cumulative maps indicates a difference in the volume of 65 million cubic meters,
which translates to an error of approximately 35 % (Table 3).
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Table 3. Volume comparison of the WRF and NWS interpolated rainfall.

Volume from Cumulative Rainfall (m3)
Error (%)WRF Cumulative

Rainfall
NWS Interpolated

Rainfall
Absolute Difference

(m3)

120,972,091 185,939,473 64,967,382 34.94

Figure 7 shows WRF precipitation rainfall, NWS cumulative rainfall, and the error in
percentages between the WRF and NWS cumulative rainfall. A correction of the WRF time
series was performed using the cumulative WRF rainfall and the NWS interpolated rainfall
for the whole of PR; for this correction, it was assumed that the temporal distribution
of the rainfall in the WRF model was correct. Therefore, the only variable to modify
was the spatial distribution of the rainfall. To correct rainfall, Equation (7) was used to
compute the distributed error between the two cumulative maps with respect to the WRF
cumulative rainfall. Subsequently, Equation (8) was implemented to adjust the original
hourly WRF precipitation values using the distributed errors previously described to obtain
the corrected hourly WRF precipitation.

εi,j =

(
RWRF

i,j − RNWS
i,j

)
RWRF

i,j
(7)

Rcorrect
i,j (t) = RWRF

i,j (t) + RWRF
i,j (t) ∗ εi,j (8)

where, εi,j is the distributed error between the two cumulative maps in position ith, jth,
RWRF

i,j is the WRF cumulative rainfall, RNWS
i,j is the NWS cumulative rainfall, RWRF

i,j (t) is
the hour WRF rainfall at t time, and Rcorrect

i,j (t) is the hour corrected rainfall at t time.
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Three optional hydrographs were considered to recreate the flooding event during
Hurricane María:
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• During Hurricane María, the USGS stream discharge gauge stopped working when
it reported a maximum discharge measurement of almost 5200 m3 s−1, assumed to
be the peak discharge for the whole event. Consequently, there is a gap of nearly
24 h where there is no data available, and after that, the USGS reported an estimated
discharge. A simple linear regression was employed to interpolate the data to fill
the gap and obtain time series values every 15 min. Figure 8a shows the final built
hydrograph superimposed on the USGS discharge data. The time series, limited to
48 h (Figure 8b), was used to simulate the inflow boundary condition at the upstream
location in Sub-watershed 1 for two scenarios (defined below).

• The calibrated parameters obtained in the calibration process were used for Hurricane
María to obtain the output hydrograph for Sub-watershed 2 using the WRF rainfall
and the corrected rainfall separately. Following this, each output hydrograph obtained
was used as an inflow hydrograph at the upstream location for Sub-watershed 1 to
reproduce the flooding event during Hurricane María.
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3.2.2. Storm Surge

According to the Hurricane María report developed by NOAA, the storm surge in
Western PR reached values between 1 and 3 feet (0.3 and 0.9 m) [60]. A NOAA tide station
(9759394) was identified close to the coast of the Añasco watershed, which contained data
from predicted and partially observed water height levels during Hurricane María. It was
noticed that the maximum height of the water level (using the Mean Lower Low Water,
MLLW) was approximately 0.85 m. Subsequently, it was decided to merge the predicted
and the observed data to obtain a height water level variation over time. The last point
of the observed data was merged with the closest predicted water level height to create a
smooth curve, as shown in Figure 9.
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storm surge for Hurricane María.

3.2.3. Hydrologic Modelling Approaches (HMAs)

Six different approaches were created to evaluate and analyze the flooding results in
the lower area of the Añasco watershed (Table 4).

Table 4. List of hydrologic modeling approaches (HMAs) used to simulate the flooding of Sub-
watershed 1.

Number HMAs

1 USGS Hydrograph + WRF Rainfall + No Storm Surge
2 USGS Hydrograph + WRF Rainfall + Storm Surge

3 Inflow Hydrograph from Sub-watershed 2 using WRF Rainfall + WRF
Rainfall + No Storm Surge

4 Inflow Hydrograph from Sub-watershed 2 using WRF Rainfall + WRF
Rainfall + Storm Surge

5 Inflow Hydrograph from Sub-watershed 2 using bias-corrected WRF
Rainfall + bias-corrected WRF Rainfall + No Storm Surge

6 Inflow Hydrograph from Sub-watershed 2 using bias-corrected WRF
Rainfall + bias-corrected WRF Rainfall + Storm Surge

3.2.4. Flood Depth Validation

To validate the results from the flooding model, a survey was carried out to obtain
an estimate of the flooding depth from the residents around the area affected during the
Hurricane María. It should be mentioned that the flooding extent could not be obtained due
to the lack of satellite images during the event. Several trips were made to the study area
to interview people to obtain information about their experience during Hurricane María.
People were asked, based on their recollection, how high the floodwater rose. Typically,
they would point to a position on a wall or indicate the depth relative to a part of their
body, for example, their knee or their waist. Table A4 gives the survey results, including
the latitude and longitude of the interview location and the depth of flooding. In the results
section of this paper, the simulated flooding will be compared to the depths obtained from
the face-to-face interviews provided in Table A4; the geolocation and the distribution of
the data collected can be observed in Figure 10. A python script was created to transform
the coordinate reference system from WGS 84 (ESPS:4326) to the same coordinate reference
system used in the GSSHA output flooding map, WGS 84/UTM zone 19N. Subsequently,
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the same python script was used to obtain the flooding depth at each of the survey locations
in the output flooding map from GSSHA, in order to compare the results.
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3.2.5. Methodology for Assessing Impacts to Critical Infrastructure

A python script was written to identify the infrastructure affected by the flooding.
Input to the script included shapefiles with the geolocated infrastructure and each of the
flooding maps. In this study, we assumed that a flood depth greater than 20 cm was defined
as the criteria of failure for each of the water, electrical and public infrastructures. Table 5
summarizes all the infrastructures that were considered and their quantity within the study
area.

Table 5. Type and total water, electrical, and public infrastructures.

Infrastructure Total

Water infrastructure

Sewer pump stations 33
Potable water pump stations 40

Sewer plants 1
Filtration Plants 1

Wells 12

Electric Infrastructure
Substations 3

Transmission Center 1

Public Infrastructure Public Schools 21

4. Results
4.1. Calibration Results

As was mentioned previously, two methods available in GSSHA were used to calibrate
the model. The SLM calibration method took almost 72 h to finish compared to the MLSL
method, which took more than 147 h. The final calibrated parameters are summarized in
Table 6.

Table 6. Best parameters for each of the calibration methods.

Parameters SLM MLSL

Channel Roughness 1 0.02 0.02
Channel Roughness 2 0.075 0.063

Mixed Forest Roughness 0.1 0.1075
Hydraulic Conductivity for

Clay 0.02 0.02262
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Having output hydrographs for each of the calibrations and the observed hydrograph,
GSSHA computed the performance evaluation criteria to indicate which models had the
better results. As shown in Table 7, the SLM calibration method achieved all the evaluation
criteria to be satisfactory. Unfortunately, the MLSL calibration method did not achieve
two of the evaluation criteria. Therefore, the parameters obtained in the SLM calibration
method were utilized to validate the 2007 rainfall event.

Table 7. Evaluation criteria results and comparison of the volume between the observed and modeled hydrograph for the
SLM and MLSL method.

Evaluation Metrics Volume (m3) Evaluation Criteria

R2 NSE PBIAS (%) Observed Modelled Error (%) R2 > 0.6 NSE > 0.5 PBIAS < ±15%

SLM 0.613 0.55 13.197 26,727,374 23,208,506 13.2 Yes Yes Yes
MLSL 0.585 0.519 15.61 26,727,374 22,563,229 15.6 No Yes No

Figure 11a,b shows the comparison of the observed and modeled hydrograph during
Hurricane Irma using the calibrated parameters from the SLM calibration method and the
MLSL calibration method, respectively. Additionally, it can be observed from Table 7 that
the PBIAS values are positive, which mean that the modeled hydrograph underestimates
the amount of volume below the hydrograph.
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Figure 11. Comparison between the modeled and observed (red line) hydrograph during Hurricane
Irma using: (a) the calibrated parameters from the SLM calibration method (blue line); (b) the
calibrated parameters from the MLSL calibration method (blue line).

4.2. Validation Results

In this section, the calibrated parameters obtained using the SLM calibration method
were validated using a rainfall event from 11–13 December 2007. In this case, two simula-
tions were made (Figure 12), using a time step of 2 s and a time step of 10 s. The 10 s time
step was used first; however, there was a region in the hydrograph where an oscillation
in the discharge occurred. For this reason, it was decided to decrease the time step to 2 s,
and as a result, the oscillatory behavior was eliminated. In Table 8, it can be seen that all
the evaluation criteria are satisfied, and the evaluation metrics improved when a time step
of 2 s was employed. Moreover, it was evidenced how the computational time increased
when a time step of 2 s was used compared to a time step of 10 s, from a 3.6 h runtime
(time step of 10 s) to a 16 h runtime (time step of 2 s). In addition, it should be noted
from the PBIAS value in Table 8 that the validation results produced an overestimation in
comparison to the measured discharge.
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2007 (AST).

Table 8. Evaluation criteria results and comparison of the volume between the observed and modeled hydrograph using 2 s
and 10 s time steps.

Evaluation Metrics Volume (m3) Evaluation Criteria

Time Step(s) R2 NSE PBIAS (%) Observed Modelled Error (%) R2 > 0.6 NSE > 0.5 PBIAS < ±15%

2 0.946 0.903 −1.87 22,888,190 23,328,917 1.926 Yes Yes Yes
10 0.9 0.838 −3.211 22,888,190 23,636,319 3.269 Yes Yes Yes

In addition to the validation results, the calibrated model was used with the Hurricane
María WRF rainfall (with and without correction) to obtain the hydrographs at the USGS
stream discharge gauge location. These hydrographs were used in the next section to
reproduce the flooding in the coastal flood plain. The hydrograph 1 and hydrograph 2 in
Figure 13 show the output hydrographs obtained using the WRF rainfall and the corrected
rainfall over Sub-watershed 2.
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4.3. Flooding Results

HMA 1 and 2 in Figure 14 show how the significant amount of discharge reported
by the USGS stream discharge station affected the lower area of the Añasco watershed,
especially along the coastal zone. The model produced a large extent and depth compared
to the other HMAs (Figures 15 and 16). It should be noted that the incorporation of the
storm surge in HMAs 2, 4, and 6 produced less than 1 m of flooding in the areas close to
Añasco Bay. However, incorporating the storm surge did not produce considerable changes
in the central part of Sub-watershed 1, where much of the flooding occurred. On the other
hand, it can be noted in Figure 16 how the bias corrections are noticeable in the flooding
map, producing a more significant extent of flooding than the HMAs of Figure 15, which
represent the original result of WRF without any correction.
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charge data for Hurricane María as an inflow boundary condition and WRF rainfall. (a) Without
incorporating storm surge; (b) including the storm surge.
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Sub-watershed 2. (a) Without incorporating storm surge; (b) incorporating the storm surge.
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Figure 16. Maximum flooding depth in Sub-watershed 1 using bias-corrected WRF rainfall for
Hurricane María. Inflow hydrograph for Sub-watershed 1 was obtained by simulating runoff
using bias-corrected WRF rainfall in Sub-watershed 2. (a) Without incorporating storm surge;
(b) incorporating the storm surge.
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4.3.1. Flood Validation Using Survey Data

This section presents the comparison between the flood depths obtained from the face-
to-face interviews with the model-simulated flood depths for the six HMAs (Figures 17–19).
It is noted that there were no noticeable differences between the simulations with and
without storm surge. For example, HMAs 1 and 2 (Figure 17a,b) simulated identical
conditions, the only difference being the storm surge in the HMA 2. In general, the
simulated flood depths in HMAs 1 and 2 were larger than for the other HMAs. The linear
regression equations and the R2 and p values are provided in each of the graphs with the
95% confidence interval. It should be noted in Figures 17–19 how the p-values are less than
the significance level (p-value ≤ 0.05), meaning that the data provide enough evidence to
reject the null hypothesis, and that no correlation exists between the two datasets. The flood
depth estimates can be improved by adjusting the flood depths using the linear regression
equations. Figures 20–22 show the flood depth maps for HMAs 2, 4, and 6, corrected using
the flooding results from Figures 14b, 15b and 16b and the linear regression equation from
Figures 17b, 18b and 19b to predict the survey depth values. The equation was used to
predict flooding depth greater than 0.05 m, in order to avoid increases in depth when the
flood depth was zero because of the intercept of the equation.
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storm surge; (b) including the storm surge.
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María; the inflow hydrograph for Sub-watershed 1 was obtained by simulating runoff using bias-
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4.3.2. Extent of Flooded Area

The lack of satellite images, such as Synthetic Aperture Radar (SAR), made it impos-
sible to obtain details of the flood extent during Hurricane María. Therefore, the area of
the 500-year annual chance of flood hazard map from FEMA was used to compare the
extent of flooding. Figure 23 shows the 500-year extent of flooding, which has an area of
34,789,370 m2.
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FEMA [81].

Table 9 shows the flooded area for each HMA and the percentage differences from
the FEMA 500-year flood area (Figure 23). The predicted flooded areas from all HMAs
were less than FEMA’s 500-year flood area. The lowest percentage difference was for HMA
2 corrected (−13.51%). In addition, the HMAs 5 and 6, where rainfall bias corrections
were applied, had smaller differences compared to the results using the original WRF
rainfall data (HMAs 3 and 4). We compared the areas from the different HMAs with the
500-year annual chance of flood hazard map, assuming that the character of Hurricane
María corresponded to this kind of event and taking into account that it is the maximum
return period available from FEMA.
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Table 9. Comparison of the flood prone area from the 500-year annual chance of flood hazard map
(FEMA) and the flooding maps of the different HMAs.

HMA Flooded Area (m2)
Comparison with the FEMA Flood Extent Area

Absolute Difference (m2) Difference (%)

1 27,680,000 7,109,370 −20.44
2 27,920,000 6,869,370 −19.75
3 18,560,000 16,229,370 −46.65
4 18,740,000 16,049,370 −46.13
5 23,230,000 11,559,370 −33.23
6 23,370,000 11,419,370 −32.82

2 Corrected 30,090,000 46,99,370 −13.51
4 Corrected 23,810,000 10,979,370 −31.56
6 Corrected 23,840,000 10,949,370 −31.47

4.4. Critical Infrastructure

In this section, different water, electrical, and public infrastructure locations were used
to evaluate the flooding impacts, assuming infrastructure failure when the flood depth
is greater than 20 cm. In this analysis the simulated flood depths were corrected using
the regression equations presented in Figures 17b, 18b and 19b. Although the regression
analyses did not result in R2 values close to 1, the application of the regression equations
will significantly improve the flood depth estimation.

Tables 10 and 11 show the number of water and public/electrical infrastructures
impacted by flooding, respectively. In Table 10, it is evident how some of the potable and
sewer water components are potentially affected by the flooding caused by Hurricane
María; specifically, sewer pump stations, potable water pump stations, and some of the
wells owned and managed by the water authority (Autoridad de Acueductos y Alcantaril-
lado de PR [AAA]). Additionally, it can be shown in Table 10 that most of the sewer pump
stations are affected by flooding in HMAs 2 and 6. On the other hand, four potable water
pump locations were impacted by the flooding event during Hurricane María in all the
HMAs. Furthermore, some wells not located in the flood-prone areas were affected by
HMAs 5 and 6. The flooding depth increased in some other areas due to the increment
of the bias-corrected WRF rainfall. These failures are critical, especially the potable water
components because they cause the disruption of potable water in the system. For example,
pump stations are needed to fill water in the system tanks, deliver water to higher location
customers, or increase the flow rate to achieve customer requirements.

Table 10. Water facilities that failed in each of the HMAs due to a flooding depth greater than 20 cm.

Water Infrastructure
HMA

Total Facilities
1 2 3 4 5 6

Number of Facilities that Failed

Sewer pump stations 9 12 4 7 7 10 33
Potable water pump stations 4 4 4 4 4 4 40

Sewer plants 0 0 0 0 0 0 1
Filtration Plants 0 0 0 0 0 0 1

Wells 0 0 0 0 2 2 12
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Table 11. Public and electrical infrastructures that failed in each of the HMAs due to a flooding depth
greater than 20 cm.

Public and Electrical Infrastructure
HMA

Total Facilities
1 2 3 4 5 6

Number of Facilities that Failed

Public Schools 1 1 0 0 1 1 21
Substations 0 0 0 0 0 0 3

Transmission Center 0 0 0 0 0 0 1

A flood analysis of some other public and electrical infrastructure was conducted
(Table 11). From the evaluation, we determined that there were no electrical substations
or transmission centers affected by the flooding event during Hurricane María for any of
the HMAs. On the other hand, Table 11 shows a public school was affected by Hurricane
María flooding, occurring in four of the six HMAs.

Tables 12 and 13 show the number of water and public/electrical infrastructures
impacted, respectively, using the linear regression approximation for flooding. With
the corrected flooding, it is noted (Table 12) how the quantity of affected infrastructure
increases, especially the sewer and potable pump stations in HMA 2 (relative to Table 10);
additionally, a number of wells were impacted. On the other hand, electrical infrastructure
shows no damage in the transmission center and substations (Table 13), while the number
of public schools affected by flooding increased.

Table 12. Water facilities that failed in HMAs 2, 4, and 6 using the linear regression approximation
due to a flooding depth greater than 20 cm.

Water Infrastructure
HMA

Total Facilities
2 4 6

Number of Facilities that Failed

Sewer pump stations 18 13 11 33
Potable water pump stations 6 6 6 40

Sewer plants 0 0 0 1
Filtration Plants 0 0 0 1

Wells 3 3 4 12

Table 13. Public and electrical infrastructures that failed in HMAs 2, 4, and 6 using the linear
regression approximation due to a flooding depth greater than 20 cm.

Public and Electrical Infrastructure
HMA

Total Facilities
2 4 6

Number of Facilities that Failed

Public Schools 4 3 3 21
Substations 0 0 0 3

Transmission Center 0 0 0 1

5. Discussion

Based on the evaluation criteria, the validation results can be considered very good,
with R2 = 0.946, NSE = 0.903, PBIAS (%) = −1.87, and volume error = 1.9%. The model
was able to successfully capture 95% of the variation in the streamflow variability. On
the other hand, the calibration results were not as good, indicating that the model could
only capture 61% of the variation in the streamflow variability and have a 15.2% error
in the volume estimate. Only one other study calibrated hourly stream discharge for the
Añasco River. Using the Vflo model, [27] adjusted model parameters for eight different
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storms. The storms that were evaluated were significantly smaller than the storms we
considered in this study. Although they did not use the same evaluation metrics that we
used, their model performance appears to be comparable. All other hydrologic model
studies for the Añasco watershed simulated daily or monthly average discharge. The
authors of [26,28,29] reported coefficients of determination (R2) of 0.24, 0.50, and 0.57,
respectively. The authors of [28] did not perform a formal model calibration but rather
compared their model, configured with best-estimated model parameters, with available
stream gauge data. Although reporting on a model calibration, [25] did not provide
calibration statistics.

There are various sources of uncertainty that may explain the lower metrics for
Hurricane Irma calibration, including:

• The rating curve used by the USGS to convert river stage to discharge may not have
been accurate during the Hurricane Irma event.

• Although an effort was made to accurately account for the water released from the
lakes in the upper Añasco watershed, the PR Energy and Power Authority (PREPA),
the agency that manages the lakes, could not provide any information on discharges
from the lakes.

• NEXRAD radar rainfall data may also introduce errors into the hydrologic simulation.
Rojas Gonzalez [26] reported a simulation of streamflow for the Añasco River in which
NEXRAD significantly overestimated the rainfall. A known problem associated with
radar rainfall in Western PR is related to the radar’s inability to see low clouds (less
than 3000 m) at large distances from the radar facility due to the earth’s curvature [27].
This problem would be expected to produce underestimates in rainfall. However,
one of the authors of this paper has considerable experience using radar rainfall in
Western PR and has observed both under and overestimation compared with NWS
rain gauges.

Time series rainfall from rain gauges was not available for Hurricane María. Conse-
quently, it was necessary to use a WRF model rainfall dataset. In general, the WRF model
of [61] did a good job of simulating rainfall over PR, with a Normalized Root Mean Square
Error (RMSE) of 0.2. However, we observed inconsistencies in the total rainfall depths
within our study area compared with the NWS interpolated rain gauge data. A correction
of the WRF time series rainfall was made using the NWS rain gauge data. There was
little observable difference in flooding between the corrected and noncorrected rainfall
(Figures 15 and 16).

Neither the WRF nor the bias-corrected WRF rainfall datasets could produce the large
volume measured by the stream gauge during Hurricane María (Figure 8), and the use of the
USGS stream gauge data for the inflow boundary condition to Sub-watershed 1 resulted in
significantly greater flooding (Figure 14) than resulted from the WRF noncorrected rainfall
(Figure 15) or the corrected rainfall (Figure 16).

The authors of [28] simulated the combined effect of storm surge and overland runoff
in Eastern PR for Hurricane George. Although the peak of the storm surge, estimated
to be 3 m, did not correspond with the peak runoff, the compound effect did aggravate
flooding. In this study, we also used GSSHA to simulate the combined effects of storm
surge and runoff. The authors of [60] estimated the storm surge in the study area to be 0.3
to 1 m. Figures 14–16 show flooding within and without storm surge included. The figures
indicate that the impact from the storm surge was minimal. However, it should be noted
that individuals interviewed in the study living near the coast observed the storm surge.

Figures 17–19 show the Hurricane María flood depths obtained from face-to-face
surveys versus the simulated flood depths for the six simulated HMAs. The data pairs
associated with data points Nos. 17 and 32 were considered outliers and removed from
the dataset. Datapoint No. 17 was removed because there was another data point within
the same model grid pixel (No. 18) with an observed depth three times that of No. 17.
There was considerable small-scale topographic variation, which the model could not
capture with the 100 m grid spacing. Datapoint No. 32 was located at a car dealership. The



Hydrology 2021, 8, 104 26 of 32

grid pixel contained two large buildings with roof heights of approximately 10 m and a
raised highway approximately 5 m above the car dealership parking lot. The complexity
of the topography at the location may have introduced an error in the grid elevation. It
should also be noted that the survey data was acquired from resident interviews and not
through post-flooding analysis which introduces some uncertainties in the surveyed depth;
additionally, the flooding extent could not be validated because of the lack of satellite
images during the Hurricane María event.

In general, the GSSHA model did not provide highly accurate flood depths, as evi-
denced from the low coefficients of determination (R2) values of 0.547, 0.399, and 0.441 for
HMAs 1 and 2, 3 and 4, and 5 and 6, respectively (note that the r2 values were the same
with or without storm surge due to the negligible effect storm surge had on flooding at
the locations of the comparisons). To improve the model’s ability to estimate flood depths,
the linear regression equations were applied to enhance the depth estimates. Finally, a
GIS intersection analysis was performed to evaluate infrastructure impacts, assuming to
occur for flood depths greater than 20 cm. The analysis revealed numerous water compo-
nents that were potentially impacted. No electrical infrastructure was identified as being
impacted, while several public schools were potentially impacted. Electric infrastructure
is known to have been damaged in the study area during Hurricane María; however, the
cause is likely attributable to wind damage.

5.1. Model Limitations

Some of the limitations of the model are described:

• The model used in this study was developed for large storm events proceeded by sat-
urated soil conditions. Consequently, the model has not been calibrated for conditions
when soil saturation is low and infiltration becomes a significant factor. Future efforts
should consider calibrating the average matric suction at the wetting front during
periods of low soil saturation.

• The hydrologic model of Sub-watershed 1 was not calibrated in this study. However,
the depths and extent of the flood were compared with data obtained from a home-
owner survey. Although the analysis did not yield a high correlation between the
observed and simulated flood depths, we applied the resulting regression equations,
which significantly improved the performance of the flood depth estimation. The
flood depths obtained from the face-to-face interviews were limited to flood plain
areas where people were present during Hurricane María.

• The model was based on a simplified conceptualization of the land surface parameters.
Single values of roughness and hydraulic conductivity were used for the dominant
land use/soil in Sub-watershed 2. More accurate distribution of these parameters in
the watershed may help to improve the model calibrations.

5.2. Future Work

Recommendations for future research include:

• Couple the flood model with a WRF rainfall forecast model to obtain 2- to 3-day
advanced flooding warnings.

• Couple the flood modelling results with a Power/Water network model.
• Expand the model domain to include the Culebrinas, Yagüez, and Guanajibo water-

sheds. This will expand the area of coverage from 350 km2 to over 900 km2.
• Continue to work with the water and electric authorities to refine our approach for

identifying impacted infrastructure.
• Use the model to investigate ways to mitigate flooding in Sub-watershed 1. For

example, evaluate changes in agricultural land-use practices or incorporate natural
infrastructure.
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6. Conclusions

A GSSHA model was developed in this study to simulate overland runoff, streamflow,
and coastal storm surge in Western PR during Hurricane María. The upper gauged
watershed (Sub-watershed 2) was calibrated with stream discharge data for Hurricane Irma
and validated using a comparable storm from 11–13 December 2007. The Secant Levenberg–
Marquardt (SLM) method was used for model calibration. Because the NEXRAD radar
was damaged during the hurricane, we used the rainfall generated from the WRF model.
Additionally, a bias-corrected WRF rainfall data set was used. The bias corrections were
derived from the NWS total rainfall dataset. Flooding was simulated in the coastal flood
plain (Sub-watershed 1) for six different HMAs. Storm surge did not appear to aggravate
the flooding, at least in the areas considered in this study. Although the simulated flooding
depth did not correspond exactly with the observed data, a set of calibration equations was
employed to improve the model’s performance. An analysis was conducted to determine
the impact of flooding on water, electricity, and public infrastructure. Numerous water
infrastructure components were impacted, including sewer pump stations, potable water
pump stations, and wells. No electrical infrastructure sustained damage from flooding (per
our criteria: water depth > 20 cm), while several public schools were damaged by flooding.
Future research will focus on expanding the model domain and coupling the flood model
with a rainfall prediction model to produce a flood forecast alarm tool.
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Appendix A

Table A1. Percentage distribution of the land classes within Sub-watershed 1 and Sub-watershed 2
from Figure 2, and the Manning’s values for each of the classes [67].

Land Class Sub-Watershed 1 (%) Sub-Watershed 2 (%) Manning’s
Values

Mixed Forest 77.5 59.1 0.1
Cultivated 7.9 2.9 0.037

Low Intensity Developed 4.7 8.4 0.05
Scrub/Shrub 3.6 7.9 0.05

Palustrine Forested Wetland 3.0 0.5 0.1
Medium Intensity Developed 1.0 4.6 0.1

Grassland 0.9 2.7 0.034
Water 0.6 0.6 0.02

Pasture/Hay 0.4 5.0 0.033
High Intensity Developed 0.3 2.8 0.13

Bare Land 0.1 0.5 0.09
Developed Open Space 0.1 1.0 0.02

Palustrine Scrub/Shrub Wetland 0.0 0.4 0.048
Unconsolidated Shore 0.0 0.1 0.04

Palustrine Emergent Wetland 0.0 3.0 0.045
Estuarine Forested Wetland 0.0 0.2 0.1

Estuarine Scrub/Shrub Wetland 0.0 0.0 0.048
Estuarine Emergent Wetland 0.0 0.1 0.045

Table A2. Percentage Distribution of soil classes within Sub-watershed 1 and Sub-watershed 2 from
Figure 2.

Soil Class Sub-Watershed 1 (%) Sub-Watershed 2 (%)

clay 77.5 66.8
clay loam 16.9 16.8

loam 0.5 3.0
loamy sand 0.0 0.0

sand 0.0 2.4
sandy loam 0.0 0.0

silt clay loam 1.6 10.8
silty clay 3.1 0.0
silty loam 0.4 0.2

Table A3. Values assumed for the Green Ampt infiltration method [70].

Infiltration Variables Clay
Loam

Loamy
Sand Clay Silt Clay

Loam
Sandy
Loam Loam Silty

Clay
Silty
Loam Sand

Hydraulic conductivity (cm/h) 0.2 5.98 0.06 0.2 2.18 1.32 0.1 0.68 23.6
Capillary head (cm) 20.88 6.13 31.6 27.3 11.01 8.89 29.22 16.68 4.95

Porosity (m3/m3) 0.464 0.437 0.48 0.471 0.453 0.46 0.479 0.501 0.44
Pore Distribution Index (cm/cm) 0.242 0.553 0.17 0.177 0.378 0.25 0.15 0.234 0.69

Residual Saturation (m3/m3) 0.075 0.035 0.09 0.04 0.041 0.03 0.056 0.015 0.02
Field Capacity (m3/m3) 0.318 0.125 0.4 0.366 0.207 0.27 0.387 0.33 0.09
Wilting Point (m3/m3) 0.197 0.055 0.27 0.208 0.095 0.12 0.25 0.133 0.03
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Table A4. Locations and depths of flooding during Hurricane María obtained from residents in the
Añasco flood plain (Sub-watershed 1).

No. Lat Lon Depth (m) Description

0 18.24994 −67.1605 1.22 Shell Station on Road 2
1 18.25932 −67.1604 1.525 West Power Company Road 2
2 18.26726 −67.1576 1.525 First Medical Cannabis
3 18.27699 −67.1633 1.525 Grooming Machine near Road 2
4 18.29674 −67.1792 0.07625 Horse Facility
5 18.2908 −67.1889 0.915 Bakery
6 18.27804 −67.1883 0.915 In street at HP beach home

7 18.27354 −67.1874 0.915 Close to small waterway north of Añasco
River

8 18.29619 −67.1987 0 Gas Station
9 18.29853 −67.1843 0 Colmado
10 18.28207 −67.1405 0 Añasco Plaza
11 18.28054 −67.1365 1.0675 Auto Supply Store
12 18.27885 −67.13 0 Hardware Store
13 18.27883 −67.1305 1.22 Back yard of home next to hardware store
14 18.2871 −67.1308 0 Urbanization on north side of Añasco
15 18.28142 −67.1407 1.6775 Daycare Center behind Municipal Building
16 18.27843 −67.114 4.575 Residential home
17 18.27674 −67.1273 0 Residential home
18 18.27534 −67.1575 1.22 Roadside Store
19 18.2981 −67.1513 0 Pharmacy Road 402
20 18.29606 −67.1447 0 Urbanization
21 18.28486 −67.1384 0 Urbanization
22 18.28942 −67.1443 0 Industrial Park
23 18.30017 −67.1585 0.61 Oil Change Garage
24 18.29886 −67.1603 0 Laundry Mat
25 18.29912 −67.1665 0.61 Road 402 in front of Coffee Shop
26 18.26535 −67.1835 1.22 Urbanization close to Añasco River
27 18.26223 −67.1811 1.22 Urbanization close to Añasco River
28 18.25013 −67.1758 1.22 Grocery Store on Road 341
29 18.256 −67.1612 3.355 Mazda Dealership on Road 2
30 18.24323 −67.1602 0.07625 Church’s Chicken on Road 2
31 18.2995 −67.1711 0.27755 House on Hwy 115
32 18.28975 −67.1863 1.9825 No description
33 18.28551 −67.1859 1.9825 No description
34 18.28853 −67.1897 1.525 No description
35 18.26178 −67.1748 1.83 No description
36 18.2603 −67.1752 1.525 No description
37 18.25227 −67.1772 1.83 No description
38 18.24886 −67.1642 1.3725 No description
39 18.25006 −67.1578 0 No description
40 18.2535 −67.1492 0.7625 No description
41 18.24555 −67.1384 0 No description
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