
Omnichannel Assortment Optimization under the
Multinomial Logit Model with a Features Tree

Venus Lo
Department of Management Sciences, City University of Hong Kong, Hong Kong SAR, venus.hl.lo@cityu.edu.hk

Huseyin Topaloglu
School of Operations Research and Information Engineering, Cornell Tech, NYC, New York 10011, topaloglu@orie.cornell.edu

Problem Definition: We consider the assortment optimization problem of a retailer that operates a

physical store and an online store. The products that can be offered are described by their features. Customers

purchase among the products that are offered in their preferred store. However, customers who purchase

from the online store can first test out products offered in the physical store. These customers revise their

preferences for online products based on the features that are shared with the in-store products. The full

assortment is offered online, and the goal is to select an assortment for the physical store to maximize the

retailers total expected revenue. Academic/Practical Relevance: The physical stores assortment affects

preferences for online products. Unlike traditional assortment optimization, the physical stores assortment

influences revenue from both stores. Methodology: We introduce a features tree to organize products

by features. The non-leaf vertices on the tree correspond to features, and the leaf vertices correspond to

products. The ancestors of a leaf correspond to features of the product. Customers choose among the products

within their store’s assortment according to the multinomial logit model. We consider two settings: either

all customers purchase online after viewing products in the physical store, or we have a mix of customers

purchasing from each store. Results: When all customers purchase online, we give an efficient algorithm to

find the optimal assortment to display in the physical store. With a mix of customers, the problem becomes

NP-hard and we give a fully polynomial-time approximation scheme. We numerically demonstrate that we

can closely approximate the case where products have arbitrary combinations of features without a tree

structure, and that our FPTAS performs remarkably well. Managerial Implications: We characterize

conditions under which it is optimal to display expensive products with under-rated features, and expose

inexpensive products with over-rated features.

This work was in part supported by the NSF grant CMMI 1825406.

1. Introduction

Traditionally, retailers operated on a single channel, either as offline physical stores or online stores.

As online shopping has become ubiquitous, a customer can use multiple channels to research and

purchase products (Bachrach et al. (2016)). In a practice known as showrooming, a customer can

test out products at a local retailer before purchasing online. In response, retailers have started to

1

Lo and Topaloglu: Omnichannel Assortment Optimization
2

sell on multiple channels. Best Buy started as a physical store, but it has progressed to operating

an online store and even offers online-only products. Diamonds retailer Blue Nile started as an

online store, but it has opened showrooms to display its products (Blue Nile (2018)). Literature

refers to this phenomenon as an omnichannel retail environment because retailers must operate

multiple channels as a cohesive unit. Since products may share features, customers can try out

the products that are displayed in-store, and modify their preferences of online products based on

shared features. This leads to the study of assortment optimization from an omnichannel viewpoint.

We study an assortment optimization model for an omnichannel retailer operating a physical

store and an online store. The retailer has n products at his disposal, and offers the full assortment

of n products in his online store. He selects a subset of the full assortment for his physical store.

Products have features and we describe similarities among products by their shared features. We

organize features onto a tree so that each vertex corresponds to a feature. The path from a leaf to

the root gives a set of features that uniquely defines a product, so that a leaf also corresponds to a

product. We refer to this tree as the features tree. Figure 1 presents twelve products from M.A.C

Cosmetics organized onto a features tree. Product 4 is described by the path from the fourth leaf

to the root, so that product 4 is a lipstick from the Cremesheen line in the Peach Blossom colour.

Two products share a feature if the feature’s vertex is a common ancestor of the products’

leaves on the tree. On Figure 1, products 1 and 2 share the feature of belonging in the Lustre

line, and products 3 to 5 share the feature of belonging in the Cremesheen line. Products 1 to 7

share the feature of being a lipstick. Although we describe each product using three features, each

feature can be the combination of several sub-features. The products within a product line have the

same composition of ingredients, and they inherently share the same glossiness, smoothness, and

effectiveness with respect to being a long-lasting and moisturizing product. The overall performance

of these sub-features can be attributed to the umbrella feature of belonging to the same product

line. Hence, the Lustre vertex represents all of the sub-features shared by products 1 and 2.

There are two types of customers: offline and online. Offline customers visit the physical store

to purchase from the assortment that is offered in-store. Online customers visit the physical store

to test out the products before purchasing from the full assortment online. By trying out the

products that are available in-store, online customers can evaluate whether products’ features are

over- or under-rated relative to their online descriptions. These customers update their preferences

for online-only products based on the features that are shared with the displayed products.

In Figure 1, suppose the retailer only offers product 4 in the physical store, which is a Peach

Blossom, Cremesheen lipstick. Online customers visit the physical store and try out product 4

to see whether the product performs as advertised. Seeing this lipstick would allow customers to

determine if the online depiction of the colour is accurate, and if not, whether it is better or worse

Lo and Topaloglu: Omnichannel Assortment Optimization
3

than expected. Furthermore, the Cremesheen line is described online as a creamy and semi-glossy

lipstick, but customers may determine that the lipstick is glossier than advertised upon testing

product 4. Online customers can update their opinion on products 3 and 5 with respect to all

the sub-features that are inherent to the Cremesheen line. They can also update their opinion on

products 1 to 7 for the overall quality of lipsticks, and all the products for the quality of the M.A.C.

brand. Customers do not update their opinion on the colour of any products other than product

4, because they cannot evaluate the colours relative to their online depiction. The features tree is

best for describing products that can be categorized by levels of distinctive features (e.g. product

line), such that the features in the lower levels of the tree are different across categories.

The physical store serves as a display front for online customers to test out the products and

update product preferences on a feature-by-feature basis, and as the only point of sales to offline

customers. The assortment optimization problem is to select a subset of the products from the

online assortment to display in the physical store, in order to maximize the total expected revenue.

Our Contributions: We consider a retailer operating two channels: an online store and a

physical store. The retailer offers the full assortment online and a subset in his physical store.

Each product is associated with a revenue and a set of features. We describe similarities among

products by their shared features using the features tree, so that two products share a feature if

the feature’s vertex is a common ancestor of the products’ leaves on the tree. Offline and online

customers purchase according to the multinomial logit model (MNL), and the preference weight of

product i depends on the customer’s purchasing channel. An offline customer chooses among the

products in the physical store’s assortment, and her preference weights for the products are given

as input parameters and fixed. An online customer visits the physical store to test out features on

the displayed products before purchasing from the full assortment online. Her preference weights

are functions of the in-store assortment, and she updates her preference weights in the online store

using the features tree. The goal is to choose an assortment to display in the physical store which

maximizes the retailer’s expected revenue across offline and online customers. We call this problem

the OmniChannel Assortment optimization (OCA) problem under the features tree model.

We show that the OCA problem under the features tree model with offline and online customers

is NP-hard via a reduction from the partition problem. We refer to the problem with both types of

customers as the “general” setting. This is common among traditional retailers that subsequently

started their own online store, such as Best Buy. The physical store serves as a display front, and

targets traditional or impatient customers who consider only the products available at the store.

Since the general setting is NP-hard, we begin by studying the special case of the “showroom”

setting, where all customers are online customers and the physical store is a display front. This

Lo and Topaloglu: Omnichannel Assortment Optimization
4

Figure 1: Twelve lip products from M.A.C Cosmetics (2019a,b), labeled by black squares. Level 2
lists the product types, level 3 lists the product lines, and level 4 lists the colours in each line.

is common among historically online retailers that subsequently opened their own showrooms. At

Blue Nile, a customer can see sample rings and test out different sizes and settings in a physical

store, but she can only order her customized ring online. We present an algorithm that finds the

optimal display assortment with runtime polynomial in the number of products. We give sufficient

conditions under which it is optimal to display a revenue-ordered subset of products with under-

rated features and a reverse revenue-ordered subset of products with over-rated features.

We present a fully polynomial time approximation scheme (FPTAS) for the general setting, so

that its runtime is polynomial in the number of products, the input parameters, and the desired

accuracy. Our FPTAS involves creating a geometric grid over the numerator and denominator of

the expected revenue function of the offline customers. For each point in our grid, we solve an

auxiliary optimization problem where we maximize the expected revenue from online customers

subject to constraints defined by the grid point. We use dynamic programming to compute an

approximately optimal assortment for the auxiliary problem.

Literature Review: To the best of our knowledge, Dzyabura and Jagabathula (2017) are the

first to study an omnichannel assortment optimization problem. They consider feature classes with

several feature values per feature class. A product is created by combining one feature value per

feature class. The retailer offers all the products that may result as combinations of feature values in

his online store. We refer to their model as the list-of-features model. In Figure 1, the feature classes

could be product types, product lines, and colours. The novelty is that they optimize over the sets

of feature values to display, and recover the optimal assortment from the set of feature values. In

the showroom setting, the revenue-maximizing assortment can be computed in polynomial-time

when products have unit-revenue, and they present a FPTAS for arbitrary revenues. In the general

setting, various assortments can demonstrate the same set of feature values but earn different

offline expected revenue. They restrict the space of feasible assortments to the largest assortments

described by sets of feature values, and give a FPTAS when the size of the feature classes is fixed. In

contrast, the OCA problem is not NP-hard under our features tree model in the showroom setting,

and our FPTAS does not depend on the size of feature classes in the general setting. Dzyabura

Lo and Topaloglu: Omnichannel Assortment Optimization
5

(a) Features tree (b) List-of-features (c) Generalized model

Figure 2: Comparison of the features tree model with the list-of-features model, and a generalization
of the two models. Six strapless ballgowns are priced under $400 in David’s Bridal Collection.

and Jagabathula (2017) provide empirical evidence that customers update preferences by features

via a field experiment, where participants rank bags before and after observing similar bags.

Under the list-of-features model, products can share feature values over any feature classes

without following a tree structure. However, a product exists for every combination of feature

values, so that products must be fully customizable. In Figure 1, Dzyabura and Jagabathula (2017)

would require that the same product lines be carried in both lipsticks and lip gloss, and that the

same colours be available under each product line. In reality, the five product lines do not overlap

in colours (M.A.C Cosmetics (2019a,b)). This is not due to naming conventions, as each product

line offers a different number of colour options, and slight variations in shades of reds are important

to customers of lip makeup products. Furthermore, lipsticks in the Retro Matte product line have

a matte finish, and this product line cannot be offered under lip gloss because lip gloss have a

glossy finish by definition.

To further stress the differences in the models, we consider wedding gowns in Figure 2. David’s

Bridal Collection offers six strapless ballgowns that are under $400 if we remove duplicates from

plus and petite sizes (David’s Bridal (2020)), which we organize into a features tree (Figure 2a).

Gowns are typically in white and ivory, so that there is very little to evaluate from seeing these

colours. We omit this detail unless it differentiates gowns with atypical colours (e.g. products 1 and

2). The list-of-features model requires that all 18 combinations of style and highlights be available

(Figure 2b), so that the retailer must offer a pleated, plain gown with symmetric appliques. This

is an incompatible combination because appliques are made from lace and beading, and a gown

with appliques must have some beaded lace. Customization is also limited, because designers may

refuse to construct a gown with an unattractive combination of features. The retailer cannot offer

a pink, embroidered gown unless a designer is willing to produce the gown. Customers may also

find that a certain highlight works better with one style than another. The features tree model

permits customers’ evaluation of a lower-level feature to be conditional on a higher-level feature.

Furthermore, the features tree model is flexible with respect to the products that are offered by the

Lo and Topaloglu: Omnichannel Assortment Optimization
6

retailer, and it is suitable for a diverse assortment of products which differentiate along prominent

features. The list-of-features model is flexible with respect to how products are related by features,

but it assumes that the products can be fully customized and is suitable for comparing very similar

products along precise features like size and colour. Neither model is a generalization of the other.

Both models are special cases of the generalized model (Figure 2c), which allows products to

share features arbitrarily and allows the retailer to offer only some of the products created from

combinations of features. In Figure 2c, the retailer offers a ruffled skirt in two styles, rather than

in one style (Figure 2a) or in all of the styles (Figure 2b). The two special cases contribute to a

better understanding of the difficulty of the OCA problem under the generalized model.

There is evidence in the psychology literature that customers do not always compare products

by considering them as lists of features (Goldstone (1994)). Market segmentation, recommender

systems, and psychology literature use trees to categorize products, providing ample support for

our model (Albadvi and Shahbazi (2009), Cho et al. (2002), Ziegler et al. (2004)). Another way

to interpret the vertices on the features tree is to consider each vertex as a subset of products, or

category, which all share the associated feature. Rosch et al. (1976) show that the tree structure

is not arbitrary, and that the top, middle, and bottom levels of the tree represent superordinate,

basic, and subordinate categories. Basic categories are abstract enough that the category names are

commonly used to refer to the products, and specific enough to visualize a standard product within

the category. Superordinate categories are not specific enough to be informative when describing

a product, and subordinate categories are too specific when trying to describe a product quickly

(Rosch et al. (1976), Murphy and Brownell (1985)). Markman and Wisniewski (1997) find that

products in different basic categories have many alignable differences and are easy to compare.

Products in different superordinate categories have many nonalignable differences and cannot be

directly compared. In Figure 1, lipstick is a basic category, lip makeup is a superordinate category,

and the Lustre line is a subordinate category. Lipsticks can be compared with lip gloss, but lip

makeup is not compared with eye makeup. Whether a category is basic could depend on customer

expertise and the products being categorized (Rosch et al. (1976)). Silhouettes (e.g. ballgown vs.

mermaid) could be a basic categories in the superordinate category of wedding gowns. However,

customers typically focus on gowns with a specific silhouette when they visit bridal salons, and

silhouettes could form the superordinate categories in this application.

When a new product is introduced to the market, customers may categorize the product by the

presence or absence of distinctive features, or by similarity in appearance with familiar products.

The retailer can train customers to categorize the new product using either methods (Yamauchi

and Markman (1998)): by explicitly categorizing the product via advertisement (Moreau et al.

(2001)), or by teaching customers to look for distinctive features (Noseworthy and Goode (2011)).

Lo and Topaloglu: Omnichannel Assortment Optimization
7

We assume that the preference weight of an online product is modified only to the extent of the

features that it shares with an in-store product, according to the structure of the features tree.

Hence, customers do not make inferences across different categories. In Figure 1, a customer cannot

evaluate the colour of any lip gloss when she sees a lipstick. Several studies support this assumption

and multi-category inferences occur only under exceptional circumstances: when customers are

confused about a product or when the retailer encourages multi-category inferences (Moreau et al.

(2001), Noseworthy and Goode (2011), Gregan-Paxton et al. (2005), Murphy and Ross (2010)).

Other works have studied challenges in the omnichannel environment. Harsha et al. (2019) study

the price optimization problem when prices affect the fraction of customers purchasing from each

store. Gao and Su (2016a) study the profitability of the buy-online-pickup-in-store (BOPS) option,

where customers strategically choose between shipping cost and the hassle of traveling to the store.

Gao and Su (2016b) study a retailer who uses both channels to encourage customers to visit the

physical store by reducing their risk of stock-out. The latter two papers consider a single product,

but we integrate a choice model so that demand for each product depends on the assortment.

Empirical evidence supports the importance of studying an omnichannel retail environment.

Warby Parker is a glasses retailer which used to sell exclusively online, and has a sampling program

for customers to try glasses for five days. Bell et al. (2015) and Bell et al. (2017) find that online

sales increased and returns decreased in cities where Warby Parker opened a showroom to let

customers try out glasses before ordering online. Fornari et al. (2016) and Avery et al. (2012) study

online retailers who opened physical stores, and find that sales increased in the long-run when

customers have an additional channel to research products. In the reverse direction, customers like

to purchase “high-touch” products in-store. By offering the BOPS option, Bell et al. (2014) find

that the retailer benefits from higher store traffic and the opportunity to cross-sell products.

Our work is related to the large body of literature on assortment optimization. Our underlying

choice model is MNL, which is credited to Luce (1959) and McFadden (1973), with the additional

interpretation that a product’s mean utility depends on whether its features are observed or not.

In the d-level nested logit model, Li et al. (2015) use the categorization view of the tree to describe

product features. The important difference is that their tree describes a customer’s choice process,

whereas our tree describes how a customer revises her product preferences. In Li et al. (2015), a

customer decides on the feature she likes and shrinks the assortment from which she is willing to

purchase as she moves from the root to a leaf. In our model, a customer always considers the entire

assortment available either online or offline, depending on her type.

The existence of offline and online customers is related to the mixture of MNL (MMNL) studied

by Bront et al. (2009) and Rusmevichientong et al. (2014). In MMNL, multiple customer types

consider the same assortment, but each type has different preferences. In our model, online and

Lo and Topaloglu: Omnichannel Assortment Optimization
8

offline customers consider different assortments, but they can have the same or different preference

weights for products that are offered in both channels. Our FPTAS uses techniques from Désir

et al. (2014)’s work on capacitated assortment optimization under MMNL, where each product has

a capacity requirement and the assortment’s capacity cannot exceed a budget. For each customer

type, they create a geometric grid on the numerator and denominator of the expected revenue

function. A point on the grid lower-bounds the expected revenue from each customer type. They

give a dynamic program that finds the minimum capacity assortment which satisfies the constraints

imposed by the grid, if such an assortment exists. We create a geometric grid on the numerator

and denominator of the offline expected revenue, and we maximize the online expected revenue.

Organization: In Section 2, we describe the OCA problem under the features tree model, and

explain how the preferences of online customers are updated based on the in-store assortment. In

Section 3, we focus on the showroom setting with only online customers. We present a polynomial-

time algorithm, and give conditions for a revenue-ordered or a reverse revenue-ordered display

assortment to be optimal. In Section 4, we present the FPTAS for the general setting. To evaluate

the practical performance of our FPTAS, we present an efficient method to upper-bound the

optimal expected revenue in Section 5. We discuss extensions in Section 6. We allow the retailer

to choose both the online and in-store assortments, consider more general product relationships,

and limit the size of the in-store assortment. We provide numerical experiments in our last two

sections. In particular, in Section 7, we test the modeling power of our features tree model when

the ground-truth model allows products to arbitrarily share features. In Section 8, we assess the

practical performance of our FPTAS. We conclude in Section 9. All omitted proofs are deferred to

Online Appendix A.

2. The Model

We consider a retailer operating an online store and a physical (offline) store. There are n products

in the online store, denoted N = {1, . . . , n}. Product i generates a revenue of πi when it is purchased

by a customer. All products are offered online and the retailer’s decision is to select an assortment

S ⊆N for the physical store, which we call the display assortment or the in-store assortment.

Products have features, and we use a features tree T to describe how features are shared among

products. The vertices of the tree, denoted by V, correspond to the features of the products. The

path from a leaf to the root gives all the features that uniquely defines a product. Hence, each

leaf corresponds to a product and the set of leaves in T is exactly N . See Figures 1 and 2a for

examples. To characterize the structure of the tree, we introduce notations to describe its parent-

child relationships. If k ∈ V is not the root vertex, then we denote its parent by p(k). Let A(k) be

the set of ancestors of vertex k and itself, so that A(root) = {root} and A(k) = A(p(k)) ∪ {k} if

Lo and Topaloglu: Omnichannel Assortment Optimization
9

k 6= root. We can interpret A(i) as the set of features of product i. Let L(k) be the set of leaves in

the subtree rooted at vertex k, that is, L(k) = {i∈N | k ∈A(i)}. Then L(k) is the set of products

which share feature k. We say that feature k is displayed if any of the products in L(k) are displayed

in-store. For an in-store assortment S, the set of features displayed to customers is ∪j∈SA(j).

There are two types of customers: offline and online customers. A customer’s type determines the

assortment that she is purchasing from and her preferences, which are described by her preference

weights for the products. An offline customer purchases only from the in-store assortment S, and

always associates a preference weight v̂i > 0 with product i. An online customer visits the physical

store to observe the displayed products, but ultimately purchases from the full assortmentN online.

Her preferences depend on the features displayed in-store by assortment S, and she associates

preference weight vi(S) with product i. We first describe the update process, and then define vi(S).

An online customer has initial preference weight wi > 0 for product i, which is her preference

weight when she does not see any features of product i. Each vertex k is associated with a multiplier

δk > 0. If she sees feature k of product i, then her preference weight is updated by multiplying wi

with δk. We interpret δk > 1 as the increase in preference weight from seeing a feature that is more

appealing than suggested by its online description (a good feature). Similarly, δk < 1 corresponds to

a feature being less attractive (a bad feature), and δk = 1 corresponds to no changes in opinion (an

indifferent feature). When k represents an aggregate of sub-features, as in Figure 1, then δk is the

overall change from all of the sub-features. Both wi’s and δk’s are deterministic input parameters.

Without loss of generality, we may assume that our features tree is a binary tree, so that every

non-leaf vertex k has a left child `(k) and a right child r(k). If a general features tree has a vertex

k with more than two children, then we can convert the tree into a binary tree by introducing

an auxiliary vertex k′ with δk′ = 1. We can reduce the degree of vertex k by setting the auxiliary

vertex k′ as the parent of the second through last children of k, and making k′ the new second

child of k. Conversely, if vertex k has only one child, then we can contract the edge between k and

its child. Repeated application of this process allows us to obtain a binary features tree.

Assumption 1. The features tree T is a binary tree. Given n products, T has 2n− 1 vertices.

Hence, we index the leaves by N = {1, . . . , n} and non-leaf vertices by V\N = {n+ 1, . . . ,2n− 1}.

To define vi(S), we assign binary variable xk to k ∈ V, so that xk = 1 means that feature k is

displayed in-store and xk = 0 otherwise. Given an in-store assortment S, its characteristic vector is

x∈ {0,1}2n−1 such that xk = 1[k ∈∪j∈SA(j)], with 1[·] being the indicator function. Since ∪j∈SA(j)

is the set of displayed features, xk takes the value of 1 if and only if k is a feature of a displayed

product. Furthermore, if feature k is a leaf, then the retailer offers product k in-store whenever

Lo and Topaloglu: Omnichannel Assortment Optimization
10

feature k is displayed. Since the first n indices of x reveals the in-store assortment and we can

recover an assortment by taking xk = 1 for k ∈N , we also refer to x as the assortment.

If feature k corresponds to a non-leaf vertex, then it is displayed if and only if at least one of the

products in its subtree is available in-store. The corresponding leaf is in the subtree of either `(k)

or r(k), which implies that at least one of features `(k) or r(k) is displayed. Hence xk =1 if and

only if x`(k) = 1 or xr(k) = 1. We denote X as the set of feasible characteristic vectors, such that:

X =

x
∣∣∣∣∣∣∣
x`(k) ≤ xk ∀k ∈ V\N ,
xr(k) ≤ xk ∀k ∈ V\N ,
xk ≤ x`(k) +xr(k) ∀k ∈ V\N ,
xk ∈ {0,1} ∀k ∈ V.

 .

With a slight abuse of notation, we can write the online preference weight of product i as vi(S) =

vi(x) for x∈X , where vi(x) =wi ·
∏
k∈A(i) δ

xk
k .

The no-purchase option is the customer’s ability to leave the store without making a purchase,

and is available regardless of her type. This option does not have features, and its preference weight

does not change regardless of the in-store assortment. The no-purchase option, also denoted as

product 0, has preference weight w0 > 0 for an online customer and v̂0 > 0 for an offline customer. An

online customer purchases a product in N or chooses the no-purchase option. An offline customer

purchases exclusively from the in-store assortment x or chooses the no-purchase option.

A customer’s purchase probability for product i is proportional to the preference weight of

product i in the assortment that she purchases from, using the structure in MNL. Given x, the

purchase probabilities of product i for online and offline customers are respectively:

PON
i (x) =

vi(x)

w0 +
∑n

j=1 vj(x)
, and PPHY

i (x) =
v̂ixi

v̂0 +
∑n

j=1 v̂jxj
.

The online and offline expected revenue are denoted by ΠON(x) and ΠPHY (x), where ΠON(x) =∑n

i=1 πiP
ON
i (x) and ΠPHY (x) =

∑n

i=1 πiP
PHY
i (x).

Let q be the fraction of online customers and 1− q be the fraction of offline customers. When

q = 0, then all customers are offline customers who purchase from the in-store assortment x with

preference weights v̂i for product i, and this reverts back to standard MNL. Hence we consider q ∈

(0,1]. If we display assortment x, then the expected revenue is Π(x) = q ·ΠON(x)+(1−q) ·ΠPHY (x).

The OCA problem is to choose an assortment x that maximizes the total expected revenue, and can

be formulated as the following optimization problem, where we expand out ΠON(x) and ΠPHY (x):

max
x∈X

Π(x) = max
x∈X

q ·
∑n

i=1 πiwi ·
∏
k∈A(i) δ

xk
k

w0 +
∑n

i=1wi ·
∏
k∈A(i) δ

xk
k

+ (1− q) ·
∑n

i=1 πiv̂ixi
v̂0 +

∑n

i=1 v̂ixi
. (1)

We can interpret our model as an extension to MNL. Suppose online customers have a mean

utility of lnwi for product i if none of its features are displayed. A customer’s utility for product i

Lo and Topaloglu: Omnichannel Assortment Optimization
11

(a) Product 4 = arg mini∈N
∏
k∈A(i) δk (b) Product 1 = arg maxi∈N

∏
k∈A(i) δk

Figure 3: Two features trees with πi = wi = 1 for all i ∈ N , with N = {1,2,3,4} and optimal
assortment {3,4}. Bold numbers denote feature k, and italicized numbers denote multipliers δk.

is its mean utility plus a noise εi, which is generated by an independent, standard Gumbel random

variable with mean 0. If feature k is displayed, then the mean utility for product i changes additively

by ln δk: lnwi + ln δk = ln(wi · δk), and this translates to a multiplicative update to product i’s

preference weights. Hence, δk reflects the change in opinion of the general population from seeing a

feature versus reading about it online, rather than the resolution of uncertainty for an individual.

3. Showroom Setting

We begin with the showroom setting where q = 1 in Problem (1). We briefly explain why the

structural results of Dzyabura and Jagabathula (2017) do not apply to our model. Then, we present

an algorithm which computes the optimal showroom assortment in polynomial runtime.

3.1. Challenges of Showroom Setting with Unit-Revenues

Under Dzyabura and Jagabathula (2017)’s list-of-features model, the optimal assortment can be

computed efficiently only when πi = 1 for all i∈N in the showroom setting. Under these conditions,

maximizing expected revenue is equivalent to maximizing the sum of the preference weights over

all products. Recall that their problem reduces to deciding which feature values to display. The

optimal assortment is recovered by displaying all the products that may be constructed from the

optimal set of feature values. If the optimal assortment is not the empty set, then all good (δk > 1)

and indifferent (δk = 1) feature values are displayed. If a feature class has only bad feature values

(δk < 1), then the feature value with the largest δk is displayed in order to minimize the discount

on products’ preference weights. Hence, whether each feature value is displayed can be decided

independently. In contrast, the features tree model limits the flexibility in which the retailer can

display features, and it may be suboptimal to display good features or hide bad features.

In the problem instance given by Figure 3a, the optimal assortment is the set of products {3,4},

and the retailer displays features {3,4,6,7}. If we blindly apply Dzyabura and Jagabathula (2017)’s

result, then the retailer should display features {3,4,5,7}, which is infeasible. The retailer must

display products 1 or 2 in order to display feature 5. The increase in preference weights from

displaying the good feature 5 does not compensate the discount of seeing either of the bad features

Lo and Topaloglu: Omnichannel Assortment Optimization
12

1 or 2. In contrast, feature 6 is displayed because the increase in preference weights from its children

features makes up for its discount. We consider a realistic example based on reviews of the lipsticks

in Figure 1 (Adrienne Söndag (2019)). Feature 5 could be a line of moisturizing lipsticks with

unappealing colours, and feature 6 could be a line of dry lipsticks with very appealing colours. The

retailer may not have a product with both of the good features.

When πi = 1 for all i ∈ N , the optimal set of feature values can be computed greedily under

the list-of-features model. In contrast, the problem instances given by Figure 3 demonstrate that

we cannot compute the optimal assortment by greedily adding features or products. In Figure 3a,

the optimal assortment is not N , but it includes the worst feature (δ6 = 1/4) and the product

with the most decrease in preference weight (product 4). In Figure 3b, the optimal assortment is

non-empty, but it excludes the best feature (δ1 = 6) and the product with the most increase in

preference weight (product 1). Surprisingly, if products have arbitrary revenues, then assortment

optimization under Dzyabura and Jagabathula (2017)’s model is NP-hard, whereas we present an

efficient algorithm to compute the optimal showroom assortment in the next subsection.

3.2. Computing the Optimal Showroom Assortment

We return to studying the showroom setting with arbitrary revenues πi ≥ 0, so that the goal is to

optimize the retailer’s expected revenue. Let γ∗ be the optimal expected revenue:

γ∗ = max
x∈X

∑n

i=1 πiwi ·
∏
k∈A(i) δ

xk
k

w0 +
∑n

i=1wi ·
∏
k∈A(i) δ

xk
k

.

As in standard fractional combinatorial optimization, we can parameterize the objective function

and find a fixed point to the parametric problem. Specifically, suppose there exists an assortment

x∈X that generates expected revenue greater or equal to γ, so that
∑n

i=1 πiwi ·
∏
k∈A(i) δ

xk
k /(w0 +∑n

i=1wi ·
∏
k∈A(i) δ

xk
k) ≥ γ. By rearranging this inequality, we observe that a display assortment

x generates expected revenue greater or equal to γ if and only if the same assortment satisfies∑n

i=1(πi− γ)wi ·
∏
k∈A(i) δ

xk
k ≥w0γ. By maximizing the left side of this new inequality over assort-

ments in X , we obtain the parametric problem as a function of γ:

f(γ) = max
x∈X

n∑
i=1

(πi− γ)wi ·
∏

k∈A(i)

δ
xk
k . (2)

Claim 1. Given f(γ) as defined above, let γ∗ be the optimal expected revenue of the showroom

setting. Then: i) f(γ)>w0γ if γ < γ∗, ii) f(γ)<w0γ if γ > γ∗, and iii) f(γ) =w0γ if γ = γ∗.

To find γ∗, we need to efficiently solve Problem (2) for any γ and search for γ∗ over possible

values of γ. If x is a feasible solution to Problem (2), then either x=~0 or there exists i ∈N such

that xi = 1. The latter case is equivalent to xroot = 1. For any fixed γ, we give a dynamic program

that computes the optimal non-zero solution to Problem (2) and compares the result to x=~0.

Lo and Topaloglu: Omnichannel Assortment Optimization
13

Let Vγ(k) be the maximum contribution to the objective function of Problem (2) from all leaves

in the subtree rooted at vertex k, given that feature k is displayed in-store. This requires xk = 1 and

restricts the objective function to summing over products in L(k). Since xk = 1, we know xk′ = 1

for all k′ ∈A(k). Moreover, since we only consider the contribution from the products in L(k), we

can focus on feasibility of the constraints in X related to vertices in the subtree of k and use Xk
to denote X ∩{x | xk′ = 1 ∀k′ ∈A(k)}. By this definition, Vγ(k) can be written as:

Vγ(k) = max
x∈Xk

∑
i∈L(k)

(πi− γ)wi ·
∏

k′∈A(i)

δ
xk′
k′ .

If k is the root, then Vγ(root) optimizes Problem (2) over all feasible solutions in Xroot =X\{~0}. The

objective value of the remaining solution x=~0 is
∑n

i=1(πi− γ)wi. Hence our parametric problem

can be rewritten as f(γ) = max{Vγ(root),
∑n

i=1(πi− γ)wi}.
To efficiently compute the value of Vγ(root), we construct a dynamic program that solves the

tree from the leaves up to the root. If k is a leaf, then feasibility to Xk implies that Vγ(k) =

(πk − γ)wk ·
∏
k′∈A(k) δk′ . Otherwise, Vγ(k) is related to the values at its children: Vγ(`(k)) and

Vγ(r(k)). Since the value of Vγ(k) assumes that xk = 1, we consider three cases: i) x`(k) = xr(k) = 1,

ii) x`(k) = 1, xr(k) = 0, and iii) x`(k) = 0, xr(k) = 1. The objective function and constraints can be

separated over the subtrees of `(k) and r(k), and we can optimize each subtree separately.

In cases (ii) and (iii), we need to consider the contribution to the objective function from the

subtree of the child feature that is not displayed. Consider case (ii) where xr(k) = 0. Feature r(k)

and its descendants are not displayed in-store, but feature k and all its ancestors are displayed.

Hence, the preference weight of product i in L(r(k)) is wi ·
∏
k′∈A(k) δk′ . The same analysis holds

for i∈L(`(k)) in case (iii). To simplify notation, let ∆k denote the product of all δk′ for k′ ∈A(k),

with the convention ∆p(root) = 1. Then ∆k =
∏
k′∈A(k) δk′ = ∆p(k) · δk for all k.

For computational purpose, the size of ∆k is still polynomial in the input sizes, as log ∆k =∑
k′∈A(k) log δk′ ≤ n ·maxk′ log δk′ . Based on the three cases above, we can rewrite Vγ(k) as:

Vγ(k) = (πk− γ)wk∆k ∀k ∈N ,

Vγ(k) = max


Vγ(`(k)) +Vγ(r(k)),
Vγ(`(k)) + ∆k ·

∑
i∈L(r(k))(πi− γ)wi,

∆k ·
∑

i∈L(`(k))(πi− γ)wi +Vγ(r(k))

 ∀k ∈ V\N .

The base cases are k ∈N and we solve the dynamic program from the leaves up to the root. For

any fixed γ, computing Vγ(root) requires us to solve a dynamic program with O(n) states and 3

decisions per state. We compare the value of Vγ(root) to the objective value when x=~0, to obtain

f(γ) = max{Vγ(root),
∑n

i=1(πi− γ)wi}. Hence, we can compute f(γ) in O(n) operations.

Finally, we consider the runtime of finding γ∗ such that f(γ∗) =w0γ
∗. The parametric problem

f(γ) is monotone decreasing in γ, and one way to find γ∗ is via bisection search between upper- and

Lo and Topaloglu: Omnichannel Assortment Optimization
14

lower-bounds on the online expected revenue. To bound the runtime of bisection search, we need to

bound the smallest gap in expected revenue between two assortments, which is not a simple task.

Another method is to apply Newton’s method (Radzik (1998)). If the numerator and denominator

of the online expected revenue can be written as linear functions of x, then the fixed point can be

found in O(n2 log2 n) iterations of Newton’s method because X ⊆ {0,1}2n−1.

Lemma 1. The preference weight of product i for an online customer, if she observes assortment

x, can be written as a linear function of x∈X , so that vi(x) =wi ·
(

1 +
∑

k∈A(i)(∆k−∆p(k)) ·xk
)

.

Hence, we can write the online expected profit as:

ΠON(x) =

∑n

i=1 πiwi +
∑2n−1

k=1

(∑
i∈L(k) πiwi

)
·
(
∆k−∆p(k)

)
·xk

w0 +
∑n

i=1wi +
∑2n−1

k=1

(∑
i∈L(k)wi

)
·
(
∆k−∆p(k)

)
·xk

.

Theorem 1. In the showroom setting of the OCA problem under the features tree model, where

all customers use the physical store as a showroom to observe features and purchase ultimately from

the online assortment, we can compute an optimal display assortment in O(n3 log2 n) operations.

Proof. We need to compute f(γ) and find γ∗ such that f(γ∗) =w0γ
∗. We can compute f(γ)

in O(n) operations for any γ. Using Newton’s method, we can find γ∗ in O(n2 log2 n) iterations of

computing f(γ). Hence, the total number of operations is O(n3 log2 n). �

3.3. Managerial Insights

To discuss managerial insights for the showroom setting, we consider reasonable restrictions on the

values of the δk’s. We revert to the more natural form of a general features tree rather than its

binary tree representation. We need to consider each product’s revenue before deciding whether we

should increase its preference weight, because we only want to increase the attractiveness of the

expensive products. By imposing certain structures on the features tree, a revenue-ordered display

assortment can be optimal. We define a revenue-ordered tree as follows:

Definition 1. A revenue-ordered features tree (ROFT) is a features tree such that for all non-

leaf vertices k, and for all i∈L(`(k)) and j ∈L(r(k)), we have πi >πj.

Pictorially, this is a features tree where the products on the left have higher revenues than products

on the right. This definition is a technical way of saying that products which are closer in revenue

have more features in common. Hence, the structure of a ROFT is actually quite natural.

Suppose a retailer is new to the market and his products are under-rated by his customers (δk ≥ 1

for all k). Intuitively, he should display the most expensive products so that they receive the largest

improvement in preference weights. However, if his products look attractive online but are sub-par

in reality (δk ≤ 1 for all k), then he should display the least expensive products so that they receive

the largest discounts in preference weights. We prove these statements for a ROFT.

Lo and Topaloglu: Omnichannel Assortment Optimization
15

Proposition 1. Suppose the features tree is a ROFT and the retailer operates in the showroom

setting. Let S∗ denote the optimal display assortment. If δk ≥ 1 for all k ∈ V, then S∗ is either

revenue-ordered and has the form {1,2, . . . , i∗} for some i∗, or S∗ = ∅. If δk ≤ 1 for all k ∈ V, then

S∗ is either reverse revenue-ordered and has the form {i∗, i∗+ 1, . . . , n} for some i∗, or S∗ = ∅.

To extend Proposition 1, suppose that each product either has no bad features or no good

features. Let N+ = {i∈N | δk ≥ 1 ∀k ∈A(i)} and N− = {i∈N | δk ≤ 1 ∀k ∈A(i), ∃k ∈A(i) s.t. δk <

1} partition N . Observe that products i∈N+ and j ∈N− only share indifferent features (i.e. δk = 1

for all k ∈ A(i) ∩ A(j)). A high-level feature like the brand may have no impact on preferences

if quality is inconsistent across the brand’s products. We show that it is optimal to display a

revenue-ordered subset of N+ with a reverse revenue-ordered subset of N−.

Theorem 2. Suppose the features tree is a ROFT and the retailer operates in the showroom

setting. If the full assortment N can be partitioned into N+ and N−, then the optimal assortment

S∗ is either ∅, or there exists i∗ such that S∗ = {i∈N+ | i≤ i∗}∪ {i∈N− | i > i∗}.

As a special case, suppose our features tree is not a ROFT, but δk = 1 for all k /∈N . Each product’s

preference weight only changes when it is seen by customers. We can redraw the features tree with

only two levels, so that the leaf vertices are children of the root vertex. A two-level tree can always

be drawn as a ROFT, and we can apply Theorem 2 to compute the optimal display assortment.

On the other hand, sometimes the high-level features can have large impact on customers’

preferences, whereas low-level features are details that only have small impact. Mathematically,

let k1, . . . , kF be F features such that L(k1), . . . ,L(kF) partition the products in N . Let V low =

V\
(
∪Ff=1A(kf)

)
denote the set of low-level features. If δk are close to 1 for all k ∈ V low, then we can

consider a contracted problem where we decide to display one or zero product from each L(kf). In

particular, we can contract the the vertices in the subtree rooted at kf into a super-product with

revenue
∑

i∈L(kf)
πiwi/

∑
i∈L(kf)

wi, initial preference weight
∑

i∈L(kf)
wi, and feature multiplier δkf .

If xo is the optimal solution to the contracted problem, then we can recover a display assortment xε

via the following procedure. If xokf = 0, then set xεi = 0 for all i ∈L(kf). If xokf = 1, then randomly

select a product i from L(kf) to include in the display assortment and set xεi = 1.

Proposition 2. Let ε≥ 0. Suppose the retailer operates in the showroom setting and δk ∈ [1−
ε
4
,1 + ε

4
] for all k ∈ V low. Let L̄= maxkf :f=1,...,F

i∈L(kf)
|A(i)\A(kf)|. If an assortment xε is recovered from

the optimal solution xo of the contracted problem, as described above, then Π(xε)≥ (1− L̄ε)Π∗.

Proposition 2 implies that the retailer does not need to be too concerned about the exact product

being displayed from each L(kf), because low-level features that have small impact can be omitted

Lo and Topaloglu: Omnichannel Assortment Optimization
16

from the model with a small loss in expected revenue. Algorithmically, we can compute a display

assortment with reasonable performance in O(F 3) runtime.

The usefulness of Proposition 2 depends on the shape of the features tree. In reality, we expect

that the features tree is shallow because the depth of the tree corresponds to the number of levels

that customers use to categorize products. This could be reflected by the number of filters that

customers can use in the online store to find their products. For example, David’s Bridal has filters

for price, size, silhouette, sleeves, length, colour, neckline, style, and brand (L̄≤maxi∈N |A(i)| ≤ 9).

Prices do not change customers’ preferences regardless of whether this feature is seen in-store or

online. To obtain the perfect fit, customers would order their size based on body measurements

and have the dress altered and tailored. Hence, these two filters are irrelevant for the features tree.

Filters that are used to differentiate customer segments with disjoint consideration sets can be

removed and a separate tree can be constructed for each customer segment. The resulting features

tree would be shallow and the values of L̄,F should be quite small relative to the value of n.

4. General Setting

When q ∈ (0,1), the OCA problem under the features tree model is NP-hard. We prove this in

the next proposition. As such, we present a FPTAS to compute an assortment which guarantees

(1− ε)-fraction of the optimal expected revenue in Subsection 4.1. Our FPTAS requires us to solve

a parametric problem, which is done via dynamic programming in Subsection 4.2.

Proposition 3. The general setting of the OCA problem under the features tree model, where

q ∈ (0,1), is NP-hard.

4.1. FPTAS for General Setting

Instead of optimizing over the sum of two fractions in Problem (1), we extend the mathematical

program in the showroom setting to incorporate bounds on the numerator and denominator of the

offline expected revenue. Suppose x∗ is the optimal in-store assortment, and let R∗ =
∑n

i=1 πiv̂ix
∗
i

and U∗ = v̂0 +
∑n

i=1 v̂ix
∗
i . Denote the optimal expected revenue as Π∗ = Π(x∗).

Consider the problem of optimizing the online expected revenue, subject to constraints on the

numerator and denominator of the offline expected revenue based on inputs (R,U)≥ (0, v̂0):

g(R,U) = max
x∈X

{ ∑n

i=1 πiwi ·
∏
k∈A(i) δ

xk
k

w0 +
∑n

i=1wi ·
∏
k∈A(i) δ

xk
k

∣∣∣∣∣
n∑
i=1

πiv̂ixi ≥R, v̂0 +
n∑
i=1

v̂ixi ≤U

}
. (3)

An optimal solution x′ to Problem (3) at (R∗,U∗) earns offline expected revenue of ΠPHY (x′)≥

R∗/U∗ because x′ satisfies the two constraints above. Furthermore, x′ earns online expected revenue

of ΠON(x′) ≥ ΠON(x∗) because x′ and x∗ are both feasible solutions. Hence Π(x′) ≥ ΠON(x∗) +

R∗/U∗ = Π(x∗), and solving Problem (3) at (R∗,U∗) gives us the optimal in-store assortment.

Lo and Topaloglu: Omnichannel Assortment Optimization
17

We do not know R∗ or U∗, and we do not have an algorithm to solve Problem (3) efficiently.

Our strategy is to apply a geometric grid to the possible values of R and U (Désir et al. (2014))

and approximately compute g(R,U) within this grid. The optimal solution on this grid will give

us a FPTAS. Let R= mini∈N πiv̂i and R= maxi∈N πiv̂i. Similarly, let U = mini∈N∪{0} v̂i and U =

maxi∈N∪{0} v̂i. When there is at least one product offered in-store, then R and nR are the lower- and

upper-bounds on the numerator of ΠPHY (·). Similarly, U and (n+ 1)U are the lower- and upper-

bounds on the denominator of ΠPHY (·). Given ε > 0, our grid is constructed as Kε = {(0, v̂0)} ∪
(KRε ×KUε), where:

KRε = {R · (1 + ε)d |R · (1 + ε)d ≤ (1 + ε) ·nR, d∈Z+}, and

KUε = {U · (1 + ε)d |U · (1 + ε)d ≤ (1 + ε) · (n+ 1)U, d∈Z+}.

Our grid Kε has O
(

log(nR/R)

ε
· log((n+1)U/U)

ε

)
points. Let Kfeas ⊆Kε denote the set of points (R,U)∈

Kε such that Problem (3) is feasible and g(R,U) is well-defined.

Proposition 4. Consider an instance of the OCA problem under the features tree model with

optimal expected revenue Π∗ and ε < 1/6. For any (R,U)∈Kfeas, suppose we can compute a solution

xR,U ∈X that achieves an online expected revenue ΠON(xR,U)≥ g(R,U) and satisfies:

n∑
i=1

πiv̂ix
R,U
i ≥ (1− 2ε)R, and v̂0 +

n∑
i=1

v̂ix
R,U
i ≤ (1 + 2ε)U.

Let x̄= arg max
(R,U)∈Kfeas

Π(xR,U). Then Π(x̄)≥ (1− 6ε)Π∗.

The only feasible solution to Problem (3) at (0, v̂0) is x=~0, and this solution satisfies the assump-

tions of Proposition 4. The challenge is to efficiently compute xR,U satisfying the assumptions of

Proposition 4 for each (R,U)∈Kfeas\{(0, v̂0)}. If we parameterize the objective function of Problem

(3), we get Problem (2) from the showroom setting, subject to two knapsack-like constraints. Our

goal is to incorporate the knapsack constraints into the dynamic program from Subsection 3.2,

by considering how the products in the left and right subtrees contribute to these constraints. To

ensure that the state space and decision space are not too large, we round the parameters of these

constraints to integers of size at most O(n/ε):

π̃Ri =

⌊
πiv̂i
εR/n

⌋
∀i∈N , and ṽUi =

⌈
v̂i

εU/(n+ 1)

⌉
∀i∈N ∪{0}.

We define Y1 =
⌊
n
ε

⌋
− n and Y2 =

⌈
n+1
ε

⌉
+ (n+ 1) as the polynomial-sized bounds on the rounded

numerator and denominator of the offline expected revenue. Finally, we parameterize the objective

function of Problem (3) and use the rounded constraints to obtain Problem (4):

f̃(γ,R,U) = max
x∈X


n∑
i=1

(πi− γ)wi ·
∏

k∈A(i)

δ
xk
k

∣∣∣∣∣
n∑
i=1

π̃Ri xi ≥ Y1, ṽ
U
0 +

n∑
i=1

ṽUi xi ≤ Y2

 . (4)

Lo and Topaloglu: Omnichannel Assortment Optimization
18

Following the strategy of Subsection 3.2, we need to solve Problem (4) and find γR,U such that

f̃(γR,U ,R,U) = w0γ
R,U . In the next subsection, we solve Problem (4) via dynamic programming.

Meanwhile, since the parameters on the knapsack constraints have been rounded, a feasible assort-

ment to Problem (4) does not guarantee an offline expected revenue of R/U . Fortunately, the next

lemma and corollary prove that such an assortment still guarantees an offline expected revenue

of (1− 2ε)R/(1 + 2ε)U . Furthermore, at the fixed point γR,U , the online expected revenue of our

assortment is lower-bounded by g(R,U), and satisfies the conditions of Proposition 4.

Lemma 2. Suppose x is a feasible solution to Problem (3) at (R,U)∈Kfeas. Then x is a feasible

solution to Problem (4) at (γ,R,U) for any γ. Furthermore, any feasible x to Problem (4) satisfies∑n

i=1 πiv̂ixi ≥ (1− 2ε)R and v̂0 +
∑n

i=1 v̂ixi ≤ (1 + 2ε)U .

Corollary 1. Suppose (R,U) ∈ Kfeas. Then there exists γR,U such that f̃(γR,U ,R,U) =

w0γ
R,U . Furthermore, the optimal solution xR,U of Problem (4) with inputs (γR,U ,R,U) satisfies∑n

i=1 πiv̂ix
R,U
i ≥ (1−2ε)R and v̂0+

∑n

i=1 v̂ix
R,U
i ≤ (1+2ε)U , and ensures that ΠON(xR,U)≥ g(R,U).

In summary, our FPTAS creates a geometric grid Kε on the numerator and denominator of the

offline expected revenue. A feasible solution to Problem (3) at (R,U) ∈ Kε guarantees an offline

expected revenue greater or equal to R/U . Problem (3) is hard to solve because of the knapsack

constraints, but our FPTAS only requires a perturbed solution which satisfies the conditions of

Proposition 4. By Lemma 2 and Corollary 1, we can parameterize a rounded version of Problem (3)

to arrive at Problem (4). The optimal solution xR,U to the fixed point γR,U of Problem (4) satisfies

the conditions of Proposition 4. The parameters in the constraints of Problem (4) are integers of

size O(n/ε), so we use dynamic programming to find its optimal solution in the next subsection.

4.2. Solving the Parametric Problem at a Grid-point

As explained previously, we focus on solving Problem (4) at (γ,R,U) such that (R,U) ∈
Kε\{(0, v̂0)}. If (R,U) 6= (0, v̂0) and ε < 1/6, then we have Y1 > 0 and x=~0 is infeasible to Problem

(4). The feasible region of Problem (4) is contained in X\{~0}=Xroot. We proceed to solve Problem

(4) for (R,U)∈Kε\{(0, v̂0)} via dynamic programming.

Like the showroom setting, our value function considers the maximum contribution from the

leaves in the subtree rooted at vertex k, given that feature k is displayed. We need to include two

more states in our value function to recognize the impact of L(k) to the two knapsack constraints.

Let Ṽ R,U
γ (k, y1, y2) be the maximum contribution from products in L(k) when feature k is displayed,

subject to the constraints of Xk. Moreover, we require that the products in L(k) contribute i) at

least y1 to the first constraint of Problem (4) and ii) at most y2 to the second constraint:

Ṽ R,U
γ (k, y1, y2) = max

x∈Xk

 ∑
i∈L(k)

(πi− γ)wi ·
∏

k′∈A(i)

δ
xk′
k′

∣∣∣∣∣∣
∑
i∈L(k)

π̃Ri xi ≥ y1,
∑
i∈L(k)

ṽUi xi ≤ y2

 .

Lo and Topaloglu: Omnichannel Assortment Optimization
19

The value of our parametric problem at γ and (R,U) 6= (0, v̂0) is f̃(γ,R,U) = Ṽ R,U
γ (root, Y1, Y2− ṽU0).

There are two details that may not be obvious. First, the third input to the value function at

the root is Y2− ṽU0 and not Y2. Since the no-purchase option is not a decision, ṽU0 is a constant that

can be moved to the right side of the second constraint in Problem (4). Second, when we compute

f(γ) in Problem (2) of Subsection 3.2, we compare the result of the dynamic program at Vγ(root)

to the objective value at x=~0 because the feasible region Xroot excludes the empty assortment. As

stated previously, the feasible region of Problem (4) is reduced to Xroot when (R,U) 6= (0, v̂0).

We can rewrite Ṽ R,U
γ (k, y1, y2) based on the contributions from the children of k. We consider

three cases: i) x`(k) = xr(k) = 1, ii) x`(k) = 1, xr(k) = 0, and iii) x`(k) = 0, xr(k) = 1. In the first case,

we consider all splits of y1, y2 across the trees rooted at `(k) and r(k). In the second case, the

products in L(r(k)) do not contribute to the knapsack constraints and the required y1, y2 have to

be satisfied on the left subtree. A similar argument applies to the third case. Hence, Ṽ R,U
γ (k, y1, y2)

can be rewritten as the following dynamic program where y1 ∈ {0, . . . , Y1} and y2 ∈ {0, . . . , Y2− ṽU0 }:

Ṽ R,U
γ (k, y1, y2) =

{
(πk− γ)wk∆k if y1 ≤ π̃Rk , y2 ≥ ṽUk
−∞ otherwise

∀k ∈N ,

Ṽ R,U
γ (k, y1, y2) = max



max
0≤x1≤y1
0≤x2≤y2

Ṽ R,U
γ (`(k), x1, x2) + Ṽ R,U

γ (r(k), y1−x1, y2−x2),

Ṽ R,U
γ (`(k), y1, y2) + ∆k ·

∑
i∈L(r(k))

(πi− γ)wi,

∆k ·
∑

i∈L(`(k))

(πi− γ)wi + Ṽ R,U
γ (r(k), y1, y2)


∀k ∈ V\N .

To summarize this section, our FPTAS for finding assortment x̄ such that Π(x̄)≥ (1− ε)Π∗ is

presented in Algorithm 1. The set K̃feas on the second line contains all (R,U) such that Problem

(4) is feasible at (0,R,U). By Lemma 2, feasibility of Problem (3) implies feasibility of Problem

(4), so we have Kfeas ⊆ K̃feas. The while loop implements Newton’s method to find γ such that

f̃(γ,R,U) =w0γ. Our solution x̄ satisfies Π(x̄)≥max(R,U)∈Kfeas
Π(xR,U)≥ (1− ε)Π∗, where the first

inequality is due to Kfeas ⊆ K̃feas. The second inequality is due to Proposition 4 and ε′ = ε/6.

Theorem 3. Suppose Π∗ is the optimal expected revenue of the OCA problem under the features

tree model. For any ε ∈ (0,1), there exists an algorithm that finds an in-store assortment x such

that Π(x)≥ (1− ε)Π∗ in O
(
n7 log2 n log(nR/R)·log((n+1)U/U)

ε6

)
operations.

Proof. There are O
(

log(nR/R)

ε
· log((n+1)U/U)

ε

)
pairs of (R,U) ∈ Kε. If Problem (4) is feasible

at (0,R,U), then Newton’s method finds γR,U such that f̃(γR,U ,R,U) = w0γ
R,U in O(n2 log2 n)

iterations. In total, we solve our dynamic program O
(
n2 log2 n log(nR/R)·log((n+1)U/U)

ε2

)
times.

We compute Ṽ R,U
γ (k, y1, y2) for O(n) vertices and O(n2/ε2) pairs of (y1, y2) per vertex. For each

state, we consider O(n2/ε2) ways to split (y1, y2) over the children of k. There are O(n5/ε4) oper-

ations to obtain Ṽ R,U
γ (root, Y1, Y2− ṽU0). Our total runtime is O

(
n7 log2 n log(nR/R)·log((n+1)U/U)

ε6

)
. �

Lo and Topaloglu: Omnichannel Assortment Optimization
20

Algorithm 1: FPTAS to find an assortment x̄ such that Π(x̄)≥ (1− ε)Π∗

Input : Instance of OCA problem under the features tree model with desired accuracy ε

Output: Assortment x̄ such that Π(x̄)≥ (1− ε)Π∗

Set ε′← ε/6 and construct Kε using ε′ ;

Initialize grid K̃feas←{(0, v̂0)} and set x0,v̂0←~0 ;

for (R,U)∈Kε\{(0, v̂0)} do
Set γ← 0 ;

Solve Problem (4) for optimal x, if feasible ;

if Problem (4) is feasible then

Update K̃feas←K̃feas ∪{(R,U)} ;

while f̃(γ,R,U)>w0γ do
Update γ←ΠON(x) ;

Resolve Problem (4) for optimal x and value f̃(γ,R,U) ;
end

Set xR,U ← x;
end

Return x̄= arg max
(R,U)∈K̃feas

Π(xR,U).

In Online Appendix B, we reduce the runtime by a factor of O(n2/ε2) by solving Problem (4)

as a constrained longest path problem on a directed acyclic graph. This allows us to compute the

FPTAS assortment in O
(
n5 log2 n log(nR/R)·log((n+1)U/U)

ε4

)
operations in Theorem 4.

5. Upper-Bound on Optimal Expected Revenue

To evaluate the practical performance of our FPTAS, it is useful to efficiently compute an upper-

bound on the optimal expected revenue. We can compare the expected revenue from the assortment

obtained by our FPTAS with the upper-bound to get a sense of the optimality gap of our solution.

To construct our upper-bound, let X LP denote the relaxation of X where we replace x∈ {0,1}2n−1

with x ∈ [0,1]2n−1. Using our grid Kε, let gLP(R,U) denote the optimal objective value when we

relax the integrality constraint of Problem (3) at (R,U):

gLP(R,U) = max
x∈XLP

{ ∑n

i=1 πiwi ·
∏
k∈A(i) δ

xk
k

w0 +
∑n

i=1wi ·
∏
k∈A(i) δ

xk
k

∣∣∣∣∣
n∑
i=1

πiv̂ixi ≥R, v̂0 +
n∑
i=1

v̂ixi ≤U

}
. (5)

We can use gLP(R,U) to obtain an upper-bound on the optimal total expected revenue Π∗. Recall

that Kfeas ⊆Kε is the set of points on our geometric grid such that Problem (3) is feasible. Since

Problem (5) is a relaxation of Problem (3), Problem (5) is also feasible at (R,U)∈Kfeas.

Proposition 5. For (R,U) ∈ Kfeas, define ΠLP(R,U) = q · gLP(R,U) + (1 − q) · (1+ε)
2R

U
. Then

max(R,U)∈Kfeas
ΠLP(R,U)≥Π∗.

Lo and Topaloglu: Omnichannel Assortment Optimization
21

To compute gLP(R,U) , we consider the parametric form of Problem (5) with optimal objective

value fLP(γ,R,U). We can also apply Lemma 1 so that the objective function of the parametric

problem is linear in x. The parametric problem with optimal objective value fLP(γ,R,U) is:

fLP(γ,R,U) = (6)

max
x∈XLP


n∑
i=1

(πi− γ)wi +
2n−1∑
k=1

 ∑
i∈L(k)

(πi− γ)wi

 · (∆k−∆p(k)

)
·xk

∣∣∣∣∣
n∑
i=1

πiv̂ixi ≥R, v̂0 +
n∑
i=1

v̂ixi ≤U

 .

Claim 1 applies with a slight modification, hence γ = gLP(R,U) if and only if fLP(γ,R,U) =w0γ.

Problem (6) is a linear program in x, so we can write its dual linear program. The first term in

the objective function,
∑n

i=1(πi− γ)wi, is a constant and needs to be added back onto the dual’s

objective function. We use dual variables β1, β2 for the two knapsack constraints of Problem (6).

Dual variable yk is used for the first and second constraint of XLP relating vertex k to its parent,

and dual variable zk is used for the third constraint relating vertex k to its children. Finally, we

use dual variable uk for the upper-bound on xk. Then the dual linear program is:

min
(y,z,u,β)∈Y

{
n∑
i=1

(πi− γ)wi +
2n−1∑
k=1

uk−Rβ1 + (U − v̂0)β2

}
,

where

Y =


(y, z,u,β)

∣∣∣∣∣∣∣∣∣∣∣

−πkv̂kβ1 + v̂kβ2 + yk− zp(k) +uk ≥ (πk− γ)wk ·
(
∆k−∆p(k)

)
∀k ∈N ,

yk− y`(k)− yr(k) + zk− zp(k) +uk ≥(∑
i∈L(k) (πk− γ)wk

)
·
(
∆k−∆p(k)

)
∀k /∈N ∪{root},

−y`(root)− yr(root) + zroot +uroot ≥
(∑

i∈N (πk− γ)wk
)
· (∆k− 1) ,

y, z, u,β ≥ 0.


.

By strong duality, the dual linear program has optimal objective value fLP(γ,R,U) if Problem

(6) is feasible. Since the dual is linear in γ, we treat γ as a variable. We know γ = gLP(R,U) if and

only if fLP(γ,R,U) = w0γ, so we add a constraint to set the objective value of the dual to w0γ.

Finally, we scale the objective function by 1/w0 to solve for the desired γ, and obtain:

min
(y,z,u,β)∈Y

{
γ

∣∣∣∣∣
(
w0 +

n∑
i=1

wi

)
γ−

2n−1∑
k=1

uk +Rβ1− (U − v̂0)β2 =
n∑
i=1

πiwi, γ ≥ 0

}
. (7)

Hence gLP(R,U) can be computed by solving Problem (7) for all (R,U) ∈ Kfeas. The constraint

γ ≥ 0 does not modify the feasible region when (R,U)∈Kfeas, because gLP(R,U)≥ g(R,U)> 0.

We summarize the computation in Algorithm 2. Similar to Algorithm 1, we initialize a set KLP

in the second line which contains all (R,U) such that Problem (7) is feasible and returns a positive

value. Algorithm 2 returns an upper-bound Π̄LP such that Π̄LP ≥max(R,U)∈Kfeas
ΠLP(R,U) ≥ Π∗,

where the first inequality is due to Kfeas ⊆KLP and the second inequality is due to Proposition 5.

Lo and Topaloglu: Omnichannel Assortment Optimization
22

Algorithm 2: Upper-bound to measure the practical performance of our FPTAS

Input : Instance of OCA problem under the features tree model with desired accuracy ε

Output: Upper-bound value Π̄ such that Π̄≥Π∗

Construct Kε ;

Initialize grid KLP←{(0, v̂0)} and set ΠLP(0, v̂0)← q ·
∑n
i=1 πiwi

w0+
∑n
i=1wi

;

for (R,U)∈Kε\{(0, v̂0)} do
Solve Problem (7) at (R,U) for γ ;

if Problem (7) is feasible and γ > 0 then
Update KLP←KLP ∪{(R,U)} ;

Set gLP(R,U) = γ and compute ΠLP(R,U) ;
end

Return Π̄LP = arg max
(R,U)∈KLP

ΠLP(R,U).

6. Extensions

We consider three extensions. First, we allow the retailer to choose both his online assortment and

his in-store assortment in the showroom setting. Second, we extend the features tree model so that

the leaves of the features tree represent subsets of similar products which are arbitrarily related by

features. Third, we consider a cardinality constraint for the physical store in the general setting.

6.1. Related Online and In-store Assortments

Suppose the physical store displays a subset of the products from the online store, and we make

assortment decisions in both channels. Many retailers encourage customers to order online if their

desired product is unavailable in-store. We discuss this extension with respect to the showroom

setting, but the techniques can be applied to the dynamic program in Subsection 4.2 for the general

setting. Let SON and SPHY denote the online and in-store assortments respectively. We introduce

binary variables yi for i ∈ N , where yi = 1 if product i is offered online and 0 otherwise. Since

SPHY ⊆SON , we require yi ≥ xi. The mathematical program for this extension is:

max
x∈X

y∈{0,1}n

{ ∑n

i=1 πiwiyi ·
∏
k∈A(i) δ

xk
k

w0 +
∑n

i=1wiyi ·
∏
k∈A(i) δ

xk
k

∣∣∣∣∣ xi ≤ yi ∀i∈N
}
. (8)

Let (·)+ denote max{0, ·}. Following the strategy of Subsection 3.2, we can write the parametric

problem f sub(γ) for Problem (8) and find its fixed point γ. Furthermore, we can construct value

functions at each vertex k to consider its subtree’s contribution to the parametric problem when

xk = 1. We add the new constraint to Vγ(k) to obtain the new value function V sub
γ (k):

V sub
γ (k) = max

x∈Xk,
y∈{0,1}|L(k)|

 ∑
i∈L(k)

(πi− γ)wiyi ·
∏

k′∈A(i)

δ
xk′
k′

∣∣∣∣∣ xi ≤ yi ∀i∈L(k)

 .

Lo and Topaloglu: Omnichannel Assortment Optimization
23

Then the parametric problem takes value f sub(γ) = max{V sub
γ (root),

∑n

i=1(πi − γ)+wi}. The first

term in f sub(γ) represents the case that SPHY 6= ∅. The second term represents the case that

SPHY = ∅, and is optimized by taking yi = 1[πi− γ ≥ 0].

If k is a leaf, then xk = 1 implies yk = 1 and the base case has the same value as before. The

difference lies in deciding which products in L(k) to offer online when these products are not

displayed in-store. If xk = 0, then xi = 0 for all i∈L(k), and yi = 1[πi− γ ≥ 0] optimizes the value

function. We have the following dynamic program:

V sub
γ (k) = (πk− γ)wk∆k ∀k ∈N ,

V sub
γ (k) = max


V sub
γ (`(k)) + V sub

γ (r(k)),

V sub
γ (`(k)) + ∆k ·

∑
i∈L(r(k))

(πi− γ)+wi,

∆k ·
∑

i∈L(`(k))

(πi− γ)+wi + V sub
γ (r(k))

 ∀k ∈ V\N .

The parametric problem takes value f sub(γ) = max{V sub
γ (root),

∑n

i=1(πi − γ)+wi}. For each γ,

SPHY is identified by reaching the base cases and SON = SPHY ∪{i | πi ≥ γ}.

The number of operations to compute V sub
γ (root) is the same as Vγ(root). In order to analyze the

total runtime, we can rewrite the objective function using Lemma 1 and introduce variables zki for

every k ∈ V and i∈N such that zki = xkyi. The equality can be rewritten as zki ≤ yi, zki ≤ xk, and

zki ≥ xk+yi−1. Hence, the feasible region becomes a subset of {0,1}O(n2) and we need O(n4 log2 n)

iterations of Newton’s method to arrive at our fixed point. Compared to Theorem 1, the runtime

increases by a factor of O(n2). Using the same techniques, we can study the case where the online

and in-store assortments are independent by removing xi ≤ yi from Problem (8).

6.2. Extending the Features Tree: Leaves as Subsets of Similar Products

The features tree is best for modeling a diverse assortment of products, which can be differentiated

by prominent features like product line and brand. We extend the model so that each leaf represents

a set of very similar products which arbitrarily share precise features. In Figure 1, the retailer can

offer the same colour in multiple product lines of lipsticks, but not across lipsticks and lip gloss.

Let I denote the leaves of our features tree. For i ∈ I, let N(i)⊆N be a partition of products

such that all products in N(i) share the features in A(i), as well as other features arbitrarily. For

i, i′ ∈ I and i 6= i′, product j ∈N(i) and product j′ ∈N(i′) only share the features in A(i)∩A(i′).

We use binary vector yi to denote which products in N(i) are in the display assortment, such that

yij = 1[j ∈ S ∩N(i)]. We continue to use binary vector x∈X , such that xk = 1 implies that feature

k on the features tree is displayed. Since a leaf feature i is displayed if and only if a product in

N(i) is displayed, we add constraints
∑

j∈N(i) y
i
j ≥ xi and xi ≥ yij for all j ∈N(i). These constraints

ensure that xi = 1 if and only if yij = 1 for some j ∈ N(i). Finally, let wj(y
i) denote the base

Lo and Topaloglu: Omnichannel Assortment Optimization
24

preference weight of product j ∈N(i) as a result of the features that it shares with products in

N(i), excluding the features in A(i) which are on the tree. The final preference weight of product

j is vj(x, y
i) =wj(y

i) ·
∏
k∈A(i) δ

xk
k . The OCA problem in the showroom setting is:

max
x∈X

yi∈{0,1}|N(i)|: i∈I


∑

i∈I

(∑
j∈N(i) πjwj(y

i)
)
·
∏
k∈A(i) δ

xk
k

w0 +
∑

i∈I

(∑
j∈N(i)wj(y

i)
) ∣∣∣∣∣

∑
j∈N(i) y

i
j ≥ xi ∀i∈ I,

xi ≥ yij ∀j ∈N(i), i∈ I

 .

Suppose |N(i)| ≤ n′ for some small n′ and there is limited customization at the last level of the

tree. We can use the algorithm in Subsection 3.2 and enumeration at the base case of the dynamic

program. This increases the runtime in Theorem 1 by a factor of O(2n
′
).

6.3. Cardinality Constraint for the Physical Store

In the general setting, we may want to impose a cardinality constraint on the number of products

offered in the physical store. Due to the limited amount of space in his physical store, the retailer

may be restricted to displaying C products in-store, so that
∑n

i=1 xi ≤ C. The geometric grid

and parametrization techniques in Subsection 4.1 still apply. Since C ≤ n and C is an integer, we

do not need to round the parameters of this constraint and we can incorporate the cardinality

constraint directly into our value function from Subsection 4.2. Let Ṽ R,U
γ (k, y1, y2, c) be defined as

in Subsection 4.2, with the extra condition that we offer at most c products from L(k):

Ṽ R,U
γ (k, y1, y2, c) = max

x∈Xk

 ∑
i∈L(k)

(πi− γ)wi ·
∏

k′∈A(i)

δ
xk′
k′

∣∣∣∣∣∣
∑
i∈L(k)

π̃Ri xi ≥ y1,
∑
i∈L(k)

ṽUi xi ≤ y2,
∑
i∈L(k)

xi ≤ c

 .

The cardinality constraint is handled in the same manner as the second constraint. Computing

the optimal assortment increases the runtime in Theorem 3 by a factor of O(n2). Alternatively, it

increases the runtime in Theorem 4 by a factor of O(n) in Online Appendix B.

7. Numerical Study: Modeling Power of Features Tree Model

The features tree model is meant for products that follow the tree structure. Under this model,

customers do not update their preferences for lower-level features if two products belong to different

categories, which is represented by different branches of the tree. In Figure 2a, suppose the retailer

introduces a pink, embroidered gown to the online store. The features tree does not allow customers

to evaluate the colour of the new gown with respect to its online description when she sees the

pink, pleated gown (product 1), because the highlight is a lower-level feature which is not shared by

gowns of different styles. In this section, we measure how well the features tree model can capture

customers’ choice behaviour when customers follow a more complex choice model in reality. We

use the generalized model in Figure 2c as the ground-truth model.

Lo and Topaloglu: Omnichannel Assortment Optimization
25

We test two aspects of our features tree model when customers make purchasing decisions accord-

ing to the ground-truth model: its ability to approximate the true purchase probabilities and its

ability to select an assortment that earns a large fraction of the true optimal expected revenue. To

benchmark, we test against a simple, omnichannel choice model that does not incorporate prod-

ucts’ features. We run our tests for the showroom setting to focus on online customers, and use set

notation S to denote the display assortment. Under the features tree model, the probability that

a customer chooses product i is PT
i (S) and the expected revenue is ΠT(S).

7.1. Ground-Truth and Benchmark Models

The ground-truth model is a generalization of the list-of-features model and the features tree model

(see Figure 2c). Suppose there are L feature classes and K feature values per class. A product is

a combination of one feature value per feature class. We do not require that a product exists for

every combination and allow n<KL. Clearly, the ground-truth model subsumes the list-of-features

model. The ground-truth model also subsumes the features tree model because we can define the

L feature classes to be the levels of the tree, and the K feature values to be the features at each

level regardless of their parents in the tree. We can remove all combinations of feature values that

do not result in a product to recover the features tree model. In the ground-truth model, product

i has initial preference weight wi. Each feature is denoted by its class-value pair, (`, k), where

1≤ `≤L and 1≤ k≤K, and is associated with a multiplier δ`,k. After updating preference weights,

customers make their purchasing decisions from the full assortment N and the no-purchase option

according to MNL. Given a display assortment S, the probability that customers choose product

i is denoted PG
i (S) and the expected revenue is denoted ΠG(S).

The benchmark model is a special case of the list-of-features model and the features tree model.

We consider a simple extension of MNL to the omnichannel retail setting by dropping the features

dependence between products. Product i has preference weight vi if it is displayed in-store and wi

otherwise. Customers choose from the full assortment N and the no-purchase option according to

MNL by applying the appropriate preference weights. Given a display assortment S, the probability

that customers choose product i is denoted PB
i (S) and the expected revenue is denoted ΠB(S). We

defer the mathematical details of both models to Online Appendix C.

7.2. Test of Predictive Ability

First, we test the features tree model’s ability to approximate the true purchase probabilities if

customers make purchasing decisions according to the ground-truth model. We generate many

instances of the ground-truth model and for each instance, we generate purchase data by randomly

generating display assortments and the resulting purchase. We fit a features tree to the data of

each instance, and use the KL-divergence to measure the performance of the fitted model.

Lo and Topaloglu: Omnichannel Assortment Optimization
26

Setup: An instance of the ground-truth model consists of L feature classes and K feature values

per class, where L∈ {2,3} and K ∈ {4,5,6}. The retailer offers n= 15 products, which are selected

uniformly at random out of the KL possible combinations of features. A feature is denoted by its

class-value pair (`, k), and A(i) denotes the set of features of product i. Feature (`, k) is associated

with utility µ`,k, such that eµ`,k is generated uniformly over [0,2]. A product’s utility is the sum

of its features’ utilities. Following the structure of MNL, the preference weight of product i is

wi = e
∑

(`,k)∈A(i) µ`,k . The multiplier δ`,k is generated uniformly over [0.1,1.9]. The preference weight

of the no-purchase option, w0, is chosen so that a customer who sees the full assortment N on

display will leave without a purchase with probability 0.1.

To obtain data from an instance of the ground-truth model, we generate D= 2500 assortments

to display in-store. For each d = 1, . . . ,D, an assortment Sd is generated such that each product

is displayed with probability 0.1. We generate the customer’s purchasing decision id ∈ N ∪ {0}

according to the purchase probabilities under the ground-truth model.

The structure of the features tree depends on how we order the feature classes. We start with L!

features trees, where the levels of each tree corresponds to a permutation of the L feature classes.

As described in Section 3.3, the value of L= |A(i)| is expected to be small. The parameters of each

features tree are then computed by solving the features tree’s corresponding maximum likelihood

estimator. As the maximum likelihood estimator might not be concave, we use Ipopt (Wächter

and Biegler (2006)) to find a local optimal solution. We choose the features tree with the largest

log-likelihood. Similarly, we estimate the parameters of the benchmark model by finding a local

optimal solution to its maximum likelihood estimator.

For (L,K) ∈ {2,3} × {4,5,6}, we generate M = 100 instances of the ground-truth model. We

fit a features tree model and a benchmark model according to the procedure above. For m =

1, . . . ,M , we measure the KL-divergence between the distributions under the ground-truth model

and the fitted features tree model. Since the probability distribution depends on the assortment, we

compute the average KL-divergence over all display assortments: KLT
m = 1

2n

∑
S⊆N

∑
i∈N P

G
i (S) ·

log (PG
i (S)/PT

i (S)). Similarly, we compute the KL-divergence, KLB
m, between the ground-truth

model and the fitted benchmark model. This measure is always non-negative, and a lower value

corresponds to a better approximation of the ground-truth model.

Finally, we want to measure the robustness of the fitted features tree model. We decide to use

the features tree with the largest log-likelihood, but it is also reasonable to use one of the other

L!− 1 features tree created by ordering the feature classes differently. Hence, for each instance m,

we also report the median value of KLT
m over the L! possible features tree.

Lo and Topaloglu: Omnichannel Assortment Optimization
27

Performance Robustness

Tree-KLT
m Benchmark-KLB

m

Median KLT
m of L!

trees

L K Avg.
5th
perc.

95th
perc.

Time
(sec.)

Avg.
5th
perc.

95th
perc.

Time
(sec.)

Avg
change
in KLm

Avg.
5th
perc.

95th
perc.

2 4 0.058 0.028 0.103 50.15 0.087 0.038 0.164 3.07 -28.9% 0.088 0.040 0.158
2 5 0.060 0.027 0.122 53.13 0.080 0.035 0.159 2.81 -18.1% 0.078 0.036 0.147
2 6 0.057 0.024 0.103 65.79 0.074 0.035 0.134 3.24 -17.2% 0.074 0.033 0.144
3 4 0.095 0.043 0.225 189.06 0.114 0.042 0.272 2.91 -10.1% 0.133 0.050 0.295
3 5 0.075 0.035 0.135 177.86 0.088 0.034 0.162 2.88 -8.8% 0.104 0.043 0.218
3 6 0.073 0.032 0.137 232.05 0.093 0.044 0.178 0.58 -16.2% 0.104 0.053 0.185

Table 1 Average KL-divergence between the purchase probabilities of the ground-truth and fitted models.

Results: In Table 1, we report the average, the 5th percentile, and the 95th percentile of

KLT
m,KLB

m over M = 100 instances for the fitted features tree and benchmark models. We also

report the time used to estimate each model. In the last three columns, we report the median KLT
m

over the L! possible fitted trees as a measure of robustness.

Our features tree model performs quite well in approximating the purchase probabilities of the

ground-truth model. The KL-divergence is 8.8% to 28.9% smaller when we approximate the ground-

truth model using the features tree with the largest log-likelihood instead of the benchmark model.

This implies that our chosen features tree is a better approximation to the ground-truth model

than the benchmark. The median KL-divergence is, on average, quite similar to the KL-divergence

of the benchmark model. Hence, it is important to choose a good, but not necessarily the best,

ordering of the feature classes when we build the features tree model. Next, we demonstrate that

the improvements in the KL-divergence translate into significant revenue improvements even when

the selected features tree is not necessarily the best one.

7.3. Test of Assortments Selected by Features Tree

The main advantage of the features tree model over the generalized ground-truth model is its

computational tractability, so that we can compute an optimal assortment in polynomial runtime.

We test the optimal assortment of the fitted features tree against the true optimal assortment.

Setup: For each instance of the ground-truth model in the previous subsection, we create J = 250

scenarios by generating a new price vector for each scenario. The price of each product is generated

uniformly over [1,10]. We denote the expected revenue function in scenario j as ΠG
j (·), because we

are concerned with the expected revenue of each assortment under the ground-truth model.

For scenario j = 1, . . . , J , we compute the optimal assortment ST
j = arg maxS⊆N ΠT

j (S) under the

features tree model, using the features tree with the largest log-likelihood from Subsection 7.2.

The true optimal solution S∗j = arg maxS⊆N ΠG
j (S) is found by enumeration. For each instance,

we measure the fraction of the true optimal expected revenue earned by assortment ST
j in sce-

narios j = 1, . . . J , and then average over its J scenarios. We denote this measure by EarnT =

1
J

∑J

j=1 ΠG
j

(
ST
j

)
/ΠG

j

(
S∗j
)
. We perform the same test and compute EarnB for the benchmark model.

Lo and Topaloglu: Omnichannel Assortment Optimization
28

Performance Robustness

Tree - EarnT
m Benchmark - EarnB

m

Improvement rel. to
benchmark

Median EarnT
m

of L! trees

L K Avg.
5th
perc.

95th
perc.

Avg.
5th
perc.

95th
perc.

Avg.
5th
perc.

95th
perc.

Avg.
Rel. to
EarnB

m

2 4 0.9686 0.9449 0.9834 0.9208 0.8626 0.9697 5.74% 1.33% 13.31% 0.9540 3.68%
2 5 0.9675 0.9405 0.9839 0.9294 0.8705 0.9675 4.48% 0.96% 9.35% 0.9596 3.30%
2 6 0.9700 0.9442 0.9863 0.9342 0.8895 0.9669 4.16% 1.29% 8.31% 0.9619 3.00%
3 4 0.9422 0.8847 0.9738 0.8865 0.7904 0.9526 7.13% 1.53% 13.17% 0.9215 4.05%
3 5 0.9562 0.9256 0.9778 0.9109 0.8519 0.9580 5.53% 1.77% 11.46% 0.9407 3.32%
3 6 0.9518 0.9173 0.9796 0.9112 0.8495 0.9574 5.03% 1.01% 9.84% 0.9379 2.98%

Table 2 Percentage of Optimal Expected Revenue Earned by Using Features Tree and Benchmark Models

We reuse the M = 100 instances from Subsection 7.2 to compute EarnT
m and EarnB

m for instance

m= 1, . . . ,M . We also measure the robustness of the features tree model by considering expected

revenue earned by the other L! − 1 possible features trees. For each instance m, we record the

median value of EarnT
m over the L! trees from the different orderings of the feature classes.

Results: In Table 2, we present the average of EarnT
m and EarnB

m, as well as their 5th and the

95th percentile. We report the improvement in these measures when we use the features tree model

rather than the benchmark model. In the last two columns, we report the median of EarnT
m over

the L! possible features tree, and compare these results to the benchmark model.

Our features tree model performs quite well and chooses display assortments that capture large

fractions of the optimal expected revenue under the ground-truth model. On average, the features

tree and the benchmark models capture 0.9594 and 0.9155 of the true optimal expected revenue

respectively. On the low end of performance at the 5th percentile, the models capture 0.9262 and

0.8524 of the optimal expected revenue on average. Relative to the benchmark model, the expected

revenue increases by 5.35% on average when we use the features tree model.

The features tree model performs well even if we order the feature classes differently. On average,

the median value of EarnT
m over the L! possible trees is still more than 0.9215 of the true optimal

expected revenue. The median value of EarnT
m over the L! possible trees is 3.39% larger than

EarnB
m on average. Hence, even if we select another ordering of the feature classes for our features

tree, we can still expect to outperform the benchmark model and achieve a large fraction of the

optimal expected revenue. The ground-truth model generalizes the list-of-features model, which is

already computationally difficult to optimize over. Our model is a good substitute because it is

computationally tractable and achieves a reasonable fraction of the optimal expected revenue.

8. Numerical Study: Performance of FPTAS

We test our FPTAS to assess its practical performance compared to the its theoretical guarantee.

We compare the expected revenue earned by our FPTAS against the upper-bound from Section 5.

Lo and Topaloglu: Omnichannel Assortment Optimization
29

Setup: We assume that offline and online customers have the same preference weight for product

i if they both see it, so that v̂i =wi ·
∏
k∈A(i) δk and v̂0 =w0. This focuses our test on the omnichannel

aspect so that offline and online customers only differ in terms of what they are willing to purchase.

For each instance, we generate 32 products. Each product’s revenue πi is generated uniformly

over [1,10]. Each product’s initial preference weight wi is generated uniformly over [1,5]. To set up

our features tree, recall from Assumption 1 that we can convert a general features tree to a binary

features tree by introducing auxiliary vertices such that δk = 1. We use this idea to construct a

general features tree, while representing it as a binary tree. First, we set up a balanced binary

tree with 32 products as leaves. For a leaf i ∈ N , a product-specific multiplier δi is generated

uniformly over [0.1,1.9]. For each of the 31 non-leaf vertices, its feature multiplier δk is set to 1 with

probability β and generated uniformly over [0.1,1.9] with probability 1−β. Here, β is a parameter

we vary in {0,0.05,0.1,0.2} and a larger β increases the probability that the features tree is a

general tree. Finally, the preference weight of the no-purchase option is chosen so that a customer

who sees the full assortment will choose the no-purchase option with probability η ∈ {0.05,0.1}.
For each instance, we vary the fraction of online customers q. For q ∈ {0.2,0.4,0.6,0.8}, let xq

denote the assortment returned by our FPTAS with a performance guarantee of ε= 1/2. Let Πq(·)
denote the expected revenue function and Π̄q denote the upper-bound from Section 5. We measure

the fraction of the upper-bound earned by xq: EarnLPq = Πq(xq)/Π̄q. We use the constrained

longest path formulation in Online Appendix B to improve the runtime.

For each (η,β) ∈ {0.05,0.1} × {0,0.05,0.1,0.2}, we generate M = 50 instances of the problem.

For each instance m, we compute EarnLPq
m for q ∈ {0.2,0.4,0.6,0.8}. We run our FPTAS with a

performance guarantee of ε= 1/2, but make our grid 30 times finer (ε= 1/60) when we construct

the upper-bound. For each (η,β), we also run our polynomial-time algorithm for the showroom

setting and our FPTAS for the general setting with n= 16,32,48,64 to measure the growth in the

algorithms’ runtimes. We compute the ratio of the runtimes for n= 16,48,64 to the runtime for

n= 32. We also consider the ratio of the theoretical runtimes, as determined by Theorems 1 and

4, by looking at the leading polynomial term in n and ignoring the logarithmic terms. These tests

were performed on a computer with 16 GB of RAM and a Intel i7-6700 processor.

Results: In Table 3, each row describes a combination of (η,β), followed by the average, min-

imum, and maximum of EarnLPq
m. On average, our FPTAS achieves 0.984 of the upper-bound

on optimal expected revenue, which is significantly better than its performance guarantee of 1/2.

The upper-bound uses a relaxation of our OCA problem and is not tight. On average, our FPTAS

achieves 0.984 of the upper-bound. The average runtime of our FPTAS is 155.5 seconds.

The ratios of the algorithms’ runtimes are reported in Table 4. The second sub-columns report

the ratio between the actual runtime for each n versus n= 32. The third sub-columns report the

Lo and Topaloglu: Omnichannel Assortment Optimization
30

q= 0.2 q= 0.4 q= 0.6 q= 0.8

η β Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.
Time
(sec.)

0.05 0.00 0.971 0.932 0.990 0.982 0.959 0.995 0.989 0.971 0.996 0.996 0.988 0.998 158.9
0.05 0.05 0.970 0.935 0.992 0.982 0.964 0.995 0.989 0.976 0.996 0.996 0.990 0.998 191.5
0.05 0.10 0.968 0.932 0.993 0.981 0.959 0.995 0.991 0.973 0.996 0.996 0.988 0.998 186.0
0.05 0.20 0.966 0.932 0.990 0.979 0.958 0.993 0.989 0.972 0.996 0.995 0.988 0.998 173.6
0.10 0.00 0.967 0.928 0.992 0.981 0.959 0.994 0.989 0.968 0.996 0.995 0.963 0.998 140.2
0.10 0.05 0.972 0.941 0.992 0.983 0.959 0.995 0.989 0.971 0.997 0.996 0.976 0.999 113.3
0.10 0.10 0.965 0.928 0.988 0.980 0.953 0.993 0.989 0.974 0.996 0.995 0.973 0.998 149.7
0.10 0.20 0.970 0.932 0.990 0.983 0.960 0.994 0.990 0.959 0.996 0.995 0.958 0.999 131.0

Table 3 Average, worst-case, and best-case performance of FPTAS on 50 instances of OCA problem under

features-tree model with ε= 1/2. Time reported is for computing the FPTAS solution.

n= 16 n= 32 n= 48 n = 64
Avg.
time
(sec.)

Actual
rel. to
n= 32

Theor.
rel.
n= 32

Avg.
time
(sec.)

Actual
rel. to
n= 32

Theor.
rel.
n= 32

Avg.
time
(sec.)

Actual
rel. to
n= 32

Theor.
rel.
n= 32

Avg.
time
(sec.)

Actual
rel. to
n= 32

Theor.
rel.
n= 32

Show. 2.23E-5 0.49 0.13 4.60E-5 1.00 1.00 2.04E-4 4.44 3.38 3.25E-4 7.07 8.00
FPTAS 16.37 0.11 0.03 155.51 1.00 1.00 764.66 4.92 7.59 1,848.74 11.89 32.00

Table 4 Runtime of algorithms for showroom and general settings relative to n= 32, for n= 16,32,48,64.

ratio between the theoretical runtimes. In the showroom setting, the ratios between the actual

runtimes matches the ratio between the theoretical runtimes, except when n= 16. When n= 16,

the ratio between the actual runtimes is four times greater than the theoretical ratio. One possible

explanation is that the setup time (e.g. initializing arrays for dynamic program) is significant

compared to the computation time when n is small. The same observation can be made for the

FPTAS when n= 16. In contrast to the showroom setting, the ratio between the actual runtimes of

the FPTAS is about half of the ratio between the theoretical runtimes when n= 48 and 64. In the

practical implementation of the FPTAS, we can omit certain (R,U) from Kfeas ⊆Kε without any

computation. If Problem (4) is infeasible at (0,R/(1+ε), (1+ε)U), then it must also be infeasible at

(0,R,U). Hence, the upper-bound for the theoretical runtime in Theorem 4 is not tight. Finally, the

FPTAS takes 0.5 hours to terminate when n= 64, which is reasonable for practical implementation

because computing the in-store assortment with the FPTAS is not an online exercise.

9. Conclusion

We considered the assortment optimization problem of an omnichannel retailer, who must con-

sider how his in-store assortment affects customers’ preferences when they purchase from the full

assortment in his online store. Our features tree is a simple and intuitive method to group products

by features. This structure allowed us to develop a FPTAS to compute an approximately optimal

assortment in the general setting via dynamic programming.

One future research direction is to vary the fraction of customers that visit each store based on

the assortments. In reality, customers choose between different retail channels based on the diversity

of the assortments and the prices or possible discounts in each channel. The assortments not only

influence customers’ preferences for the products available in the other store, but it also influences

Lo and Topaloglu: Omnichannel Assortment Optimization
31

the fraction of customers who purchase from each store. This would represent the omnichannel

environment more accurately, where customers are not loyal to one channel.

Assortment optimization in the omnichannel environment is quite new, and there may be other

ways to explain how customers make purchasing decisions when they can access multiple channels.

In our model, customers maximize their utilities under the structure of standard MNL, except that

the mean utilities (and hence preference weights) are determined by the features tree as a function

of the in-store assortment. We can incorporate the features tree into other choice models which

use MNL as a building block. In the context of the mixture of MNL models, different customer

segments would determine their preference weights according to different features trees. With the

d-level nested logit model, customers would still choose among the options within a selected nest.

However, the preference weights of the products would depend on the in-store assortment via the

features tree, which affects the probability of selecting each nest by changing its total preference

weight. The features tree describes the impact on customers’ mean utilities when they see products

in the physical store, whereas the underlying choice model describes the customers’ choice process.

Finally, parameter estimation is an important aspect of assortment optimization because repre-

senting customers’ preferences accurately is a critical step before solving for the optimal assortment.

In our numerical experiments, we used the local optimal solutions to the maximum likelihood esti-

mators. A future research direction is to obtain real-world data from an omnichannel retailer and

test our model and estimator to evaluate the usefulness of the features tree model in practice.

References
Adrienne Söndag (2019), ‘A Guide To MAC Cosmetic Part 2 - Lipstick Formulas’,

http://www.thesundaygirl.com/2012/12/a-guide-to-mac-cosmetics-part-2.html. Accessed: 2019-05-17.

Albadvi, A. and Shahbazi, M. (2009), ‘A hybrid recommendation technique based on product category attributes’,

Expert Systems with Applications 36(9), 11480–11488.

Avery, J., Steenburgh, T. J., Deighton, J. and Caravella, M. (2012), ‘Adding bricks to clicks: Predicting the patterns

of cross-channel elasticities over time’, Journal of Marketing 76(3), 96–111.

Bachrach, D. G., Ogilvie, J., Rapp, A. and Calamusa IV, J. (2016), More Than a Showroom: Strategies for Winning

Back Online Shoppers, Springer.

Bell, D., Gallino, S. and Moreno, A. (2014), ‘How to win in an omnichannel world’, MIT Sloan Management Review

56(1), 45.

Bell, D., Gallino, S. and Moreno, A. (2015), ‘Showrooms and information provision in omni-channel retail’, Production

and Operations Management 24(3), 360–362.

Bell, D., Gallino, S. and Moreno, A. (2017), ‘Offline showrooms in omnichannel retail: Demand and operational

benefits’, Management Science .

Blue Nile (2018), ‘FAQs: About Blue Nile’, https://www.bluenile.com/contact-us/faq. Accessed: 2018-05-29.

Bront, J. J. M., Méndez-Dı́az, I. and Vulcano, G. (2009), ‘A column generation algorithm for choice-based network

revenue management’, Operations Research 57(3), 769–784.

Cho, Y. H., Kim, J. K. and Kim, S. H. (2002), ‘A personalized recommender system based on web usage mining and

decision tree induction’, Expert systems with Applications 23(3), 329–342.

Lo and Topaloglu: Omnichannel Assortment Optimization
32

David’s Bridal (2020), ‘Dresses’, https://www.davidsbridal.com. Accessed: 2020-07-08.

Désir, A., Goyal, V. and Zhang, J. (2014), ‘Near-optimal algorithms for capacity constrained assortment optimization’.

Dzyabura, D. and Jagabathula, S. (2017), ‘Offline assortment optimization in the presence of an online channel’,

Management Science .

Fornari, E., Fornari, D., Grandi, S., Menegatti, M. and Hofacker, C. F. (2016), ‘Adding store to web: migration and

synergy effects in multi-channel retailing’, International Journal of Retail & Distribution Management 44(6), 658–

674.

Gao, F. and Su, X. (2016a), ‘Omnichannel retail operations with buy-online-and-pick-up-in-store’, Management Sci-

ence 63(8), 2478–2492.

Gao, F. and Su, X. (2016b), ‘Online and offline information for omnichannel retailing’, Manufacturing & Service

Operations Management 19(1), 84–98.

Goldstone, R. L. (1994), ‘Similarity, interactive activation, and mapping.’, Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition 20(1), 3.

Gregan-Paxton, J., Hoeffler, S. and Zhao, M. (2005), ‘When categorization is ambiguous: Factors that facilitate the

use of a multiple category inference strategy’, Journal of Consumer Psychology 15(2), 127–140.

Harsha, P., Subramanian, S. and Ettl, M. (2019), ‘A practical price optimization approach for omnichannel retailing’,

Informs Journal on Optimization 1(3), 241–264.

Li, G., Rusmevichientong, P. and Topaloglu, H. (2015), ‘The d-level nested logit model: Assortment and price opti-

mization problems’, Operations Research 63(2), 325–342.

Luce, R. D. (1959), Individual Choice Behavior a Theoretical Analysis, John Wiley and sons.

M.A.C Cosmetics (2019a), ‘Products: Lip Gloss’, https://www.maccosmetics.com/products/13853/Products/Makeup

/Lips/Lip-Gloss. Accessed: 2019-05-13.

M.A.C Cosmetics (2019b), ‘Products: Lipstick’, https://www.maccosmetics.com/products/13854/Products/Makeup

/Lips/Lipstick. Accessed: 2019-05-13.

Markman, A. B. and Wisniewski, E. J. (1997), ‘Similar and different: The differentiation of basic-level categories.’,

Journal of Experimental Psychology: Learning, memory, and cognition 23(1), 54.

McFadden, D. (1973), ‘Conditional logit analysis of qualitative choice behavior’.

Moreau, C. P., Markman, A. B. and Lehmann, D. R. (2001), ‘What is it? Categorization flexibility and consumers’

responses to really new products’, Journal of Consumer Research 27(4), 489–498.

Murphy, G. L. and Brownell, H. H. (1985), ‘Category differentiation in object recognition: typicality constraints on

the basic category advantage.’, Journal of Experimental Psychology: Learning, Memory, and Cognition 11(1), 70.

Murphy, G. L. and Ross, B. H. (2010), ‘Uncertainty in category-based induction: When do people integrate across

categories?’, Journal of Experimental Psychology: Learning, Memory, and Cognition 36(2), 263.

Noseworthy, T. J. and Goode, M. R. (2011), ‘Contrasting rule-based and similarity-based category learning: The

effects of mood and prior knowledge on ambiguous categorization’, Journal of Consumer Psychology 21(3), 362–371.

Radzik, T. (1998), ‘Fractional combinatorial optimization’, Handbook of Combinatorial Optimization pp. 429–478.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M. and Boyes-Braem, P. (1976), ‘Basic objects in natural

categories’, Cognitive psychology 8(3), 382–439.

Rusmevichientong, P., Shmoys, D., Tong, C. and Topaloglu, H. (2014), ‘Assortment optimization under the multino-

mial logit model with random choice parameters’, Production and Operations Management 23(11), 2023–2039.

Wächter, A. and Biegler, L. T. (2006), ‘On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming’, Mathematical programming 106(1), 25–57.

Yamauchi, T. and Markman, A. B. (1998), ‘Category learning by inference and classification’, Journal of Memory

and language 39(1), 124–148.

Ziegler, C.-N., Lausen, G. and Schmidt-Thieme, L. (2004), Taxonomy-driven computation of product recommenda-

tions, in ‘Proceedings of the thirteenth ACM international conference on Information and knowledge management’,

ACM, pp. 406–415.

Lo and Topaloglu: Omnichannel Assortment Optimization
33

Appendix A: Proofs Omitted from Paper

Proof of Claim 1: We only prove the first case because the other two cases are similar. Let x∗ be

the optimal showroom assortment, such that γ∗ =
∑n

i=1 πiwi ·
∏
k∈A(i) δ

x∗k
k /
(
w0 +

∑n

i=1wi ·
∏
k∈A(i) δ

x∗k
k

)
>

γ. We can multiply both sides by the denominator because w0 > 0 and rearrange the terms to obtain:∑n

i=1(πi− γ)wi ·
∏
k∈A(i) δ

x∗k
k >w0γ. The left side of the last inequality is upper-bounded by f(γ). �

Proof of Lemma 1: Since x is integral and xp(k) ≥ xk for all k ∈A(i)\{root}, either xi = 1, xroot = 0,

or there exists some k̄ ∈A(i)\{root} such that xk̄ = 0 and xp(k̄) = 1. The result clearly holds for the first two

cases, so we focus on the third case. Then xk = 1 for all k ∈A(p(k̄)) and xk = 0 for k ∈A(i)\A(p(k̄)), and:

wi +wi ·
∑
k∈A(i)

(∆k−∆p(k)) ·xk =wi +wi ·
∑

k∈A(p(k̄))

(∆k−∆p(k)) =wi +wi ·
(
∆p(k̄)− 1

)
=wi ·

∏
k∈A(i)

δxkk = vi(x).

We use this form of vi(x) to rewrite the expected revenue on the left side of the next equation:∑n

i=1 πiwi +
∑n

i=1 πiwi ·
∑

k∈A(i)(∆k−∆p(k)) ·xk
w0 +

∑n

i=1wi +
∑n

i=1wi ·
∑

k∈A(i)(∆k−∆p(k)) ·xk
=

∑n

i=1 πiwi +
∑2n−1

k=1

(∑
i∈L(k) πiwi

)
·
(
∆k−∆p(k)

)
·xk

w0 +
∑n

i=1wi +
∑2n−1

k=1

(∑
i∈L(k)wi

)
·
(
∆k−∆p(k)

)
·xk

.

By switching the summation from products to vertices in T , we obtain the right side as desired. �

Proof of Proposition 1: One implication of the ROFT is that for products i1, i2, i3 such that πi1 >

πi2 >πi3 , we must have A(i1)∩A(i3)⊂A(i2). This structure is used throughout the proof.

Let γ∗ be the optimal expected revenue. We can compute the optimal assortment by solving Problem (2)

with γ = γ∗. If x∗ ∈X is the optimal showroom assortment, then:

w0γ
∗ = f(γ∗) =

n∑
i=1

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x∗k
k = max

x∈X

n∑
i=1

(πi− γ∗)wi ·
∏

k∈A(i)

δxkk . (9)

Suppose by contradiction that our optimal assortment is not revenue-ordered nor empty. Then there exists

j ∈N such that x∗j = 1 and x∗j−1 = 0. Let j◦ denote the smallest such index. We show that we can remove

product j◦ or add product i < j◦. The resulting x′ does not decrease the objective value of Problem (9).

Let j+ denote the largest index of products i∈N such that πi ≥ γ∗. Then, products i > j+ have revenue

strictly less than γ∗. Consider the contribution from product i in Problem (9) under a new assortment x′. If

i≤ j+ and x′k ≥ x∗k for all k ∈A(i), or i > j+ and x′k ≤ x∗k for all k ∈A(i), then we do not decrease product

i’s contribution because δk ≥ 1 for all k. We try to ensure that x′ follows this structure.

For each product i, we define product i′ to be a critical product of product i if x∗i′ = 1 and x∗k = 1[k ∈

A(i) ∩A(i′)] for all k ∈ A(i), with i = i′ possible. In other words, the demonstrated features of product i

are exactly those features that product i shares with product i′. Similarly, define a non-critical product

of i to be a product i′′ such that x∗i′′ = 1 and x∗k > 1[k ∈ A(i) ∩ A(i′′)] for some k ∈ A(i). Observe that

A(i) ∩A(i′)⊇ A(i) ∩A(i′′), and that removing a critical product i′ may affect which features of product i

are demonstrated, but removing a non-critical product i′′ does not affect product i.

Case 1: j◦ ≤ j+ - Add product j◦ − 1 to the assortment. For any product i such that i < j◦ ≤ j+, it is

clear that x′k ≥ x∗k for all k ∈A(i). On the other hand, for product i > j◦, we have A(j◦− 1)∩A(i)⊂A(j◦).

Since x∗k = 1 for all k ∈ A(j◦), no additional features of product i are demonstrated to customers and we

have x′k = x∗k for k ∈A(i). As a result, the objective value of Problem (9) does not decrease.

Lo and Topaloglu: Omnichannel Assortment Optimization
34

Case 2: j◦ > j+ - Define vertex jc to be the product with the smallest index such that jc ≤ j+ and j◦ is a

critical product of product jc. If product jc does not exists, then remove product j◦ from the assortment to

obtain x′ ≤ x∗. For all products i≤ j+, product j◦ is a non-critical product, so that x′k = x∗k for all k ∈A(i).

Hence the objective value of Problem (9) does not decrease.

If product jc exists, then removing product j◦ from the display assortment could result in customers

seeing fewer features of product jc than optimal. By definition of jc and j◦, we can show that products

{jc, . . . , j+, . . . , j◦ − 1} are not displayed in x∗. We perform one of two actions: add product jc to the

assortment, or remove product j◦. Before proceeding, observe that neither of these changes will decrease

the contribution from product i to Problem (9) if i < jc or i > j◦. If i < jc, then adding products can

only increase the contribution to Problem (9), and removing product j◦ has no effect because j◦ is not

critical to product i. If i > j◦, then removing product j◦ can only increase the contribution. If product jc

is added to the assortment, then A(jc) ∩ A(i) ⊆ A(j◦) ∩ A(i) and no additional features of product i are

demonstrated. Hence, we can focus on the effects of the two actions to the contributions from products

within {jc, . . . , j+, . . . , j◦− 1, j◦} to Problem (9).

Partition the products in {jc, . . . , j+, . . . , j◦ − 1, j◦} into two sets based on the ancestors that they share

with j◦: Sc = {i ∈N| jc ≤ i≤ j◦, A(i)∩A(j◦) =A(jc)∩A(j◦)}, and S̄c = {i ∈N| jc ≤ i≤ j◦, i /∈ Sc}. Note

that jc ∈ Sc and j◦ ∈ S̄c. By definition of ROFT and Sc, we can show that for any i∈ Sc and ī∈ S̄c, πi >πī.

Furthermore, we can show that A(i)∩A(jc)⊇A(j◦)∩A(jc) =A(̄i)∩A(jc).

Since Sc and S̄c partitions {jc, . . . , j+, . . . , j◦−1, j◦}, we can rewrite the total contribution to Problem (9)

from products in {jc, . . . , j+, . . . , j◦− 1, j◦} as
∑

iSc(πi−γ∗)wi ·
∏
k∈A(i) δ

xk
k +

∑
ī∈S̄c(πī−γ∗)wī ·

∏
k∈A(̄i) δ

xk
k .

We focus on the products in Sc. When assortment x∗ is displayed, the features that are demonstrated on

product i∈ Sc are A(i)∩A(j◦) =A(jc)∩A(j◦). Hence:

∑
iSc

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x∗k
k =

(∑
iSc

(πi− γ∗)wi

)
·

∏
k∈A(jc)∩A(j◦)

δk.

We decide on our action based on the value of
∑

i∈Sc(πi− γ∗)wi.

Case 2a:
∑

i∈Sc(πi − γ∗)wi < 0 - Then j+ ∈ Sc by definition of ROFT. Remove product j◦ from the

assortment. Since x′ ≤ x∗, there is no decrease from the contribution from products ī∈ S̄c. For any products

i∈ Sc, the demonstrated features of product i must be a subset of A(jc)∩A(j◦), and:

∑
iSc

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x′k
k =

(∑
iSc

(πi− γ∗)wi

)
·

∏
k∈A(jc)∩A(j◦)

δ
x′k
k ≥

(∑
iSc

(πi− γ∗)wi

)
·

∏
k∈A(jc)∩A(j◦)

δk.

We do not decrease the objective value of Problem (9) because x′ ≤ x∗ and
∑

i∈Sc(πi− γ∗)wi < 0.

Case 2b:
∑

i∈Sc(πi − γ∗)wi ≥ 0 and j+ ∈ S̄c - Display product jc. Since x′ ≥ x∗, there is no decrease

from the contributions of i ∈ Sc because i < j+ for all i ∈ Sc. For product ī ∈ S̄c, we stated earlier that

A(̄i)∩A(jc) =A(j◦)∩A(jc), so no additional features are demonstrated and product ī does not decrease the

objective value of Problem (9).

Case 2c:
∑

i∈Sc(πi− γ∗)wi ≥ 0 and j+ ∈ Sc - Display product jc. Then x′ ≥ x∗. The same argument as

Case 2b applies for products ī∈ S̄c, so we focus on the total change in contribution from products in Sc.

Lo and Topaloglu: Omnichannel Assortment Optimization
35

For product i∈ Sc such that i≤ j+, observe that

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x′k
k ≥ (πi− γ∗)wi ·

∏
k∈A(jc)∩A(j+)

δ
x′k
k = (πi− γ∗)wi ·

∏
k∈A(jc)∩A(j+)

δk.

The inequality above is true because πi ≥ γ∗ and A(jc)∩A(j+)⊂A(i). The equality above is true because

x′k = 1 for all k ∈A(jc). On the other hand, for product i∈ Sc such that i > j+, observe that

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x′k
k = (πi− γ∗)wi ·

∏
k∈A(jc)∩A(i)

δk ≥ (πi− γ∗)wi ·
∏

k∈A(jc)∩A(j+)

δk.

The equality above is true because A(i) ∩ A(jc) ⊇ A(j◦) ∩ A(jc) = A(i) ∩ A(j◦), so product jc shares the

most features with product i out of all displayed products. The inequality above is true because πi <γ
∗, and

jc < j+ < i implies A(jc)∩A(i)⊆A(jc)∩A(j+). Finally, by summing over all products in Sc, we have:

∑
i∈Sc

(πi− γ∗)wi ·
∏

k∈A(i)

δ
x′k
k ≥

(∑
i∈Sc

(πi− γ∗)wi

)
·

 ∏
k∈A(jc)∩A(j+)

δk

≥(∑
i∈Sc

(πi− γ∗)wi

)
·

 ∏
k∈A(jc)∩A(j◦)

δk

 .

The second inequality is true because jc < j+ < j◦ implies A(jc) ∩A(j◦)⊆ A(jc) ∩A(j+). Hence the total

contribution from products in Sc does not decrease the objective value of Problem (9).

Repeated application of this procedure results in an optimal display assortment which is revenue-ordered.

The proof for showing that a reverse revenue-ordered assortment is optimal when δk ≤ 1 for all k is similar.�

Proof of Theorem 2: Let γ∗ denote the optimal expected revenue. We can find the optimal assortment

by solving Problem (2) with input γ∗. Notice that if there exists a product i ∈ N such that δk = 1 for all

k ∈A(i), then the presence or absence of product i in the display assortment has no effect on the preference

weights of any products. Hence, without loss of generality, we may assume that for all i ∈ N , there exists

k ∈ A(i) such that δk 6= 1. Let {k1, . . . , kF} denote the set of features which satisfies two conditions: i)

δkf 6= 1, and ii) if kf 6= root, then δk = 1 for all k ∈ A(p(kf)). Note that k1, . . . , kF are well-defined, and

L(k1), . . . ,L(kF) partitions N . Furthermore, for each kf , either L(kf)⊆N+ or L(kf)⊆N−.

If i∈L(kf) and i′ ∈L(kf ′) for kf 6= kf ′ , then δk = 1 for all k ∈A(i)∩A(i′). Hence, we can rewrite f(γ∗) as

follows and compute the value of f(γ∗) by optimizing over each subtree independently:

f(γ∗) = max
x∈X

F∑
f=1

∑
i∈L(kf)

(πi− γ∗)wi ·
∏

k∈A(i)

δxkk =

F∑
f=1

max
x∈X

∑
i∈L(kf)

(πi− γ∗)wi ·
∏

k∈A(i)

δxkk

 . (10)

Using the fact that our tree is a ROFT, we can partition the features {k1, . . . , kF} into five sets:

F1 = {kf | πi ≥ γ∗ ∀i∈L(kf) and L(kf)⊆N+}, F2 = {kf | πi ≥ γ∗ ∀i∈L(kf) and L(kf)⊆N−},

F3 = {kf | πi ≤ γ∗ ∀i∈L(kf) and L(kf)⊆N+}, F4 = {kf | πi ≤ γ∗ ∀i∈L(kf) and L(kf)⊆N−}, and

F5 = {kf | ∃i, i′ ∈L(kf) s.t. πi ≥ γ∗ >πi′}.

Let Nj = ∪kf∈FjL(kf) for j = 1, . . . ,5. We should display all products in N1 ∪N4 to increase the objective

value of Problem (10). Similarly, we should display none of the products in N2 ∪N3.

If F5 is empty, then it is optimal to display N1∪N4 and i∗ is the least expensive product with πi ≥ γ∗ (i.e.

i∗ = arg max{i ∈ N | πi ≥ γ∗}). Otherwise, F5 is a singleton set and F5 = {kf∗} because we have a ROFT.

Lo and Topaloglu: Omnichannel Assortment Optimization
36

Assume that δkf∗ > 1, so that N5 =L(kf∗)⊆N+. The proof for δkf∗ < 1 is similar. Using the same argument

as the proof of Proposition 1, a revenue-ordered subset Sf∗ ⊆ N5 maximizes the contribution from this

subtree to Problem (10). Hence, either Sf∗ = ∅, or there exists i∗ ∈L(kf∗) such that Sf∗ = {i∈N5 | i≤ i∗}.
Since we have a ROFT, N1 ∪ Sf∗ = N+ ∩ {i | i ≤ i∗} and N4 = N− ∩ {i | i > i∗}. Hence, N1 ∪ N4 ∪ Sf∗

implies a showroom assortment which is either empty or of the form {i∈N+ | i≤ i∗}∪ {i∈N− | i > i∗}. �
Proof of Proposition 2: Let ε′ = ε/4 and x∗ be the optimal assortment. Let Πo(·) denote the objective

function in the contracted problem. We can upper-bound the optimal expected revenue by Πo(xo):

Π(x∗)≤

∑F

f=1

(∏
k∈A(kf) δ

x∗k
k

)
·
(∑

i∈L(kf) πiwi∑
i∈L(kf)wi

·
∑

i∈L(kf)wi

)
· (1 + ε′)

L̄

w0 +
∑F

f=1

(∏
k∈A(kf) δ

x∗
k
k

)
·
(∑

i∈L(kf)wi

)
· (1− ε′)L̄

≤
(

1 + ε′

1− ε′

)L̄
Πo(xo).

The first inequality upper-bounds the numerator and lower-bounds the denominator of Π(x∗), subject to the

possible values of δk for k ∈ V low. In the process, we construct a solution to the contracted problem using

x∗. The value of this solution is upper-bounded by Πo(xo). Similarly, we lower-bound the numerator and

upper-bound the denominator of Π(xε) below, such that the equality is a result of constructing xε from xo:

Π(xε)≥
(

1− ε′

1 + ε′

)L̄
·

∑F

f=1

(∏
k∈A(kf) δ

xεk
k

)
·
(∑

i∈L(kf) πiwi∑
i∈L(kf)wi

·
∑

i∈L(kf)wi

)
w0 +

∑F

f=1

(∏
k∈A(kf) δ

xε
k
k

)
·
(∑

i∈L(kf)wi

) =

(
1− ε′

1 + ε′

)L̄
Πo(xo).

By combining the two inequalities, we obtain our desired lower-bound on the expected revenue from xε:

Π(xε)≥
(

1− ε′

1 + ε′

)2L̄

Π(x∗)≥ (1− 4L̄ε′)Π(x∗) = (1− L̄ε)Π∗. �

Proof of Proposition 3: We will show NP-hardness via a reduction from the partition problem. In

the partition problem, we are given integers {c1, . . . , cn} such that
∑n

i=1 ci = 2C for some integer C. We need

to determine if there exists a subset S ⊂N such that
∑

i∈S ci =C. Our proof constructs an instance of the

OCA problem such that an optimal assortment gives us a solution to the partition problem if it exists.

The fraction of online customers is q = 2C2+C
5C2+4C+1

+ 1
2
, and the fraction of offline customers is 1 − q =

3C2+3C+1
5C2+4C+1

− 1
2
. Note that q ∈ (0,1) for any C ≥ 1. Construct n products, each with revenue πi = 1. An online

customer associates an initial preference weight wi = 2ci to product i. It will be easier to consider a general

tree rather than a binary tree for the purpose of this proof. Our tree has n+1 vertices, consisting of n leaves

and a root. Each leaf has δi = 1/2, and the root has δroot = 1. Since δroot = 1, it never affects online preference

weights and we can ignore xroot. Our feasible region reduces to X = {0,1}n. Given x∈ {0,1}n, the resulting

preference weights of online customers for product i is vi(x) = 2ci
(

1
2

)xi = ci(2− xi). The second equality

follows from Lemma 1. An offline customer has preference weight v̂i = ci for product i. Set v̂0 =w0 = 1.

We claim that a partition of S ⊂N exists if and only if the optimal expected revenue is greater or equal

to K = (5C2 + 2C)/(5C2 + 4C + 1). The expected revenue of x∈ {0,1}n is:

Π(x) = q ·
∑n

i=1 ci(2−xi)
1 +

∑n

i=1 ci(2−xi)
+ (1− q) ·

∑n

i=1 cixi
1 +

∑n

i=1 cixi
= q ·

4C −
∑n

i=1 cixi
1 + 4C −

∑n

i=1 cixi
+ (1− q) ·

∑n

i=1 cixi
1 +

∑n

i=1 cixi
.

The last equality is true because
∑n

i=1 ci = 2C. Let y= 2C −
∑n

i=1 cixi and rewrite the expected revenue as

a function f(y), with q expanded out:

f(y) =

(
2C2 +C

5C2 + 4C + 1
+

1

2

)
· 2C + y

1 + 2C + y
+

(
3C2 + 3C + 1

5C2 + 4C + 1
− 1

2

)
· 2C − y

1 + 2C − y
.

Lo and Topaloglu: Omnichannel Assortment Optimization
37

We verify that f ′′(y) < 0 for all y ∈ [0,2C], so that any solution ȳ such that f ′(ȳ) = 0 must be a unique

maximum over this interval. Furthermore, f ′(C) = 0 and achieves a maximum value of f(C) =K. Rearranging

C = y= 2C−
∑n

i=1 cixi gives us C =
∑n

i=1 cixi, and we take S = {i∈N| xi = 1}. Hence, the optimal expected

revenue is greater or equal to K if and only if there exists a partition S such that
∑

i∈S ci =C. This shows

that the OCA problem under the features tree model is NP-hard in the general setting. �

Proof of Proposition 4: If Problem (3) is feasible at (R,U), then by definition of xR,U , we can

lower-bound its expected revenue by Π(xR,U)≥ 1−2ε
1+2ε

·
(
q ·ΠON(xR,U) + (1− q) · R

U

)
.

If the optimal assortment is x∗ = ~0, then our solution to Problem (3) at (0, v̂0) ∈ Kε is optimal because

x0,v̂0 = ~0 is the unique solution at (0, v̂0). Otherwise, there exists R′,U ′ such that R′ ≤ R∗ < (1 + ε)R′,

U ′ ≤U∗ < (1 + ε)U ′, and (R′, (1 + ε)U ′)∈Kε. Since Problem (3) at (R′, (1 + ε)U ′) is a relaxation of Problem

(3) at (R∗,U∗), we know that (R′, (1 + ε)U ′)∈Kfeas and we can upper-bound Π∗ as follows:

Π∗ ≤ q · g(R′, (1 + ε)U ′) + (1− q) · (1 + ε)R′

U ′
≤ (1 + ε)2(1 + 2ε)

1− 2ε
Π(xR

′,(1+ε)U′)≤ 1

1− 6ε
Π(x̄).

In the first inequality, we upper-bound ΠON(x∗) = g(R∗,U∗) by g(R′, (1+ε)U ′). We also upper-bound R∗/U∗

by (1 + ε)R′/U ′. The second inequality applies ΠON(xR,U)≥ g(R,U) and the lower-bound on Π(xR,U) from

the beginning of the proof. The last inequality holds by simplifying the ratio of ε’s and the choice of x̄. �

Proof of Lemma 2: Suppose x is feasible to Problem (3). We check the knapsack constraints in

Problem (4). Using the rounded values for the numerator, we obtain the following chain of inequalities:

n∑
i=1

π̃Ri xi ≥
n∑
i=1

(
πiv̂i
εR/n

− 1

)
xi ≥

R

εR/n
−

n∑
i=1

xi ≥
⌊n
ε

⌋
−n≥ Y1.

A similar chain of inequalities can be obtained for the denominator. Hence x is feasible to Problem (4).

Next, if x is feasible to Problem (4), then the following is true for the numerator:

n∑
i=1

πivixi ≥
εR

n
·
n∑
i=1

π̃Ri xi ≥
εR

n
·
(⌊n

ε

⌋
−n
)
≥ (1− 2ε)R.

A similar chain of inequalities shows that v̂0 +
∑n

i=1 v̂ixi ≤ (1 + 2ε)U . �

Proof of Corollary 1: By Lemma 2, Problem (4) has a feasible solution for any γ. The value of

f̃(γ,R,U) is decreasing in γ and f̃(0,R,U)> 0, so there exists γR,U such that f̃(γR,U ,R,U) =w0γ
R,U , with

corresponding optimal solution xR,U to Problem (4) at (γR,U ,R,U). Then γR,U = ΠON(xR,U).

Suppose xg optimizes Problem (3) with inputs (R,U). By Lemma 2, xg is feasible to Problem (4) with

inputs (γR,U ,R,U), and its objective value is upper-bounded by
∑n

i=1(πi − γR,U)wi ·
∏
k∈A(i) δ

x
g
k
k ≤ w0γ

R,U .

By rearranging, we obtain γR,U ≥ΠON(xg) = g(R,U), which implies that ΠON(xR,U)≥ g(R,U). �

Proof of Proposition 5: If (R∗,U∗) = (0, v̂0), then x=~0 is the unique solution when we solve Problem

(5) at (R,U) = (0, v̂0). Otherwise, there exists R′,U ′ such that R′ ≤R∗ < (1 + ε)R′ and U ′ ≤U∗ < (1 + ε)U ′,

and (R′, (1 + ε)U ′) ∈Kfeas. Since Problem (5) is a relaxation of Problem (3), gLP(R′, (1 + ε)U ′)≥ g(R′, (1 +

ε)U ′)≥ g(R∗,U∗). Furthermore, (1 + ε)R′/U ′ ≥R∗/U∗, and we obtain the following bound:

max
(R,U)∈Kfeas

ΠLP(R,U)≥ΠLP(R′, (1 + ε)U ′) = q · gLP(R′, (1 + ε)U ′) + (1− q) · (1 + ε)2R′

(1 + ε)U ′
≥Π∗. �

Lo and Topaloglu: Omnichannel Assortment Optimization
38

(a) Gk for k ∈N . (b) Gk for k /∈N . (c) DAG G.

Figure 4: G is built recursively, starting with Gk for k ∈ N . In 4a, cγks,kt = (πk − γ)wk∆k. In 4b,

cγks,rs = ∆k ·
(∑

i∈L(`)(πi− γ)wi

)
and cγ`t,kt = ∆k ·

(∑
i∈L(r)(πi− γ)wi

)
. In 4c, cγs,t =

∑n

i=1(πi−γ)wi.

Appendix B: Faster Algorithm via Longest Path in a Directed Acyclic Graph

In the constrained longest path problem, we are given a graph G with a source s and a sink t. The arcs of G

have costs c, and L sets of weights d1, . . . , dL with budgets D1, . . . ,DL. Let c(P) and dl(P) denote the length

of P under costs c and weights dl respectively: c(P) =
∑

(u,v)∈P cu,v and dl(P) =
∑

(u,v)∈P d
l
u,v. The problem

is to find a s-t path P that maximizes c(P) subject to dl(P)≤Dl for all l= 1, . . . ,L.

We present a constrained longest path problem on a directed acyclic graph (DAG) that is equivalent to

solving Problems (2) and (4). There is a bijection between s-t paths and solutions x∈X . We can efficiently

compute f(γ) in Problem (2) by finding the longest path in G via the standard dynamic program. In the

general setting, we add two set of weights on the arcs to form a constrained longest path problem. The

general constrained longest path problem is NP-hard, but our instance can be solved efficiently because G is

a DAG and its arcs’ weights are integers of size O(n/ε). We explain the intuition at the end of the section.

B.1. Showroom Setting

To solve Problem (2), we construct a directed graph G= (V,E) with arc costs cγ based on our features tree

T and parameterized for γ. For every vertex k in T , we have two vertices in G: ks and kt. We also add a

source s and a sink t into G. Hence, V (G) = {s, t}∪ {ks, kt| k ∈ V (T)}.
Let Gk be the subgraph of G induced by the set of vertices k′s, k

′
t where k′ is a feature in the subtree

rooted at k. The subgraphs are built recursively from the leaves of T up to the root. We start from k ∈N
and create arc (ks, kt) with cost cγks,kt = (πk− γ)wk∆k. So Gk has two vertices and one arc (Figure 4a).

To build Gk for k /∈ N , let `= `(k) and r = r(k). Both G` and Gr have already been built, and we add

five arcs to complete Gk (Figure 4b). Arcs (ks, `s) and (ks, rs) go from the source of Gk to the sources of

G` and Gr respectively. Arcs (`t, kt) and (rt, kt) go from the sinks of G` and Gr to the sink of Gk. We join

G` to Gr with arc (`t, rs). Arcs (ks, `s), (`t, rs), and (rt, kt) have 0 costs. The other two arcs have costs

cγks,rs = ∆k ·
(∑

i∈L(`)(πi− γ)wi

)
and cγ`t,kt = ∆k ·

(∑
i∈L(r)(πi− γ)wi

)
.

A unit of flow entering Gk corresponds to feature k being demonstrated in-store. This unit of flow can do

one of three things. First, it can pass through G` and then Gr, which corresponds to both children features

being demonstrated. Second, it can pass through G` but not Gr. As a result, we incur the cost cγ`t,kt , which

reflects the fixed contribution by the right subtree when the right feature is not demonstrated. Third, it can

pass through Gr but not G`, and we get the fixed contribution by the left subtree. It is not possible for the

unit of flow to neither enter G` nor Gr, which corresponds to demonstrating at least one child feature.

Lo and Topaloglu: Omnichannel Assortment Optimization
39

We connect Groot to the source s and sink t with arcs (s, roots), (roott, t), and (s, t) (Figure 4c). The first

two arcs have 0 costs and cγs,t =
∑n

i=1(πi− γ)wi. Our graph G has O(n) vertices and arcs.

The construction of G implies a bijection between solutions x∈X and s-t paths P in G, such that xk = 1 if

and only if (ks, kt)∈ P for k ∈N . The empty assortment maps to the single-arc path P = (s, t). Furthermore

the objective value of x in Problem (2) is equal to the length of the path P under costs cγ .

Solving Problem (2) is equivalent to computing the longest path on G. Since G is a DAG, it is well-known

that the longest path can be computed via dynamic programming. Let Cγ(u) be the cost of the longest s-u

path in G. The objective value at x=~0 is represented by the (s, t) arc and does not need to be computed

separately as in Section 3. We solve the following dynamic program to compute f(γ) =Cγ(t):

Cγ(s) = 0, and Cγ(u) = max
v:(v,u)∈E(G)

Cγ(v) + cγv,u ∀u 6= s.

Computing Cγ(t) involves computing Cγ(u) at O(n) states. There are at most two decisions to consider

for each Cγ(u), because each vertex u∈ V (G) has at most two incoming arcs. Hence, we can compute Cγ(t)

in O(n) operations. The runtime is the same as before and remains O(n3 log2 n).

B.2. General Setting

To incorporate the two constraints of Problem (4) into our longest path problem, we add two sets of weights,

d1 and d2, to our graph G and turn it into a constrained longest path problem. Due to the bijection between

s-t paths in G and solutions x ∈ X , we know that xk = 1 if and only if the arc (ks, kt) is in the path P for

k ∈ N . The no-purchase option is incorporated via the arcs (roott, t) and (s, t). Let d1
ks,kt

= π̃Rk for k ∈ N ,

and d1
u,v = 0 otherwise. Let d2

ks,kt
= ṽUk for k ∈N , d2

roott,t
= d2

s,t = ṽU0 , and d2
u,v = 0 otherwise.

An s-t path with d1(P) ≥ Y1 and d2(P) ≤ Y2 corresponds to a solution x such that the constraints of

Problem (4) are satisfied. Since Y1 and Y2 are integers of size O(n/ε), we can set up a dynamic program to

compute the longest s-t path under costs cγ subject to d1(P)≥ Y1 and d2(P)≤ Y2. Let C̃R,U
γ (u, y1, y2) denote

the length of the longest s-u path Pu such that d1(Pu)≥ y1 and d2(Pu)≤ y2. Then f̃(γ,R,U) = C̃R,U
γ (t, Y1, Y2).

Our dynamic program is as follows for y1 ∈ {0, . . . , Y1} and y2 ∈ {0, . . . , Y2}:

C̃R,U
γ (s, y1, y2) =

{
0 : y1 ≤ 0, y2 ≥ 0

−∞ : otherwise
,

C̃R,U
γ (u, y1, y2) = max

v:(v,u)∈E(G)

{
cγv,u + C̃R,U

γ (v, y1− d1
v,u, y2− d2

v,u)
}

∀u 6= s.

When we compute C̃R,U
γ (u, y1, y2), we may move to a state where y1−d1

v,u < 0 or y2−d2
v,u < 0. In the former

case, a state (u, y1, y2) with y1 < 0 means that d1(Pu)≥ y1 is automatically satisfied. To reduce the number of

states in our dynamic program, we can set C̃R,U
γ (u, y1, y2) = C̃R,U

γ (u,0, y2) whenever y1 < 0. In the latter case,

a state (u, y1, y2) with y2 < 0 means that d2(Pu)< 0 and we violate our weights constraint under d2. Since the

base case ensures that C̃R,U
γ (u, y1, y2) =−∞ regardless of the value of y1, we can set C̃R,U

γ (u, y1, y2) =−∞
whenever y2 < 0. Finally, observe that we computed Ṽ R,U

γ (root, Y1, Y2− ṽU0) in Subsection 4.2, but we compute

C̃R,U
γ (t, Y1, Y2) here because the no-purchase option has been incorporated by arcs (s, t) and (roott, t).

Theorem 4. Suppose Π∗ is the optimal expected revenue of the OCA problem under the features tree

model. For any ε ∈ (0,1), there exists an algorithm that finds an in-store assortment x such that Π(x) ≥
(1− ε)Π∗ in O

(
n5 log2 n log(nR/R)·log((n+1)U/U)

ε4

)
operations.

Lo and Topaloglu: Omnichannel Assortment Optimization
40

Proof. The only difference with the proof of Theorem 3 is the runtime to compute C̃R,U
γ (t, Y1, Y2).

There are O(n) vertices in G and O(n2/ε2) pairs of (y1, y2) for each vertex. For each state, the dynamic

program considers O(1) decisions as there are at most two incoming arcs per vertex. Hence, it takes O(n3/ε2)

operations to compute C̃R,U
γ (t, Y1, Y2) and reduces the previous runtime by a factor of O(n2/ε2). �

Compared to the original dynamic program in Subsection 4.2, we reduce the number of decision at each

state from O(n2/ε2) to O(1) and double the number of states. In state (k, y1, y2) of the original dynamic

program, we immediately decide on the allocation of (y1, y2) between the two children of k. This is wasteful

because we do not consider the revenues and offline preference weights of the products in the subtrees, and

different allocations could have the same results. The new dynamic program only decides on displaying one or

both children features of k at (kt, y1, y2). The actual allocation of (y1, y2) is delayed until we reach the parent

of a product vertex. In other words, the graph G sorts vertices in the features tree according to a depth-

first-search, and considers the consumption of budgets (y1, y2) product by product rather than subtree by

subtree. To use this strategy in the extensions presented in Subsection 6.1, we can apply the non-negativity

function to arc costs whenever the corresponding terms are non-negative in the dynamic program.

Appendix C: Ground-Truth and Benchmark Models

Ground-Truth Model: The ground-truth model generalizes the list-of-features model (Dzyabura and

Jagabathula (2017)), so that the online store does not offer a product for every combination of features. For

L feature classes and K feature values per class, the full assortment has n≤KL products.

Our ground-truth model cannot be optimized over features. We require a separate set of variables to

describe which products and features are on display. Product i has initial preference weight wi. We use binary

variables x ∈ {0,1}n to describe the assortment on display, so that xi = 1 if product i is on display and 0

otherwise. A features is referenced by its class-value pair (`, k), and it has multiplier δ`,k. Let y ∈ {0,1}L·K

indicate which features are seen. To be consistent with earlier notations, let A(i) denote the features of

product i and L(`, k) denote all the products with feature (`, k). Following the logic in Section 2, y`,k = 1 if

and only if xi = 1 for some i∈L(`, k). The set of feasible characteristic vectors (x, y) is:

XG =

{
(x, y)

∣∣∣∣ xi ≤ y`,k ∀i, (`, k)∈A(i), y`,k ≤
∑

i∈L(`,k) xi ∀(`, k),

y`,k ∈ {0,1} ∀(`, k), xi ∈ {0,1} ∀i.

}
.

Given an assortment x, the vector y is uniquely defined. The final preference weight of product i can

be written as wi ·
∏

(`,k)∈A(i) δ
y`,k
`,k . The probability of selling product i when assortment x is displayed is

PG
i (x, y) =wi ·

∏
(`,k)∈A(i) δ

y`,k
`,k /

(
w0 +

∑n

j=1wj ·
∏

(`,k)∈A(j) δ
y`,k
`,k

)
.

Benchmark Model: This is the simplest model that incorporates the notion of having different preference

weights for products, depending on whether they are on display or not. In the benchmark model, we ignore

features relationship and product i simply has a preference weight of vi when it is displayed and wi otherwise.

We use binary variables x∈ {0,1}n to describe the assortment on display, so that xi = 1 if product i is on

display and 0 otherwise. The preference weight of product i is vixi +wi · (1− xi). The probability of selling

product i when assortment x is displayed is PB
i (x) = (vixi +wi · (1−xi))/

(
w0 +

∑n

j=1 vjxj +wj · (1−xj)
)

.

