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Abstract—The hardware intellectual property (IP) cores from
untrusted vendors are widely used, which has raised security
concerns for system designers. Although formal methods provide
powerful solutions for detecting malicious behaviors in hardware,
the participation of manual work prevents the methods from
practical applications. Information Flow Tracking (IFT) is a
powerful approach to prevent sensitive information leakage.
However, existing IFT solutions are either introducing overhead
in hardware or lacking practical automatic working procedures.
To alleviate these challenges, we propose a framework that fully
automates information leakage detection in the gate level of
hardware. This framework introduces Z3, an SMT solver, in
checking the violation of the confidentiality automatically. On
the other hand, a parser converting the gate-level hardware to
the formal model is developed to further remove the manual
workload. To validate the effectiveness, the proposed solution is
tested on 11 gate-level netlist benchmarks. The Trojans leaking
information from circuit outputs can be automatically detected.
We also account for time consumption during the whole working
procedure to show the efficiency of the proposed approach.

I. INTRODUCTION

The demand for intellectual property (IP) cores has been sig-
nificantly increased because of the changing landscape of the
semiconductor industry. The proliferation of the IP market is
affected by various factors like lowered design cost, shortened
time-to-market (TTM), etc. In the meantime, the credibility of
3rd-party vendors is threatened by the hardware Trojan and
design flaws, which also places high-security uncertainties on
the IP end-users and customers. In a system-on-chip (SoC), a
malicious IP core can bypass many existing hardware Trojan
detection methods [1], [2].

In detecting hardware Trojans and vulnerabilities, formal
methods have been most effective among all the existing
techniques [3], [4], [5], [6], [7], [8], [9], [10], [11]. However,
very few of current formal verification approaches are scalable
and practical for hardware Trojan detection in the industry
because of lacking automatic and efficient tools. For instance,
model checking is a popular used malicious logic detection
method for protecting third-party IP cores [10]. In the model
checking, security properties are formalized as traces and all
possible traces generated by the system are checked. The
system is treated to match against the security properties is
all the traces pass the checking [12]. However, checking the
very large system, the model checker always runs into the state
space explosion issue.

Information flow tracking (IFT) [13] is a scalable approach
for detecting leakage/sneaky path of sensitive information. In
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the IFT, data or operations are assigned by labels standing
for the trust levels. Rely on the information flow policy, the
labels are propagated or updated to other data. In general, data
with labels are accessed or propagated to the trust portion in
the system. Some IFT based solutions on assuring hardware
security are proposed like SecVerilog [14], [15], Caisson
[16], Sapper [17], QIF-Verilog[18], GLIFT[19], etc. However,
there is lacking IFT solution in detecting sneaky paths in the
gate-level netlist. The theorem, Coq, is utilized in proving
the gate-level information flow property in [20]. However,
as a theorem proving method, a significant manual effort
is required for constructing machine proofs. SecChisel [21]
applies an automated formal verification checking using the
73 solver [22], while the scope of the SecChisel is only on
protecting high-level synthesis.

To solve those problems, we propose a framework for for-
malizing and checking gate-level hardware design for security
purposes. In the framework, gate-level netlist data files are
parsed to the formal model in the form of constraints at
first. Then sensitive labels are introduced to denote secretes
in the hardware design. In the end, if outputs are tainted by
the labels, the information leakage is detected. Satisfiability
modulo theories (SMT) solver is utilized as the checking
engine to propagate the information flow and automatically
check the IFT policies.

The main contributions of this paper are as follows.

« We introduce an automated formal verification framework
detecting vulnerability in the gate-level netlist. The netlist
data is formalized to a circuit model, based on which
the security property is designed. The confidentiality is
enforced to the input hardware design by applying an
automatic checking engine.

o GLIFT is, for the first time, statically applied in the gate-
level hardware with a fully automated working procedure.
The information leakage caused by Trojans is addressed
by tracking sensitive information.

« We deliver the toolchain in demonstrating the framework.
It includes a parser and a Z3 SMT Solver which automate
the formalization stage and property checking stage of the
formal verification, respectively.

The rest of the paper is organized as follows. In Section II,
we introduce the threat model and discuss previous work on
malicious logic detection using IFT based solutions and then
present a gate-level IFT model. We explain our automated
framework involving the SMT solver and code parser in Sec-
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tion III. Section IV presents demonstrations of our approach
by testing 22 gate-level netlist benchmarks with hardware
Trojan. The limitations of this work are discussed in Section
V. Finally, conclusions and future works are drawn in Section
VI

II. BACKGROUND

We introduce the attack model in this section at first. Then
IFT based solutions are investigated in the hardware security
area. The gate-level IFT model is explained with the example,
based on which the formal model in the proposed framework
is built.

A. Attack Model

In this paper, we assume that information leakage paths
are created by either intended hardware Trojan or unintended
design errors. Malicious logic can be inserted by an adversary
at the design or testing stage of the supply chain. We assume
that the rogue agent at the third-party IP vendor can access
the RTL design or the gate-level netlist files and then insert
a hardware Trojan or backdoor to create a sneaky path of the
design. Lacking security knowledge, the hardware developers
could produce vulnerabilities, like leakage paths, in the design
stage. On the other hand, we assume that attackers are capable
of accessing inputs and outputs ports of the manufactured
hardware and have knowledge of the hardware functionality.
Therefore, by triggering the Trojan or observing the input-
output patterns, the attacker can exploit such information
leakage paths to infer the sensitive/secrete information of the
design. Such secrete information could be encryption keys
from the hardware.

B. Related Work

Recently, IFT based security approaches for protecting
confidentiality are delivered in the form of a language-based
solution. Caisson [16] and Sapper [17] realize IFT isolation
and separation properties and in the synthesized secure cir-
cuits. Using Caisson or Sapper, the designer labels wires and
registers, which are duplicated in the generated hardware.
Considerable hardware overheads are caused at the circuit
level. Detecting information leakage in the compilation stage,
SecVerilog avoids the hardware overheads [15]. It extends the
type system of standard Verilog to enforce noninterference
in the design. However, a significant complex security label
system is introduced by SecVerilog to increase precision. Only
with sufficient knowledge of security, the circuit designers can
specify information flow policies in SecVerilog. In contrast,
QIF-Verilog only extends one simple security label from the
standard Verilog to reduce the cost of learning from the
developers’ side [18]. It quantifies the information leakage
by applying the quantitative information flow tracking in the
design stage. However, the QIF-Verilog is not capable of
supporting IFT analysis in the gate-level netlist.

In [23], GLIFT is proposed to detect malicious logic by
tracking the information flow in the runtime hardware. It
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Figure 1: The AND-2 gate-level IFT model [19].

models logic gates and labels individual bit at the gate-
level. The information flow propagation logic is realized
in hardware along with the original functional circuit [24].
Again, it introduces huge hardware overheads. A static GLIFT
approach is proposed in [20] which checks security property
in the gate-level netlist. It translates the property and the
netlist to theorems and formal circuits, respectively. Then
theorem proving is utilized to prove the satisfaction of the
property against the formal circuit. Using an interactive prov-
ing approach, developers must manually construct the proofs,
which increases the time required for certifying large hardware
design. SecChisel is proposed in [21] to check the confiden-
tiality and integrity of hardware design automatically using
the SMT solver. Based on the Chisel hardware construction
language, the SecChisel verification framework converts a
higher level hardware description to the intermediate repre-
sentations, FIRRTL representations, and then parses them to
73 inputs. The information flow checking is performed in
the end. Although the framework checks the IFT property
automatically, it focuses on the high-level synthesis procedure
rather than the gate-level netlist. Also, Chisel is not a widely
used development language.

C. Modeling Gate-Level IFT

An advantage of GLIFT is that each data bit is associated
with a security label, which propagates the labels more precise
and reduces the false-positive rates [19]. As an example, in the
Equation (1), we perform and operation between the secret
signal and a 32-bits zero vector, then output the result.

Output :== AN D — 2(Secret,0200) (D

where AND-2 function performs as a 32 bits two-inputs AND
operation and Secret has been labelled as high sensitive. In
the traditional IFT approach, the sensitive label would be
propagated to the output port and then detected as information
leakage. However, as the other signal involved in the and
operation is a zero vector, no secret is leaked through such
an operation, which causes a false-positive.

In the GLIFT, both signal value and security labels are taken
into consideration during the label propagation. Rather than
tracking the data flow in the original design only, how the
output is influenced by input value must be accounted for. To
achieve this goal, extra logic gates are created to represent
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Figure 2: Working procedure of the proposed formal framework.

the influence along with the original circuit. We use the 1
bit two-input AND logic gate as the example. For each 1
bit two-input AND gate, the extra logic gates are inserted
as shown in Figure 1. The A and B are 1 bit input while
O is the 1 bit output. Accordingly, labels for A, B and O
are denoted as A;, B; and O;. Following the structure, once
the low sensitive input is 0, the output label O; keeps O not
matter what the other high sensitive input value is. Only in the
case that the low sensitive input is 1, the O; is influenced by
the high sensitive input, which means that the highly sensitive
label has the potential to propagate to the output port.

D. SMT Solver

Satisfiability (SAT) solvers have been used in many elec-
tronic design automation fields like logic synthesis, verifica-
tion, and testing. The SAT solvers are originally designed to
solve the well-known Boolean Satisfiability problem, which
decides whether a propositional logic formula can be satisfied
given value assignments of the variables in the formula. Based
on SAT solver, satisfiability modulo theories (SMT) solver
is derived by including serval first-order theories, such as
arithmetic, bit-vectors, quantifiers, etc [22]. However, due
to the high computational complexity, there is no hardware
implementation for SMT solvers, and the software-based SMT
solver is not scalable to large designs. From Microsoft, Z3
is a popular used SMT solver providing efficient verification
and analysis applications [22]. It is assembled in the Python
environment as Z3PY, which is a convenience for developing
practical tools [25].

III. METHODOLOGY

The proposed framework automates the formal verification
process by realizing IFT in the gate-level netlist design. It
converts the whole hardware design to the Z3 constraints and
adds extra logic for tracking the security labels. Label checking
will be performed in the Z3 solver. Accordingly, we develop
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Functional Circuit IFT Circuit
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Code a Generation Generation
Generation I
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Figure 3: Block structure of the developed parser.

a parser to perform the netlist to Z3 program conversion and
the extra logic generations.

A. The Formal Framework Overview

The working procedure of the proposed formal framework
is shown in Figure 2. The gate-level netlist data is input to
a parser. Then it converts the original hardware design to its
formal equivalent representations, called the functional circuit
representations F'. In the meantime, the parser further gener-
ates extra logic gates to introduce and track security labels.
We name those logic gates as the IFT circuit representations
I. The IFT circuit representations are constructed as GLIFT
logic. Both representations F' and I are in the form of Z3
constrains. Hence we define the formal model M as Equation

).

M:=FAI 2

Taking the logic gates in Figure 1 as an example, signal
{A, B, O} are composed to constrains in F' while signal
{A;,B;,0;} are composed to constrains in I. The corre-
sponding procedure of deriving formal model M is shown
as follows.

F:= (0 == A&B)
I:= (0 == (A& By) (A& B)|(A&By))

M:=FAI:=(0==A&B)A
(O == (A& By)|(Ai&B)|(A& By))

where & stands for the and operation and | stands for the or
operation.

Then next, M is input to the Z3 platform. In the meantime,
IFT property, denoted as P, is also introduced to indicate the
sensitive data bits and according to leakage output ports. Input
to the Z3 solver, P is in the form of Z3 constraints as well. The
final constrains C' checked, in the end, is a conjunction of M
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and P. Taking the above Figure 1 as one example, we assume
that B is in high sensitivity while A is in low sensitivity. It
leads to label value 1 in B; and label value O in A;. As O
is the only port leaking secrets, O, is set to label 1. We then
derive the C as follows.

C:=PA\M = (At == 0)/\<Bt == 1)/\(Ot == 1)/\
(O == A&B)A
(Or == (A& By)|(A&eB)|(A& By))

73 SMT solver is then utilized to check C. If there is no
solution, it means that whatever the inputs are, there is no way
to propagate the high sensitive label to the output O,. The de-
sign is extremely secure regarding the confidentiality property.
Otherwise, by given the solution as input, the high sensitive
label can be propagated to the output port and observed by
the attacker. In our example, the solutions {A = 1, B = 0}
and {A = 1, B = 1} are obtained by the Z3. Therefore, the
design in Figure 1 has information leakage paths.

B. Netlist to Z3 Parser Development

As discussed above, the netlist data file needs to be con-
verted to the Z3 constrains F'. Also, the GLIFT logic gates
I are generated depending on the hardware design. As such,
we have developed an automatic parser for converting and
generating Z3 constrains from gate-level netlist data. The
parser is written in Python and has the structure as shown
in Figure 3.

There are two parts in the parser — code analysis and code
generation. In the code analysis part, netlist data is interpreted
at first. We generate the wire and registers that are utilized in
the functional circuit in this step. The input and output signals
are extracted from those wires/registers for the property design
and model integration in the following steps. Then in the code
generation step, the functional circuit representations F' and
IFT circuit representations I are produced. In the end, rely on
the extracted inputs and outputs, F' and I are integrated and
output to the Z3 solver.

IV. EXPERIMENT

To demonstrate the proposed Z3 based automated formal
verification, we set up the experiment in the Python envi-
ronment and evaluate IFT property in Verilog netlist bench-
marks. Trojans are inserted into the genuine benchmarks,
while properties are designed as adding labels in IFT circuit
representations.

A. Experiment Setup

To use the proposed framework in practical applications, a
developer only needs to indicate high sensitive bits in the IFT
circuit representations’ input signals and observable ports from
the attackers. In our experiment, some specific data bits are
treated as secrets and the confidentiality is checked for those
labeled secrets.

The main tool we used for experimentation is Z3 SMT
Solver, the automated theorem prover released by Microsoft

Output
Ports

-

Figure 4: Design of inserted sneaky paths.

Input
Ports

Sensitive Information

Research. API of Z3 has been assembled in the Python
environment as Z3PY. Then the Z3 solver is in the same envi-
ronment as the parser, which makes the toolchain be integrated
easily. We employ the Z3 to check if the tainted label of secret
information can be delivered to the IFT circuit’s output. All the
demonstrations are executed in Windows 10 on a computing
machine with Core(TM) i3-9100 CPU @3.60GHz and 8GB
memory.

To demonstrate the practicality of our proposed framework,
we evaluate 22 ISCAS’85 gate-level netlist benchmarks [26]
from Github [27]. Those benchmarks are written by Verilog
and have been synthesized with Cadence Genus. They provide
combinational logic circuits to let users test different mytholo-
gies. For fitting to the attack model in this paper, we insert the
leakage paths to simulate hardware Trojans into the design.
Then, the parser translates the Trojan inserted benchmarks
to the model in Z3, and the IFT logic of the benchmark
is generated at the same time. After that, we establish the
solver and add the constrains standing for IFT property. In the
end, the model and property are checked together in the Z3
platform.

B. Inserted Leakage Paths and Checked Properties

In Figure 4, we show a template of inserted hardware Trojan
design. All the Trojans in our experiments follow such kinds
of structures and leak information of the circuit. It is a piece
of the combinational circuit and composed by AND, NAND,
as well as NOR gates. The trigger of the Trojan is connected
with the input ports and would be activated by a specific input
pattern. The payload of the Trojan enables an AND gate and
passes the sensitive information to the output ports.

We specify one data bit in each benchmark input as the
secret and set them according to label as high. Several output
bits which are influenced by the Trojan are defined as the
vulnerable output ports. The security property is represented as
“Assigning the high sensitive label to a secret and low sensitive
labels to the rest signals, whether there exists at least one
solution causing high sensitive label appeared on vulnerable
output ports.” In other words, if the Z3 finds a solution, then
the Trojan is detected. As a counter-example, the solution is
the input vector that propagates secrets to vulnerable ports.
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Benchmarks | Trigger Mode | Functional Gate | IFT Gate | Model Time (ms) | Detection Time (ms) | Total (ms) | Detected
cl7 signal trigger 6 24 70 24 94 Yes
c432 signal trigger 160 775 77 143 220 Yes
c499 signal trigger 202 888 65 130 195 Yes
c880 signal trigger 383 1455 63 210 273 Yes

cl1355 signal trigger 546 3315 74 275 349 Yes
c1908 signal trigger 880 2168 74 250 324 Yes
c2670 signal trigger 1193 3290 81 509 590 Yes
¢3540 signal trigger 1669 4638 91 663 754 Yes
c5315 signal trigger 2307 7995 116 1112 1228 Yes
c6288 signal trigger 2416 9364 134 1085 1219 Yes
c7552 signal trigger 3512 9809 138 1361 1499 Yes
bar signal trigger 2960 15271 1391 2553 3944 Yes
max signal trigger 5065 14216 4486 4486 8972 Yes
sin signal trigger 7656 25970 2634 2323 4957 Yes
arbiter signal trigger 23189 59600 4605 7087 11692 Yes
voter signal trigger 25993 69436 9437 8805 18242 Yes
square signal trigger 35264 91406 7976 12017 19993 Yes
sqrt signal trigger 36787 122891 34187 38399 72586 Yes
multiplier signal trigger 42974 131690 8664 19698 28562 Yes
log2 signal trigger 46746 155981 27165 26367 53532 Yes
memctr] always on 81588 224428 24932 32611 57543 Yes
div always on 100985 274228 27908 264972 320788 Yes

Table I: Tests on Trojan insertion benchmarks.

Secret
Information

Attacker

other paths

Figure 5: Detected leakage paths of benchmark c432.

C. Results and Analysis

Table I shows results of our experiments. Trojans are in-
serted into all the benchmarks for leaking information. Among
those benchmarks, the Trojans in memetr]l and div are always
on, while the others are triggered by a signal. We account for
the number of logic gates from the netlist data design files in
the column of the functional gate, and the number of GLIFT
gates from the formal model in the column of IFT gate. The
gate number in IFT logic is 3-10 times than functional gates.
It indicates the huge area overheads would be caused if we
implement the GLIFT logic in the real hardware circuit.

Then the time consumption of parsing Verilog netlist to Z3
constrains is listed as model time. Accordingly, time cost in Z3
solving is listed as the detection time. The column of total time
includes the time consumption from taking in benchmarks to
detecting hardware Trojans. Taking the benchmark c6288 as
an example, the c6288 includes 2416 gates in the design, from
which 9364 GLIFT logic gates are generated by the parser. The
time consumption of code parsing and generation is 134 ms.
In the Z3 solving, 1085 ms is taken to detect the hardware
Trojan. Assume that the security property has already been
designed, then the total time cost for detecting Trojan in c6288

is 1219 ms. All the Trojans in those benchmarks are detected
successfully.

The largest benchmark in this experiment is div which
includes 100,985 functional gates. The total time spent on
the security verification is 320,778 ms or around 5 minutes.
From the results, the evaluation can be finished in minutes.
The proposed formal framework is efficient for protecting the
confidentiality of the gate-level netlist design.

Further, the leakage paths can be obtained by analyzing
results, which provides a guide to help developers improve
their designs. In Figure 5, we demonstrate the leakage paths
detected in the benchmark c432. The signal N17 is the secret
input signal that is tainted and the signal Tj-payload is the
output of the Trojan. In this example, we detected 167 leakage
paths in the gate-level netlist while 3 of them are shown in
the figure. Developers could consider to improve the secure
level, for instance, by adding obfuscation on those paths.

V. LIMITATIONS AND DISCUSSIONS

Although the proposed framework has an excellent perfor-
mance in detecting sneaky paths of information leakage, there
are still 2 major limitations — proof of genuine benchmark
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and lacking sequential logic support. For SMT solving, it’s
efficient to get the result if a solution exists. However, it
becomes an NP-hard problem once there is no solution to
the given problem/constrains. Mapping to our framework, it
has a significant high performance in detecting sneaky paths
in the condition that the Trojan or vulnerability exists. The
solution searching strategy can be optimized to further improve
efficiency. In contrast, if there is no such paths leaking secrets,
the solver must check all possible cases before termination,
which leads to intense computation complexity. To address
this issue, we will set a threshold according to the size of
the netlist file. The SMT solving would be terminated in the
threshold and report a compromised secure checking to users.
In the meantime, lacking sequential logic is the other
limitation of this work. By now, our parser only supports
combinational circuit logic parsing and generation. Therefore,
the sequential logic needs to be manually converted to Z3
constrains. We will add the function of support such logic by
interpreting and parsing circuit like latch, flip-flop, etc.

VI. CONCLUSION

In this paper, a formal framework is proposed to pro-
tect the confidentiality of hardware design at the gate-level.
By delivering a parser, the formal model is generated and
composed of the functional circuit and GLIFT logic circuit.
The Z3 solver validates the model with IFT property in the
end. Therefore, the framework provides a fully automatic
static formal verification from the input netlist file to the IFT
property checking.

In the future, supporting of the sequential logic will be
added to the framework. Accordingly, larger benchmarks with
hardware Trojans will be tested. Also, we will extend the
framework to cover more properties and features. The integrity
property will be considered to identify malicious modifica-
tions.
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