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Abstract— For safe and efficient human-robot interaction, a
robot needs to predict and understand the intentions of humans
who share the same space. Mobile robots are traditionally built
to be reactive, moving in unnatural ways without following
social protocol, hence forcing people to behave very differently
from human-human interaction rules, which can be overcome
if robots instead were proactive. In this paper, we build an
intention-aware proactive motion planning strategy for mobile
robots that coexist with multiple humans. We propose a
framework that uses Hidden Markov Model (HMM) theory
with a history of observations to: i) predict future states and
estimate the likelihood that humans will cross the path of a
robot, and ii) concurrently learn, update, and improve the
predictive model with new observations at run-time. Stochastic
reachability analysis is proposed to identify multiple possibilities
of future states and a control scheme that leverages temporal
virtual physics inspired by spring-mass systems is proposed to
enable safe proactive motion planning. The proposed approach
is validated with simulations and experiments involving an
unmanned ground vehicle (UGV) performing go-to-goal op-
erations in the presence of multiple humans, demonstrating
improved performance and effectiveness of online learning
when compared to reactive obstacle avoidance approaches.

I. INTRODUCTION

Autonomous mobile robots that share space with hu-
mans have become increasingly popular in recent years; we
found such robots delivering packages on crowded sidewalks,
working in warehouses alongside human workers, or even
simply vacuuming a busy household. In many cases, these
robots perform their missions by treating surrounding hu-
mans as stationary obstacles. People, in turn, are expected to
work around and learn to adapt to these robots often oper-
ating in unnatural ways. On the other hand, people interact
and cooperate with one another seamlessly. This is because
humans not only implicitly understand others’ intentions,
but they also implicitly communicate their intentions by
changing their behavior proactively, often well in advance
of a possible collision.

In this paper, we address the problem of enabling proactive
intention-aware motion on a robot that coexists with humans
in environments like airports, train stations, labs, and offices.
In our work, proactive intention-aware motion refers to robot
motion that accommodates the human’s future motion while
maintaining the robot’s desired goal.

In this work, we leverage Hidden Markov Model (HMM)
theory to collect observations and emission matrices that
are used to predict and understand future human intentions,
i.e., where the humans plan to go in the future. Similar
to other learning enabled techniques, we use a history of
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Fig. 1. Pictorial representation of the motivation behind this work. Our
proposed approach computes temporal stochastic reachable sets and plans
motion that proactively accommodates human intentions.

observations to make predictions, however in our proposed
approach, new observations are considered at run-time to
improve and refine predictions, and rapidly incorporate new
or unexpected behaviors. Surrounding humans’ future state
predictions are used to build stochastic reachable sets and to
plan proactive actions. Specifically, we compute the control
inputs using temporal virtual physics based on spring-mass
systems to avoid the generated reachable sets.

The rest of this paper is organized as follows: in Section
II, we discuss relevant work in this field, and in Section
III, we formally define the problem. In Section IV, we
describe each component of our approach. In V, we present
our results through simulations and experiments. Lastly, we
present conclusions and future work in Section VI.

II. RELATED WORK

With technological advances in mobile robotics, there
has been widespread interest in enabling robots to navigate
human environments the way a human does, that is, in a
proactive and socially acceptable manner. While advances in
dynamic obstacle avoidance, like human avoidance, suffer
from the freezing robot problem, which is when the robot
sees no path forward and is “frozen” for the remainder of
the operation [1], [2], recent works have shown progress in
reducing this problem. In [3], [4], the authors identify safe
motion planning methods using graph search and directional
rules, given a priori assumptions of human trajectories based
on heading and velocity. These assumptions, however, do not
account for uncertainty or rapid changes that can be seen in
human motion. The authors in [5] use principles of virtual
physics to develop “social-force” model, which produces
attractive and repulsive forces based on personal space and
other qualitative attributes of human behavior. This model
does not predict the future actions of people, and suffers
if there is an unexpected violation of the “social force”
model by an uncontrolled agent. In [6], [7], authors present



reachability-based and confidence-based approaches that do
consist of an online update, but rely on simplified models of
human motion, and suffers from applicability and scalability
issues as a result. The notion of reachability for predictions,
however, remains useful. In this paper, we take into account
observations of human behavior in the presence of a moving
robot to create a model, and obtain probabilistic predictions
and stochastic reachable sets that describe possible future
human motion.

Machine learning based approaches that also aim to enable
socially acceptable motion for robots include [8], where the
authors use recurrent neural networks (RNNs) or long short
term memory networks (LSTMs) to predict future motion
of humans. While these methods are effective predictive
models for human trajectories, they suffer under an unknown
set of inputs, as they are subject to vanishing or exploding
gradients. Authors in [9] use deep reinforcement learning
(DRL) to attain socially acceptable behaviors, and in [10],
the authors use DNNs to achieve similar results. While the
RNN, DRL, and DNN based approaches demonstrate good
robot behaviors, none are able to improve at run-time. The
approach presented in this paper on the other hand, collects
the training observations and emission probabilities, so that
it can easily identify and learn from new observations at
run-time, improving the predictive model at every iteration.

III. PROBLEM FORMULATION

Consider a mobile robot tasked to go from an initial po-
sition q0 to a goal qg while negotiating and accommodating
its motion with surrounding actors, in particular humans,
hi ∈ Sh(t), i = 1, . . . , nh, where Sh(t) is a time varying set
of nh humans in sensing range with the robot. Each human
in the environment is following an unknown trajectory, and
we assume the robot is capable of localization and static
obstacle and human detection. The dynamics of the robot can
be represented in the typical state space form, ẋ = f(x,u)
where x ∈ Rn is the state and u ∈ Rm is the control
input. With such premises, the robot has the objective to
predict the intended motion of humans in its sensing range
and proactively plan its motion to minimize the human
deviations caused by the robot. In doing that, the robot is also
implicitly communicating with the humans to acknowledge
that it understands their intention. Formally, the problem is:

Problem 1: Intention Aware Proactive Motion Plan-
ning and Control. Consider a robot navigating in an en-
vironment with humans. Given a set of observed humans
Sh, the objective is to predict their reachable states Rh(t) at
run-time over an horizon H , find a policy to anticipate future
robot reactions, and plan a trajectory to minimize human
deviating maneuvers created by the robot, such that:

||q(t)− qi(t)|| > δ, ∀i ∈ Sh(t), t ≥ 0 (1)

where q(t) and qi(t) are the position of the robot and the
ith human at time t respectively, and δ is a minimum safe
distance.

A secondary problem we investigate is how to improve
predictions over time. To this end we use the theory of
Hidden Markov Model (HMM) to collect a history of obser-
vations and emission probabilities that are constantly updated
online to consider run-time behavior that either was never

observed during training or to reinforce/change the expected
future predictions.

IV. PREDICTION AND PLANNING FRAMEWORK

In this section we describe the framework adopted for
prediction and control of a robot in a human environment.
Specifically, we follow the architecture depicted in the block
diagram in Fig. 2.

Fig. 2. Block diagram of the framework for human intention prediction
and proactive motion planning.

At the core of our framework we consider a HMM that is
trained using offline data and constantly updated at run-time
for more accurate predictions and to include new behaviors.
The predictive model generated by HMM training consists
of a set of state observations O and emission matrix B.
Prediction is then executed by building a temporal reachable
set R over a finite time horizon to include future human
states and the associated probabilities.

Then, the motion planner that we propose here will
consider this prediction to find reactions (deviations from
the desired trajectory) of the robot at different time steps and
proactively adjust the robot actions toward the point in the
trajectory where a deviation was predicted. At run-time new
observations are added to O and are then used to update the
HMM, improving and refining B, and thus improving future
predictions and inferences. In the next sections, we describe
in detail each component of our framework.

A. HMM-based Training

To train the predictive model for human intentions we
propose a Hidden Markov Model (HMM) [11] which can
be described by the tuple 〈S,O, C,G,P,B〉 where:
• S ∈ RN is the state space of the system which includes

a finite set of unique states si ∈ S, i = 1, . . . , N that
can be visited by the system.

• O ∈ RT is a finite set of observations o(t) ∈ O
collected over a finite past time horizon T , i.e., O =
{o(t−T ), o(t−T +1), . . . , o(t)} and such that o(t) =
si ∈ S. Note that the states observed during T , S ′ ∈ Rn
are a subset of S, S ′ ⊆ S and n ≤ N .

• C ∈ RT is the finite set of emissions, or inferences
c(t) that relate to the action taken each state, and C =
{c(t− T ), c(t− T + 1), . . . , c(t)}.

• G ∈ RM is a finite set of M unique inferences that
C can obtain, and gk ∈ G, where k = 1, . . . ,M , with
M ∈ N.

• P ∈ RN×N is a transition probability matrix, that
describes the probability of entering a certain state,
sj ∈ S ′, while currently in observed state si ∈ S ′,
denoted as P(si → sj).

• B ∈ RN×M is the emission matrix, which lists the
probability bik of obtaining emission gk given state si:

bik = P (gk(t+ 1)|si(t)) (2)



where i = 1, . . . , N . Emission probabilities are initial-
ized as 1/M , and are calculated as follows:

bik = ngik/ngi∗ (3)

where ngik ≤ ngi∗ ≤ T . Then, the emission matrix is

B =

 b11 . . . b1M
...

. . .
bN1 bNM

 (4)

Differently from a traditional HMM, the “hidden” part
applies to the emissions, rather than the states, which are
directly observable (i.e., measurable) and therefore, have ob-
servable transitions. Another key difference is that we utilize
the set of observations O, to make informed predictions for
stochastic reachability in addition to the emission matrix,
which provides important behavioral information used for
motion planning. Because of the human-robot interaction
problem we consider, the specific states recorded in O are:

s =
[
dx dy θ

]
(5)

where dx, dy , and θ are the relative x-y positions and heading
of a person in the robot local frame, respectively.

On the other hand, the emissions will capture qualitative
inferences on how a human will behave when approaching
the robot: specifically in this work we are interested in
predicting whether a human starting from a state si will
cross or not cross the robot’s path at some point in the future
during the operation, which impacts the way we plan robot
motion; the goal is to accommodate more to a person who
is crossing the robot’s path.

The initial offline HMM training shown in Fig. 3 is exe-
cuted on a set of trajectories specifically designed to capture
the accommodating and avoiding behaviors of a humans
moving from random initial positions to random goals in
the environment around a robot that ignores the human
and just follows a straight path starting from (0,−2.5)m to
(0, 3)m at v = 0.5m/s. Collisions are not included in our
training set because we assume that people in general do not
behave adversarially, and therefore will not intentionally try
to collide with the robot. The state vector (5) is discretized to
prevent an infinite or exploding state-space. The dimension
and discretization of the state space are selected based
on the capabilities of the robot. A larger state space and
finer discretization results in better approximation, but at an
increased computational complexity.

(a) Training trajectories. (b) Discretized training trajectories.

Fig. 3. (a) Set of real trajectories used for the training process in the
experiments. (b) Discretized trajectories according to a 0.5m-spaced grid.

At run-time, observations are rounded to the nearest state
in the discrete state space. Then, future state predictions and
reachable sets are computed with the approximated state, and
are geometrically transformed back to the observed state.

Executing the training procedure creates a set of ob-
servations O and emission matrix B, which serve as the
predictive model for the likelihood of future states and
implicit behaviors given a new state observation at run-time.

B. Online Prediction and Stochastic Reachability

At run-time, given an observation of a person’s state,
o(t) = si ∈ S ′, we predict all possible future states and
associated probabilities over a finite horizon H to enable
proactive motion planning. A low H (e.g., H = 1s) can be
ineffective for proactive motion planning resulting in mostly
reactive behaviors, while a very large H can be wasteful,
as uncertainties can grow too large with time in continually
evolving and unstructured environments.

To obtain the future states and probabilities over the
selected H , we propose to use Reachability Analysis (RA),
which is the process of computing the set of all reachable
states for a system by taking into account its dynamic model
and state transitions over a future horizon H [12]. The
collection of all reachable states at a certain future time
forms a reachable set, while a reachable tube is a temporal
sequence of reachable sets. In addition to reachable states, a
stochastic reachable set includes probabilities associated to
each state [6], but generating such stochastic reachable sets
can become computationally complex [13].

In this work, stochastic reachability analysis is performed
using the finite set of observations, O. At run-time, we con-
sider the future states and associated conditional probabilities
of all the paths observed during training originating from the
observed state at time t, si(t) over an interval [t+1, t+H].
The probability of any reachable future state sj ∈ S is given
by p(sj(t+1)|si(t)) and this is computed for any state along
the path conditioned on the previous states. To limit the
computational complexity of such approach, we maintain a
list of the Nh most recent paths initiating from each state,
obtaining a maximum of N ×Nh trajectories that are used
to perform such prediction. In this way, we also remove old
and obsolete data and consider only the most recent data in
our prediction.

The collection of all reachable paths for a human in state
si over the entire horizon forms the reachable tube, Rhsi ∈
Rnsi

×H ,

Rhsi =

 s1(t+ 1) . . . s1(t+H)
...
. . .

snsi
(t+ 1) . . . snsi

(t+H)

 (6)

where each column of Rhsi consists of reachable states at the
respective time-step. Then, the probabilities of each temporal
future state sj(t + τ),∀sj(t+ τ) ∈ Rhsi are computed by
counting its occurrences as follows:

p(sj(t+ τ)) = nsj(t+τ)/nsi (7)

where nsj(t+τ) is the number of paths that contain state sj
at time t + τ , and τ ∈ [1, H]. We finally consider the
emission matrix, B, to infer the likelihood that each state



sj ∈ Rhsi in the reachable tube will lead to a crossing
behavior: pe(sj) = Bsj ,1. Reachable tubes for each human
and associated probabilities are concatenated and stored to
create one reachable tube, R ∈ Rn×H , that encompasses
all n possible paths for all sensed humans. Then, R is
deconstructed into temporal reachable sets to be used for
motion planning:

R(t+ τ) =

s1(t+ τ − 1) s1(t+ τ)
...

sn(t+ τ − 1) sn(t+ τ)

 (8)

where τ ∈ [1, H], andR(t+τ) ∈ Rn×2. Note that a temporal
reachable set R(t+ τ) includes reachable states at τ −1 and
at τ to capture the motion between two consecutive time
steps, to prevent cross collisions in paths between discrete
states. An example of the proposed reachability analysis over
horizon H = 5s for a human is shown in Fig 4.

Fig. 4. Stochastic reachable set of a human in the robot’s sensing range. The
dotted line shows the most likely future path for the human. Red markers
represent reachable states, and the color fades temporally along the horizon,
with the lightest at t+H . The probability of reachable states is shown by
the size of the markers, which decrease as probability decreases.

The most likely future path, connected by the dotted line,
is nearly consistent with a linear path. Considering this path
alone provides little advantage over well-known approaches
[2], [4], that explicitly assume that dynamic obstacles will
maintain their current speed and/or direction with minor
uncertainty. On the other hand, stochastic reachability in our
approach captures uncertainties and irregularities that exist
in human motion, addressing the possibility that a human
can enter states outside of the most likely path.

C. Robot Motion Planning

In this section, we present our motion planning technique
that takes into account the temporal stochastic reachable sets
R(t + τ) developed in Section IV-B to proactively avoid
and accommodate future motion of surrounding humans.
We utilize virtual spring-mass-damper interactions [14] to
generate robot motion that avoids and accommodate humans
future states while reaching the goal.

The repulsive spring force directs the robot from its
position qr(t) away from the temporal reachable states sj ∈
R(t+τ). The springs for each reachable state have constants
k(sj) = p(sj)pe(sj) that depend on the state probabilities
output from stochastic reachability analysis, p(sj), and the
crossing probability of the state from the emission matrix
pe(sj) ∈ B. The inclusion of crossing probability creates a
stronger reaction to a crossing person and vice versa. The
extension of a repulsive spring for each reachable state is

defined as dho = lh(sj)−lo, where lh(sj) = ||qr(t)−q(sj)||
is the distance from the robot to the position of each temporal
reachable state, and lo is a safe distance to maintain between
robot and human. In crowded situations, even with good
predictions, a human may get very close to the robot,
compromising the safety of the operation. In such cases, we
introduce a fail-safe distance, ld, subject to ld < lo, which
will produce stronger repulsive forces.

Then, the repulsive spring force at each time t + τ , with
τ ∈ [1, H], for each state sj ∈ R(t+ τ) is computed as:

urep,(sj)(t+ τ) =


k(sj)dho

#»

dho, ld < lh(sj) ≤ lo
dhd

#»

dhd, lh((sj)) ≤ ld
0, otherwise

(9)

where
#»

dh· indicates a unit vector in the direction away from
the human’s reachable state. Note that probabilities are left
out of the case lh(q(sj)) ≤ ld, and the spring stiffness
is simply 1, which is the maximum value k(sj) can take,
creating the strongest repulsive forces.

The attractive force directs the robot from its position
qr(t+ τ) towards the goal, qg = [xg, yg]

ᵀ, and is computed
as follows:

uatt(t+ τ) = katt(||qr(t+ τ)− qg||)
#»

dg (10)

where
#»

dg is the unit vector directed towards the goal and
katt is the spring constant. Here, the distance to goal is used
as the extension of the spring, as the ultimate target of the
robot is to reach the goal. The summation of attractive and
repulsive forces yields an input for the robot at each time:

u(t+τ) = uatt(t+τ)+

n∑
j=1

urep,q(sj)(t+τ)−cdv(t) (11)

where n is the number of states reachable at t + τ and
cdv(t) is the spring damping effect. At each time-step, the
input is used to compute the robot’s next position, and the
entire procedure is repeated for the remainder of the horizon,
resulting in a time series of inputs for the robot.

Instead of applying the first input in the predicted series
(reactive approach), we proactively replan the trajectory to
accommodate the future states by finding the first time τ∗ in
which the robot deviates from a direct path to the goal,

τ∗ = argmin
τ

(u(t+ τ)), (12)

s.t. u(t+ τ) 6= uatt(t+ τ)

Then, we compute a new set of inputs that directly sends the
vehicle towards the planned position at τ∗, accommodating
the deviation caused by future states of surrounding humans:

u′(t+ τ) =

∑τ∗

τ=1 u(t+ τ)

τ∗
, τ ∈ [1, τ∗] (13)

where the numerator is the vector sum of the inputs between
1 and τ∗. Dividing this resultant by τ∗ provides the value
of the inputs to use to move directly toward the deviated
position at τ∗. When τ∗ < H , the previously calculated
inputs, u(t + τ), τ ∈ (τ∗, H], are included to populate
the complete series of inputs for the horizon, which is then
smoothed with cubic spline interpolation. The final smoothed



trajectory is sent to the robot, and is replanned at every time-
step, as the presence and motion of surrounding humans
is constantly changing and evolving. Fig. 5(a) shows an
example of such motion plan. The robot is in state s0 at τ = 0
and wants to reach a goal g. After running the prediction,
a deviation from the planned straight line trajectory occurs
at τ∗ = 3 resulting in s3. To be proactive, the robot replans
its trajectory to go directly to s3 from s0. Fig.5(b) shows
the predicted action (black arrow computed with (11)) of
the robot as a resultant of the repulsive spring forces (red
lines) and attractive force (light blue line) pushing the robot
away toward the right side of its desired trajectory. Note
that, per (9), only the reachable states within the range
lo impact the robot. Taking into account the probabilities

(a) Overall plan of the robot at τ = 0
after predicting a human path devia-
tion at τ∗ = 3.

(b) The springs formed with the pre-
dicted human positions at τ∗ = 3
and the resultant motion, seen from
the local frame of the robot.

Fig. 5. Motion plan prediction example.

of reachable states and emission probabilities ensures that
more likely or crossing states create a stronger reaction
from the robot. Considering only temporal reachable sets to
plan at each time provides an advantage over a potentially
circuitous or “frozen” paths generated by approaches that
consider the entire range of future predictions at one time
[2]. In addition, replanning inputs based on future deviation
generates robot behavior that accommodates humans’ future
intentions, creating an advantage over reactive dynamic ob-
stacle avoidance approaches that only consider the current
positions of surrounding humans.

D. Online Model Updates
Our motion planner is predictive and proactive with re-

spect to future states of humans, but due to the dynamic
nature of the environment, many new behaviors can be
observed online. If the predictive model can be updated
online, the expectation that a new behavior could occur at a
later time can be exploited to improve predictions, and by
extension, motion planning.

To this end, we propose online updates of observations and
the emission matrix used for prediction and planning. The set
of observations O, main input to our stochastic reachability,
is updated with a new observed state transition at run-time
o(t) = sj . The emission matrix, B, a key part of our motion
planning, is updated using the procedure described in (2)-
(4), by incrementing the instances of emissions and occur-
rences of the state, resulting in an updated B′ that includes
behavioral information from the new observations. Because
the updated matrix is bounded by the size of the state
space N and emission space M , and the update procedure
is an element-wise operation, the worst-case computational

complexity cannot exceed O(NM) [15]. This update can
occur within one iteration of robot operation, rendering the
updated predictive model immediately usable.

Updating and learning online rapidly is unique to our
approach, as most learning-based techniques, such as DNNs
[10], consist of training complex connections between inputs
and outputs that cannot necessarily be accessed [16], making
them difficult to update without fully retraining the network,
which can be computationally intensive and time consuming.

V. SIMULATION AND EXPERIMENTAL RESULTS

The case study investigated in this work and presented
in this section consists of a robotic vehicle performing a
go-to-goal operation in the presence of moving humans.
The robot is expected to predict the intentions of humans,
accommodate, and avoid them as it completes its mission.

A. Simulations
In the following simulation the robot is tasked to move

in a 11m by 12m environment from an initial point (0, 0)m
to a goal at (0, 12)m while navigating around two humans
moving in unknown trajectories. The simulated robot trajec-
tories and the distance maintained between the robot and
surrounding humans are shown in Fig. 6. Specifically, in
Figs. 6(a) and 6(b), we compare our predictive approach
before and after model updates respectively: In Fig.6(b) the
same simulation was run 20 times updating the model after
every run following the approach described above demon-
strating that over time the behavior improves, becoming
smoother if similar behaviors are recorded several times. In
Fig. 6(c) we show the results for a reactive-based planner,
in which the robot is pushed away from the humans once
they are in close proximity, resulting in motion away from
the goal.

(a) Predictive approach before on-
line updates.

(b) Predictive approach after online
updates.

(c) Reactive approach. (d) Distance to nearest human.

Fig. 6. Scenarios with a robot (blue markers, black line) navigating to its
goal in the presence of two people (magenta and red markers and lines).
The markers fade as time increases and the actors reach their goals. The
distance threshold is 1.5m.



In these simulations, the maximum velocity of the robot,
vmax = 1m/s, was chosen to approximate average human
walking speed, which is usually between 0.7m/s and 1.4m/s.
The resting length is set lo = 2m,, and the fail-safe distance
threshold is set to ld = 1.5m. The time horizon for prediction
and control was set to H = 5s, and the robot has a 5m radius.

The online update procedure increases probabilities of
previously observed future states, so that surrounding reach-
able states exert weaker repulsive forces (see (9)). Thus,
the model updates reduce robot interactions with extraneous
states, which can also be seen in the added time to goal. The
robot time to goal in the presented approach was recorded to
t = 13.7s before and t = 12.6s after model updates, while
in the reactive approach, the completion time was t = 15s.

We also extensively test our approach on longer trajec-
tories, where the robot traverses a 60m long corridor in
the presence of approximately 50 people who walk and
stop intermittently. Comparative results with reactive spring-
mass-damper planners and with ORCA [17] over 100 trials
are shown in Table 1. The target time for the trajectory is

TABLE I
COMPARATIVE SIMULATION RESULTS

Approach Added
Time (%)

Minimum
Distance (m)

Mission
Success (%) Collision (%)

Presented Approach 15% 1.614 96% 0%

Reactive Virtual Springs 34% 1.436 68% 0%

ORCA 18% 1.453 93% 0%

60s, consistent with a straight path to goal at the maximum
velocity, vmax = 1m/s. Our presented approach adds on
average 15% extra time, while the reactive approach and
ORCA add 34% and 18% extra time, respectively. The
reactive approach often takes circuitous paths, and ORCA
is prone to stopping when surrounding humans behave in
irregular ways [17], which contributes to the added time.
Our approach, on the other hand, predicts the evolution of
the scenario and is able to find a path forward, even in the
presence of unexpected and irregular human behaviors.

The presented approach outperforms others in keeping
the minimum distance, because the reactive approach only
considers current position and ORCA expects other actors
(humans) to follow reciprocal velocities, both of which per-
form poorly when humans take irregular paths with uncertain
velocities. For mission success, which is defined as reaching
the goal within 90s, our approach succeeds in 96% of
trials. Unsuccessful trials coincide with those of the other
approaches, largely due to a very high density of humans in
the corridor, allowing for no safe path forward, due to the
safe distance constraints in each motion planning approach.

B. Experiments

The proposed approach was also validated experimentally
using a Clearpath Robotics Ridgeback Omnidirectional Plat-
form in an indoor environment. Two kinds of experiments
were performed : 1) using our motion capture system to
track the positions of humans and 2) using an on-board
ASUS Xtion RGB-D camera with the SPENCER people
tracking package [18] to locate humans in the environment.
HMM predictions, reachable sets, and the motion plan are
computed in MATLAB, and the robot is controlled using

the Robotics System Toolbox to interface MATLAB with
ROS. The training for both experiments consisted of 100
trajectories depicted in Fig. 3(a).

The robot is tasked to avoid and accommodate humans
while moving from (−3.0, 0)m to (3.0, 0)m at a maximum
velocity of vmax = 0.5m/s, which is reduced from our
simulations due to Lab space constraints.

In Fig. 7, we show a comparison of the presented proactive
approach and a reactive approach. The proactive approach

(a) Proactive approach trajectory. (b) Reactive approach trajectory.

(c) Proactive approach snapshots. (d) Reactive approach snapshots.

Fig. 7. Comparative results of the presented proactive approach and a
reactive virtual physics based approach. The markers fade as time increases.
Green markers represent deviation points.

depicted in Figs.7(a,c) predicts the person’s future states
creating a trajectory to accommodate the person motion
while maintaining the direction to the goal. In the reactive
case in Figs.7(b,d), the robot is pushed backwards by the
person moving diagonally.

In the second experiment, we recreate a similar situation
as our simulations in Fig. 6. The robot behaves similarly and
successfully navigates around both humans, accommodating
their intentions (Fig. 8(a)). Notably, the robot reacts to the
purple trajectory by moving in the +y direction, despite the
distance never nearing the threshold (Fig. 8(c)). These types

(a) (b) (c)

Fig. 8. Results from two-person experiments. (a,b) show the trajectories of
the humans and the robot, while (c) shows the distance maintained between
the robot and each person.
of experiments were carried out with over 30 trajectories
in the lab environment, resulting in no collisions and no
violations of the safe distance.

To test the effectiveness of online updates, we performed
an experiment with a model that is trained on an incomplete
subset of trajectories, comparing before and after the model
updated during run-time. Initially, we observe the robot going
toward the human’s path (Fig. 9(a)), as it makes incorrect
intention predictions. The person, in this case, takes a slightly
wider path, reacting to the robot’s incorrect behavior. The
model is updated and reinforced with the observed trajectory
at run-time, as discussed in Section IV-D. When a new
similar scenario happens again, the robot correctly predicts



the human intention and deviates to accommodate the future
path as shown in Fig. 9(b).

(a) Trajectory prior to model update. (b) Trajectory after model update.

Fig. 9. (a) A robot with incorrectly predicts human intention, moving
into the path of the human. After updating the model, the robot proactively
accommodates the correct human intention by moving to its left (b).

In the second experiment without MOCAP, using only the
on-board RGB-D camera, the robot successfully accommo-
dates four people and reaches the goal, showing that our
approach scales to more people and performs well despite
noisy camera measurements and uncertainty in person iden-
tification and tracking. An overlaid sequence of snapshots
and a first-person view of the robot are displayed in Fig. 10.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Results from 4 person camera experiment. Fig 10(f) shows a
first-person view of the robot when 3 of the 4 people are in the frame.

VI. CONCLUSIONS & FUTURE WORK

In this work, we have presented an approach for prediction
and planning of a robot traversing a shared environment
with multiple humans. We leverage Hidden Markov Model
theory to predict the human intention and propose temporal
stochastic reachability that is coupled with a virtual spring-
mass system-based method to generate proactive intention-
aware motion for the robot. Results show that our approach
performs better than reactive dynamic obstacle avoidance
approaches and ORCA. Unique from other works in this
field, a key feature here is that the predictive model is con-
stantly updated at run-time improving the behavior as more
observations are made. The improvement happens because
human motion is not random and over time, the system
is able to learn and converge to common social behaviors.
Although temporal reachable sets reduce the possibility of
the robot to completely stop, the “freezing robot” problem

may arise when the robot is surrounded by multiple people.
In future work, we aim to address this problem by encoding
and analyzing the effects of complex, high-density crowd
dynamics on our framework.
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