
Benchmarking HOAP for Scalable
Document Data Management: A First Step

Yifan Tian
University of California, Irvine

yifant@uci.edu

Michael Carey
University of California, Irvine

mjcarey@ics.uci.edu

Ian Maxon
University of California, Irvine

imaxon@ics.uci.edu

Abstract—Enterprises today are becoming ever more reliant on
real-time information and analytics for steering and optimizing
their businesses. As a result, database system architectures with
hybrid data management support – known as HTAP (Hybrid
Transactional/ Analytical Processing) or HOAP (Hybrid Op-
erational/Analytical Processing) support – are appearing and
increasingly gaining traction in both the commercial and research
sectors. Hybrid platforms first appeared in the relational world,
and they are often linked in that world to concurrent high-end
server technology trends such as columnar storage and main-
memory data management.

This paper focuses on hybrid platforms, but in a very different
world – in the document data management, or NoSQL, world.
In this work, we report on a first effort to characterize the
hybrid performance of a scalable document database system that
purports to provide what one might call ”HOAP for JSON”.
We have borrowed from and extended the TPC-C benchmark
to study the performance of Couchbase Server, a horizontally
scalable NoSQL platform that offers HOAP via the combination
of its Data/Index/Query and Analytics Services. Our results
attest to the importance of architecting a NoSQL platform for
HOAP, both in terms of its approach(es) to query processing
and its provision of performance isolation for the operational
and analytical components of a mixed workload. We share our
initial results, the insights that we have gained thus far, and our
thoughts on future work related to benchmarking such systems.

Index Terms—NoSQL, OLTP, OLAP, HTAP, HOAP, N1QL

I. INTRODUCTION

In today’s increasingly online world, businesses and other
organizations are becoming more and more reliant on real-
time information and its analysis to steer and optimize their
operations. Historically, operational (OLTP) and analytical
(OLAP) processing were separate activities, with each running
on their own separate infrastructures; periodic ETL processes
served to bridge these worlds in the overall architecture of a
typical enterprise [14]. Today, database system architectures
with hybrid data management support – referred to as HTAP
(Hybrid Transactional/Analytical Processing [23]) or HOAP
(Hybrid Operational/Analytical Processing [1]) support – are
appearing on the scene and gaining traction in both indus-
try and research in order to address the pressing need for
timely analytics. Originating in the relational world, hybrid
platforms are commonly linked to other concurrent high-end
server technology trends; columnar storage and main-memory
data management are two of the technologies that are often
assumed to be part of that picture.

While relational databases still dominate the enterprise
IT landscape, today’s mission-critical applications demand
support for millions of interactions with end-users via the
Web and mobile devices. In contrast, traditional relational
database systems were built to target thousands of users.
Designed for strict consistency and data control, relational
database systems tend to fall short of the agility, flexibility, and
scalability demands of today’s new applications. This has led
to the emergence of the new generation of data management
systems now known as NoSQL database systems [22]; our
focus here will be on the NoSQL sub-category of document
databases. Examples of such systems include MongoDB [9]
and Couchbase Server [3]. NoSQL systems aim to scale
incrementally and horizontally on clusters of computers as
well as to reduce the mismatch between the applications’ view
of data and its persisted view, thereby enabling the players –
ranging from application developers to DBAs and data analysts
as well – to work with their data in its natural form.

Given this state of affairs, a natural question arises: Is
there HOAP1 for NoSQL, especially document databases?
The answer is yes. The requirement to combine operational
and analytical capabilities to support timely analytics is no
less present in the NoSQL world than in the SQL world.
As a result, NoSQL vendors are also beginning to focus
on providing their enterprise customers with HOAP and are
including HOAP-ful messages in their marketing materials.
One such vendor, the one whose document data management
technology we will be examining here, is Couchbase; the
Couchbase Server platform introduced HOAP with its addition
of Couchbase Analytics [8]. It it important to note that our
benchmark design is not specific to Couchbase, however, as
it could be run on HOAP-ful configurations of other NoSQL
databases as well.

In the relational world, the problem of evaluating plat-
form performance under mixed OLTP/OLAP workloads has
attracted attention in recent years. One example is the mixed
workload CH-benCHmark [4] proposed by a stellar collection
of industrial database query processing and performance ex-
perts and now used by others to assess the performance of new
HTAP systems [21]. The same is not yet true in the NoSQL

1For the remainder of this paper we will prefer the term HOAP in the
context of NoSQL, as HOAP seems a bit less tied than HTAP to strict ACID
transactions and to its tendency to attract columnar, main-memory technology
presumptions.

world; there has yet to be a benchmark proposed to assess
HOAP for scalable NoSQL systems. This paper reports on a
first step down that road – we report a set of initial results from
an attempt to evaluate the level of HOAP-fulness offered by
the architecture of Couchbase Server.

The remainder of this paper is organized as follows: Section
II briefly surveys related work on HTAP systems and both SQL
and NoSQL benchmarks. Section III provides an overview of
Couchbase Server and its approach to offering HOAP. Section
IV describes our initial attempt to provide an informative
HOAP benchmark. Section V presents a collection of results
obtained by running our benchmark on a Couchbase server
cluster under several different service configurations, Section
VI summarizes our initial learnings and our thoughts on HOAP
for the future.

II. RELATED WORK

In order to set the stage for our initial work on a HOAP-ful
benchmark for NoSQL, we must first review the most closely
related work on HTAP/HOAP and on database benchmarks.

A. HTAP (HOAP)
As mentioned in the Introduction, the relational database

world has witnessed the emergence of HTAP capabilities in
a number of vendors’ systems in recent years as well as
growing interest in tackling research problems related to the
delivery of effective HTAP solutions. Notable HTAP offerings
today include such systems as HyPer [10] (born in research,
but now owned by and used in Tableau) and SAP-HANA
[13]. Other significant commercial relational HTAP offerings
include DB2 BLU from IBM [20], Oracle’s dual-engine main-
memory database solution [11], and the real-time analytical
processing capabilities now found in Microsoft’s SQL Server
[12]. On the research side, a very recent paper introduces and
explores the concept of adaptive HTAP and how to manage
the core and memory resources of a powerful (scale-up) many-
core NUMA server running a mixed main-memory workload.
[21].

Stepping back, one finds that research and development in
the relational HTAP world have focused heavily on in-memory
scenarios for relatively ”small” operational databases. That is,
now that many-core servers with very large main memories
are available, and given the degree of compression enabled
by columnar storage, it is possible for main memory to hold
all of an enterprises’ operational business data. As a result,
most current HTAP database offerings rely on main-memory
database technologies. And, as would then be expected, the
focus of these offerings is on single-server – i.e., scaling up
rather than scaling out – architectures.

In contrast to relational HTAP, providing HOAP for scalable
NoSQL document databases brings different problems that
require different solutions. To scale document databases while
providing HOAP, the focus needs to be more on Big Data –
flexible, schema-less data. In addition, NoSQL systems and
applications tend to have different transactional consistency
needs [22]. Data timeliness is equally important in the NoSQL

world, but there is less of a need to focus on the reduction
or elimination of ACID transaction interference and more of
a need to focus on the successful provision of performance
isolation at the level of a cluster’s physical resources (as we
will see).

B. Benchmarks
There have been numerous prior benchmarks developed

to evaluate the performance of relational database systems
under a variety of application scenarios [7]. The most notable
series of benchmarks are the TPC-x benchmarks developed
over the years by the Transaction Processing Council (TPC).
These include TPC-C [19] for a typical transaction processing
workload as well as TPC-H [17] and TPC-DS [18] for decision
support and analytics. There have also been a number of
benchmarks proposed and employed in the NoSQL world,
including YCSB [5] for key-value store workloads, BigFUN
[15] for basic Big Data management platform operations’
performance, MongoDB’s recent adaptation of the TPC-C
Benchmark to evaluate NoSQL transactional performance [9],
and a philosophically similar NoSQL adaptation of the TPC-H
benchmark [16] to evaluate Big Data analytics performance,
to name a handful of the benchmarks in the NoSQL and Big
Data arenas. Work of potential interest to readers on workload-
independent benchmarking frameworks includes [6] and [2].

To evaluate HTAP systems, a particularly notable effort
was the development of the mixed workload CH-benCHmark
[4]. This benchmark resulted from a Dagstuhl workshop
attended by a group of industrial database query processing
and performance experts drawn from a variety of companies.
The benchmark combines ideas and operations from the TPC-
C and TPC-H benchmarks in order to bridge the gap between
the established single-workload benchmark suites of TPC-C,
for OLTP, and TPC-H, for OLAP, thus providing a foundation
for mixed workload performance evaluation. The original
paper included some illustrative first results from applying the
benchmark to PostgreSQL with all data in memory and a read-
committed isolation level. The CH-benCHmark appears to be
gaining traction today for HTAP use, having very recently
been used to assess the performance of a new HTAP system
and its scheduling ideas [21].

To the best of our knowledge, there has yet to be a mixed
NoSQL workload benchmark proposed to assess HOAP for
scalable NoSQL systems.

III. COUCHBASE SERVER

Couchbase Server is a highly scalable document-oriented
database management system [3]. With a shared-nothing archi-
tecture, it exposes a fast key-value store with a managed cache
for sub-millisecond data operations, secondary indexing for
fast querying, and a high-performance query engine (actually
now two complementary engines [8]) for executing declarative
SQL-like N1QL2 queries.

Figure 1 lists the major components of Couchbase Server.
(Not listed is Couchbase Mobile, which extends the Couchbase

2N1QL is short for Non-1NF Query Language.

Eventing DataQuery IndexingFull-Text
SearchAnalytics

Fig. 1. Major Couchbase Server Components

Fig. 2. Multi-Dimensional Scaling (MDS)

data platform to the edge, securely managing and syncing
data from any cloud to all edge devices.) Architecturally, the
system is organized as a set of services that are deployed and
managed as a whole on a Couchbase Server cluster. Physically,
a cluster is a group of interchangeable nodes operating in a
peer-to-peer topology, and the services running on each node
can be managed as required. Nodes can be added or removed
through a rebalance process that redistributes the data evenly
across all nodes. The addition or removal of nodes can be used
to increase or decrease the CPU, memory, disk, or network
capacity of a cluster. Rebalancing is done online and requires
no downtime. The ability to dynamically scale the cluster
and map services to sets of nodes is referred to as Multi-
Dimensional Scaling (MDS). Figure 2 illustrates how MDS
might enable a Couchbase cluster to be configured with three
nodes for its Data Service, two nodes to be shared by its Index
and Full-Text Search Services, one node for the Query Service,
and two for the Analytics Service.

A key aspect of the Couchbase Server architecture, which
is also relevant to HOAP, is how data mutations are commu-
nicated across services. Mutation coordination is done via an
internal protocol, called the Database Change Protocol (DCP),
that keeps services in sync by notifying them of all mutations
to documents managed by the Couchbase Data Service. The
Data Service is the producer of DCP mutation notifications;
other services participate as DCP listeners.

The Data Service provides the foundation for document
management. It provides caching, data persistence, and inter-
node replication. The document data model is JSON, and
documents are stored in containers called buckets. A bucket is
a logical collection of related documents, similar to a database
or a schema in a relational database. A bucket is a unique
key space, and its documents can be accessed using a user-
provided document ID much as one can use a primary key
for lookups in an RDBMS. There is no explicitly defined
schema, so the “schema” for documents in Couchbase Server
is based on the application code and captured in the structure
of each stored document. Developers can add new objects and
properties at any time simply by deploying new application
code that stores new JSON data without having to also make
and deploy corresponding changes to a static schema.

The Indexing, Full-Text Search, and Query Services co-

Fig. 3. HOAP-ful JSON Analytics

Fig. 4. Scalable Dual-Service Query Architecture

ordinate via DCP to provide user-facing document database
management functionality that supports high volumes of low-
latency queries and updates for JSON documents. The Index-
ing Service provides scalable global secondary indexing for the
data managed by the Data Service, and the Full-Text Search
service extends Couchbase Server’s indexing capabilities to
include rich text indexing and search. The Query Service ties
this all together by exposing Couchbase Server’s database
functionality through N1QL, a declarative, SQL-based query
language that relaxes the rigid 1NF and strongly-typed schema
demands of the relational SQL language standard.

The Analytics Service complements the Query Service by
providing support for complex and potentially expensive ad-
hoc analytical queries (e.g., large joins and aggregations) over
collections of JSON documents.3 Figures 3 and 4 show the
role that the Analytics Service plays in Couchbase Server.
The Data and Query Service provide low-latency key-value-
based and query-based access to their data. Their design point
is operational; they aim to support a large number of users
making well-defined, programmatic, parameterized requests
that tend to be relatively small and inexpensive. In contrast,
the design point for the Analytics Service is focused on ad
hoc and analytical requests; it aims to support fewer users
posing much larger, more expensive N1QL queries against a
real-time shadow copy of the same JSON data. To this end,
while the Query service has a largely point-to-point/RPC-
based query execution model, the Analytics Service uses
partitioned parallelism under the hood, applying best-of-breed
parallel query execution techniques to bring all the resources
of the Analytics nodes to bear on each query [8].

The Eventing Service provides a framework that application
developers can use to respond to data changes in real time. It
offers an Event-Condition-Action based model for invoking

3For planned analytical queries, e.g., daily reports, another option in
Couchbase Server is to create a covering index for such queries. This is akin
to a simple materialized view approach.

functions registered by reactive applications.
So what about HOAP? As Figures 3 and 4 aim to illustrate,

operational data in Couchbase Server becomes available for
analysis as soon as it is created, and analyses always see
fresh application data thanks to DCP. This enables applications
and data analysts to immediately pose questions against their
operational data, in terms of its natural data model, reducing
the time to insight from days or hours to seconds. Note
that there are several differences between Couchbase Server’s
approach and HTAP in the relational world. One relates to
scale: Like all services in Couchbase Server, the Analytics
Service is designed to scale out horizontally on a shared-
nothing cluster, and it can be scaled independently, as Figure 2
suggests. The Analytics Service maintains a real-time shadow
copy of the operational data that the enterprise wants to
have available for analysis; the copy is because Analytics
is deployed on disjoint cluster nodes to provide performance
isolation for the operational and analytical workloads. Another
difference relates to technology: Couchbase Analytics is not an
in-memory solution. It is designed to handle a large volume of
NoSQL documents, documents whose individual value would
not warrant an expensive memory-resident solution, but whose
aggregated content is still invaluable for decision-making.

More information about Couchbase Server in general and
the Analytics Service in particular can be found in references
[3] and [8], respectively. The latter also provides a brief look at
the relative performance of the Query and Analytics services
at different data and query scales.

IV. HOAP BENCHMARK DESIGN

When we undertook this study, one might say that we had
”high HOAPs”. Our goal was to explore several key aspects
of NoSQL platforms’ support for HOAP, including (1) their
effectiveness at providing performance isolation between the
OLTP and OLAP components of a mixed workload, and (2)
the effectiveness of their query engines for handling OLAP-
style queries. These were of particular interest because most
NoSQL systems were designed to scale out horizontally on
shared-nothing clusters and their initial design points for query
processing have been OLTP-oriented, i.e., they were gener-
ally built to support high-concurrency/low-latency operational
workloads.

Our first instinct was to try to design our own hypothetical
enterprise (PetersList, modeled after Craigslist) with a mix
of front-end and back-office operations. Later, with a healthy
appreciation of the difficulty of coming up with our own
detailed and believable schema, synthetic data, and mixed
workload designs, we were attracted by what MongoDB did in
extending TPC-C for evaluating transactional NoSQL system
performance [9]. (In a different project we had followed a sim-
ilar path by extending TPC-H for a comparative benchmark-
based study of Big Data platform performance [16].) We
decided to follow their path for the operational side of the
workload and to design our own analytical queries, over the
TPC-H schema, for the analytical side of the mix. We later
happened across the mixed workload CH-benCHmark [4] for

Fig. 5. TPC-C Schema (NoSQL Modification Highlighted)

relational systems and were surprised and pleased to find that it
was based on the same basic approach. A revisionist historical
account of our work might describe it as a simplified first
version of a NoSQL extension of the CH-benCHmark.

A. Benchmark Database Design

The schema for our NoSQL HOAP benchmarking effort is
MongoDB’s adaptation [9] of the standard TPC-C schema.
Figure 5 summarizes the 9 tables and relationships of the
standard relational TPC-C schema. The schema models busi-
nesses which “must manage, sell, or distribute products or
services” [19] and it follows a continuous scaling model.
The data size is scaled based on the number of warehouses,
which is increased based on the number of nodes used in
the system. The MongoDB NoSQL adaptation involves 8
collections instead of 9, as in a non-1NF-limited NoSQL
world, an order would naturally embed its line items as nested
data. Figure 5 also highlights the affected region of the TPC-
C schema. The operational workload of TPC-C models the
transactions of a typical production order processing system
that works against this schema. Its transactions are a mixture of
read-only and update-intensive business transactions, including
New-Order, Payment, Order-Status, Delivery, and Stock-Level.
No other nesting changes were made to the schema, as doing
so would lead to over-nesting and produce a poor database
design for such use cases [9], [16].

To map this design to Couchbase Server and its services,
the benchmark data was stored in its entirety in a bucket
called TPCC in the Data Service. Following recommended
Couchbase practices, each of the TPC-C JSON objects had
an additional field, Category, indicating the object’s type (one
of ITEM, STOCK, WAREHOUSE, DISTRICT, CUSTOMER,
HISTORY, NEW ORDER, or ORDER). This bucket was the
target for the operational workload’s queries and updates and
indexed to efficiently support them. A basic set of indexes was
created by following recommendations made by the Query
Service’s index advisor feature. Query 1 shows the N1QL
DDL statements used to set up these indexes; each index was
partitioned over all of the Indexing service’s cluster nodes by
hashing on their indexed objects’ IDs. The Analytics Service
has a more fine-grained container model based on a notion
of datasets (similar in granularity to MongoDB’s collections).

CREATE INDEX idx_ITEM ON ‘TPCC‘(I_ID)
PARTITION BY HASH(META().id) WHERE ‘Category‘ = "ITEM";

CREATE INDEX idx_WAREHOUSE ON ‘TPCC‘(W_ID)
PARTITION BY HASH(META().id) WHERE ‘Category‘ = "WAREHOUSE";

CREATE INDEX idx_DISTRICT ON ‘TPCC‘(D_W_ID, D_ID)
PARTITION BY HASH(META().id) WHERE ‘Category‘ = "DISTRICT";

CREATE INDEX idx_CUSTOMER ON ‘TPCC‘(C_W_ID, C_D_ID, C_ID)
PARTITION BY HASH(META().id) WHERE ‘Category‘ = "CUSTOMER";

CREATE INDEX idx_STOCK ON ‘TPCC‘(S_W_ID, S_I_ID)
PARTITION BY HASH(META().id) WHERE ‘Category‘ = "STOCK";

CREATE INDEX idx_NEW_ORDER
ON ‘TPCC‘(NO_W_ID, NO_D_ID, NO_O_ID)

PARTITION BY HASH(META().id) WHERE ‘Category‘ = "NEW_ORDER";

CREATE INDEX idx_ORDER
ON ‘TPCC‘(O_W_ID, O_C_ID, O_D_ID)

PARTITION BY HASH(META().id) WHERE ‘Category‘ = "ORDERS";

CREATE INDEX idx_Primary_ORDER
ON ‘TPCC‘(O_ID, O_W_ID, O_D_ID)

PARTITION BY HASH(META().id) WHERE ‘Category‘ = "ORDERS";

CREATE INDEX C_STATE_idx ON ‘TPCC‘(‘C_STATE‘)
PARTITION BY HASH(META().id) WHERE (‘Category‘ = "CUSTOMER");

Query 1. Operational Index DDL

CREATE DATASET tpcc_customer
ON TPCC WHERE ‘Category‘ = "CUSTOMER";

CREATE DATASET tpcc_order
ON TPCC WHERE ‘Category‘ = "ORDERS";

CONNECT Link Local;

Query 2. Analytics Dataset DDL

CREATE INDEX idx_customer_state
ON tpcc_customer(C_STATE:STRING);

CREATE INDEX idx_c_idx
ON tpcc_customer(C_ID:bigint, C_D_ID:bigint,

C_W_ID:bigint);
CREATE INDEX idx_o_idx

ON tpcc_order(O_C_ID:bigint, O_D_ID:bigint,
O_W_ID:bigint);

Query 3. Analytics Index DDL

Query 2 shows the N1QL DDL statements used to create
Analytics datasets to shadow the operational data for analytical
workload queries (to be described shortly). Query 3 shows
the statements used to create basic indexes on these datasets
in support of the analytical workload queries. Since hybrid
performance trends were the focus of this first step, not
absolute performance, little effort was made to tune either
these initial indexing choices or the queries.

B. Benchmark Operations
On the operational side, we chose to run a concurrent

mix of just one of the five transactions from TPC-C, namely
New-Order. This transaction represents a complete business
transaction that enters a new order with multiple nested order-
lines into the database. For each order-line, 99% of the time
the supplying warehouse is the home warehouse. The home
warehouse is a fixed warehouse ID associated with a terminal.
To simulate user data entry errors, 1% of the transactions fail
and trigger a roll-back. As shown in Query 4, a New-Order
transaction consists of the following sequence of steps: 1. Find
one district. 2. Update the district from step 1. 3. Find one
item. 4. Find one warehouse. 5. Find one customer. 6. Create

"District_find_one": ’SELECT * FROM TPCC p
WHERE p.Category = "DISTRICT"
AND D_ID = {D_ID} AND D_W_ID = {D_W_ID};’,

"District_find_one_and_update": ’UPDATE TPCC p SET
p.D_NEXT_O_ID = {D_NEXT_O_ID} WHERE p.Category
= "DISTRICT" AND D_ID = {D_ID} AND D_W_ID = {D_W_ID};’,

"Item_find": ’SELECT * FROM TPCC p WHERE p.Category
= "ITEM" AND I_ID IN {I_ID} AND I_W_ID = {I_W_ID};’,

"Warehouse_find_one": ’SELECT * FROM TPCC p WHERE
p.Category = "WAREHOUSE" AND W_ID = {W_ID}’,

"Customer_find_one": ’SELECT * FROM TPCC p WHERE
p.Category = "CUSTOMER" AND C_W_ID = {C_W_ID}
AND C_D_ID = {C_D_ID} AND C_ID = {C_ID}’,

"createNewOrder": ’UPSERT INTO ‘TPCC‘ (KEY,VALUE)
VALUES("{key}", {content}) RETURNING *;’,

"Stock_find": ’SELECT * FROM TPCC p WHERE p.Category
= "STOCK" AND p.S_I_ID in {S_I_ID} AND p.S_W_ID = {S_W_ID};’,

"Stock_find_one": ’SELECT * FROM TPCC p WHERE p.Category
= "STOCK" AND p.S_I_ID = {S_I_ID} AND p.S_W_ID = {S_W_ID};’,

"UpdateStock": ’UPDATE TPCC p SET S_QUANTITY = {S_QUANTITY},
S_YTD = {S_YTD}, S_ORDER_CNT = {S_ORDER_CNT},
S_REMOTE_CNT = {S_REMOTE_CNT} WHERE S_I_ID = {S_I_ID} AND
S_W_ID = {S_W_ID} AND Category = "STOCK";’, # s_quantity,
s_order_cnt, s_remote_cnt, ol_i_id, ol_supply_w_id

"Orders_insert_one": ’UPSERT INTO ‘TPCC‘ (KEY,VALUE)
VALUES("{key}", {content}) RETURNING *;’,

Query 4. New-Order Operation

SELECT c.C_ID, COUNT(*) AS OC_COUNT
FROM TPCC o JOIN TPCC c USE HASH (BUILD)

ON o.O_C_ID = c.C_ID
AND o.O_D_ID = c.C_D_ID
AND o.O_W_ID = c.C_W_ID

WHERE c.Category = ’CUSTOMER’
AND o.Category = ’ORDERS’
AND c.C_STATE = ’ca’

GROUP BY c.C_ID
ORDER BY OC_COUNT DESC, c.C_ID ASC
LIMIT 10;

Query 5. Analytical query (in N1QL for Query)

SELECT c.C_ID, COUNT(*) AS OC_COUNT
FROM tpcc_customer c, tpcc_order o
WHERE c.C_ID = o.O_C_ID

AND c.C_D_ID = o.O_D_ID
AND c.C_W_ID = o.O_W_ID
AND c.C_STATE = "ca"

GROUP BY c.C_ID
ORDER BY OC_COUNT DESC, c.C_ID ASC
LIMIT 10;

Query 6. Analytical query (in N1QL for Analytics)

a new order. 7. Find the corresponding stocks. 8. Update the
corresponding stocks. 9. Insert the new order document into
orders. The New-Order transaction thus touches most of TPC-
C’s tables and consists of both read-only queries and updates.

For the analytical side of the workload, we designed our
own analytical query, one loosely inspired by the sorts of
operations (joins, grouping, aggregation, and top-K ordering)
that one finds in typical analytical usage. Our query was
inspired by the queries in TPC-H, but cast against TPC-
C’s schema; it finds the top 10 customers in a given state
(California, for example) based on their order volume. Queries
5 and 6 show two versions of this query. Query 5 is expressed

Query Service

Index Service

Data Service

Clients

(a)

Query Service

Index Service

Data Service

Analytics
ServiceClients

(b)

Query Service

Index Service

Data Service

Analytics ServiceClients

(c)

Fig. 6. Couchbase cluster configurations: (a) 0% Analytics, (b) 25% Analyt-
ics, (c) 50% Analytics.

in the N1QL for Query dialect of N1QL, and its FROM
clause runs against the Data Service’s TPCC bucket. Query
6 is expressed in N1QL for Analytics, and its FROM clause
runs against the Analytics Service’s datasets. These datasets,
which were defined in Query 2, shadow the information in the
TPCC bucket in real time. (Notice how the WHERE filters in
their dataset definitions correspond to the WHERE predicates
used to distinguish customers and orders in Query 5’s version
of the query.) For the analytical workload, we chose to run a
concurrent mix of this query, but with the actual queried states
being randomly chosen (i.e., not just California).

The overall mixed HOAP workload used in this study
is a concurrent mix of the aforementioned operational and
analytical queries. Note that the CH-benCHmark is a mix of
all of TPC-C’s operations on the operational side plus all of
TPC-H’s TPC-C-adapted queries on the analytica side, while
the mixed workload for our first HOAP-ful step selects just one
kind of operation for each side. We have done this intentionally
so that we can really observe and understand the system’s
performance characteristics in detail in this first step.

C. Benchmark Configuration(s)

As described earlier, our goal here is to explore several key
aspects of HOAP-ful platforms for NoSQL, including (1) their
effectiveness at providing performance isolation between the
OLTP and OLAP components of a mixed workload, and (2)
the effectiveness of their query engines for handling OLAP-
style queries. To this end, we have run our initial benchmark
on a 9-node cluster in three different configurations. Figure 6
shows the configurations, each of which involves using one
node to drive the multithreaded workload and the other nodes
as an 8-node Couchbase Server cluster. In configuration (a), re-
ferred to as the 0% Analytics configuration, all of the nodes are
configured to have the Data Service, Index Service, and Query
Service. The operational data in the Data Service is partitioned
across the whole cluster, and likewise for the Index Service’s

indexes; each node is able to accept and run N1QL for Query
queries and updates. The Analytics Service is not deployed on
the cluster in this configuration. (One might characterize this
as being a HOAP-less setup.) In configuration (b), referred
to as the 25% Analytics configuration, 25% of the nodes are
given over to the Analytics Service, and 75% of the cluster
has the Data/Index/Query Service combination deployed on it.
In configuration (c), the 50% Analytics configuration, half of
the cluster is given to the Analytics Service and the other half
has the Data/Index/Query combination. Note that when it is
deployed on a Couchbase Cluster, the Analytics Service should
be given a set of nodes to itself for performance isolation.

To implement the benchmark’s mixed workload we started
with the publicly available MongoDB adaptation of CMU’s
pytpcc benchmarking system [9] and added a driver for
Couchbase Server to meet our requirements4. Each operational
or analytical user is simulated by a thread running on the
client node of the 9-node cluster. Each thread consistently
sends query requests to the system. 0-64 threads send New-
Order operations to the Query Service, while 0-6 threads send
analytical queries to either the Query Service (in the 0%
Analytics configuration) or the Analytics Service (in the other
two configurations). These thread counts simulate a typical
business model with more front-end users than data analysts.

Hardware-wise, the 9-node cluster used for our experiments
is comprised of Intel NUC nodes, each with a dual-core Intel
i7-7567U 3.5GHZ CPU, 16 GB of memory, and a 500GB
Samsung 960 EVO SSD drive. Note that this is nothing like a
production cluster; rather, it is a small academic ”toy” cluster
that cost about $500/node to assemble and lives in an office
at UC Irvine.

Data-wise, the operational data resides in the TPCC bucket
in the Data Service (in JSON document form). In terms of
scale, the size of this bucket was chosen to be approximately
4 times the aggregate memory size of the system. To this
end, the TPCC bucket consists of 159,308,800 documents in 6
”tables” (Categories). There are 1600 Warehouse documents,
16000 District documents, 24,000,000 Customer documents,
24,000,000 Order documents (with embedded Order-Item ar-
rays), 7,200,000 New-Order documents, 100,000 Item docu-
ments, and 80,000,000 Stock documents.

Before proceeding to share our initial experimental results,
a few more words are in order regarding the details of the
analytical query that we used. Initially our intention was for
the analytical query in the mix to find the top-10 customers
overall. However, one of our objectives was to compare the
Query and Analytics N1QL query engines, which is why
we have two versions of the query. Moreover, to make our
experiments feasible, we set a goal of limiting the time
required for the Query Service to complete the analytical query
to be 30 minutes or less. To achieve this goal we ended up
having to add a state condition to the query and to carefully
index the query for the Query Service. (One index was built

4The software artifacts associated with this paper’s benchmark are available
at https://github.com/YifanTian/HOAP_Benchmark

(a)

(b)

(c)

(d)

Fig. 7. 0% Analytics: (a) Operational Throughput. (b) Operational Throughput (zoomed-in). (c) Analytical Throughput. (d) Analytical Response Time.

on the customer table with the state attribute being covered to
speed access to a particular state’s data. A second index was
built on the foreign key(s) of the Orders table to support the
customer/order join operation.) Without the added predicate
and the supporting indexes we kept experiencing a mix of
timeouts and ”too many results for index cursor” errors that
impeded our ability to conduct the benchmark on the 0%
Analytics configuration. (We will have a bit more to say about
this when we discuss the performance results.)

V. INITIAL PERFORMANCE RESULTS

In this section, we report and reflect on the performance
results obtained by running our initial mixed-workload HOAP
benchmark on the three 8-node Couchbase Server cluster
configurations shown in Figure 6. Note that our primary focus
here will be on HOAP performance trends and behavior, not
on the system’s absolute performance. This is not production
hardware, and additional benchmark tuning would no doubt
be possible. For each configuration, we present a block of
four performance graphs that shed light on the system’s
behavior with respect to operational performance, analytical
performance, and performance isolation. To this end, for each
configuration, we will present a block of four graphs showing
the following metrics:
a. Operational Throughput: The throughput (in opera-

tions/second) for the New-Order operations (NewOrder) as
a function of the number of New-Order users (threads).

This graph will contain multiple curves, one for each of
a different number of concurrent analytical (JoinGrpAgg)
queries in the mix.

b. Operational Throughput (zoomed in): A zoomed-in version
of the dashed region of (a) to better show the initial portion
of the operational throughput curves.

c. Analytical Throughput: The throughput (in queries/minute)
for the analytical queries as a function of the number of
analytical query users (threads). This graph will contain
multiple curves, one for each of a different number of
concurrent New-Order operations in the mix.

d. Analytical Response Time: The corresponding average re-
sponse time (in seconds) for the analytical queries as a
function of the number of analytical users, again with
different numbers of concurrent New-Order operations in
the mix.

The measurement period for each single mixed workload
experiment (i.e., each graph data point) was 30 minutes. The
benchmark data was initially loaded and it was reset to its
original state before the start of each subsequent experiment.
In addition, we allowed for a 5-minute cool-down interval
between each experiment to make sure that each experiment
began with the system at rest.

Figure 7 shows the results for the 0% Analytics configura-
tion. In this first configuration, both the operational and ana-
lytical components of the mixed workload are directed to the
Query Service and processed by the Data/Index/Query Service

(a)

(b)

(c)

(d)

Fig. 8. 25% Analytics: (a) Operational Throughput. (b) Operational Throughput (zoomed-in). (c) Analytical Throughput. (d) Analytical Response Time.

(a)

(b)

(c)

(d)

Fig. 9. 50% Analytics: (a) Operational Throughput. (b) Operational Throughput (zoomed-in). (c) Analytical Throughput. (d) Analytical Response Time.

combination. The original design point for this combination
of Couchbase services is operational; this is the same service
layout used for the operational performance examples in [3].
As a result, it is quite literally a ”big ask” to expect the Query
Service to handle the analytical queries in the mix. (Recall
from earlier that we were unable to get the Query Service
to run a non-state-predicated version of this query within the
designated measurement period without incurring timeouts or
exceeding limits on intermediate result cursor set sizes.)

Figures 7(a) and 7(b) show the NewOrder throughput in
the 0% Analytics configuration. Each of the curves exhibits a
textbook performance increase as the level of NewOrder con-
currency is increased. However, we can see that the operational
throughput is significantly impacted by the presence of the
concurrent JoinGrpAgg queries; e.g., NewOrder throughput
drops by more than a factor of two when 64 concurrent
NewOrder threads are competing for resources with 10 Jo-
inGrpAgg query threads. We can also see in Figures 7(c) and
7(d) that this configuration’s analytical performance is also
impacted by having to compete with the NewOrder opera-
tions; e.g., the average analytical response time increases by
over 50% over the range of concurrent NewOrder operations
tests. These results clearly show that there is no performance
isolation for the workload mix in this configuration – or to put
it succinctly, they show that this configuration is essentially
HOAP-less, performance-wise.

Figure 8 shows the performance results for the first HOAP-
ful cluster configuration, the 25% Analytics configuration. In
this configuration, 6 of the 8 nodes are running the Data/In-
dex/Query service combination and the other 2 nodes are ded-
icated to running the Analytics service. The N1QL statements
for the operational workload are directed to the Query Service,
while the analytical workload’s N1QL statements are directed
to the Analytics Service. (Each has its own HTTP endpoint
to which the relevant requests are sent by the threads in the
HOAP benchmark’s client driver.)

The differences between the results in Figures 7 and 8
are striking. Both the operational and analytics throughput
curves in Figure 8 exhibit textbook increases as the number
of operational or analytical threads is increased. However,
unlike the 0% Analytics configuration’s results, these results
show essentially perfect performance isolation. By carving out
75% of the cluster for the operational services and giving the
remainder to the Analytics service, the NewOrder throughput
is completely protected from the JoinGrpAgg queries in the
workload – social distancing works! Looking at the analytical
performance results in Figure 8, we see that query performance
is impacted only slightly by increases in the size of the oper-
ational portion of the workload; this makes sense because the
NewOrder threads generate data changes in the Data Service’s
TPCC bucket that are communicated to the Analytics Service
(via DCP) and applied in real-time to the Analytics Service’s
datasets, leading to some additional work for Analytics since
it has to apply the changes.

Aside from showing the effectiveness of performance iso-
lation, a comparison of the performance results from the

two configurations also reveals some interesting information
about the achievable absolute performance for the mixed work-
load’s components. A comparison of the two configurations’
NewOrder throughputs in the absence of JoinGrpAgg queries
shows the ”opportunity cost” of taking 2 nodes away from the
Data/Index/Query side of the cluster and giving them (unused)
to the Analytics service. However, once there are 3-4 JoinGr-
pAgg queries present in the mix, the two configurations’ oper-
ational throughputs become similar, and beyond that degree of
analytical competition, the operational throughput in the 0%
Analytics configuration suffers in comparison. A comparison
of the two configurations’ analytical query performance shows
much superior performance for the 25% configuration (due to
its having a parallel query engine designed for analytical query
processing) – for this relatively small/simple state-predicated
JoinAggGrp query, the 25% configuration delivers roughly 3X
better analytical performance. (And recall that without the state
predicate, the Query Service was unable to run the analytical
queries within the desired experiment time limit, which was
not a problem at all for the Analytics Service.)

Figure 9 shows the performance results for the final HOAP-
ful cluster configuration that we tested, the 50% Analytics
configuration. In this configuration, half of the nodes are
running the Data/Index/Query service combination and the
other half are dedicated to the Analytics service. The ob-
servations about this configuration’s performance are similar
to what we saw for 25% Analytics, except that in this case
– due to the 50-50 split of the cluster’s resources – the
peak operational performance is lower and the peak analytical
performance is higher due to the shift of resources in favor
of the analytical side of the workload. We can also observe
more clearly here the slight impact of the operational side on
the analytical side; in the absence of any NewOrder threads,
the analytical performance is higher than when the Analytics
Service must ingest incoming mutations while also executing
its JoinGrpAgg workload’s queries.

VI. CONCLUSION

Database management systems with hybrid data manage-
ment support – HTAP or HOAP – are increasingly attracting
interest in both the commercial IT and research arenas. They
first appeared in the relational world, where they are often
linked to high-end server technology trends such as columnar
storage and memory-rich, many-core scale-up server technol-
ogy. In this paper we have focused on hybrid platforms in
the document data management region of the NoSQL world.
We reported results from a first effort to characterize the
mixed workload performance of such systems. We borrowed
from and extended the TPC-C benchmark and studied the
performance of Couchbase Server, a horizontally scalable
NoSQL platform that offers HOAP via the combination of
its Data/Index/Query and Analytics Services. As we have just
seen experimentally, our results attest to the importance of
architecting a NoSQL platform for HOAP, both in terms of
its provision of performance isolation for the operational and
analytical sides of a mixed workload and its approach(es)

to query processing for simple versus complex queries. We
shared our initial results, which indicate that Couchbase Server
is indeed able to offer ”HOAP for NoSQL”. We also saw
that it supports configuration tuning that can enable a system
administrator to choose how to split a cluster’s resources
between the two sides of a given mixed workload.

While HOAP-fully interesting, this paper is just a first step;
many interesting things remain to be done. As discussed,
our work is similar to the relational CH-benCHmark, which
proposed the use of a combination of TPC-C plus a TPC-
C-schema-adapted version of the TPC-H query set to form a
more general mixed workload. One obvious next step would be
to run the entire CH-benCHmark on Couchbase Server using
the NoSQL-modified TPC-C schema and to figure out how to
interpret the resulting (more complex) performance metrics.
Another potentially interesting exercise would be to do this
for multiple NoSQL systems in order to evaluate their relative
levels of HOAP-ful-ness.

ACKNOWLEDGMENT

The work of the second and third authors was supported
in part by NSF CNS award 1925610. Those authors also
have part-time consulting affiliations with Couchbase, Inc.
The authors would like to thank the BPOD 2020 reviewers
and Peter Reale of Couchbase for suggestions that helped
to improve the presentation. They would also like to thank
Keshav Murthy of Couchbase for his occasional assistance
with the Query Service.

REFERENCES

[1] 451 Research. Hybrid Processing Enables New Use Cases
(Business Impact Brief), 2018 (accessed October 2020).
https://www.intersystems.com/isc-resources/wp-content/uploads/sites/
24/Hybrid Processing Enables New Use Cases-451Research.pdf.

[2] D. Bermbach, J. Kuhlenkamp, A. Dey, A. Ramachandran, A. D. Fekete,
and S. Tai. BenchFoundry: A benchmarking framework for cloud storage
services. In E. M. Maximilien, A. Vallecillo, J. Wang, and M. Oriol,
editors, Service-Oriented Computing - 15th International Conference,
ICSOC 2017, Malaga, Spain, November 13-16, 2017, Proceedings,
volume 10601 of Lecture Notes in Computer Science, pages 314–330.
Springer, 2017.

[3] D. Borkar, R. Mayuram, G. Sangudi, and M. J. Carey. Have your data
and query it too: From key-value caching to Big Data management. In
F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 239–251.
ACM, 2016.

[4] R. L. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. A. Kuno, R. O. Nambiar, T. Neumann, M. Poess, K. Sattler, M. Sei-
bold, E. Simon, and F. Waas. The mixed workload CH-benCHmark. In
G. Graefe and K. Salem, editors, Proceedings of the Fourth International
Workshop on Testing Database Systems, DBTest 2011, Athens, Greece,
June 13, 2011, page 8. ACM, 2011.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In J. M. Hellerstein,
S. Chaudhuri, and M. Rosenblum, editors, Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, pages 143–154. ACM, 2010.

[6] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux. OLTP-
Bench: An extensible testbed for benchmarking relational databases.
Proc. VLDB Endow., 7(4):277–288, 2013.

[7] J. Gray, editor. The Benchmark Handbook for Database and Transaction
Systems (1st Edition). Morgan Kaufmann, 1991.

[8] M. A. Hubail, A. Alsuliman, M. Blow, M. J. Carey, D. Lychagin,
I. Maxon, and T. Westmann. Couchbase Analytics: NoETL for scalable
NoSQL data analysis. Proc. VLDB Endow., 12(12):2275–2286, 2019.

[9] A. Kamsky. Adapting TPC-C benchmark to measure performance
of multi-document transactions in MongoDB. Proc. VLDB Endow.,
12(12):2254–2262, 2019.

[10] A. Kemper and T. Neumann. HyPer: A hybrid OLTP & OLAP main
memory database system based on virtual memory snapshots. In
S. Abiteboul, K. Böhm, C. Koch, and K. Tan, editors, Proceedings of
the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany, pages 195–206. IEEE Computer
Society, 2011.

[11] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T. Lee, J. Loaiza, N. MacNaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zaı̈t. Oracle database in-memory: A dual
format in-memory database. In J. Gehrke, W. Lehner, K. Shim, S. K.
Cha, and G. M. Lohman, editors, 31st IEEE International Conference on
Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,
pages 1253–1258. IEEE Computer Society, 2015.

[12] P. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, and
V. Papadimos. Real-time analytical processing with SQL server. Proc.
VLDB Endow., 8(12):1740–1751, 2015.

[13] N. May, A. Böhm, and W. Lehner. SAP HANA - The evolution of an in-
memory DBMS from pure OLAP processing towards mixed workloads.
In B. Mitschang, D. Nicklas, F. Leymann, H. Schöning, M. Herschel,
J. Teubner, T. Härder, O. Kopp, and M. Wieland, editors, Datenbanksys-
teme für Business, Technologie und Web (BTW 2017), 17. Fachtagung
des GI-Fachbereichs ,,Datenbanken und Informationssysteme” (DBIS),
6.-10. März 2017, Stuttgart, Germany, Proceedings, volume P-265 of
LNI, pages 545–563. GI, 2017.

[14] M. T. Özsu and P. Valduriez. Principles of Distributed Database
Systems, 4th Edition. Springer, 2020.

[15] P. Pirzadeh, M. J. Carey, and T. Westmann. BigFUN: A performance
study of Big Data management system functionality. In 2015 IEEE
International Conference on Big Data, Big Data 2015, Santa Clara, CA,
USA, October 29 - November 1, 2015, pages 507–514. IEEE Computer
Society, 2015.

[16] P. Pirzadeh, M. J. Carey, and T. Westmann. A performance study of
Big Data analytics platforms. In J. Nie, Z. Obradovic, T. Suzumura,
R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu,
J. Kepner, A. Cuzzocrea, J. Tang, and M. Toyoda, editors, 2017 IEEE
International Conference on Big Data, BigData 2017, Boston, MA, USA,
December 11-14, 2017, pages 2911–2920. IEEE Computer Society,
2017.

[17] M. Pöss and C. Floyd. New TPC benchmarks for decision support and
web commerce. SIGMOD Rec., 29(4):64–71, 2000.

[18] M. Pöss, B. Smith, L. Kollár, and P. Larson. TPC-DS, taking decision
support benchmarking to the next level. In M. J. Franklin, B. Moon,
and A. Ailamaki, editors, Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin,
USA, June 3-6, 2002, pages 582–587. ACM, 2002.

[19] F. Raab. TPC-C - The standard benchmark for online transaction
processing (OLTP). In J. Gray, editor, The Benchmark Handbook for
Database and Transaction Systems (2nd Edition). Morgan Kaufmann,
1993.

[20] V. Raman, G. K. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malke-
mus, R. Müller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. J. Storm,
and L. Zhang. DB2 with BLU acceleration: So much more than just a
column store. Proc. VLDB Endow., 6(11):1080–1091, 2013.

[21] A. Raza, P. Chrysogelos, A. G. Anadiotis, and A. Ailamaki. Adaptive
HTAP through elastic resource scheduling. In D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of
the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 2043–2054. ACM, 2020.

[22] P. J. Sadalage and M. Fowler. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Addison-Wesley, Upper Saddle
River, NJ, 2013.

[23] Wikipedia contributors. Hybrid transactional/analytical processing —
Wikipedia, the free encyclopedia, 2020. [Online; accessed 19-October-
2020].

