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In this study, we developed an offline, hierarchical intent
recognition system for inferring the timing and direction of
motion intent of a human operator when operating in an un-
structured environment. There has been an increasing de-
mand for robot agents to assist in these dynamic, rapid mo-
tions that are constantly evolving and require quick, accu-
rate estimation of a user’s direction of travel. An experiment
was conducted in a motion capture space with six subjects
performing threat-evasion in 8 directions, and their mechan-
ical and neuromuscular signals were recorded for use in our
intent recognition system (XGBoost). Investigated against
current, analytical methods, our system demonstrated supe-
rior performance with quicker direction of travel estimation
occurring 140 ms earlier in the movement and a 11.6◦ reduc-
tion of error. The results showed that we could even predict
movement start 100 ms prior to the actual, thus allowing any
physical systems to start up. Our direction estimation had an
optimal performance of 8.8◦, or 2.4% of the 360◦ range of
travel, using 3-axis kinetic data. The performance of other
sensors and their combinations indicate that there are ad-
ditional possibilities to obtain low estimation error. These
findings are promising as they can be used to inform the de-
sign of a wearable robot aimed at assisting users in dynamic
motions, while in environments with oncoming threats.

1 Introduction
1.1 Overview

Unstructured environments, such as construction sites,
search-and-rescue, and war-zone areas, are dynamic and un-
certain. Performing tasks in such situations can be dan-
gerous for a human operator, and thus there is a signifi-
cant need for smart robotics to enhance human safety and
task completion efficiency, leading to a recent push for robot
agents to collaborate in human-robot teaming as wearable
robots, humanoids, unmanned ground vehicles, and swarm
robots [1–3]. When environments or tasks become more dy-

namic, wearable robots offer particular promise because they
can leverage the superior agility and mobility of their human
operators to provide physical assistance to augment human
safety. Existing works in the field of wearable robots have
heavily focused on using different controllers to provide as-
sistance for steady state locomotion [2, 3]. While analytical
methods and control theory have dominated the field, intent
recognition can provide more accurate estimation of when
and how to apply better assistance for augmenting the perfor-
mance of human operators. More recently, intent recognition
has been introduced to the field to estimate the needed assis-
tance in repeated locomotion, such as walking or running,
or specific scenarios, such as lifting or pathology-specific
ambulation [4, 5]. Given the adaptability of intent recog-
nition, we can utilize such machine learning techniques to
solve many of the challenges posed by dynamic, nonlinear
motions performed by human operators.

We are centering the interaction between the human op-
erator and wearable robot on human behavior during dy-
namic motions. The novelty of this work is determining hu-
man intent of dynamic motions to improve reaction and task
execution for wearable robots to smartly assist operators. If
a robot misunderstands intention, it may impose forces that
are counterproductive or even dangerous. We aim to rapidly
classify timing and directions of travel of the human agent
using intent recognition and determine which on-board sen-
sors are most critical. The main contribution of this work is
the design of an intent recognition system that can (1) hierar-
chically predict when a human intends to move and estimate
the intended direction of movement, (2) reduce the error of
direction classification compared to analytical methods for
fast, accurate estimation of directions of travel, and (3) quan-
tify the contribution of candidate sensors for this motion.

In this study, analytical methods (referred to as the base-
line) have been used to determine directions of travel us-
ing temporal information, such as integrating inertial data.
We hypothesize that intent recognition machine learning al-
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Fig. 1. Mechanical and physiological behavior captured through a
human dynamic motion collection provides an intent recognition sys-
tem the ability to optimize and estimate future motions

gorithms will reduce estimation error rate when classifying
direction of movements compared to the baseline. In addi-
tion, another novel aspect of our approach is predicting fu-
ture desire to initiate movement, a capability not possible us-
ing a purely analytical method. This work utilizes the fol-
lowing sensors to investigate performance: electromyogra-
phy (EMG), inertial measurement units (IMUs), force plates,
and motion capture markers. The system overview, shown in
Fig. 1, relies on a multi-sensor collection of a human agent
performing dynamic, nonlinear motions to predict the timing
of movement start and estimate their direction of travel with
our machine learning techniques.

1.2 Background
Control systems and analytical approaches have been

used to track key metrics, such as position and orientation
of robot agents [6–8]. Recent work has shown great promise
with kinetic and inertial derivations [9, 10]. However, such
methods may not be fast or accurate enough to predict and es-
timate dynamic behaviors that evolve as the movement pro-
gresses. In this study, we investigate the performance of such
a baseline compared to our intent recognition system.

Intent recognition systems based in machine learning
have been successful in the field of robotics for pattern recog-
nition, socially assistive robots, and human-robot interac-
tion [11, 12]. As a relatively recent development, machine
learning for human movement and locomotion is seen in sys-
tems that provide assistance for various pathologies, pros-
thetic devices, and exoskeletons for walking using classifica-
tion techniques [5,13,14]. As these studies get more specific
to a certain type of use, there is a gap in the human motion in-
tent field to design similar systems for more rapid, dynamic
motions of the lower limbs [15–17]. Because intent recogni-
tion can enable rapid direction tracking of transient responses
in other applications, we are examining sudden movements
based in human motion intent since this rapid locomotion has
not been explored yet with such techniques [18, 19].

The design of intent recognition systems for dynamic
motions requires an initial prediction of when the movement
is going to start during a human agent’s reaction time fol-
lowed by an immediate estimate of the direction of travel.
Mechanical and physiological inputs can be used concur-
rently to capture the unique attributes of this motion and

enhance estimating the intended direction of travel based
off of previous work in classifying modes in locomotion
[15,16,20]. Studies have investigated physiological methods
on the lower limbs to understand the various components of
movement [21–23]. Contact methods of monitoring muscle
activation aid in measuring a quick response that is neces-
sary for determining human motion intention and can serve
as inputs into intent recognition systems [24, 25]. Moreover,
they can start an intent recognition system during a predic-
tive range, which is between the start of the human agent’s
reaction time and actual start of movement [19].

From the mechanical perspective, previous studies ex-
amine lower limb dynamics, such as inverse kinematics and
inverse kinetics, to reveal information about the components
and orientation of specific motions [26,27]. In human motion
analysis, ground reaction forces (GRF), center of mass veloc-
ity, and center of pressure (CoP) have been key in analyses
of various cases; therefore, their inclusion would provide im-
portant information for the intent recognition system [28,29].
Center of mass velocity has been a primary metric studied
for gait tracking and was utilized in this work to determine
when movement starts with precise and reliable motion cap-
ture [30]. Inertial sensors have also illustrated stable position
tracking in unstructured environments [31, 32].

We developed a hierarchical architecture using mechan-
ical and physiological sensors to predict movement start and
estimate which direction an agent intended to move in or-
der to provide rapid, optimized assistance for dynamic mo-
tions in unstructured environments. We obtained the overall
system performance, which was defined as how fast and ac-
curately we could estimate direction compared to an inertial
baseline.

2 Methods
2.1 Experiment Procedure

A set of experiments was conducted to understand how
subjects perform dynamic motions by collecting outputs
from a set of external sensors during such movements. This
study focused on direction-dependent motions. Six able-
bodied subjects gave written, informed consent for a protocol
that was approved by the Georgia Institute of Technology’s
Institutional Review Board (H18363).

Each subject stood in the middle of a six force plate con-
figuration, which represented the center of a labeled circle (r
= 2 m). Fig. 2 demonstrates the procedure of the experi-
ment. 8 directions were chosen at 45◦ increments. After the
subject was standing at rest for a randomized time (1 s – 10
s), a visual instruction of a top-down arrow of one of the 8 di-
rections was displayed on a television. The subject was told
to escape the labeled circle in the given direction as fast as
they possibly could. This labeled circle ensured jumping and
hopping were not performed since they were not represen-
tative of the more distinct, multiple step threat-evasion strat-
egy. After successfully crossing the circle, the trial ended and
the subject returned to their centered position. Each subject
had a training period to become accustomed with the envi-
ronment. The 8 directions and a null condition were tested
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Fig. 2. Subjects, starting from rest, rapidly escaped a pre-labeled
circle in the direction randomly displayed on a television. A subject is
completing a trial in the 0◦ direction.

10 times, resulting in 90 trials per subject. The order of di-
rections tested were randomized to prevent directional bias.

GRF and CoP were captured with six force plates
(Bertec, Columbus, OH, USA). Three IMUs and 14 chan-
nels of EMG were placed on each subject (Delsys Avanti
& Trigno Platforms, Natick, MA, USA). A 43-reflective
marker set, modified from the Cleveland Clinic Standard
Lower Limb Set, was also used in the motion capture space
(Vicon, Oxford, UK). Sensor placements were illustrated in
Fig. 3 [33].

2.2 Signal Processing
The collected sensor data shown in Fig. 3 was filtered as

follows:

EMG: Muscle Activation, Bandpass (20-400 Hz)
IMU: 3-Axis Accelerometer (Accel), No Applied Filter
IMU: 3-Axis Gyroscope (Gyro), No Applied Filter
Force Plates: GRF, Lowpass (20 Hz)
Force Plates: CoP, Lowpass (20 Hz)
Motion Capture: Marker Trajectories, Lowpass (6 Hz)

In this study, EMG, IMU, GRF, and CoP were either
already relative or transformed to the local body frame to be
consistent with readings from most wearable sensors [34].
OpenSim v4.1 was used to calculate the sagittal and frontal
hip joint angles [35]. GRFs were integrated to obtain impulse
over time. For this dataset, we examined each trial for all
directions from one second prior to the start of movement to
before a limb made contact with ground outside of the force
plate configuration.

To determine the key sensor information required for dy-
namic motions, the experiment data was grouped into three
categories based on data retrievable from current sensors
commonly used in wearable devices. These sensor groups
are as follows:

Fig. 3. Sensor and marker locations are annotated on anterior and
posterior sides. EMG locations per lower limb were Tibialis Anterior,
Rectus Femoris, Gastrocnemius Lateralis, Biceps Femoris, Tensor
Fasciae Latae, Adductor Magnus, Gluteus Maximus. IMU locations
were the Lower Back and the Left and Right Upper Thighs.

1. All Kinetic: Vertical Kinetic + Shear Kinetic

(a) Vertical Kinetic: Vertical GRF (1-axis) + CoP
(b) Shear Kinetic: Horizontal GRF (2-axis) + Impulse

2. EMG: Muscle Activation
3. Kinematic: IMU (Gyro, Accel) + Hip Joint Angles

2.3 Intent Recognition Pipeline
An intent recognition pipeline using machine learning

was created to predict and estimate threat-evasive behavior.
Common practices in machine learning were utilized [5].

Supervised Learning: Type of model that trains on
known inputs, or features, and known outputs, or labels.
Performance is found by testing the model on known in-
puts but unknown outputs.
Binary Classification: Model that has only two possible
outputs.
Multi-Class Classification: Model that has a known
number of possible outputs >2.
Feature Engineering: Extraction technique to determine
interesting attributes from a window of data to yield a
set of representative values, or features, of that window.
Dimensionality Reduction: Reduction of dimensions in
the feature space by selecting the optimal features that
provide the most information.
Forward Feature Selection: Type of dimensionality re-
duction that iteratively adds features to the model to de-
termine which set of features best improve the model’s
performance [36].
Sweep & Tuning: Optimization technique to find the
best model parameters and hyperparameters through an
exhaustive grid search.
Cross Validation: Evaluation method to determine a
model’s overall robustness by rotating out different test-
ing sets.
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Fig. 4. Intent recognition pipeline illustrates the steps required from
system inputs to feature engineering to optimization of algorithms in
order to predict movement start and estimate direction of travel

Using the experiment outputs as system inputs after
signal processing, as illustrated in Fig. 4, the inputs went
through their respective feature engineering techniques [37].
The system was optimized with dimensionality reduction, a
sweep of window sizes and increment lengths, and hyperpa-
rameter tuning before leading into the hierarchical structure
to classify movement start and direction of travel.

The system was broken down into two models: 1) a tim-
ing model to predict when movement started from a resting
position at the millisecond level, and 2) a direction model to
estimate in what direction the subject intended to move. A
selection of a machine learning algorithm for each of these
models was needed. A case study of machine learning in
human motion intent recognition has demonstrated that XG-
Boost, a new and robust machine learning algorithm, had the
best performance in steady and transitional states of move-
ment against current state-of-the-art models in the field [38].
XGBoost is a parallel tree boosting system that uses ensem-
ble learning and gradient boosting to efficiently develop a set
of trees from a supervised learning approach. Its benefits in-
clude regularization to prevent overfitting, controllable prun-
ing of tree complexity, and working with sparse datasets [39].
It was selected for both timing and direction models.

2.3.1 Timing Model: Prediction & Sensor Optimization
The timing model used a form of supervised learning,

binary classification (intended to move or not). Its ground
truth label for start of movement, or the Absolute Kinematic
Start, was based off of when the subject’s center of mass
velocity exceeded a set threshold compared to their resting
position’s velocity, using motion capture marker trajectories.
Feature extraction was completed on the system inputs, ex-
cluding impulse. This omission was necessary as GRFs read-
ings were not changing at rest, so impulse was negligible.
The primary metric used for performance analysis was to-
tal classification error during the entire motion and classifi-
cation error only during the transition window between no
movement and movement.

Because the highest classification error in the binary
timing model was likely to occur in this transition window,
the timing model went through a prediction analysis in the
transition phase, where Absolute Kinematic Start labels were

changed to switch earlier than the actual start of movement.
The estimation, 0 ms Prior, was compared to predictions, 60
ms, 100 ms, 200 ms, and 300 ms Prior to Absolute Kine-
matic Start. These times were chosen to illustrate the pro-
gressive trend of predictions. Increment size for the model
was 20 ms; therefore, selected predictive times were multi-
ples of this increment. Forward feature selection was run at
the best predictive time to determine the critical features that
obtain low error. The sensor groups were analyzed at the
best predictive time by their classification errors during the
transition window. A one-way ANOVA was performed to
determine statistical differences between the sensor groups
with additional one-way ANOVA tests to compare different
groupings.

2.3.2 Direction Model: Dimensionality Reduction, Esti-
mation Over Time, & Estimation Per Direction

Once the Absolute Kinematic Start was reached, the di-
rection model was activated. This model was formulated as a
supervised, multi-class classification trained on the features
in Fig. 4 and assigned labels as the displayed arrow on the
television representing the intended direction of movement.
Each direction represented a class. The primary performance
metric for this model was mean absolute error (MAE) for a
directional analysis of degrees.

Forward feature selection was executed to determine the
optimal number of features for best performance and its con-
tributing sensors. The results of the direction model were
cross validated (k = 2) during dimensionality reduction and
hyperparameter optimization. The hyperparameters tuned
were the learning rate, maximum allowable tree depth, and
minimum gain to split a tree node.

The performance of the direction model was evaluated
with all directions compounded by the average estimation
errors of various sensor groups and their combinations. A
one-way ANOVA with a Bonferroni correction (α = 0.05)
for pairwise comparison was conducted to distinguish which
group of sensors significantly reduced estimation error. Error
over time was also analyzed to determine which sensor suite
could provide a precise, continued estimation as the dynamic
motion evolved. Directions were then examined separately,
and the optimal error for each direction was reported at when
95% of the stabilized estimation error was reached in time.

2.3.3 Kinetic Baseline: Direction Estimation Over Time
& Performance Per Direction

After developing and optimizing the timing and direc-
tion models of the intent recognition system, the next step
was to compare our architecture against the direction esti-
mation of an analytical approach common in similar works.
After a preliminary testing of analytical methods found with
wearable sensors (data not shown), we chose the best per-
forming method, which was to calculate the total impulse
from GRFs. The baseline was established as a kinetic re-
sponse because of its advantageous performance, both spa-
tially and temporally, unlike other sensors [40]. Therefore,
the comparison of the kinetic baseline against the intent
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Fig. 5. The transition phase was examined for estimation (0 ms
Prior) and predictions (60 ms Prior, 100 ms Prior, 200 ms
Prior, 300 ms Prior) of the start of threat-evasive movement, or
Absolute Kinematic Start. Steady state error for the estimation sys-
tem was extremely low (< 3%); thus, the primary differentiator was
error during the specified transition window. Data zoomed to transi-
tion window.

Fig. 6. The timing model’s classification performance was exam-
ined by sensor groups at 100 ms Prior to Absolute Kinematic Start.
Classification errors were averaged over six subjects and error bars
represented +/-1 SEM.

recognition system was not biased in favor to the proposed
system by using poor performing baselines. The direction
of travel was determined from the impulse components as
θ = atan2(impulsey, impulsex).

The XGBoost direction model was studied against
the kinetic baseline to determine which method efficiently
achieved low error of direction estimation over time and for
each direction. For each direction examined separately, 8
paired t-tests evaluated the statistical differences in MAE for
each direction between the XGBoost model and baseline.
The reported error for the baseline was captured at the time of
when the XGBoost model had reached 95% of its stabilized
response to represent a precise comparison in time. Analysis
was broken down further by cardinal (0◦, 90◦, 180◦, 270◦)
and diagonal directions (45◦, 135◦, 225◦, 315◦).

3 Results
3.1 Timing Model: Prediction & Sensor Optimization

The timing model’s performance in the transition phase
in Fig. 5 showed an increasing classification error as predic-
tions were pushed further back before Absolute Kinematic
Start. As further predictive times were examined, there was
an increasing spread in time in which the errors occurred
over time and a linear increase in the total classification error
of the entire motion. Classification during the transition win-
dow also worsened as more times prior were examined. At
300 ms Prior, the transition classification error constituted
the majority of total classification error.

The timing model’s forward feature selection at 100 ms
Prior indicated that the critical features to obtain a total er-
ror of 4.8% were vertical GRFs (left and right limbs) and
IMU Gyro (left limb). The sensor group breakdown of the
timing model in Fig. 6, which was trained at 100 ms Prior,
illustrated statistical differences in all five standalone sen-
sor groups (p < 0.05). Additional one-way ANOVA tests
demonstrated that All Kinetic, Kinematic, and EMG as well
as Shear Kinetic, Kinematic, and EMG had statistical dif-
ferences, meaning these kinetic groups performed better in
error reduction than the EMG and Kinematic sensor groups
(p < 0.05). However, Vertical Kinetic, EMG, and Kine-
matic (p = 0.08) as well as only the three kinetic groups
(p = 0.93) demonstrated no statistical difference in error re-
duction. These findings indicate a statistically superior per-
formance of the Shear Kinetic sensor group both standalone
and in combination with the Vertical Kinetic sensor group.

3.2 Direction Model: Dimensionality Reduction
The direction model’s forward feature selection demon-

strated that the estimation error quickly decreased as features
were individually added to the model, illustrated in Fig. 7.
The optimal feature set was found when the added features
no longer had any significant reduction in error, which cor-
responded to 13.8◦ MAE. The optimal features were seg-
mented by sensor group to demonstrate the trend of the large
contribution of kinetic data. From the set of features that pro-
duced the optimal error listed in Fig. 8, shear components of
the kinetic data were common earlier in the set, meaning they
greatly assisted in the error reduction. Additionally, out of
the 7 muscles per limb examined, only 4 of the muscles were
selected in this set: Bicep Femoris, Adductor Magnus, Tib-
ialis Anterior, and Gastrocnemius Lateralis. The kinematic
contribution in this optimized set included all 3 IMUs.

3.3 Direction Model: Estimation Breakdown & Perfor-
mance Over Time

As combinations of the sensor groups in Fig. 9 were ex-
amined with the post-hoc pairwise comparison, EMG, Kine-
matic, and Vertical Kinetic groups had worse average de-
gree errors than the kinetic baseline. The grouping of two
or more sensors as well as the shear sensors alone produced
a lower error than the baseline. The Vertical Kinetic group
showed significant improvement in its estimation error as ei-
ther Kinematic or Shear Kinetic groups were added to form
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Fig. 7. Forward feature selection of the direction model was per-
formed, and an optimal error was found at n = 27 features. The
breakdown of this feature set is also illustrated.

Fig. 8. The optimal set of features was determined using forward
feature selection for the direction model

groups of two (Vertical Kinetic + Kinematic: p = 0.02, All
Kinetic: p < 0.0001), but not when added with EMG (Ver-
tical Kinetic + EMG: p = 1.0). As groups of three were ex-
amined against these groups of two, there was no significant
improvement in any of these additions (p > 0.05), except
when Shear Kinetic was included with Vertical Kinetic and
EMG (All Kinetic + EMG: p = 0.002).

The addition of Shear Kinetic to any sensor group to
form a group of two had significant reduction in error (p <
0.05 for all combinations of two). However, after Shear Ki-
netic was included to form a group of two, the addition of
any other sensors to form a group of three or four had no sta-
tistically significant improvement in estimation error based
on pairwise comparison. This indicated that Shear Kinetic
sensors had optimal performance and greatly reduced esti-
mation error as standalone and in combination with other
sensor groups.

As subjects continued in their path, MAE over time was

Fig. 9. For all directions compounded, the intent recognition sys-
tem’s direction model was trained by sensor group and their combi-
nations. Average MAE was reported for each sensor group combi-
nation and the kinetic baseline. MAE was averaged over six subjects
and error bars represent +/-1 SEM.

computed offline, as seen in Fig. 10, and demonstrated sig-
nificantly better temporal performance of the direction model
trained on the optimized feature set over the EMG sensor
group, Kinematic sensor group, and kinetic baseline. The di-
rection model trained on the All Kinetic sensor group had a
similar performance to the model trained on the optimized
feature set.

The kinetic baseline produced a stabilized response 500
ms into the evolution of the dynamic movement to MAE of
15.5◦. The optimized feature set direction model had a stabi-
lized response of 6.9◦ at 360 ms. The EMG direction model
and Kinematic direction model stabilized later in the motion
with both obtaining a minimization of error within the first
300 ms of movement. This minimum of MAE was consistent
at the second toe-off of the stance leg.

3.4 Baseline vs. Direction Model Per Direction
At 95% of the intent recognition system’s stabilized er-

ror shown in Fig. 11, the direction model consistently ob-
tained error <15◦ for each direction, while the baseline var-
ied between 5◦ and 45◦. For three of the four cardinal di-
rections, the intent recognition system had no significant im-
provement over the baseline (0◦: p = 0.024, 90◦: p = 0.37,
180◦: p = 0.05, 270◦: p = 0.13). However, the intent recog-
nition system performed significantly better than the baseline
in three out of the four diagonal directions (45◦: p = 0.01,
135◦: p = 0.1, 225◦: p = 0.003, 315◦: p = 0.001). This
indicated that the intent recognition system was statistically
better than the baseline in most diagonal directions and can
match or outperform the baseline in all cardinal directions.
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Fig. 10. The baseline’s direction estimation was compared to the in-
tent recognition system’s estimation (XGBoost) over time by sensor
group and optimized feature set. Annotated in the legend are these
errors averaged across the time shown. The baseline had the great-
est error than the other direction models’ sensor breakdowns in the
first 0.3 s of movement. Stabilized errors are shown as dotted lines
for the respective analyses.

4 Discussions
We successfully developed a hierarchical intent recogni-

tion system that 1) predicted movement start intent at 100 ms
Prior to Absolute Kinematic Start with a total classification
error of 4.8% and 2) estimated movement direction within
8.8◦ of the correct vector with the optimal sensor suite of
All Kinetic (Shear Kinetic and Vertical Kinetic). Addition-
ally, the intent recognition system had significantly lower es-
timation error, consistent performance in all directions, and
reached a steady state direction earlier than the baseline.

4.1 Predictive Timing for Intent Recognition System
The timing model’s estimation of the Absolute Kine-

matic Start performed well due to low total classification er-
ror (<3%) and temporal performance with most of the er-
ror coming from the -50 ms to 50 ms range surrounding the
switch between at rest and movement. Comparing this esti-
mation to the predictive times, the percent increase of transi-
tion classification error for 60 ms Prior was 17% and for 100
ms Prior was 40%. The percent increase was 162% for 200
ms Prior and 328% for 300 ms Prior. Additionally, 200 ms
Prior and 300 ms Prior had a larger spread in time where er-
ror occurred in this transition phase, while 60 ms Prior and
100 ms Prior did not. Therefore, as you look further be-
fore the start of movement, there is a disruption to the two
surrounding phases, increasing the overall error of estimat-
ing the time of movement start. At 200 ms Prior and 300

Fig. 11. For each direction analyzed, the intent recognition system’s
error at 95% of the steady state error was determined and averaged
over six subjects. At the time of the intent recognition’s annotated
error, the baseline’s error was found to illustrate the respective values
according to an early estimation. The intent recognition’s direction
estimation (XGBoost) results presented used all available sensors.

ms Prior, the transition classification error constitutes a sub-
stantial portion of the total classification error, resulting in an
inaccurate estimation of the switch. At 60 ms Prior, the other
phases are not as affected, and errors remain low. Under the
same conditions, the findings at 100 ms Prior are acceptable
as well, and this predictive time looks further prior to Ab-
solute Kinematic Start. These offline findings indicate that
100 ms Prior is the optimal choice for a forward prediction
window as it maintains low transition and total classification
errors, while still predicting movement start without signif-
icantly affecting the other phases. Physical requirements of
a wearable system can start up at this time, earlier than 0 ms
Prior. If the system is started too early at 200 ms Prior or
300 ms Prior, there would be a great loss in resolution. If the
system is started at 60 ms Prior, there is more time prior to
the start of movement that the system can account for given
the performance of 100 ms Prior.

Compared to recent work on human motion estimation,
our work provides a quicker, more general model with pre-
dictive capabilities. Other studies have examined differ-
ent classification techniques for recognizing start of move-
ment. In Lee’s 2015 work, the motion classification of move-
ment had good estimation for all but the deep learning ap-
proach [41]. Our XGBoost estimation method (<3% error)
as well as our prediction capabilities (<5% error) perform
better than their examined algorithms during movement esti-
mation except the supervised MTRNN. However, XGBoost
has lower computation time and is more flexible in its de-
sign. Additionally, it enhances our ability to predict earlier
in time of when movement is about to occur rather than es-
timate, which is a new approach in the field. While some
works rely heavily on EMG for predicting earlier times for
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dynamic motions, our findings indicate the All Kinetic sen-
sor group is the optimal choice to monitor for movement start
with better accuracy [19,42]. If needed, EMG and Kinematic
sensors can be used to determine the predictive time for our
problem, but with a 3% gain in error (Fig. 6). Now that Ab-
solute Kinematic Start can be anticipated through this offline
analysis, we can track dynamic motions over time as they are
evolving with minimized delay to their actual movements.

4.2 Intent Recognition System’s Direction Estimation
& Sensor Contribution

Once the user has reached the Absolute Kinematic Start,
we can proceed through the hierarchical architecture to user
direction estimation. The intent recognition’s direction esti-
mation results provide the necessary temporal information,
set of features, and sensor contributions to obtain the most
advantageous sensor suite that produces a low error for accu-
rate direction estimation of an agent. Kinetic sensors demon-
strate a greater contribution in obtaining precise direction es-
timation than Kinematic and EMG sensors, as seen in its
prevalence in the optimized feature set (Fig. 7), its role in
greatly reducing error in its addition to sensor combinations
(Fig. 9), and its significantly lower error over time (Fig. 10),
averaged at 9◦.

Our findings show that the inclusion of Shear Kinetic
sensors drive the boost in performance of direction esti-
mation. Shear Kinetic sensors can be combined with Ver-
tical Kinetic sensors to produce the lowest, statistically-
significant direction estimation error of 8.8◦, which is a 2.4%
error of the 360◦ range of potential directions. If Shear Ki-
netic sensors are readily available, EMG and Kinematic sen-
sors would not be required for precise direction estimation;
however, Shear Kinetic sensors are difficult to engineer, and
very few wearable sensors and devices have them fully inte-
grated to date. If these sensors are not accessible, our results
indicate that combining sensor groups can reduce both av-
eraged and temporal direction estimation error. Specifically,
Vertical Kinetic and Kinematic sensor groups used together
produce a direction estimation error of 15.5◦, or a 4.3% error
of the 360◦ range (Fig. 9). This combination has no statistical
difference if EMG was included in this set.

Previous work has relied on kinematic data to provide
orientation estimation. Aminian’s work on lower limb ori-
entation relied solely on inertial sensors and had a 1.7◦ error
in thigh orientation estimation for fast movements in a 30◦

range of joint movement, which is 5.7% error [43]. Our work
can obtain half that error with 3-axis kinetic data in a much
wider range of movement.

An interesting minimization of error was found to corre-
spond to a specific gait event during threat-evasion (Fig. 10).
The minimization occurred earliest for the EMG sensor
group as muscle activity foreshadows mechanical action.
This trackable event of the second toe-off from the stance
leg is a possible estimation technique for real-time imple-
mentation of this system. Previous literature demonstrates
that online gait phase detection is possible with one or more
sensors [16].

4.3 Performance Comparison of Baseline and Intent
Recognition

The kinetic baseline method was compared to our algo-
rithm architecture’s direction estimation. The kinetic base-
line took about 140 ms longer to reach a steady state re-
sponse than the direction model with the optimized feature
set (Fig. 10). Given the need for rapid, accurate estima-
tion, the baseline method would not be sufficient to provide
correct direction estimation for a user in a timely manner
because it had greater error in the first 300 ms of threat-
evasion and stabilized to a steady state error later and worse
than the optimized XGBoost direction model. Our archi-
tecture provides fast, accurate estimations of agile motion
much closer to their actual start of threat-evasion. Similar to
our kinetic baseline, other works have focused on an analyt-
ical approach, such as orientation sensors, to estimate direc-
tion. There are drawbacks to using an analytical method to
inform direction. One study showed increased difficulty at
estimating negative angles and an error of 18.1◦ in the yaw
angle [44]. As we fuse sensor groups together, we are mak-
ing our estimation faster and more accurate.

The intent recognition system had a more uniform per-
formance for each direction and was more versatile in its
ability to estimate a variety of directions than the baseline.
The baseline could be used for moving in the cardinal direc-
tions, but it had poorer performance than the intent recogni-
tion system for the diagonal directions. As such, other works
have focused only on one plane of travel and inertial compo-
nents since it has been shown as one of the best strategies in
literature [10, 45]. We have developed a method that is more
robust than the kinetic approach and allows for a wider range
of possible directions to be examined with precise direction
estimation of dynamic motions.

4.4 Limitations
The error estimation and performance characterized in

this study are reflective of noise and inaccuracies in the sen-
sors used. We chose to include sensors that could be im-
plemented in real-world applications in order to add to the
robustness of translating this system to an online analysis.
A few of the sensors were standard wearable sensors that
could be embedded easily in wearable applications, such as
EMG and IMUs. Other sensor readings were laboratory-
grade, such as GRFs and some kinematic data, and would
likely be less precise in a wearable application.

Although we have shown that 3D GRF (shear and ver-
tical) sensors greatly improve the direction model’s perfor-
mance in this work, our offline analysis utilizes shear sensing
with high-precision, 6-DOF force plates. Translating such
measurements to a wearable system is not easy, but force
sensing insoles may be a viable future option. Researchers
continue to develop insoles capable of measuring 3D GRF
and have shown MAEs of < 10% [46,47]. Sensor errors will
reduce classification performance, and their metrics (noise
and bias) will have to be rigorously analyzed either through
perturbation analyses or new experiments.
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5 Conclusions
This study contributed a design of an intent recognition

system that quantified and determined candidate sensors best
suited for dynamic, rapid motions as well as hierarchically
predicted motion intent offline and reduced direction classifi-
cation error once the estimation of direction of travel pipeline
was activated. This work indicated that our intent recogni-
tion system would provide critical information in a precise
and timely manner to interpret user intention when perform-
ing threat-evasive motions. These findings can inform the
design of a wearable device to provide physical assistance
for users dynamically evading oncoming threats in unstruc-
tured environments to protect human safety.
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