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Abstract—The hardware intellectual property (IP) cores from
untrusted vendors are widely used, which has raised security
concerns for system designers. Although formal methods provide
powerful solutions for detecting malicious behaviors in hardware,
the participation of manual work prevents the methods from
practical applications. Information Flow Tracking (IFT) is a
powerful approach to prevent sensitive information leakage.
However, existing IFT solutions are either introducing overhead
in hardware or lacking practical automatic working procedures.
To alleviate these challenges, we propose a framework that fully
automates information leakage detection in the gate level of
hardware. This framework introduces Z3, an SMT solver, in
checking the violation of the confidentiality automatically. On
the other hand, a parser converting the gate-level hardware to
the formal model is developed to further remove the manual
workload. To validate the effectiveness, the proposed solution is
tested on 11 gate-level netlist benchmarks. The Trojans leaking
information from circuit outputs can be automatically detected.
We also account for time consumption during the whole working
procedure to show the efficiency of the proposed approach.

I. INTRODUCTION

The demand for intellectual property (IP) cores has been sig-

nificantly increased because of the changing landscape of the

semiconductor industry. The proliferation of the IP market is

affected by various factors like lowered design cost, shortened

time-to-market (TTM), etc. In the meantime, the credibility of

3rd-party vendors is threatened by the hardware Trojan and

design flaws, which also places high-security uncertainties on

the IP end-users and customers. In a system-on-chip (SoC), a

malicious IP core can bypass many existing hardware Trojan

detection methods [1], [2].

In detecting hardware Trojans and vulnerabilities, formal

methods have been most effective among all the existing

techniques [3], [4], [5], [6], [7], [8], [9], [10], [11]. However,

very few of current formal verification approaches are scalable

and practical for hardware Trojan detection in the industry

because of lacking automatic and efficient tools. For instance,

model checking is a popular used malicious logic detection

method for protecting third-party IP cores [10]. In the model

checking, security properties are formalized as traces and all

possible traces generated by the system are checked. The

system is treated to match against the security properties is

all the traces pass the checking [12]. However, checking the

very large system, the model checker always runs into the state

space explosion issue.

Information flow tracking (IFT) [13] is a scalable approach

for detecting leakage/sneaky path of sensitive information. In

the IFT, data or operations are assigned by labels standing

for the trust levels. Rely on the information flow policy, the

labels are propagated or updated to other data. In general, data

with labels are accessed or propagated to the trust portion in

the system. Some IFT based solutions on assuring hardware

security are proposed like SecVerilog [14], [15], Caisson

[16], Sapper [17], QIF-Verilog[18], GLIFT[19], etc. However,

there is lacking IFT solution in detecting sneaky paths in the

gate-level netlist. The theorem, Coq, is utilized in proving

the gate-level information flow property in [20]. However,

as a theorem proving method, a significant manual effort

is required for constructing machine proofs. SecChisel [21]

applies an automated formal verification checking using the

Z3 solver [22], while the scope of the SecChisel is only on

protecting high-level synthesis.

To solve those problems, we propose a framework for for-

malizing and checking gate-level hardware design for security

purposes. In the framework, gate-level netlist data files are

parsed to the formal model in the form of constraints at

first. Then sensitive labels are introduced to denote secretes

in the hardware design. In the end, if outputs are tainted by

the labels, the information leakage is detected. Satisfiability

modulo theories (SMT) solver is utilized as the checking

engine to propagate the information flow and automatically

check the IFT policies.

The main contributions of this paper are as follows.

• We introduce an automated formal verification framework

detecting vulnerability in the gate-level netlist. The netlist

data is formalized to a circuit model, based on which

the security property is designed. The confidentiality is

enforced to the input hardware design by applying an

automatic checking engine.

• GLIFT is, for the first time, statically applied in the gate-

level hardware with a fully automated working procedure.

The information leakage caused by Trojans is addressed

by tracking sensitive information.

• We deliver the toolchain in demonstrating the framework.

It includes a parser and a Z3 SMT Solver which automate

the formalization stage and property checking stage of the

formal verification, respectively.

The rest of the paper is organized as follows. In Section II,

we introduce the threat model and discuss previous work on

malicious logic detection using IFT based solutions and then

present a gate-level IFT model. We explain our automated

framework involving the SMT solver and code parser in Sec-978-1-7281-8952-9/20/$31.00 c©2020IEEE
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tion III. Section IV presents demonstrations of our approach

by testing 22 gate-level netlist benchmarks with hardware

Trojan. The limitations of this work are discussed in Section

V. Finally, conclusions and future works are drawn in Section

VI.

II. BACKGROUND

We introduce the attack model in this section at first. Then

IFT based solutions are investigated in the hardware security

area. The gate-level IFT model is explained with the example,

based on which the formal model in the proposed framework

is built.

A. Attack Model

In this paper, we assume that information leakage paths

are created by either intended hardware Trojan or unintended

design errors. Malicious logic can be inserted by an adversary

at the design or testing stage of the supply chain. We assume

that the rogue agent at the third-party IP vendor can access

the RTL design or the gate-level netlist files and then insert

a hardware Trojan or backdoor to create a sneaky path of the

design. Lacking security knowledge, the hardware developers

could produce vulnerabilities, like leakage paths, in the design

stage. On the other hand, we assume that attackers are capable

of accessing inputs and outputs ports of the manufactured

hardware and have knowledge of the hardware functionality.

Therefore, by triggering the Trojan or observing the input-

output patterns, the attacker can exploit such information

leakage paths to infer the sensitive/secrete information of the

design. Such secrete information could be encryption keys

from the hardware.

B. Related Work

Recently, IFT based security approaches for protecting

confidentiality are delivered in the form of a language-based

solution. Caisson [16] and Sapper [17] realize IFT isolation

and separation properties and in the synthesized secure cir-

cuits. Using Caisson or Sapper, the designer labels wires and

registers, which are duplicated in the generated hardware.

Considerable hardware overheads are caused at the circuit

level. Detecting information leakage in the compilation stage,

SecVerilog avoids the hardware overheads [15]. It extends the

type system of standard Verilog to enforce noninterference

in the design. However, a significant complex security label

system is introduced by SecVerilog to increase precision. Only

with sufficient knowledge of security, the circuit designers can

specify information flow policies in SecVerilog. In contrast,

QIF-Verilog only extends one simple security label from the

standard Verilog to reduce the cost of learning from the

developers’ side [18]. It quantifies the information leakage

by applying the quantitative information flow tracking in the

design stage. However, the QIF-Verilog is not capable of

supporting IFT analysis in the gate-level netlist.

In [23], GLIFT is proposed to detect malicious logic by

tracking the information flow in the runtime hardware. It

Figure 1: The AND-2 gate-level IFT model [19].

models logic gates and labels individual bit at the gate-

level. The information flow propagation logic is realized

in hardware along with the original functional circuit [24].

Again, it introduces huge hardware overheads. A static GLIFT

approach is proposed in [20] which checks security property

in the gate-level netlist. It translates the property and the

netlist to theorems and formal circuits, respectively. Then

theorem proving is utilized to prove the satisfaction of the

property against the formal circuit. Using an interactive prov-

ing approach, developers must manually construct the proofs,

which increases the time required for certifying large hardware

design. SecChisel is proposed in [21] to check the confiden-

tiality and integrity of hardware design automatically using

the SMT solver. Based on the Chisel hardware construction

language, the SecChisel verification framework converts a

higher level hardware description to the intermediate repre-

sentations, FIRRTL representations, and then parses them to

Z3 inputs. The information flow checking is performed in

the end. Although the framework checks the IFT property

automatically, it focuses on the high-level synthesis procedure

rather than the gate-level netlist. Also, Chisel is not a widely

used development language.

C. Modeling Gate-Level IFT

An advantage of GLIFT is that each data bit is associated

with a security label, which propagates the labels more precise

and reduces the false-positive rates [19]. As an example, in the

Equation (1), we perform and operation between the secret

signal and a 32-bits zero vector, then output the result.

Output := AND − 2(Secret, 0x00) (1)

where AND-2 function performs as a 32 bits two-inputs AND

operation and Secret has been labelled as high sensitive. In

the traditional IFT approach, the sensitive label would be

propagated to the output port and then detected as information

leakage. However, as the other signal involved in the and

operation is a zero vector, no secret is leaked through such

an operation, which causes a false-positive.

In the GLIFT, both signal value and security labels are taken

into consideration during the label propagation. Rather than

tracking the data flow in the original design only, how the

output is influenced by input value must be accounted for. To

achieve this goal, extra logic gates are created to represent
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Figure 2: Working procedure of the proposed formal framework.

the influence along with the original circuit. We use the 1

bit two-input AND logic gate as the example. For each 1

bit two-input AND gate, the extra logic gates are inserted

as shown in Figure 1. The A and B are 1 bit input while

O is the 1 bit output. Accordingly, labels for A, B and O

are denoted as At, Bt and Ot. Following the structure, once

the low sensitive input is 0, the output label Ot keeps 0 not

matter what the other high sensitive input value is. Only in the

case that the low sensitive input is 1, the Ot is influenced by

the high sensitive input, which means that the highly sensitive

label has the potential to propagate to the output port.

D. SMT Solver

Satisfiability (SAT) solvers have been used in many elec-

tronic design automation fields like logic synthesis, verifica-

tion, and testing. The SAT solvers are originally designed to

solve the well-known Boolean Satisfiability problem, which

decides whether a propositional logic formula can be satisfied

given value assignments of the variables in the formula. Based

on SAT solver, satisfiability modulo theories (SMT) solver

is derived by including serval first-order theories, such as

arithmetic, bit-vectors, quantifiers, etc [22]. However, due

to the high computational complexity, there is no hardware

implementation for SMT solvers, and the software-based SMT

solver is not scalable to large designs. From Microsoft, Z3

is a popular used SMT solver providing efficient verification

and analysis applications [22]. It is assembled in the Python

environment as Z3PY, which is a convenience for developing

practical tools [25].

III. METHODOLOGY

The proposed framework automates the formal verification

process by realizing IFT in the gate-level netlist design. It

converts the whole hardware design to the Z3 constraints and

adds extra logic for tracking the security labels. Label checking

will be performed in the Z3 solver. Accordingly, we develop

Figure 3: Block structure of the developed parser.

a parser to perform the netlist to Z3 program conversion and

the extra logic generations.

A. The Formal Framework Overview

The working procedure of the proposed formal framework

is shown in Figure 2. The gate-level netlist data is input to

a parser. Then it converts the original hardware design to its

formal equivalent representations, called the functional circuit

representations F . In the meantime, the parser further gener-

ates extra logic gates to introduce and track security labels.

We name those logic gates as the IFT circuit representations

I . The IFT circuit representations are constructed as GLIFT

logic. Both representations F and I are in the form of Z3

constrains. Hence we define the formal model M as Equation

(2).

M := F ∧ I (2)

Taking the logic gates in Figure 1 as an example, signal

{A, B, O} are composed to constrains in F while signal

{At,Bt,Ot} are composed to constrains in I . The corre-

sponding procedure of deriving formal model M is shown

as follows.

F := (O == A&B)

I := (Ot == (At&Bt)|(At&B)|(A&Bt))

M := F ∧ I := (O == A&B)∧
(Ot == (At&Bt)|(At&B)|(A&Bt))

where & stands for the and operation and | stands for the or

operation.

Then next, M is input to the Z3 platform. In the meantime,

IFT property, denoted as P , is also introduced to indicate the

sensitive data bits and according to leakage output ports. Input

to the Z3 solver, P is in the form of Z3 constraints as well. The

final constrains C checked, in the end, is a conjunction of M
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and P . Taking the above Figure 1 as one example, we assume

that B is in high sensitivity while A is in low sensitivity. It

leads to label value 1 in Bt and label value 0 in At. As O

is the only port leaking secrets, Ot is set to label 1. We then

derive the C as follows.

P := (At == 0) ∧ (Bt == 1) ∧ (Ot == 1)

C := P∧M := (At == 0)∧(Bt == 1)∧(Ot == 1)∧
(O == A&B)∧
(Ot == (At&Bt)|(At&B)|(A&Bt))

Z3 SMT solver is then utilized to check C. If there is no

solution, it means that whatever the inputs are, there is no way

to propagate the high sensitive label to the output Ot. The de-

sign is extremely secure regarding the confidentiality property.

Otherwise, by given the solution as input, the high sensitive

label can be propagated to the output port and observed by

the attacker. In our example, the solutions {A = 1, B = 0}
and {A = 1, B = 1} are obtained by the Z3. Therefore, the

design in Figure 1 has information leakage paths.

B. Netlist to Z3 Parser Development

As discussed above, the netlist data file needs to be con-

verted to the Z3 constrains F . Also, the GLIFT logic gates

I are generated depending on the hardware design. As such,

we have developed an automatic parser for converting and

generating Z3 constrains from gate-level netlist data. The

parser is written in Python and has the structure as shown

in Figure 3.

There are two parts in the parser – code analysis and code

generation. In the code analysis part, netlist data is interpreted

at first. We generate the wire and registers that are utilized in

the functional circuit in this step. The input and output signals

are extracted from those wires/registers for the property design

and model integration in the following steps. Then in the code

generation step, the functional circuit representations F and

IFT circuit representations I are produced. In the end, rely on

the extracted inputs and outputs, F and I are integrated and

output to the Z3 solver.

IV. EXPERIMENT

To demonstrate the proposed Z3 based automated formal

verification, we set up the experiment in the Python envi-

ronment and evaluate IFT property in Verilog netlist bench-

marks. Trojans are inserted into the genuine benchmarks,

while properties are designed as adding labels in IFT circuit

representations.

A. Experiment Setup

To use the proposed framework in practical applications, a

developer only needs to indicate high sensitive bits in the IFT

circuit representations’ input signals and observable ports from

the attackers. In our experiment, some specific data bits are

treated as secrets and the confidentiality is checked for those

labeled secrets.

The main tool we used for experimentation is Z3 SMT

Solver, the automated theorem prover released by Microsoft

Figure 4: Design of inserted sneaky paths.

Research. API of Z3 has been assembled in the Python

environment as Z3PY. Then the Z3 solver is in the same envi-

ronment as the parser, which makes the toolchain be integrated

easily. We employ the Z3 to check if the tainted label of secret

information can be delivered to the IFT circuit’s output. All the

demonstrations are executed in Windows 10 on a computing

machine with Core(TM) i3-9100 CPU @3.60GHz and 8GB

memory.

To demonstrate the practicality of our proposed framework,

we evaluate 22 ISCAS’85 gate-level netlist benchmarks [26]

from Github [27]. Those benchmarks are written by Verilog

and have been synthesized with Cadence Genus. They provide

combinational logic circuits to let users test different mytholo-

gies. For fitting to the attack model in this paper, we insert the

leakage paths to simulate hardware Trojans into the design.

Then, the parser translates the Trojan inserted benchmarks

to the model in Z3, and the IFT logic of the benchmark

is generated at the same time. After that, we establish the

solver and add the constrains standing for IFT property. In the

end, the model and property are checked together in the Z3

platform.

B. Inserted Leakage Paths and Checked Properties

In Figure 4, we show a template of inserted hardware Trojan

design. All the Trojans in our experiments follow such kinds

of structures and leak information of the circuit. It is a piece

of the combinational circuit and composed by AND, NAND,

as well as NOR gates. The trigger of the Trojan is connected

with the input ports and would be activated by a specific input

pattern. The payload of the Trojan enables an AND gate and

passes the sensitive information to the output ports.

We specify one data bit in each benchmark input as the

secret and set them according to label as high. Several output

bits which are influenced by the Trojan are defined as the

vulnerable output ports. The security property is represented as

“Assigning the high sensitive label to a secret and low sensitive

labels to the rest signals, whether there exists at least one

solution causing high sensitive label appeared on vulnerable

output ports.” In other words, if the Z3 finds a solution, then

the Trojan is detected. As a counter-example, the solution is

the input vector that propagates secrets to vulnerable ports.
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Benchmarks Trigger Mode Functional Gate IFT Gate Model Time (ms) Detection Time (ms) Total (ms) Detected

c17 signal trigger 6 24 70 24 94 Yes

c432 signal trigger 160 775 77 143 220 Yes

c499 signal trigger 202 888 65 130 195 Yes

c880 signal trigger 383 1455 63 210 273 Yes

c1355 signal trigger 546 3315 74 275 349 Yes

c1908 signal trigger 880 2168 74 250 324 Yes

c2670 signal trigger 1193 3290 81 509 590 Yes

c3540 signal trigger 1669 4638 91 663 754 Yes

c5315 signal trigger 2307 7995 116 1112 1228 Yes

c6288 signal trigger 2416 9364 134 1085 1219 Yes

c7552 signal trigger 3512 9809 138 1361 1499 Yes

bar signal trigger 2960 15271 1391 2553 3944 Yes

max signal trigger 5065 14216 4486 4486 8972 Yes

sin signal trigger 7656 25970 2634 2323 4957 Yes

arbiter signal trigger 23189 59600 4605 7087 11692 Yes

voter signal trigger 25993 69436 9437 8805 18242 Yes

square signal trigger 35264 91406 7976 12017 19993 Yes

sqrt signal trigger 36787 122891 34187 38399 72586 Yes

multiplier signal trigger 42974 131690 8664 19698 28562 Yes

log2 signal trigger 46746 155981 27165 26367 53532 Yes

memctrl always on 81588 224428 24932 32611 57543 Yes

div always on 100985 274228 27908 264972 320788 Yes

Table I: Tests on Trojan insertion benchmarks.

Figure 5: Detected leakage paths of benchmark c432.

C. Results and Analysis

Table I shows results of our experiments. Trojans are in-

serted into all the benchmarks for leaking information. Among

those benchmarks, the Trojans in memetrl and div are always

on, while the others are triggered by a signal. We account for

the number of logic gates from the netlist data design files in

the column of the functional gate, and the number of GLIFT

gates from the formal model in the column of IFT gate. The

gate number in IFT logic is 3-10 times than functional gates.

It indicates the huge area overheads would be caused if we

implement the GLIFT logic in the real hardware circuit.

Then the time consumption of parsing Verilog netlist to Z3

constrains is listed as model time. Accordingly, time cost in Z3

solving is listed as the detection time. The column of total time

includes the time consumption from taking in benchmarks to

detecting hardware Trojans. Taking the benchmark c6288 as

an example, the c6288 includes 2416 gates in the design, from

which 9364 GLIFT logic gates are generated by the parser. The

time consumption of code parsing and generation is 134 ms.

In the Z3 solving, 1085 ms is taken to detect the hardware

Trojan. Assume that the security property has already been

designed, then the total time cost for detecting Trojan in c6288

is 1219 ms. All the Trojans in those benchmarks are detected

successfully.

The largest benchmark in this experiment is div which

includes 100, 985 functional gates. The total time spent on

the security verification is 320, 778 ms or around 5 minutes.

From the results, the evaluation can be finished in minutes.

The proposed formal framework is efficient for protecting the

confidentiality of the gate-level netlist design.

Further, the leakage paths can be obtained by analyzing

results, which provides a guide to help developers improve

their designs. In Figure 5, we demonstrate the leakage paths

detected in the benchmark c432. The signal N17 is the secret

input signal that is tainted and the signal Tj-payload is the

output of the Trojan. In this example, we detected 167 leakage

paths in the gate-level netlist while 3 of them are shown in

the figure. Developers could consider to improve the secure

level, for instance, by adding obfuscation on those paths.

V. LIMITATIONS AND DISCUSSIONS

Although the proposed framework has an excellent perfor-

mance in detecting sneaky paths of information leakage, there

are still 2 major limitations – proof of genuine benchmark
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and lacking sequential logic support. For SMT solving, it’s

efficient to get the result if a solution exists. However, it

becomes an NP-hard problem once there is no solution to

the given problem/constrains. Mapping to our framework, it

has a significant high performance in detecting sneaky paths

in the condition that the Trojan or vulnerability exists. The

solution searching strategy can be optimized to further improve

efficiency. In contrast, if there is no such paths leaking secrets,

the solver must check all possible cases before termination,

which leads to intense computation complexity. To address

this issue, we will set a threshold according to the size of

the netlist file. The SMT solving would be terminated in the

threshold and report a compromised secure checking to users.
In the meantime, lacking sequential logic is the other

limitation of this work. By now, our parser only supports

combinational circuit logic parsing and generation. Therefore,

the sequential logic needs to be manually converted to Z3

constrains. We will add the function of support such logic by

interpreting and parsing circuit like latch, flip-flop, etc.

VI. CONCLUSION

In this paper, a formal framework is proposed to pro-

tect the confidentiality of hardware design at the gate-level.

By delivering a parser, the formal model is generated and

composed of the functional circuit and GLIFT logic circuit.

The Z3 solver validates the model with IFT property in the

end. Therefore, the framework provides a fully automatic

static formal verification from the input netlist file to the IFT

property checking.
In the future, supporting of the sequential logic will be

added to the framework. Accordingly, larger benchmarks with

hardware Trojans will be tested. Also, we will extend the

framework to cover more properties and features. The integrity

property will be considered to identify malicious modifica-

tions.
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