Graduate Student Research Competition Track Abstract

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Wisconsin Benchmark Data Generator:
To JSON and Beyond

Shiva Jahangiri
University of California Irvine
shivaj@uci.edu

ACM Reference format:

Shiva Jahangiri. 2021. Wisconsin Benchmark Data Generator: To JSON
and Beyond. In Proceedings of 2021 ACM SIGMOD International
Conference on Management of Data (SIGMOD’21), June 20-25, 2021, Virtual
Event, China. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3448016.3450577

Problem and Motivation

Benchmarks have always been one of the greatest assets in
evaluating a Data Management System (DBMS) performance and
providing a standard way to compare different DBMSs from
various angles. As DBMSs evolve over time, new benchmarks
are created, and the older ones need to advance and adapt in
order to continue to be a valid and capable comparison tool.
Many of the standard benchmarks use synthetic data and as such
may not be able to capture the complexity of real data and its
relationships correctly. The Wisconsin Benchmark was one of
the first and main benchmarking tools made four decades ago by
Dewitt et al at the University of Wisconsin. One of the most
powerful features of this benchmark is that its relations are
designed so their structure and distribution of attributes is easy
to understand and control. While the Wisconsin Benchmark was
a very powerful and widely-used benchmark years ago, it is
given less attention in current studies. We believe that the
Wisconsin Benchmark and its carefully designed relations can be
utilized and provide capabilities that are unique and useful.. In
this paper, we present a flexible, easy-to-use and scalable JSON
Data Generator implemented in java based on the Wisconsin
Benchmark Data Generator description, with more advanced
features to provide relations and attributes closer to real-world
data. Attribute skewness and variable length records using
different size distributions are some of these newly added
features. It is a ready-to-use, parameterized, and scalable data
generator tool that since its development has been used in
AsterixDB’s
publications [13,14,17,18], and we believe that can be useful to
many others. The source code and more information are
provided at [1].

several [4] performance benchmarking and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s).

SIGMOD 21, June 20-25, 2021, Virtual Event, China.

© 2021 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3450577

2887

Attribute Name Range Order Comment
uniquel 0..(MAX-1) random unique, random order
unique2 0.(MAX-1) random unique, sequential

two 0.1 cyclic (uniquel mod 2)
four 0.3 cyclic (uniquel mod 4)
ten 0..9 cyclic (uniquel mod 10)
twenty 0..19 cyclic (uniquel mod 20
onePercent 0..99 cyclic (uniquel mod 100)
tenPercent 0..9 cyclic (uniquel mod 10)
twentyPercent 0.4 cyclic (uniquel mod 5)
fiftyPercent 0..1 cyclic (uniquel mod 2)
unique3 0..(MAX-1) cyclic uniquel

evenOnePercent 0,2,4,...,198 cyclic (onePercent * 2)

oddOnePercent 1,3,5....199 cyclic (onePercent * 2)+1
stringul random candidate key
stringu2 cyclic candidate key
string4 cyclic

Figure 1: The original Wisconsin benchmark schema

Background and Related Work

In 1980s, the lack of a standard database benchmark initiated
efforts by multiple researchers to design benchmarks for
different purposes and applications. DeWitt et al introduced the
Wisconsin Benchmark [6,9] at the completion of the DIRECT
database machine; the benchmark was designed to test the
performance of the major components of a relational database
system while the semantics and statistics of its relations would
be easy to understand. This Benchmark was initially a single-
query
performance, which was criticized mostly for being single-user

user micro-benchmark for measuring individual
only [9]. A multi-user version of this benchmark [6] which was
developed a few years later did not attract as much as attraction
as past, due to existence of other well-established competitors
such as DebitCredit Benchmark, a multi-user OLTP benchmark
led by Jim Gray [16]. While the Wisconsin Benchmark does not
have as large an audience today as in the past, we believe that its
simple but powerful design easy to understand and highly
controllable relations and attributes are unique and can be
beneficial in evaluating database systems from many angles. As
such, we have built a Wisconsin-inspired JSON data generator in
java with more add-ons and advances features to support more

modern data features.

Currently, the TPC benchmark family is one of the well-known
standard benchmark sets widely used in academia as well as
industry. While TPC-H and TPC-DS are powerful benchmarks
with complex workloads, their attributes are mostly uniformly
distributed and independent of each other. [7] introduced join
crossing correlation with skew in TPC-H benchmark and [8]
introduces skew in TPC-H by grouping nations into high and
low populated.

Graduate Student Research Competition Track Abstract

Approach and Novelty

One of the challenges of the benchmarks that use synthetic data
is that they are then incapable of generating data that is realistic.
On the other hand, benchmarks which use real data often
contain data values that are not flexible and controllable which
makes them harder to understand and less capable of providing a
range of specific scenarios. To overcome these problems, we
created a Wisconsin-inspired JSON Data Generator in Java
which creates records with the same logic and attributes as the
Wisconsin Data Generator. In addition to that, we added other
features such as attribute distributions to provide attribute
skewness which is a missing but very important and useful
feature to have. A number of other features were added to
support semi-structured in addition to structured databases;
those are explained below.

JSON Records. Our data generator provides records in JSON
format which is supported as the input format or even as the
data model in many of modern database systems, especially
those that manage semi-structured data. Apache AsterixDB [2] is
an example that we have benchmarked using data generated by
our data generator.

Nullable & Missing Attributes. One of the features that was
missing from the original Wisconsin Data Generator was the
capability to have nullable attributes and have a knob to control
the distribution of null values in those attributes. Also, in a semi-
structured world, a field may appear in some of the records but
not in all. Some database management systems such as
AsterixDB that manage semi-structured data, have the option to
define a field as optional which may exist in some of the records
and be missing in others. In our generator, for each attribute
there are options for setting a field as nullable and/or missing. In
addition to that, user can specify what percentage of the data
they wish to be null and/or missing.

Variable Record Lengths. In the original Wisconsin Data
Generator, strings are generated in a random or cyclic format. In
the case of random, the string representation of the uniquel
attribute is used as the prefix (which is unique as well) and
enough ‘x’ characters will be padded to the string to reach the
desired length. In the case of cyclic, string values are generated
from the domain of four prefix in a cyclic format. While padding
to the strings is a simple and useful way of reaching the required
length of the string, it does not create variation in strings’
length. In order to generate variable length strings, we added 5
more properties to the attribute definition. The first property is a
percentage which based on the binomial distribution decides if
the string should be long or short. The other four fields are used
for specifying the minimum and maximum length of the long
and short strings. The length of the long and short string will be
chosen uniformly from these ranges. These knobs give us control
on the distribution of short and long strings as well as their
length ranges. We also support selecting the length of a string
from a defined range using Zipf distribution.

2888

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Real-Word & HEX Strings. In addition to supporting the
mentioned algorithms, we support strings that are generated by
concatenating words from a list made of 10,000 real words. This
approach helps with reducing the impact of data compression
due to less repetitive characters. For this case, an average
number of words to be included in the string is provided as an
input, and algorithm concatenates as many as asked from the
word list based on a specific distribution (Uniform, Normal,
Gamma, and Zipf distributions are supported). Generating
random HEX strings is another way of generating variable
length strings with lower impact due to compression.

Attribute Skewness. One of the missing but important feature
in a number of current benchmark’s data generators is the ability
to provide attribute skewness, yet data skew is unavoidable in
real world. For our purpose, to benchmark the performance of
AsterixDB’s join algorithms under join attribute skewness, we
applied normal distribution on integer attributes. Users can
specify the standard deviation and the mean of their distribution
to get the desired dataset.

Contributions & Future Work

The JSON Wisconsin Data Generator has been used in multiple
studies and publications so far. [14] used this data generator to
benchmark the performance of memory-intensive operators in
AsterixDB. They generated variable sized and large records
using random HEX string generator under Normal and Gamma
distributions. [17,18] have used Json Wisconsin Data Generator
to generate large volumes of highly controllable data to
benchmark their large-scale analytical frameworks. The author
in [13] used this data generator for re-evaluating a study [19] on
various query plans for multi-join queries. The author is
currently utilizing the advanced features of this data generator
to benchmark the performance of Dynamic Hybrid Hash Join in
AsterixDB under variable record sizes, skewed join attributes,
and a combination of both. We will work on generating nested
array-valued fields in one relation with regard to the values in
other relations to provide data for benchmarking join queries on
nested data.

ACKNOWLEDGMENTS

I would like to thank my PhD advisors Michael J. Carey and
Johann-Christoph Freytag for their continued help and support
of this work.

REFERENCES

[1] JSON Wisconsin Data Generator: Shiva Jahangiri. (2020, December 11).
shivajah/JSON-Wisconsin-Data-Generator: First Release (Version v1.0.2).
Zenodo. http://doi.org/10.5281/zenodo.4316003

(2]
B3]

https://asterixdb.apache.org

1993. TPC Benchmark TMA: Standard Specification. In The Benchmark
Handbook for Database and Transaction Systems (2nd Edition), Jim Gray
(Ed.). Morgan Kaufmann.

[4] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander
Behm,Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil,
MadhusudanCheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover,
Zachary Heil-bron, Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok,
Nicola Onose,Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, Jian Wen,

and Till Westmann.2014. AsterixDB: A Scalable, Open Source

http://doi.org/10.5281/zenodo.4316003

Graduate Student Research Competition Track Abstract

[3]

[6]

[7]

[8]

[9]

[10]

[11]

BDMS.CoRRabs/1407.0454(2014).arXiv:1407.0454
http://arxiv.org/abs/1407.0454

Carrie Ballinger. 1993. TPC-D: Benchmarking for Decision Support. In The
Benchmark Handbook for Database and Transaction Systems (2nd Edition),
JimGray (Ed.). Morgan Kaufmann.

Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. 1983. Benchmarking
Database Systems A Systematic Approach. In9th International Conference
onVery Large Data Bases, October 31 - November 2, 1983, Florence, Italy,
Proceedings, Mario Schkolnick and Costantino Thanos (Eds.). Morgan
Kaufmann, 8-19.http://www.vldb.org/conf/1983/P008.PDF

Peter A. Boncz, Angelos-Christos G. Anadiotis, and Steffen Kldbe. 2017. JCC-
H: Adding Join Crossing Correlations with Skew to TPC-H. In Performance
Evaluation and Benchmarking for the Analytics Era - 9th TPC Technology
Conference,TPCTC 2017, Munich, Germany, August 28, 2017, Revised
Selected Papers (Lecture Notes in Computer Science), Raghunath Nambiar
and Meikel Poess (Eds.),Vol. 10661. Springer, 103-119.
https://doi.org/10.1007/978-3-319-72401-0_8

Alain Crolotte and Ahmad Ghazal. 2011. Introducing Skew into the TPC-H
Benchmark. In Topics in Performance Evaluation, Measurement and
Characterization - Third TPC Technology Conference, TPCTC 2011, Seattle,
WA, USA, August29-September 3, 2011, Revised Selected Papers (Lecture
Notes in Computer Science),Raghunath Othayoth Nambiar and Meikel Poess
(Eds.), Vol. 7144. Springer, 137-145. https://doi.org/10.1007/978-3-642-32627-
1.10

David J. DeWitt. 1991. The Wisconsin Benchmark: Past, Present, and Future.
In The Benchmark Handbook for Database and Transaction Systems (1st
Edition), JimGray (Ed.). Morgan Kaufmann, 119-165.

Jim Gray (Ed.). 1993.The Benchmark Handbook for Database and Transaction
Systems (2nd Edition). Morgan Kaufmann.

Jim Gray. 1993. Database and Transaction Processing Performance Handbook.

In The Benchmark Handbook for Database and Transaction Systems (2nd
Edition),Jim Gray (Ed.). Morgan Kaufmann.

2889

[12]

[13]

[14]

[15]

[16]

(18]

[19]

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Rui Han, Lizy Kurian John, and Jianfeng Zhan. 2018. Benchmarking Big Data
Systems: A Review.IEEE Trans. Serv. Comput.11, 3 (2018), 580-597.
https://doi.org/10.1109/TSC.2017.2730882

Shiva Jahangiri. 2020. Re-evaluating the Performance Trade-offs for Hash-
Based Multi-Join Queries. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, An Hai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
2845-2847.https://doi.org/10.1145/3318464.3384406

Taewoo Kim, Alexander Behm, Michael Blow, Vinayak R. Borkar, Yingyi
Bu,Michael J. Carey, Murtadha Al Hubail, Shiva Jahangiri, Jianfeng Jia, Chen
Li,Chen Luo, Ian Maxon, and Pouria Pirzadeh. 2020. Robust and efficient
memory management in Apache AsterixDB.Softw. Pract. Exp.50, 7 (2020), 1114~
1151.https://doi.org/10.1002/spe.2799

Francois Raab. 1993. TPC-C - The Standard Benchmark for Online transaction
Processing (OLTP). In The Benchmark Handbook for Database and Transaction
Systems (2nd Edition), Jim Gray (Ed.). Morgan Kaufmann.

Omri Serlin. 1993. The History of DebitCredit and the TPC. In The Benchmark
Handbook for Database and Transaction Systems (2nd Edition), Jim Gray
(Ed.).Morgan Kaufmann.

Phanwadee Sinthong and Michael J. Carey. 2019. AFrame: Extending
DataFramesfor Large-Scale Modern Data Analysis. In2019 IEEE International
Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9-12,
2019. IEEE, 359-371.https://doi.org/10.1109/BigData47090.2019.9006303

Phanwadee Sinthong and Michael J. Carey. 2020. PolyFrame: A
RetargetableQuery-based Approach to Scaling DataFrames (Extended
Version).CoRRabs/2010.05529 (2020). arXiv:2010.05529

https://arxiv.org/abs/2010.05529

Donovan A. Schneider and David J. DeWitt. (1990). Tradeoffs in Processing
Complex Join Queries via Hashing in Multiprocessor Database Machines.
In Proceedings of the 16th International Conference on Very Large Data
Bases (VLDB '90). San Francisco, CA, USA, 469-480.

http://arxiv.org/abs/1407.0454
https://doi.org/10.1007/978-3-319-72401-0_8
https://doi.org/10.1007/978-3-642-32627-1_10
https://doi.org/10.1007/978-3-642-32627-1_10
https://doi.org/10.1109/TSC.2017.2730882
https://arxiv.org/abs/2010.05529

