
DeepSense: Fast Wideband Spectrum Sensing
Through Real-Time In-the-Loop Deep Learning

Daniel Uvaydov∗, Salvatore D’Oro∗, Francesco Restuccia∗†, Tommaso Melodia∗
∗Institute for the Wireless Internet of Things

† The Roux Institute
Northeastern University, Boston, MA, USA

Email: {uvaydov.d, s.doro, frestuc, t.melodia}@northeastern.edu

Abstract—Spectrum sharing will be a key technology to tackle
spectrum scarcity in the sub-6 GHz bands. To fairly access the
shared bandwidth, wireless users will necessarily need to quickly
sense large portions of spectrum and opportunistically access
unutilized bands. The key unaddressed challenges of spectrum
sensing are that (i) it has to be performed with extremely low
latency over large bandwidths to detect tiny spectrum holes and
to guarantee strict real-time digital signal processing (DSP) con-
straints; (ii) its underlying algorithms need to be extremely accu-
rate, and flexible enough to work with different wireless bands
and protocols to find application in real-world settings. To the
best of our knowledge, the literature lacks spectrum sensing tech-
niques able to accomplish both requirements. In this paper, we
propose DeepSense, a software/hardware framework for real-time
wideband spectrum sensing that relies on real-time deep learn-
ing tightly integrated into the transceiver’s baseband processing
logic to detect and exploit unutilized spectrum bands. DeepSense
uses a convolutional neural network (CNN) implemented in the
wireless platform’s hardware fabric to analyze a small portion of
the unprocessed baseband waveform to automatically extract the
maximum amount of information with the least amount of I/Q
samples. We extensively validate the accuracy, latency and gen-
erality performance of DeepSense with (i) a 400 GB dataset con-
taining hundreds of thousands of WiFi transmissions collected “in
the wild” with different Signal-to-Noise-Ratio (SNR) conditions
and over different days; (ii) a dataset of transmissions collected
using our own software-defined radio testbed; and (iii) a synthetic
dataset of LTE transmissions under controlled SNR conditions.
We also measure the real-time latency of the CNNs trained on
the three datasets with an FPGA implementation, and compare
our approach with a fixed energy threshold mechanism. Results
show that our learning-based approach can deliver a precision
and recall of 98% and 97% respectively and a latency as low
as 0.61ms. For reproducibility and benchmarking purposes, we
pledge to share the code and the datasets used in this paper to
the community.

I. INTRODUCTION

Our never-ending appetite for multi Gigabit-per-second
(Gbps) data rates is pushing today’s wireless technologies and
infrastructures to their limits [1]. Although millimeter wave
(mmWave) technologies are being deployed to alleviate the
spectrum crunch issue, 5th generation (5G) technologies are
envisioned to heavily utilize sub-6 GHz spectrum bands in
the foreseeable future [2]. As these bands become more and
more saturated, spectrum sharing in licensed bands [3, 4] will
become a fundamental component to fuel wireless growth in
the years to come. In short, spectrum sharing allows multiple
wireless technologies (e.g., LTE, NR, WiFi) to coexist in the
same spectrum band, by letting primary users (PUs) access the

This article is based on material supported in part by the US National Science
Foundation under grants CNS-1923789 and CCF-1937500.

spectrum with some level of priority, while secondary users
(SUs) opportunistically utilize the spectrum whenever available
[5, 6]. Realizing the compelling need for spectrum sharing
technologies, in April 2020, the US Federal Communication
Commission (FCC) has opened up 1.2 GHz of spectrum in the
6 GHz band to new users [7]. Moreover, in January 2020, the
FCC has opened the 3.5 GHz band for spectrum usage, also
known as the “Innovation Band” and widely recognised as the
key to unlocking the full 5G potential [8].

22MHz

Channel 2

Channel 3
Channel 4

Channel 1

Overlapping region
for Channel 2

5MHz

WiFi (Unlicensed)

Channel 4

Channel 3

Channel 2

Channel 1

Busy

Busy?

Busy?

Busy?

Signal Spectrogram LTE (Licensed)

Hole

Transmission

Signal
Spectrogram

Fig. 1: Comparison of spectrum sensing in WiFi and LTE systems.

Spectrum sharing is critically dependent on the capability of
radios to determine unutilized spectrum bands, also referred to
as spectrum sensing, which has received significant attention
in the past few years [9–22]. Effective spectrum sensing is
challenging because large spectrum chunks (i.e., several tens
of MHz) often need to be sensed instantaneously. To give a
practical example, IEEE 802.11 (WiFi) has 14 channels in the
2.4-GHz band, which are spaced 5 MHz apart. This covers a
total bandwidth of 94 MHz, meaning that to sense the whole
WiFi spectrum a device has to operate at 200 MHz sampling
rate. Perhaps even more critically, spectrum sensing has to
clearly distinguish transmissions from noise/interference. Fig-
ure 1 (left) shows an example of spectrum sensing in a 2.4 MHz
WiFi network, where we consider a signal from the dataset
described in Section IV-C. For simplicity, we consider only
the first 4 channels. In this example, only channel 2 is being
occupied by a transmission, while the other 3 channels receive
interference. In this scenario, which is common of wireless
systems operating in unlicensed bands, identifying whether a
whole channel is being occupied is not easy due to interference
from neighboring channels. For this reason, an easier—and
more efficient—approach is to identify portions of the same
channel that are not being used (e.g., the upper sub-band of
channel 4). The same problem also arises in licensed applica-
tions with completely orthogonal channels—such as LTE—as

shown in Figure 1 (right). We show that even licensed bands
are usually partially used and present holes with substantially
different size.

These examples clearly show that spectrum sensing is a very
challenging problem with no one-size-fits-all solutions. Most
importantly, it demonstrates the need for spectrum sensing
techniques that (i) are fast enough to keep up with the incoming
bandwidth; (ii) distinguish transmissions from interference and
noise; and (iii) are able to detect the smallest holes in the
spectrum with high accuracy. Critically, given the multitude of
protocols and spectrum bands today available, spectrum sensing
techniques also need to be flexible, and able to work with
different wireless technologies and spectrum bands.

To address the existing lack of real-time general-purpose
spectrum sensing, in this paper we leverage hardware-based
deep learning (DL) – in particular, convolutional neural net-
works (CNNs) – to sense the spectrum with the desired accu-
racy and speed directly on the receiver’s baseband processing
logic. We chose CNNs since they have been proven to be
well suited for real-time inference in the wireless domain [23].
Moreover, CNNs have the major advantage to operate on “raw”
(i.e., unprocessed) I/Q samples, which allows fast and gener-
alizable spectrum classification. Conversely, legacy spectrum
sensing techniques rely on ad hoc, protocol-dependent feature
extraction techniques, which (i) do not generalize to different
protocols, architectures and spectrum environments; and (ii)
are not amenable to be implemented in real time. Energy
detection [24] simply compares the energy level in a narrow-
band channel with a threshold in a short time window of tens
of µs, but does not reveal insights on whether the transmission
is a packet or noise/interference. In Section V, we show that
our approach outperforms energy detection by 63% at its best.
Techniques like wavelet analysis [25] and compressed sensing
[16, 18, 20] require (i) heavy computational resources, and (ii)
exact knowledge of noise conditions, and so far have not been
demonstrated for real-time networks.

Although using CNNs may seem a panacea, the reality is that
the unavoidable non-stationarity of wireless networks makes
learning problems in the spectrum domain extremely daunting
[26]. Indeed, wireless phenomena (e.g., channel, noise, fading,
concurrent transmissions) usually change in a matter of a few
milliseconds [27], which provides an indicative timescale in
which the real-time inference must operate. Although [26] has
proven the feasibility of using DL for classification purposes, it
is still unclear if CNNs can be successfully used for real-time
spectrum sensing, which justifies our large-scale investigation
conducted in this paper.

Summary of Novel Contributions
We briefly summarize the key technical contributions of this

paper below:
• We propose DeepSense, a software/hardware framework

for real-time wideband spectrum sensing that relies on DL in
the receiver’s baseband processing logic to detect and exploit
unutilized spectrum bands. At its core, DeepSense uses a CNN
implemented in the wireless platform’s hardware fabric and
placed in the receiver’s baseband demodulation logic to analyze
a small portion of the unprocessed baseband waveform to

automatically extract the maximum amount of information with
the least amount of I/Q samples. We also mathematically derive
real-time system constraints to correctly compute DeepSense’s
memory and latency requirements;

• We extensively evaluate the performance of DeepSense in
both accuracy and latency performance. Specifically, we utilize
(i) a large-scale (400 GB) dataset provided by a government
agency (GVT dataset) containing hundreds of thousands of
WiFi transmissions with different Signal-to-Noise-Ratio (SNR)
conditions and collected over different days; (ii) a dataset of
WiFi transmissions collected using our own software-defined
radio testbed (SDR dataset); (iii) a synthetic dataset of LTE
transmissions under different noise conditions (LTE dataset).
We train multiple CNN and evaluate their performance in
terms of precision, recall and F1 scores. We also measure the
real-time latency of the CNNs trained on the three datasets
with a field-programmable gate array (FPGA) implementation.
Results show that our learning-based approach can deliver a
precision and recall of 98% and 97% respectively and a latency
as low as 0.61ms;

• For reproducibility purposes and to stimulate further re-
search in the field, we pledge to release the SDR and LTE
datasets to the community1, as well as the code used to train
and test our models. We hope that these datasets can become
benchmarks of performance for future research.

The rest of the paper is organized as follows: Section II sum-
marizes the current state of the art, while Section III provides an
overview of the DeepSense framework and DNN architecture.
Section IV describes the utilized datasets and performance
metrics utilized, whereas Section V presents our results. We
draw conclusions in Section VI.

II. RELATED WORK

Spectrum sensing has received a lot of interest from the
research community [9–21, 28–32, 32–36]. For a recent survey
on the topic, the reader can refer to [3, 22]. Previous work
on spectrum sensing has been divided between narrowband
and wideband approaches [22]. Narrowband approaches such
as energy detection and matched filtering are hardly adaptable
to the diverse and constantly changing spectrum, requiring
prior knowledge of the transmission to effectively detect holes
[28]. Other narrowband methods such as adaptive thresholds,
cyclo-stationary feature detection and even some deep learn-
ing/machine learning techniques experience good performance
in low SNR but are inefficient as they need to sequentially scan
the spectrum to get a sense of occupancy for a wider band,
occupying time and potentially missing holes [29–31].

Wideband sensing techniques are more suitable for spectrum
sharing applications, as they can monitor multiple holes at once
which can be allocated accordingly. These techniques usually
fall into Nyquist and sub-Nyquist categories [22]. Nyquist
based methods such as multi-band joint detection, wavelets, or
utilizing filter banks present high complexity and thus, incur
in high latency [25, 32, 33]. For example, Quan et al. [32]
utilize an energy threshold vector that is found through convex

1Due to contract obligations, we cannot release the GVT dataset as part of
this paper. We hope this will change in the future.

optimization, and requires recalculations to accommodate fast-
changing channels. Current sub-Nyquist wideband techniques
attempt to reconstruct the channel through sparse signals and
although they utilize less data, the reconstruction process causes
increased latency and complexity, and thus do not outperform
Nyquist based techniques [34–36].

Deep learning approaches to spectrum sensing have been
considered in previous work. However, they are computa-
tionally heavy or have not attempted wideband sensing. The
method proposed by Liu et al. [19] shows good performance,
but requires a signal covariance matrix as input to the CNN,
whereas we use unprocessed I/Q signals. Chew et al. [21]
utilize AlexNet, a CNN with over a million parameters that
cannot meet real time constraints for spectrum hole detection.
Indeed, CNNs need to detect holes at sub-millisecond speeds
to be effective for spectrum sharing applications. To the best
of our knowledge, all current deep learning approaches do not
take latency into account, being the most crucial aspect of
realizing a practical device. In addition, almost all existing work
has not been tested on extensive real-time datasets and have
been mostly based on simulated results. The RadioML2016.10a
dataset [37], for example, has been used in [31] but the signals
are generated from simulated channels. We offer results with
both simulated data and waveforms collected “in the wild”
for a full evaluation of wideband spectrum sensing with deep
learning.

III. THE DEEPSENSE FRAMEWORK

Figure 2 provides a high-level overview of the main com-
ponents of DeepSense. In a nutshell, DeepSense can be seen
as a software-defined radio (SDR) where (i) a Central Pro-
cessing Unit (CPU) implements the higher-level functionalities
of the network protocol stack, i.e., Medium Access Control
(MAC) layer and above, as well as the drivers to control the
spectrum sensing module; and (ii) an FPGA holds the main
computational burden of the system, i.e., the Transmitter (TX)
and Receiver (RX) baseband processing chains and the deep
neural network (DNN) responsible for spectrum sensing. In
the following, we will use the word “hole” to define an empty
spectrum sub-band.

RX RF chain

IQ
samples

extraction

1
0
0
1
1
…
0

TX RF chain

Baseband
processing

module

010
110
101 …

RX
waveforms

TX
waveforms

TX
data

DeepSense DNN

Fill
holes

N bands

User
Applications

DeepSense
Controller

Spectrum sensing module

CPU/Software FPGA/Hardware

100
101
110

RX
data

(2)

(1)(3)

(4)

(5)

N bands

Fig. 2: DeepSense system model.

We chose a hybrid CPU/FPGA architecture since it maps
well to off-the-shelf system-on-chip (SoC), which combine

both components on the same chip [38]. SoCs have the advan-
tage of low power consumption [39] and allow great flexibility
to DeepSense, as the spectrum sensing module in the FPGA
can be reprogrammed based on the needed learning design.
Moreover, FPGAs experience much lower latency than CPUs,
and thus are a better fit to do most of the computations re-
quired in the system with the added benefit of being software
programmable [26]. Specifically, the FPGA interfaces with the
CPU through registers, where the CPU writes the DNN weights
on block memory (BRAM). GPUs are not a viable option either,
though they can be fast they do not guarantee a fixed latency and
furthermore do not benefit the RF chain.

DeepSense: A Walk-through. The key innovation of
DeepSense is ultimately to integrate spectrum sensing capabil-
ities into the SDR baseband processing. Specifically, at a high
level, the FPGA includes two main components, the spectrum
sensing module (SSM) and the baseband processing module
(BPM). The first task performed by DeepSense is to receive
the RX waveform through the RX chain (step 1). Then, the
I/Q samples are extracted and fed to the trained DeepSense
DNN (step 2). The target of the DNN is to determine which
portions of the spectrum are empty and could be utilized
for transmission. The training procedure of the DNN will be
described in Section III-A. The generation of the ground truth
depends on the dataset, and will be detailed in Section IV. Once
the spectrum holes are detected out of the N possible spectrum
bands, this information is fed to the BPM (step 3). The BPM
then fills the holes according to the inference provided by the
DNN (step 4). Finally, the TX waveform is transmitted through
the TX RF chain (step 5).

Filling the Holes. The system must be able to generate
waveforms that can effectively fill the spectrum hole, be de-
coded properly by the intended receiver, and do not generate
interference to already ongoing transmissions. As a conse-
quence, how to fill holes in practice is strongly application-
and device-dependent. Specifically, although many protocols
and standards operate over the same spectrum frequencies, they
generate waveforms requiring completely different bandwidth.
For example, protocols operating in the industrial, scientific and
medical (ISM) band share the same frequencies, yet require
a bandwidth ranging from 20MHz (i.e., WiFi) to 1MHz (i.e.,
Bluetooth). In this case, a node can simply choose one out
of the possible sub-bandwidths available, and then perform
clear channel assessment (CCA) or similar techniques before
transmission, to avoid collision with other transmitters. If non-
standard-compliant waveforms can be used, then more than
one sub-bands could be used, which in turn significantly com-
plicates the receiver design, and introduces more coordination
between the transmitter and receiver.

Although a naive approach would be to design an SSM
for each standard and protocol, it would not generalize prop-
erly, as it would apply to specific conditions only. On the
contrary, we have designed DeepSense to detect holes with
high resolution while keeping the complexity of the network
as small as possible. As we will demonstrate in Section V-A,
DeepSense can detect holes that are up to 5.4% smaller than
the bandwidth of the monitored spectrum in less than 1ms.

This way, DeepSense can rapidly provide the transmitter with
a high resolution map of spectrum holes. The receiver can then
aggregate multiple neighboring holes into larger ones that are
wide enough to fit standard-compliant waveforms. For example,
if DeepSense detects two holes, 500kHz wide, and close to each
other, the transmitter can aggregate these holes and fill them by
generating a Bluetooth signal occupying 1MHz (i.e., the size of
a Bluetooth channel).

A. DNN Architecture and Training

The strict latency constraints of spectrum sensing imply that
our DNN needs to be lightweight, flexible yet accurate. In
other words, the smaller input we give to our network to detect
holes, the lower the latency, since the DNN (i) will perform
less computation, and (ii) will require fewer I/Q samples and
therefore less time to produce an output. Furthermore, if the
input is smaller, it is less likely that a channel will change from
free to busy within the input. For this reason, we choose multi-
label CNNs as our framework of choice. Indeed, recent research
on modulation classification [23] and radio fingerprinting [40]
has proven that CNNs are exceptionally versatile to address
complex classification problems in the wireless domain. This
is mainly thanks to fact that patterns in the I/Q constellation
plane can be learned by the filters in the convolutional layers.

 samples
M I/Q

x2

Max
Pool
1D

Dense

Sigmoid

...
Hole 1

Hole N

Conv
1D

Conv
1D

Fig. 3: DeepSense Multi-label CNN Architecture.

In the following, we consider the one-dimensional (1D)
CNN architecture in Figure 3. Specifically, the input tensors
is of size (M , 2), where M is the number of consecutive
I/Q samples taken from the RX waveform. By increasing the
number of I/Q samples, the CNN will be more likely to rec-
ognize the I/Q patterns in the constellation, at the expense of
more computational burden. The input is processed by two 1D
convolutional (Conv1D) layers, followed by a 1D maximum
pooling (MaxPool1D) layer with filters of size 1x2 and stride
2. This way, the MaxPool1D cuts the output dimension in half.
This layer pattern is repeated twice. One dense layer follows,
with a Sigmoid layer placed at the end. The exact dimensions
for the CNN in each application can be found in Table I.

The input sizes that we use are found through multiple
iterations. In short, we experience better performance as the
input size increases, up to a point, then we see little to no
improvement. We use the smallest input size that the data allows
before the CNN performance metrics suffer. This architecture
is chosen because with a small input size, a network with many
MaxPool1D layers would reduce the tensor size very quickly
and minimize the depth of our network. Deep networks have
shown to help CNNs develop high levels of abstractions and
improve learning [41–43]. Therefore, our network consists of

Layer (Activation) LTE/SDR Dataset GVT Dataset
(Channels Last) (Channels Last)

Input (32,2) (128,2)
Conv1 (LeakyRelu) (30,16) (124,16)
Conv2 (LeakyRelu) (28,16) (120,16)

Pool1 (14,16) (60,16)
Conv3 (LeakyRelu) (10,32) (50,32)
Conv4 (LeakyRelu) (6,32) (40,32)

Pool2 (3,32) (20,32)
FC (LeakyRelu) 64 32

Output (Sigmoid) 16/4 14

TABLE I: Summary of CNN dimensions for all datasets.

two stacks of two convolutional layers followed by a max
pooling layer as inspired by VGGNet [41], rather than a pooling
layer after each convolutional layer such as LeNet [44]. We
also use VGGNet as the main inspiration for our own network
rather than more contemporary networks like ResNet due to its
lack of residual blocks [42]. Moreover, the residual blocks in
ResNet require memory to store the intermediate feature maps
and more computation. Since wideband spectrum sensing can
be seen as a multi-label classification problem, the sigmoid
function is used as the output activation function with binary
cross-entropy as the loss function. This way, each output neuron
is independent of the other in its final value, creating a multi-
label classifier.

To train our CNNs, we used the popular Adam optimizer. We
used additional training techniques to help convergence towards
a minima. First, dropouts are used after each stack of convolu-
tional/pool layers to help with overfitting and generalization.
Next, we reduce the learning rate adaptively whenever there is
a plateau in training by a factor of 10, this helps the loss not
overshoot minimas by slowing down when coming close to one.
Training is stopped adaptively whenever there is no progress for
a large number of epochs and the network that experiences the
best validation results is saved. We use 80%, 10%, and 10% of
the data for training, validation and testing.

B. Real-Time Hardware Constraints

Long computation times will inevitably result in missed
opportunities as detected holes would be too far in the past to
be used. In addition, the sensor should be easily implemented in
user devices, e.g., mobile nodes, meaning that the sensing logic
should use as low memory as possible. At the receiver side,
let us consider a spectrum sensor sampling the spectrum at S
samples/second, and taking as inputN I/Q samples. This makes
the time resolution of a hole, i.e., the minimum detectable hole
size in time, to be T = N/S seconds which is also the time
to gather an input for the sensor. If the system demands for a
frequency resolution, i.e., the hole bandwidth, of B Hz then the
hole resolution becomes R = B/T Hz/s, which indicates the
amount of empty bandwidth the sensor can detect per unit of
time. Let us now assume that the CNN produces an output with
a total latency of L seconds. To be effective, the system must
be able to detect holes whose duration in time H satisfies the
relationship H > L + T , We can therefore see how crucial
the input size and system latency is for the functionality and
usability of a spectrum sensor.

Fig. 4: Spectrogram of LTE-M uplink transmission bands, with and without
channel effects.

Another important relationship is that between the accuracy
of the sensor and the physical constraints of the transmitter
node. For example, any wireless device has limited transmis-
sion buffers. If the transmitter is allowed to opportunistically
fill holes whenever the sensor detects one, the aforementioned
buffers will be emptied at a frequency that depends on how
fast holes appear in the spectrum, and how good and fast is
the sensor in detecting these holes. To better understand how
these elements are tightly intertwined to one another, let us
consider a M/M/1/k queueing system. In this case, the queue
is represented by the transmission buffer with limited capacity
k. The queue is filled at rate λ which defines the rate at which
packets to be transmitted are generated. The sensor represents
the server of the queue, and µ′ denotes the rate at which
spectrum holes are detected by the sensor, which in this case
corresponds to the rate at which packets can be transmitted over
each detected hole. Let µ be the rate at which spectrum holes
appear in the spectrum. Moreover, let pD be the probability that
the sensor (a CNN in our case) detects a hole (this includes
both true positives and false positives), and let pF denote the
probability that the CNN detects a hole but the prediction is
wrong (i.e., false positive). It is straightforward to notice that
the rate at which packets are transmitted is µ′ = µ ∗ pD, and
the traffic intensity is ρ = λ/µ′. This implies that the queue
is stable if and only if ρ = λ/µ 1

pD < 1. At a first glance,
one might think that designing a sensor that detects holes with
pD = 1 might be the best solution. However, in this case the
sensor might result in high false positives which indeed result
in increasing the number of transmitted packets, but also results
in high number of collisions that would eventually decrease
the actual throughput of the network. Another naive solution
might be to increase the size k of the buffer, reduce the packet
generation rate λ and prevent overflow. Indeed, this solution is
inefficient as it impacts the throughput of the system and require
larger memories to store more packets, which is unpractical for
most wireless applications.

The most efficient solution is instead to design a sensor
that detects holes with extremely high probability pD while
providing a close-to-zero false positive rate pF . As we will
show in this Section V, our solution succeeds in both tasks
by providing an extremely high detection accuracy with sub-
millisecond reaction time.

Fig. 5: Spectrogram at receiver on day 1 of SDR dataset collection in two
different scenarios.

IV. EXPERIMENTAL DATASETS

We extensively evaluate DeepSense on three datasets, each
with different channel and transmission properties. We have
collected two of our own datasets, one from a synthetic channel
(LTE) and the other “in the wild” (SDR). The third dataset
(GVT) is a more heterogeneous and extensive dataset also
collected “in the wild” but spans a much larger bandwidth than
the previous two. By fabricating our own dataset we are also
able to control for label imbalances that can hinder training and
performance.

A. LTE Dataset

The first dataset we utilize contains about 500,000 transmis-
sions, and contains 16 sub-bands, the highest amount to classify
out of all three datasets. This dataset is created utilizing MAT-
LABs LTE Toolbox to simulate LTE-M uplink transmissions in
the Physical Uplink Shared Channel (PUSCH) over a 10-MHz-
wide band. We split the spectrum band into 16 non-overlapping
sub-bands, each acting as their own channel allocated to a user.
We chose this wireless scenario since it allows us to evaluate
our framework over more controlled channel conditions and to
vary the SNR precisely. Furthermore, we wanted to evaluate
our CNNs performance with a protocol operating in a licensed
band.

Figure 4 depicts the spectrogram of the simulated transmis-
sion band without and with the channel effects in a high SNR
scenario of 20dB for the latter. Additive White Gaussian Noise
and Rayleigh fading have been added to each transmission
to simulate a typical non-line-of-sight channel in addition to
adding difficulty to the classification process. The CNN is also
trained and tested on different SNRs. There are a total of 216

possible training labels that exist with 16 sub-bands to classify.
Each sub-band is 3 resource blocks wide which is 540 kHz
in bandwidth. The first and last resource blocks of the whole
10MHz band have been omitted. We chose 3 resource blocks as
our hole resolution as it can fit many wireless communication
protocols (Zigbee, LoRa, etc.) with room for guard bands.
All other networks that require more bandwidth can aggregate
multiple sub-bands.

Fig. 6: Experimental setup for small-scale, SDR dataset collection

B. SDR Dataset

The second dataset we collect contains about 500,000 trans-
missions of four 5-MHz-wide non-overlapping channels, occu-
pying a total of 20 MHz bandwidth. We collected this dataset
using 5 USRP N210s SDRs running GNU Radio. Four USRPs
acted as WiFi transmitters, each with 64 sub-carriers, and one as
the receiver sampling at 20MS/s to obtain the whole bandwidth.
Data was collected from two separate days with two different
transmitter orientations to give the dataset diversity in the SNR
and channel effects it contained. The experimental setup is
shown in Figure 6.

In detecting four channels, there are a total of 24 possible out-
comes at the last layer of the CNN. Because we have personally
collected this dataset, each outcome has a close to equal number
of training samples. Figure 5 shows the spectrogram that the
receiver experiences on the first day of data collection when
only 2 of the USRPs are transmitting and all of the USRPs are
transmitting. These are represented at the output of CNN as [0 1
0 1] and [1 1 1 1] respectively. Here, ”1” is an occupied channel.

C. GVT Dataset

This dataset contains 675,000 IEEE 802.11a transmissions
stored in Signal Metadata Format (SigMF) format. Each entry
is associated with two files, i.e., sample and metadata files. The
sample file contains unprocessed I/Q samples corresponding to
a full WiFi packet transmission in one of the 14 available WiFi
channels. The metadata file, instead, provides useful informa-
tion on the transmission such as transmitting device identifier,
duration of the transmission, guard times before and after each
transmission, sampling frequency and occupied WiFi channel
(out of the 14 available channels), among others. The dataset
is extremely heterogeneous in terms of transmitting devices
(e.g., laptops, smartphones, as well as software-defined radios),
packet length and sampling frequency ranging from 20MS/s to
200MS/s. Although each entry in the metadata file is related to
a specific devices transmitting a single WiFi packet on a single
WiFi channel, the sampling frequency is high enough that the
corresponding IQ samples cover the whole ISM band, thus
providing an accurate snapshot of the 2.4GHz WiFi frequency
band. As an example, Fig. 8 shows the spectrogram of an
entry in the dataset. For each entry, the metadata file specifies
the length and occupied channel of the corresponding WiFi
transmission (i.e., the packet highlighted with blue dashed lines
in Fig. 8). However, it is straightforward to notice that the spec-
trogram also provides information on other WiFi transmissions
happening on other channels as well as spectrum holes in the
same frequency band.

Generating Ground Truth for GVT. Let us now present an
automated procedure to generate a spectrum hole ground truth
to train and test DeepSense. As mentioned before, each entry
provides information on a single transmission only disregarding
other transmissions happening on other channels at the same
time. However, IQ samples give an accurate snapshot of the
WiFi spectrum where it is possible to clearly identify packet
transmissions and spectrum holes. We leverage guard times
specified in the metadata files to design an automated ground
truth generation pipeline that makes it possible to determine
which channels are occupied—and which are idle—at each
time instant. As shown in Fig. 8, all entries in the dataset are
associated to two guard times at the beginning and at the end
of each transmission. Since those guard times never contain
any transmission, we can use them to compute the noise power
which will be used as a threshold to determine which channels
are occupied, and which are idle. We extract the spectrogram
of each WiFi channel individually and compare the power level
on each frequency component to the measured guard time noise
power. Finally, we generate a binary matrix showing which
frequency components exceed the noise power (e.g., busy) and
which do not (e.g., idle).

We have compared the noise power of guard times with
that of other idle channels in the same frequency bands and
we have found only negligible differences in the measured
noise levels, thus making the guard time noise power a reliable
threshold to generate our ground truth. The complete spectrum
hole detection procedure we have designed is summarized in
Fig. 7. We first extract each entry from the SigMF dataset
(Step 1) and compute the corresponding spectrogram (Step
2). Then we extract the WiFi 2.4GHz spectrum bands (Step
3) and execute the power detection procedure described in
Fig. 8 (Step 4). Finally we generate the per-channel occupancy
matrix specifying which channels are to be considered idle/busy
at each time instant (Step 5). This is achieved by measuring the
percentage ps of frequency components in each WiFi channel
that have been detected as busy. If ps > pth, with pth ∈ (0, 1],
we label the channel as busy, or idle otherwise. The pth pa-
rameter is tunable and can be used to generate ground truth for
a variety of applications. pth = 1 means that the channel is
labeled as busy only if all frequency components of a specific
channel are utilized. Any other pth < 1 make it possible to
mark as partially idle those channels where only pth percent of
channel bandwidth is used, thus leaving room for transmission
of smaller bandwidth signals to fill the available holes. An
example with pth = 0.7 (i.e., channel is labeled as busy if more
than 70% of available bandwidth is utilized) is shown in Step 5.

D. Performance Metrics

A multi-label classification problem means that each input
sample can be a part of more than one class, which in our
case translates to a whole band having multiple sub-bands that
are unoccupied. Precision, recall, and f1-score are the general
metrics used to assess the performance of a classifier:

Precision =
True Positives

True Positives + False Positives
, (1)

-100MHz

100MHz

0MHz

-50MHz

50MHz

2. Spectrogram
generation

3. Extract WiFi
bands

4. Per-channel
energy detection

5. Ground truth
generation

…
…

…
…

1. SIGMF I/Q samples
extraction

Fig. 7: Ground truth generation pipeline for GVT dataset.

Guard intervals with
no transmissions

Signal
spectrogram

Compute
Noise power

Infer channel
occupancy

Power
detector-100

MHz

100
MHz

SIGMF dataset
Per frequency power detection binary matrix

Fig. 8: Power-based spectrum hole detection used in Step 4 of Fig. 7.

Recall =
True Positives

True Positives + False Negatives
, (2)

F1 = 2× Precision× Recall
Precision + Recall

. (3)

Precision is essentially a measure of false positives, recall is a
measure of false negatives, and F1-score is the harmonic mean
of the precision and recall. Since this is a multi-label problem,
each class has its own value for these metrics. Thus, to get a
sense of the overall classifier performance, these values need
to be averaged amongst classes. Macro-averaging and micro-
averaging are the standard techniques for averaging perfor-
mance metrics in multi-label classification problems. Macro-
averaging is the more traditional form of averaging and gives
a better sense of the classifier performance when the data
isn’t biased. Micro-averaging is better suited for multi-label
classification especially if the data is unbalanced. The macro-
average and micro-average for precision are:

Pmac =

∑C
c=1(Precision)c

C
, (4)

Pmic =

∑C
c=1(True Positives)c∑C

c=1(True Positives)c + (False Positives)c
, (5)

where C is the total number of classes or channels for our
application and Pmac and Pmic are the macro-average and
micro-average of precision respectively. These average would
be calculated the same way for recall except false negatives
are used in the micro-average calculation. Finally the micro-
average of the f1-score is the harmonic mean of the recall and
precision micro-average. When the different classes have an
equal distribution or the same number of occurrences the micro-
average and macro-average become the same.

Energy Detector. To compare our results with the a more
traditional method of spectrum sensing, we employed an energy

detector. The energy detector works by first performing an N -
point FFT on N IQ samples. The energy for each channel or
sub-band is

Ec =
1

Nc

Nc∑
n=1

|R[n]|2, (6)

where Ec is the energy of channel c, R[n] is the received signal
in frequency, and Nc is the number of IQ samples in channel c.
For the energy detector to classify a channel as occupied then
Ec > τ , where τ is the static energy threshold. We can see that
the smaller the input sample is of the received signal, the less
data the energy detector has to work with to make its decision.
While this technique may work in narrowband sensing of a
single channel, it will require prior knowledge of the channel
and that the SNR remain relatively the same.

V. EXPERIMENTAL RESULTS

A. LTE Dataset Results

1) CNN Performance: Different testing data is generated
with varying SNRs. Figure 9 shows the micro-average of the
performance metrics with varying SNR. Because the data is
balanced the macro and micro averages are the same therefore
only the micro-average is plotted. It can be seen that under fair
to great SNR conditions such as would be experienced at 10dB
and 20dB respectively, the CNN performs in the 90th percentile
with near perfect performance at 20dB, only utilizing 32 IQ
samples.

Figure 11 shows the performance metrics at 10dB SNR as
they apply to each channel or sub-band. These results are more
notable as this SNR can be considered at the mid-cell level in
LTE. The edge channels experience slightly better performance
than those in the middle in terms of f1-score. This is most likely
due to them only experiencing side bands from one channel and
therefore not getting corrupted by the side bands of multiple
channels.

2) Energy Detector Performance: To give a fair comparison
with our method and the energy detector, we utilized the same
testing data. We varied the input sizes, ni, and energy threshold
of the detector. The range of energy thresholds used are the ones
that experience the best classification performance for the given
dataset.

Figure 10 shows the micro average performance metrics as a
function of the energy threshold when tested on the 20dB SNR
data. The figure shows that even with great SNR conditions the
energy detector experiences overall worse performance than the
CNN in addition to an inverse relationship between recall and
precision. The overall performance is hindered because with

Fig. 9: Micro-average performance metrics of the CNN as a result of varying
SNR on simulated LTE-M dataset

Fig. 10: Micro-average performance metrics of the energy detector as a result of
varying energy thresholds on the simulated LTE dataset with an SNR of 20dB,
our f1-score at 10dB is plotted for comparison

such a small input size and such a large number of channels
to classify, the energy detector has to work with data that is
low in resolution in the frequency domain. For perspective,
when taking 32 IQ samples, converting them to frequency and
splitting them up into 16 groups, each sub-band only has 2 IQ
samples in frequency for deducing sub-band occupancy. The
energy detector therefore requires more IQ samples to collect
and a larger FFT to compute.

The inverse relationship between recall and precision occurs
because as the energy threshold becomes stricter or higher,
there are less false positives and therefore more precision.
However, because of that same strictness, many channels that
are occupied but have low energy do not make the cut off. This
results in more false negatives and a decrease in recall.

We can also see that increasing ni by a factor of 4 compared
to the input size used at the CNN still does not match the energy
detectors overall performance to that of the CNN, though it does
improve the recall and f1-score.

B. SDR Dataset Results

1) CNN Performance: The classification task for this dataset
is less difficult compared to the previous dataset as the number
of IQ samples stay the same but the number of output classes
are reduced to 4. This makes an easier input to output mapping
for the CNN as well as more IQ samples per sub-band for
the energy detector. But where difficulty in mapping inputs
to outputs decreases, difficulty in utilizing less controlled data
increases due to the nature of ”in the wild” signals. Therefore
SNR could not be controlled as this is a real world dataset and
the same applies for the GVT dataset.

Fig. 11: Performance metrics per channel on simulated LTE-M, non-
overlapping, 16 channel/sub-band dataset

Fig. 12: Micro-average performance metrics of the energy detector as a result
of varying energy thresholds on the small-scale SDR dataset, our f1-score is
plotted for comparison

We can see from Figure 13 that the each channel experiences
near perfect performance. The transmitter on the last channel
experienced slightly worse transmission and therefore poorer
performance relative to the others. These results show that the
CNN takes advantage of the smaller hole resolution and is able
to optimize precision and recall highly without affecting one
another. The CNN experienced micro-averages of 98%, 97%,
98% for precision, recall, and f1-score respectively.

2) Energy Detector Performance: The energy detector ex-
periences better performance with this dataset than the LTE-
M simulation as can be seen in Figure 12. This is due to the
lower hole resolution. In terms of precision, the energy detector
slightly outperforms the CNN, however the other metrics still
suffer tremendously. Due to the nature of threshold based
energy detection this inverse relationship between precision and
recall will always exist. Increasing the number of input samples
helps the overall performance of the energy detector but it needs
more input samples.

C. GVT Dataset Results

Figure 14 and Table II summarize the performance metric re-
sults on the large scale GVT dataset. The overlapping channels
and heterogeneity of this dataset increase the classification task
considerably. The CNN could not be compared to an energy
detector in this case as an energy detector was used to generate
the ground truth of this dataset. Nonetheless, the performance

Fig. 13: Performance metrics per channel on non-overlapping, 4 channel dataset
collected with SDRs

is still promising with precision and recall maintaining a pro-
portional relationship. Figure 14 shows a similar pattern in the
edge channels to that of the simulated dataset. However, the dis-
parity in channel performance is a little more prominent here,
this can be seen in the larger difference between performance
metrics between channels. The overlapping channels cause this
decrease in performance.

Fig. 14: Performance metrics per channel on large-scale GVT, overlapping, 14
channel dataset

TABLE II: CNN performance metric averages for large-scale, GVT dataset

Averages Precision Recall F1-Score

Micro Avg 0.84 0.87 0.86
Macro Avg 0.84 0.87 0.86

D. Real-Time Hardware Performance

The CNNs are implemented on an FPGA through High Level
Synthesis then run on a Xilinx Zynq-7000 SoC ZC706 to test
latency. Table III shows the size of the CNNs and performance
on the FPGA for the three datasets. The CNN for the LTE-M
and small-scale datasets were very similar in size and therefore
experience similar latency. Both of their times are faster than
the length of one LTE sub-frame with high performance. The
last dataset required a larger number of input samples to classify

due to its vast heterogeneity when compared to the previous
datasets. This caused the CNN to be larger than previous and
therefore incurred more latency. The latency for this CNN was
increased to 5.1ms on the FPGA. However the classification
performance in the midst of such a diverse dataset, especially
one that was not fabricated for the purpose of this classification
task is notable.

All CNNs occupied minimal space on the FPGA. Our largest
CNN is multiple orders of magnitude smaller than conventional
CNNs used for image processing and utilizes a fewer amount of
filters and smaller input sizes than networks in [19, 21, 31]. This
is crucial to a real time realization of a high performing wide-
band spectrum sensor, because long processing means missed
opportunities. In addition the small CNN size makes DeepSense
easily implemented on user devices or mobile nodes. However,
the trade-off of low latency is decreased generalization and per-
formance as low SNR regimes prove difficult for our classifier.

TABLE III: DeepSense FPGA performance on different datasets

Dataset # of CNN Latency FPGA
Parameters (ms) Utilization

LTE-M 12,272 0.62 4.25%
Small-Scale 15,108 0.67 4.25%
Large-Scale 39,406 5.1 7%

VI. CONCLUSIONS

In this paper, we have proposed DeepSense, a soft-
ware/hardware framework for real-time wideband spectrum
sensing. In short, DeepSense relies on real-time deep learning
tightly integrated into the transceiver’s baseband processing
logic to detect and exploit unutilized spectrum bands with the
least amount of I/Q samples. We have extensively validated
DeepSense through three different datasets under a wide va-
riety of SNR conditions. We have also measured the real-time
latency of the CNNs trained on the three datasets with an FPGA
implementation. Finally, we have compared our approach with
a fixed energy threshold mechanism. Our experimental results
have shown that our learning-based approach can deliver a
precision and recall of 98% and 97% respectively and a latency
as low as 0.61ms. An an additional contribution, we have
pledged to share the code and the datasets used in this paper
to the community, for both reproducibility and benchmarking
purposes. DeepSense’s fast detection capabilities paves the way
for concrete opportunistic access in licensed and unlicensed
bands by primary or secondary users. The low computational
complexity of the system furthermore makes DeepSense easy
to implement on mobile nodes. However, DeepSense’s spec-
trum hole filling component has not been addressed in this
paper, since it is a complex endeavor that deserves a separate
investigation. We are currently working on a system-on-chip
implementation of DeepSense that will close the loop between
spectrum sensing and actuation.

REFERENCES

[1] Federal Communications Commission (FCC), “Spectrum Crunch,” https:
//www.fcc.gov/general/spectrum-crunch.

[2] Jeremy Horwitz, Venture Beat, “Wi-Fi 6E and 5G Will Share 6GHz
Spectrum to Supercharge Wireless Data,” https://tinyurl.com/wyvmn5c,
2020.

[3] L. Zhang, M. Xiao, G. Wu, M. Alam, Y.-C. Liang, and S. Li, “A Survey
of Advanced Techniques for Spectrum Sharing in 5G Networks,” IEEE
Wireless Communications, vol. 24, no. 5, pp. 44–51, 2017.

[4] F. Hu, B. Chen, and K. Zhu, “Full Spectrum Sharing in Cognitive Radio
Networks Toward 5G: A Survey,” IEEE Access, vol. 6, pp. 15 754–15 776,
2018.

[5] H. Shokri-Ghadikolaei, F. Boccardi, C. Fischione, G. Fodor, and M. Zorzi,
“Spectrum sharing in mmwave cellular networks via cell association,
coordination, and beamforming,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 11, pp. 2902–2917, 2016.

[6] L. Lv, J. Chen, Q. Ni, Z. Ding, and H. Jiang, “Cognitive non-orthogonal
multiple access with cooperative relaying: A new wireless frontier for 5g
spectrum sharing,” IEEE Communications Magazine, vol. 56, no. 4, pp.
188–195, 2018.

[7] Federal Communications Commission (FCC), “FCC Opens 6 GHz Band
to Wi-Fi and Other Unlicensed Uses,” https://www.fcc.gov/document/
fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses, 2020.

[8] Jamie Davies, Telecoms.com, “FCC finally opens up
3.5 GHz for US telcos,” https://telecoms.com/502070/
fcc-finally-opens-up-3-5-ghz-for-us-telcos/, 2020.

[9] J. Kim and J. G. Andrews, “Sensitive White Space Detection With
Spectral Covariance Sensing,” IEEE Transactions on Wireless Commu-
nications, vol. 9, no. 9, pp. 2945–2955, 2010.

[10] K. W. Choi and E. Hossain, “Opportunistic Access to Spectrum Holes
Between Packet Bursts: A Learning-based Approach,” IEEE Transactions
on Wireless Communications, vol. 10, no. 8, pp. 2497–2509, 2011.

[11] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative Spectrum
Sensing in Cognitive Radio Networks: A Survey,” Physical Communi-
cation, vol. 4, no. 1, pp. 40–62, 2011.

[12] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, “Wideband Spectrum
Sensing for Cognitive Radio Networks: a Survey,” IEEE Wireless Com-
munications, vol. 20, no. 2, pp. 74–81, 2013.

[13] K. Cichoń, A. Kliks, and H. Bogucka, “Energy-Efficient Cooperative
Spectrum Sensing: A Survey,” IEEE Communications Surveys & Tuto-
rials, vol. 18, no. 3, pp. 1861–1886, 2016.

[14] A. Ali and W. Hamouda, “Advances on Spectrum Sensing for Cognitive
Radio Networks: Theory and Applications,” IEEE communications sur-
veys & tutorials, vol. 19, no. 2, pp. 1277–1304, 2016.

[15] Y. Ma, Y. Gao, Y.-C. Liang, and S. Cui, “Reliable and Efficient Sub-
Nyquist Wideband Spectrum Sensing in Cooperative Cognitive Radio
Networks,” pp. 2750–2762, 2016.

[16] B. Hamdaoui, B. Khalfi, and M. Guizani, “Compressed Wideband Spec-
trum Sensing: Concept, Challenges, and Enablers,” IEEE Communica-
tions Magazine, vol. 56, no. 4, pp. 136–141, 2018.

[17] X. Jin and Y. Zhang, “Privacy-preserving Crowdsourced Spectrum Sens-
ing,” IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp. 1236–
1249, 2018.

[18] H. Qi, X. Zhang, and Y. Gao, “Channel Energy Statistics Learning in
Compressive Spectrum Sensing,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 12, pp. 7910–7921, 2018.

[19] C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for Spectrum
Sensing in Cognitive Radio,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 10, pp. 2306–2321, 2019.

[20] H. Qi, X. Zhang, and Y. Gao, “Low-Complexity Subspace-Aided Com-
pressive Spectrum Sensing Over Wideband Whitespace,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 12, pp. 11 762–11 777, 2019.

[21] D. Chew and A. B. Cooper, “Spectrum Sensing in Interference and Noise
Using Deep Learning,” in Annual Conference on Information Sciences
and Systems (CISS). IEEE, 2020, pp. 1–6.

[22] Y. Arjoune and N. Kaabouch, “A comprehensive survey on spectrum
sensing in cognitive radio networks: Recent advances, new challenges,
and future research directions,” Sensors, vol. 19, no. 1, p. 126, 2019.

[23] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 168–179, Feb 2018.

[24] W. Zhang, R. K. Mallik, and K. B. Letaief, “Optimization of cooperative
spectrum sensing with energy detection in cognitive radio networks,”
IEEE transactions on wireless communications, vol. 8, no. 12, pp. 5761–
5766, 2009.

[25] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum

sensing for cognitive radios,” in 2006 1st international conference on
cognitive radio oriented wireless networks and communications. IEEE,
2006, pp. 1–5.

[26] F. Restuccia and T. Melodia, “Big Data Goes Small: Real-Time Spectrum-
Driven Embedded Wireless Networking Through Deep Learning in the
RF Loop,” Proc. of IEEE Conference on Computer Communications
(INFOCOM), 2019.

[27] I. E. Telatar and D. N. C. Tse, “Capacity and Mutual Information of
Wideband Multipath Fading Channels,” IEEE Transactions on Informa-
tion Theory, vol. 46, no. 4, pp. 1384–1400, 2000.

[28] A. Ranjan, B. Singh et al., “Design and analysis of spectrum sensing
in cognitive radio based on energy detection,” in 2016 International
Conference on Signal and Information Processing (IConSIP). IEEE,
2016, pp. 1–5.

[29] M. Z. Alom, T. K. Godder, M. N. Morshed, and A. Maali, “Enhanced
spectrum sensing based on energy detection in cognitive radio network
using adaptive threshold,” in 2017 International Conference on Network-
ing, Systems and Security (NSysS). IEEE, 2017, pp. 138–143.

[30] P. S. Yawada and A. J. Wei, “Cyclostationary detection based on non-
cooperative spectrum sensing in cognitive radio network,” in 2016 IEEE
International Conference on Cyber Technology in Automation, Control,
and Intelligent Systems (CYBER). IEEE, 2016, pp. 184–187.

[31] J. Gao, X. Yi, C. Zhong, X. Chen, and Z. Zhang, “Deep learning for
spectrum sensing,” IEEE Wireless Communications Letters, vol. 8, no. 6,
pp. 1727–1730, 2019.

[32] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Wideband spectrum sens-
ing in cognitive radio networks,” in 2008 IEEE international conference
on communications. IEEE, 2008, pp. 901–906.

[33] I. Raghu, S. S. Chowdary, and E. Elias, “Efficient spectrum sensing for
cognitive radio using cosine modulated filter banks,” in 2016 IEEE region
10 conference (TENCON). IEEE, 2016, pp. 2086–2089.

[34] Y. Wang and G. Zhang, “Compressed wideband spectrum sensing based
on discrete cosine transform,” The Scientific World Journal, vol. 2014,
2014.

[35] B. Farhang-Boroujeny, “Filter bank spectrum sensing for cognitive ra-
dios,” IEEE Transactions on signal processing, vol. 56, no. 5, pp. 1801–
1811, 2008.

[36] H. Sun, W.-Y. Chiu, and A. Nallanathan, “Adaptive compressive spectrum
sensing for wideband cognitive radios,” IEEE Communications Letters,
vol. 16, no. 11, pp. 1812–1815, 2012.

[37] T. J. O’shea and N. West, “Radio machine learning dataset generation
with gnu radio,” in Proceedings of the GNU Radio Conference, vol. 1,
no. 1, 2016.

[38] R. F. Molanes, J. J. Rodrı́guez-Andina, and J. Fariña, “Performance
characterization and design guidelines for efficient processor - FPGA
communication in Cyclone V FPSoCs,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 5, pp. 4368–4377, May 2018.

[39] Pete Bennett (EE Times), “The Why, Where and What of Low-Power
SoC Design,” https://www.eetimes.com/document.asp?doc id=1276973,
2004.

[40] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep Learning
Convolutional Neural Networks for Radio Identification,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 146–152, 2018.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016,
pp. 630–645.

[43] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

