
Figure 1: The original Wisconsin benchmark schema 
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Problem and Motivation 
Benchmarks have always been one of the greatest assets in 
evaluating a Data Management System (DBMS) performance and 
providing a standard way to compare different DBMSs from 
various angles. As DBMSs evolve over time, new benchmarks 
are created, and the older ones need to advance and adapt in 
order to continue to be a valid and capable comparison tool. 
Many of the standard benchmarks use synthetic data and as such 
may not be able to capture the complexity of real data and its 
relationships correctly. The Wisconsin Benchmark was one of 
the first and main benchmarking tools made four decades ago by 
Dewitt et al at the University of Wisconsin. One of the most 
powerful features of this benchmark is that its relations are 
designed so their structure and distribution of attributes is easy 
to understand and control. While the Wisconsin Benchmark was 
a very powerful and widely-used benchmark years ago, it is 
given less attention in current studies. We believe that the 
Wisconsin Benchmark and its carefully designed relations can be 
utilized and provide capabilities that are unique and useful.. In 
this paper, we present a flexible, easy-to-use and scalable JSON 
Data Generator implemented in java based on the Wisconsin 
Benchmark Data Generator description, with more advanced 
features to provide relations and attributes closer to real-world 
data. Attribute skewness and variable length records using 
different size distributions are some of these newly added 
features. It is a ready-to-use, parameterized, and scalable data 
generator tool that since its development has been used in 
several AsterixDB’s [4] performance benchmarking and 
publications [13,14,17,18], and we believe that can be useful to 
many others. The source code and more information are 
provided at [1].  

 
 

Background and Related Work 
In 1980s, the lack of a standard database benchmark initiated 
efforts by multiple researchers to design benchmarks for 
different purposes and applications. DeWitt et al introduced the 
Wisconsin Benchmark [6,9] at the completion of the DIRECT 
database machine; the benchmark was designed to test the 
performance of the major components of a relational database 
system while the semantics and statistics of its relations would 
be easy to understand.  This Benchmark was initially a single-
user micro-benchmark for measuring individual query 
performance, which was criticized mostly for being single-user 
only [9]. A multi-user version of this benchmark [6] which was 
developed a few years later did not attract as much as attraction 
as past, due to existence of other well-established competitors 
such as DebitCredit Benchmark, a multi-user OLTP benchmark 
led by Jim Gray [16]. While the Wisconsin Benchmark does not 
have as large an audience today as in the past, we believe that its 
simple but powerful design easy to understand and highly 
controllable relations and attributes are unique and can be 
beneficial in evaluating database systems from many angles. As 
such, we have built a Wisconsin-inspired JSON data generator in 
java with more add-ons and advances features to support more 
modern data features. 

Currently, the TPC benchmark family is one of the well-known 
standard benchmark sets widely used in academia as well as 
industry. While TPC-H and TPC-DS are powerful benchmarks 
with complex workloads, their attributes are mostly uniformly 
distributed and independent of each other. [7] introduced join 
crossing correlation with skew in TPC-H benchmark and [8] 
introduces skew in TPC-H by grouping nations into high and 
low populated.  
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Approach and Novelty 
One of the challenges of the benchmarks that use synthetic data 
is that they are then incapable of generating data that is realistic. 
On the other hand, benchmarks which use real data often 
contain data values that are not flexible and controllable which 
makes them harder to understand and less capable of providing a 
range of specific scenarios. To overcome these problems, we 
created a Wisconsin-inspired JSON Data Generator in Java 
which creates records with the same logic and attributes as the 
Wisconsin Data Generator. In addition to that, we added other 
features such as attribute distributions to provide attribute 
skewness which is a missing but very important and useful 
feature to have. A number of other features were added to 
support semi-structured in addition to structured databases; 
those are explained below. 

JSON Records. Our data generator provides records in JSON 
format which is supported as the input format or even as the 
data model in many of modern database systems, especially 
those that manage semi-structured data. Apache AsterixDB [2] is 
an example that we have benchmarked using data generated by 
our data generator. 

Nullable & Missing Attributes. One of the features that was 
missing from the original Wisconsin Data Generator was the 
capability to have nullable attributes and have a knob to control 
the distribution of null values in those attributes. Also, in a semi-
structured world, a field may appear in some of the records but 
not in all.  Some database management systems such as 
AsterixDB that manage semi-structured data, have the option to 
define a field as optional which may exist in some of the records 
and be missing in others. In our generator, for each attribute 
there are options for setting a field as nullable and/or missing. In 
addition to that, user can specify what percentage of the data 
they wish to be null and/or missing. 

Variable Record Lengths. In the original Wisconsin Data 
Generator, strings are generated in a random or cyclic format. In 
the case of random, the string representation of the unique1 
attribute is used as the prefix (which is unique as well) and 
enough ‘x’ characters will be padded to the string to reach the 
desired length. In the case of cyclic, string values are generated 
from the domain of four prefix in a cyclic format. While padding 
to the strings is a simple and useful way of reaching the required 
length of the string, it does not create variation in strings’ 
length. In order to generate variable length strings, we added 5 
more properties to the attribute definition. The first property is a 
percentage which based on the binomial distribution decides if 
the string should be long or short. The other four fields are used 
for specifying the minimum and maximum length of the long 
and short strings. The length of the long and short string will be 
chosen uniformly from these ranges. These knobs give us control 
on the distribution of short and long strings as well as their 
length ranges. We also support selecting the length of a string 
from a defined range using Zipf distribution. 

 

Real-Word & HEX Strings. In addition to supporting the 
mentioned algorithms, we support strings that are generated by 
concatenating words from a list made of 10,000 real words. This 
approach helps with reducing the impact of data compression 
due to less repetitive characters. For this case, an average 
number of words to be included in the string is provided as an 
input, and algorithm concatenates as many as asked from the 
word list based on a specific distribution (Uniform, Normal, 
Gamma, and Zipf distributions are supported). Generating 
random HEX strings is another way of generating variable 
length strings with lower impact due to compression. 

Attribute Skewness. One of the missing but important feature 
in a number of current benchmark’s data generators is the ability 
to provide attribute skewness, yet data skew is unavoidable in 
real world. For our purpose, to benchmark the performance of 
AsterixDB’s join algorithms under join attribute skewness, we 
applied normal distribution on integer attributes. Users can 
specify the standard deviation and the mean of their distribution 
to get the desired dataset. 

Contributions & Future Work 
The JSON Wisconsin Data Generator has been used in multiple 
studies and publications so far. [14] used this data generator to 
benchmark the performance of memory-intensive operators in 
AsterixDB. They generated variable sized and large records 
using random HEX string generator under Normal and Gamma 
distributions. [17,18] have used Json Wisconsin Data Generator 
to generate large volumes of highly controllable data to 
benchmark their large-scale analytical frameworks. The author 
in [13] used this data generator for re-evaluating a study [19] on 
various query plans for multi-join queries. The author is 
currently utilizing the advanced features of this data generator 
to benchmark the performance of Dynamic Hybrid Hash Join in 
AsterixDB under variable record sizes, skewed join attributes, 
and a combination of both. We will work on generating nested 
array-valued fields in one relation with regard to the values in 
other relations to provide data for benchmarking join queries on 
nested data. 
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