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Abstract—This paper presents an iterative learning control-
based approach for optimizing the flight path geometry of a
tethered marine hydrokinetic energy (MHK) system. This type
of system, which replaces the tower of a conventional system with
a tether and a lifting body, can capture energy either through
an on-board rotor or by driving a generator with tension in
the tether. In the latter mode of operation, which represents the
focal point of this effort, net positive energy is generated over one
cycle of high-tension spool-out followed by low-tension spool-in.
Because the net energy generation is sensitive to the shape of
the flown path, we employ an iterative learning update law to
adapt the path shape from one lap to the next. This update law is
complemented with an iterative power take-off (PTO) controller,
which adjusts the spooling profile at each iteration in order to
ensure zero net spooling. We present and validate the proposed
control approach in both uniform and spatiotemporally varying
turbulent flow environments, based on a realistic ocean model
detailed in this paper. Finally, based on simulation results across
a wide range of excitation levels, we perform a simulation-based
assessment of convergence properties, comparing these results
against bounds derived in the authors’ prior work.

I. INTRODUCTION

Traditional devices for capturing energy from wind or
ocean currents consist of a turbine mounted on a large tower.
While these have proven effective and reliable, they are often
suboptimal. Because turbines are fixed in space, they are
usually not located at the best point in the flow. Often, the
winds or currents with the most available energy are located
at very high altitudes or close to the surface in very deep
parts of the ocean. It is these areas that represent the greatest
potential for energy generation. Work in [1] showed that the
wind energy available at 600m was often five times that of the
wind available to most towered systems and for ocean current
systems. A study in [2] showed that there was more energy
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present in the Gulf Stream off the coast of North Carolina
than the entire energy demand of the state. Unfortunately, the
locations with the most available Gulf Stream energy often
have depths greater than 200 m. At these depths, the capital
costs associated with tower construction render it infeasible.

Tethered energy systems, examples of which are shown in
Fig. 1, represent one possible solution to these challenges. In
both the airborne wind energy (AWE) systems and the marine
hydrokinetic energy (MHK) systems, the tower is replaced by
a tether (or tethers) and the turbine is replaced with a high lift-
to-drag kite. Energy capture is then accomplished via either
fly-gen, where turbines are mounted on the kite, or ground-gen
where the tension in the tether is used to drive a generator. In
this work, we focus on the latter method. In this method, the
tether is spooled out under high tension, generating positive
power, and then spooled in under low tension, consuming
power. Because the power generated during spool out is much
larger than the power consumed during spool in, the result is
net positive energy generation over one cycle.

In addition to reducing capital costs by eliminating the need
to build a rigid tower, tethered energy systems present two
opportunities. First, the system can be repositioned to the
optimal location in the flow profile. Second, the kite can be
flown perpendicular to the prevailing flow. This crosswind or
cross-current flight, initially examined in [3], has been shown
to significantly increase power generation.

Fig. 1. Examples of tethered energy systems, both the AWE
system from Windlift [4], left, and the MHK system from
Minesto [5] employ on-board turbines to harvest energy. Image
credits: Windlift (left) and Minesto (right).

Given the limitations of existing dynamic modeling tools,
[6], [7], and [8] have investigated on-line adaptation of some
attributes of the crosswind flight. Specifically, [6] and [7] seek
to optimize the flight path location whereas this work seeks to
optimize the flight path shape. Additionally, [8] optimizes a
state setpoint trajectory, whereas this work seeks to optimize



a path defined only in terms of spatial coordinates, with no
reference to time. Furthermore, none of the aforementioned
works consider path optimization in the context of a full spool-
in, spool-out cycle.

Because of the highly repetitive nature of the power gener-
ation cycle, there exists a significant opportunity for learning
from one cycle to the next. In applications such as the one
considered in this work, where the existing dynamic modeling
tools have large parametric or nonparametric uncertainties,
the repetitive method of operation represents one method
for circumventing the challenges associated with model-based
control and optimization. To address these challenges and
opportunities, the authors proposed an algorithm in [9] and
then developed it in [10] and [11]. This algorithm consists of
two key steps:

1) metamodel identification, in which a recursive least
squares fit is performed to approximate the relationship
between flight path shape and performance, and

2) an iterative learning update, in which information from
past iterations is used to select the flight path geometry
used in the next cycle.

Although work by these authors in a prior conference pub-
lication ([11]) did consider a tethered MHK system, it utilized
an highly simplified dynamic model and only investigated
spatiotemporally constant flow profiles. This work builds upon
that work in two critical ways:

• First, this work employs a significantly higher-fidelity
plant model, without any of the artificial simplifications
or kinematic constraints that were essential in the prior
work.

• Second, this work achieves energy capture using an
intracycle spooling strategy wherein the tether is reeled
out during the high-tension portions of the path, and
reeled in during the low-tension portions of the path.
Prior work used a multicycle spooling strategy wherein
multiple high-tension cross-current laps were performed
before re-configuring the system to achieve low tether
tension and then spooling in. In an MHK application
where the flow resource is characterized by a significant
shear profile (variation of flow speed with vertical posi-
tion), such a strategy enables the system to remain at a
relatively consistent depth while also avoiding the need to
periodically suspend and reinstate cross-current motion.

This work makes three core contributions:

• We show that when the artificial kinematic constraints
are lifted, and an improved, realistic, 6-DOF control-
oriented dynamic model is used, our algorithm continues
to work effectively. Furthermore, our algorithm continues
to perform robustly in a realistic 3-D spatiotemporally
varying flow field that incorporates both low-frequency
flow variations and high-frequency turbulence.

• We present an iterative learning, intracycle power take-off
(PTO) controller designed to spool out during the high-
tension portions of the path, and spool in during the low-
tension portions, all while preventing any net change in
tether length from iteration to iteration. This allows areas

of high current velocity to be targeted with a consistent
elevation angle and tether length.

• We perform a convergence assessment for the proposed
approach, evaluating convergence over a range of excita-
tion values. We compare the trends against theory derived
in [10] under highly aspirational assumptions (e.g., initial
condition reset between cycles, perfect parameterization
of the response surface that gets updated at each cycle).

II. PLANT MODEL

As shown in Fig. 2, a crosscurrent, tethered MHK system
is comprised of three elements,
• a ground station, which houses a winch-generator system

and can be either floating, or fixed to the sea floor,
• a flexible tether or tethers, and
• a lifting body, which flies mostly perpendicular to the

prevailing current.
By flying perpendicular to the prevailing flow, the apparent
flow, which is the combined effect of the prevailing flow
and the velocity of the system, can be much larger than
the prevailing flow alone. The result is larger hydrodynamic
forces, larger tether tensions, and more net power production.

Fig. 2. A diagram showing a tethered MHK system deployed
from both a floating platform (left) and the sea floor (right).

Fig. 3 shows two possible tether spooling strategies that can
be used to extract energy. Multicycle spooling, shown on the
left of Fig. 3, performs several cycles of crosscurrent flight
before switching the kite to a low-tension configuration and
spooling tether in. Intracycle spooling, shown on the right of
Fig. 3, leverages the natural highs and lows that occur in the
tether tension during one cycle by spooling out during the
naturally high tension portions and in during the naturally low
tension portions.

The dynamic model used in this work has been developed
in prior work by the authors in [12], but is included in its
entirety here for completeness. The MHK system is modeled
as a combination of three elements:

1) A rigid lifting body wherein forces and moments are
calculated from lift, drag, buoyancy, and gravity.

2) A tether model comprised of a series of non-compressive
spring-dampers subject to fluid dynamic drag, buoyancy,
and gravity. One end of the tether is attached to the
lifting body and exerts a force on it, and the other is
fixed to the ocean floor.

3) A winch, modeled as a simple combination of first order
filters, rate limiters, integrators and lumped efficiency



Fig. 3. A diagram showing two possible tether spooling
strategies, namely multicycle spooling (left) and intracycle
spooling (right).

factors, which is used to estimate instantaneous power
production.

Specific values of plant parameters used in simulation are
summarized at the end of the section in table I.

A. Preliminaries: Coordinate Systems & Important Quantities

The plant model and lower-level controller are described
using three coordinate systems which are shown in Fig. 4.
• The Cartesian ground frame coordinate system G, which

is taken to be an inertial reference frame, defined by the
origin point, G, and the unit vectors ~iG, ~jG, and ~kG.

• The body fixed coordinate system B, which is defined
by a point at the center of mass of the kite, B and the
unit vectors ~iB , ~jB , and ~kB . The ~iB unit vector points
backwards along the fuselage, and the ~jB unit vector
points towards the starboard. The unit vector ~kB is then
calculated as the cross product ~iB ×~jB .

• The tangent frame coordinate system T , which is cen-
tered at the point B but uses the spherical unit vectors
associated with the ground frame coordinate system.
Specifically, the unit vectors of this coordinate system are
calculated at a generic spatial position, ~r ∈ R3, according
to

~iT =
~r|~r=~x
‖~r|~r=~x‖

, ~jT =
d~r
dΦ |~r=~x
‖ d~rdΦ |~r=~x‖

, ~kT =
d~r
dΘ |~r=~x
‖ d~rdΘ |~r=~x‖

(1)

where ~x ∈ R3 is the vector pointing from G to B which
describes the location of the system.

These coordinate systems are depicted graphically in Fig. 4
which also shows a spherical coordinate system defined by an
azimuth angle, Φ and elevation angle Θ.

The control design, presented later in section IV relies
heavily on two geometric quantities which are derived from
the coordinate systems. These are the velocity angle, γ ∈ R,
and tangent roll angle, ξ ∈ R. Both of these quantities are
calculated using the tangent plane, which is defined to be the
plane spanned by ~jT and ~kT with ~jT and ~kT as unit vectors.

Intuitively, the velocity angle describes the direction that a
system is moving, on the sphere centered at G, with radius
‖~x‖. Mathematically, it is the angle between the projection of

a vector onto the tangent plane, and ~kT (or local north). This
is consistent with the velocity angle used in other works such
as [13]. Therefore, the velocity angle, γ, corresponding to a
three-dimensional velocity vector, ~v ∈ R3 is given by

γ(~v) = atan

(
~v · ~kT (~x)

~v ·~jT (~x)

)
. (2)

Note γ(~v(t), ~x(t)) has been written as γ(~v), suppressing the
dependence on both time, t and position ~x(t) for notational
clarity.

The tangent roll angle, ξ, is the angle that determines the
component of hydrodynamic lift that contributes to turning in
the tangent plane. Mathematically, ξ is calculated to be the
angle between the body unit vector, ~jB and the tangent plane.
Mathematically, this is calculated as

tan
(
ξ(~jB(t))

)
=

~jB ·~iT (~x)√(
~jB ·~jT (~x)

)2

+
(
~jB · ~kT (~x)

)2
. (3)

Note that once again, the dependence on ~x has been omitted
for clarity.

Fig. 4. A diagram of the coordinate systems used in the plant
and flight controller. The unit vectors of the T frame are drawn
with dashed lines to differentiate them from the B frame unit
vectors. The azimuth angle, Φ, and elevation angle, Θ, are also
shown.

B. 6 DoF Lifting Body MHK Model

The state variables describing the position and orientation
(and rates of change of the position and orientation) of
coordinate system B relative to coordinate system G evolve
according to standard nonlinear equations of motion:

~̇µ = f(~µ, ~ω) (4)

J~̇ω = ~MNet − ~ω × J~ω (5)

~̇x = R(~µ)~v (6)

M~̇v =
(
~FNet(t)− ~ω × ~v

)
(7)



Here, the orientation of the kite coordinate system B relative
to the ground coordinate system, G, is described by the vector
of conventional Tait-Bryan angles, ~µ , [ φ θ ψ ]T , where
φ is roll, θ is pitch, and ψ is yaw. The matrix J ∈ R3×3

is the inertia matrix, and ~MNet is the sum of all applied
moments expressed in the B frame. Here, the position vector,
~x, is expressed in the G frame. The vector ~v is the associated
velocity, expressed in the B frame. The matrix R ∈ R3×3

is the rotation matrix, calculated based on ~µ, that describes
the relative orientation of B with respect to G. The variable
M ∈ R3×3 is the diagonal mass matrix, ~FNet is the sum
of all forces applied to the kite expressed in the B frame,
~ω , [ ωx ωy ωz ]T is the angular velocity of B relative
to G. Finally, the function ~f(~µ, ~ω) is the standard nonlinear
function that relates the angular velocity ~ω and Euler angles ~µ
to the rates of change of the Euler angles. This can be found
in standard reference texts such as [14].

The kite is subject to forces and moments resulting from
four fluid dynamic surfaces (a port wing, starboard wing,
horizontal stabilizer and vertical stabilizer), buoyancy, gravity,
and the tether. These forces and moments are calculated as:
~FNet =~FThr + (V ρ−m) g~kḠ

+
1

2
ρAr

4∑
ia=1

‖~va,ia‖2 (CL,ia~uL,ia+CD,ia~uD,ia)
(8)

~MNet =
1

2
ρAr

4∑
ia=1

‖~va,ia‖2~ra,ia×(CL,ia~uL,ia+CD,ia~uD,ia)

(9)

where in (8), the first term is the force exerted at the center
of mass by the tether on the lifting body, the second term
describes the net buoyant force, and the last term describes
the fluid dynamic forces. Here, V is the volume of the kite,
ρ is the fluid density, m is the mass of the kite, and g is
the acceleration due to gravity. Here, we assume that both the
center of buoyancy and the tether attachment point are close to
the center of mass, and thus do not contribute an appreciable
moment in equation (9).

The index ia ∈ {1, 2, 3, 4} refers to each of the four
independent fluid dynamic surfaces, port wing, starboard wing,
horizontal stabilizer and vertical stabilizer. Therefore, the re-
sulting force depends on the apparent flow at the aerodynamic
center of each surface, which is calculated as:

~va,ia(t) = ~vf (t, ~x+ ~ra,ia)− (~v + ~ω × ~rai) , (10)

where ~vf (t, ·) :
(
R,R3

)
→ R3 is the spatially and temporally

varying flow profile discussed in detail in Section III and
~ra,ia is the vector from the center of mass of the kite to
the fluid dynamic center of the itha surface. The fluid dynamic
coefficients of equations (8) and (9) are obtained by modeling
each fluid dynamic surface independently in the Athena Vortex
Lattice (AVL) software of [15] and are parameterized as
functions of the associated control surface deflections, δia, as:

CL,ia(~vai , δia) = CL0,ia(~va,ia) + CL1,iaδia + CL2,iaδ
2
ia

CD,ia(~vai , δia) = CD0,ia(~va,ia) + CD1,iaδia + CD2,iaδ
2
ia
(11)

where the control sensitivity coefficients, CL1,ia , CL2,ia ,
CD1,ia , and CD2,ia are obtained from a quadratic fit of
the discrete results from AVL. Note that the control surface
deflections are limited to a range of ±30◦ to reflect actuator
limitations. The spanwise lift coefficient distributions, Cl,i(y),
obtained from the software are heuristically corrected to
account for nonlinear stall behavior that is not accurately
accounted for in AVL.

Finally, the unit vectors describing the direction of the lift
and drag forces are calculated from the apparent flow direction
vector at the itha hydrodynamic center:

~uD,ia =
~va,ia
‖~va,ia‖

, (12)

~uL,ia =



[
0 0 −1

0 0 0

1 0 0

] [
~uxD,ia 0 ~uzD,ia

]T
‖
[
~uxD,ia 0 ~uzD,ia

]
‖

ia 6= 4,[
0 1 0

−1 0 0

0 0 0

] [
~uxD,ia ~u

y
D,ia

0
]T

‖
[
~uxD,ia ~u

y
D,ia

0
]
‖

ia = 4,

(13)

where the components of the drag direction vector are given
by the dot product with the appropriate unit vector of the B̄
coordinate system, ~u(?)

D,i = ~uD,ia ·(?)B̄ . Note that ia = 4 refers
to the vertical stabilizer, thus requiring the case structure of
(13).

C. Tether Model

In this work, we adopt the tether model used in [16] and
[17]. The tether is modeled as a series of Nn − 1 massless,
cylindrical, non-compressive spring-damper links that connect
Nn lumped nodal point masses, referred to as “nodes”. Each
of these links are subjected to buoyancy, gravity, and fluid
drag. The forces acting on the tether are first calculated at the
center of each link and then distributed to each node to model
the dynamics. The net buoyant force at the center of the ilth

link, ~FBil , is given by

~FBil =
1

2
(ρ− ρT )πr2

T

lT
Nn − 1

g ~kG (14)

where il ∈ {1, 2, . . . , Nn− 2, Nn− 1} refers to the link being
considered, ρT is the density of the tether, rT is the radius of
the tether cross section, lT is the unspooled tether length, Nn
is the number of nodes, and g is the acceleration of gravity.
The fluid drag at the center of the ithl link, ~FDil is calculated
as

~FDil =
1

2
ρCD,TAP,i‖~va,il‖~va,il (15)

where CD,T is the drag coefficient of the tether, AP,il is the
projected area of the ithl link, and ~va,il is the apparent flow
velocity at the center of the ithl link. In calculating the projected
areas, AP,il , apparent flow velocities, ~va,il , and spring-damper
forces, it first useful to calculate the unit vector pointing from
the ithl node to the (il + 1)th node, ~uT,il

~uT,il =
~xT,il+1 − ~xT,il
‖~xT,il+1 − ~xT,il‖

. (16)



The apparent flow velocities and projected areas can then be
calculated as

~va,il(t) = ~vf

(
t,

1

2
(~xT,il+1+~xT,il)

)
−1

2
(~vT,il+1 + ~vT,il)

(17)

AP,il = 2rT
lT

Nn − 1

∥∥∥∥~uT,il × ~va,il
‖~va,il‖

∥∥∥∥ (18)

where ~xT,il , ~vT,il , ~xT,il+1, and ~vT,il+1 are the positions and
velocities of the ithl and (il + 1)th nodes respectively.

Finally, the nonlinear spring-damper force in the ithl link is
given by

~FTil =

{
~0 ‖~xT,il+1 − ~xT,il‖ < lT

Nn−1 ,
~FTil otherwise,

(19)

where

~FTil =

(
− Ey

πr2
T

lT
(Nn − 1)

(
‖~xT,il+1 − ~xT,il‖ −

lT
Nn − 1

)
− 2ζ

√
Ey

πr2
T

lT
m (~vT,il+1 − ~vT,i) · ~uT,i

)
~uT,il ,

(20)

where Ey is the Young’s modulus of the tether, and m is a
user-defined mass which, combined with the damping ratio
ζ define the size of the damping force. Note that the node
attached to the ground is assumed to be fixed, and thus does
not have any dynamics associated with it, and the dynamics
of the node attached to the kite are dictated by kite. Thus,
the positions and velocities of the Nn− 2 intermediate nodes,
indexed by in ∈ {2, 3, . . . , Nn−2, Nn−1} where in = 2 refers
to the node adjacent to the ground node and in =Nn−1 refers
to the node adjacent to the kite, are given by:

~̇xT,in = ~vT,in (21)

~̇vT,in =
Nn

πr2
T lT ρT

(
~FNetin+1 − ~FNetin

)
(22)

where ~FNetin
= ~FBin + ~FDin + ~FTin .

D. Winch Model

The total length of unspooled tether, lT is calculated accord-
ing to a filtered saturation-plus-integrator lumped parameter
model. First, the commanded tether speed uT (t) is saturated
to be within the range from umin to umax. The result is then
passed through a first order filter with time constant τw to
obtain the achieved tether release speed, ũT .

The instantaneous estimate of power production, P (t) is
calculated from the achieved tether speed, ũT (t) and the net
force on the ground node, as

P (t) =

{
ηm‖~FNet1 ‖ũT (t), ũT (t) ≤ 0,

1
ηgen
‖~FNet1 ‖ũT (t), otherwise

(23)

where ηm is a lumped motor efficiency and ηgen is a lumped
generator efficiency.

Table I
Important Plant Model Parameters

Variable Description Value Units

Kite

M Mass 945 kg
− Density 1000 kg/m3

Jxx Inertia tensor xx element 6303 kgm2

Jyy Inertia tensor yy element 2080 kgm2

Jzz Inertia tensor zz element 8320 kgm2

− Fuselage length 8 m
Ar Reference area 10 m2

− Port wing chord 1 m
− Port wing span 5 m
− Starboard wing chord 1 m
− Starboard wing span 5 m
− Horizontal stabilizer chord 0.5 m
− Horizontal stabilizer span 4.0 m
− Vertical stabilizer chord 0.6 m
− Vertical stabilizer span 2.0 m

Tether

Nn Number of nodes 5 −
rT Radius 7.2 mm
Ey Young’s modulus 50 GPa
ζ Damping ratio 0.75 −
m Damping mass 945 kg

CD,T Drag coefficient 0.5 −
ρT Density 1300 kg/m3

Winch

τw Time constant 1 s
ηgen Generator efficiency 1.0 −
ηm Motor efficiency 0.95 −

III. REALISTIC OCEAN CURRENT MODEL

The flow field, which is characterized as a function of depth
(~zG), down-current location, (~xG), cross-current location (~yG),
and time (t), is computed as the superposition of a low-
frequency flow profile and high-frequency turbulence model
as follows:

Ṽcomb( ~xG, ~yG, ~zG, t) = Ṽturb( ~xG, ~yG, ~zG, t)+Ṽ ( ~zG, t), (24)

where Ṽ , Ṽturb, and Ṽcomb represent the low-frequency
flow field, high-frequency turbulent field, and combined flow
model, respectively. Because the total cross-current motion of
the kite spans a very small fraction of the total current resource
(e.g., the Gulf Stream), spatial variations in ~yG and ~xG are
neglected in the low-frequency model.

The low-frequency model used in this work is the Mid-
Atlantic Bight South-Atlantic Bight Regional Ocean Model
(MSR). This model, which was developed by North Carolina
State University’s Ocean Observing and Modeling Group,
provides current profiles at 42 different locations in the Gulf
Stream at 25 m vertical resolution. The MSR model is detailed
in [18].

The turbulent high-frequency components of the ocean
currents are calculated based on a discretization of the flow
velocity’s power spectral density (PSD) equation. Specifically,
the model leverages fundamental techniques described in [19]
to generate a spatiotemporally varying turbulence profile that
can be applied to the hydrodynamic center of each component
in the dynamic model. Based on inputs of turbulence inten-
sity, time-averaged flow velocity, a specified frequency range,



standard deviations, and spatial correlation coefficients for the
flow velocities, the model outputs a spatial grid of time-varying
velocity vectors. In the interest of brevity, readers are referred
to [20] for further details.

IV. CONTROL DETAILS

The proposed control strategy is comprised of three main
components,
• the path-following flight controller which seeks to ro-

bustly track the prescribed path,
• the power take-off controller which is responsible for

extracting power from the system by modulating tether
tension and release rate, uT , and

• the ILC based path optimization controller which oper-
ates between laps, or iterations, of the system and seeks
to optimize the path geometry.

These three controllers are shown in Fig. 5 along with the
plant and flow profile model.

Fig. 5. Block diagram showing the three main components of
the control structure along with the MHK kite plant and flow
profile models.

A. Path Shape definition

Before addressing how to follow or optimize a path, we
consider how to define a path. In order to define a path that
we wish to track, we require two elements, a path function
that describes a general figure-8 shape in three dimensions, as
a function of a parametric variable, s, and a set of numbers,
b ∈ Rnb , which describe one specific instance of the general
form of the equation. In general, the path function, ~Γ, can
be any function where the path shape is closed. That is, it
starts and ends at the same point. In this work, we select the
lemniscate of Booth, which is consistent with [21] , and thus
nb = 4. In spherical coordinates, the path is then described at
any radius by the equations for azimuth and elevation angles,
ΦΓ and ΘΓ,

ΦΓ(s,b) =
( b1b2 )2 sin (s) cos (s)

1 + ( b1b2 )2 (cos (s))
2 + b3 (25)

ΘΓ(s,b) =
b1 sin (s)

1 + ( b1b2 )2 (cos (s))
2 + b4. (26)

Here, a single instance of the path is specified by the vector
b, elements of which are known as basis parameters, b ,

[ b1 b2 b3 b4 ]. The parameters b1 and b2 define the overall
width and height of the desired path shape, while b3 and b4
describe the mean path azimuth (Φ) and (Θ) respectively. For
simplicity, in this work, we only seek to optimize b1 and b2,
however, extending the algorithm to include all parameters is
straightforward. The shape of the current path in Cartesian
coordinates at the radial distance r, ~Γ(s,b, r), is then given
by the standard transformation from spherical to Cartesian
coordinates.

B. Lower-Level Path Following Flight Controller

The flight control strategy is responsible for ensuring that
the kite robustly tracks a prescribed figure-8 cross-current
flight path. The path tracking controller shown initially in Fig.
5 is provided in more detail here in Fig. 6. This controller
contains four levels, each of which accept feedback from the
plant in calculating their outputs. This modular, hierarchical
control structure is based on work in [21] and is partitioned
into the following blocks:

1) A path-following block that accepts the path geometry as
defined by the basis parameters b, and outputs a desired
velocity angle, γdes, as defined in equation (2).

2) A tangent roll angle selection block, which accepts a
desired velocity angle and outputs a desired tangent roll
angle, which is the angle that dictates the component of
hydrodynamic lift that contributes to turning in order to
follow the path.

3) A desired moment selection block which accepts the
tangent roll setpoint and side slip angle setpoint, and
outputs a desired moment vector represented in the body
frame B.

4) A control allocation module, which accepts the desired
moment vector and computes the required control sur-
face deflections to be actuated by the ailerons, elevators,
and rudder of the kite.

Fig. 6. Detailed block diagram showing the hierarchical struc-
ture of the path-following flight controller shown in Fig. 5.

1) Path-Following: Given a prescribed path, defined at the
current radius, r = ‖~x‖, and the set of basis parameters
prescribed from the upper level ILC based path adaptation, bj ,
this controller first calculates the path variable s∗ correspond-
ing to the closest point on the path. Specifically, it numerically
solves the minimization problem

s∗ = arg min
s

α(s), where

tan (α(s)) =
‖~x× ~Γ(s,bj , r)‖
|~x · ~Γ(s,bj , r)|

.
(27)



Here, α(s) is the angle between the position vector, ~x and
the path at the current radius, ~Γ(s,bj , r). In this work, this
minimization problem is solved at every time step using the
Golden Section minimization technique. The Golden Section
search method was chosen because it requires only zeroth-
order information, but other numerical minimization tech-
niques (e.g., Newton’s method) can be used as well.

Given the closest path parameter, s∗, we then calculate
a three dimensional vector representing the desired velocity
of the system. This desired velocity vector is taken to be a
weighted average between the perpendicular vector, ~p ∗⊥, and
the parallel vector, ~p ∗‖ . Intuitively, the parallel vector is the
vector that perfectly aligns with the path, and the perpendicular
vector is the vector from the current position, to the closest
point on the path, which is by definition, perpendicular to the
path. Mathematically, the perpendicular vector is given by

~p ∗⊥ =
p̂⊥
‖p̂⊥‖

where p̂⊥ =

(~Γ(s∗,bj , r)− ~x) ·~jT (~x)

(~Γ(s∗,bj , r)− ~x) · ~kT (~x)
0


(28)

where ~jT (~x) and ~kT (~x) are defined in (1) and shown in Fig.
4. The parallel vector, ~p ∗‖ , is a unit vector that lies parallel to
the path at the path variable corresponding to the closest point
on the path, s∗ and is calculated by

~p ∗‖ =
p̂‖

‖p̂‖‖
where p̂‖ =

d~Γ

ds

∣∣∣∣
s=s∗

. (29)

The desired velocity unit vector, ~vdes is then calculated as
the linearly weighted sum of the perpendicular and parallel
vectors according to

α(s∗) = min
{
α(s∗), α0

}
~vdes =

(
1− α(s∗)

α0

)
~p ∗‖ +

α(s∗)

α0
~p ∗⊥.

(30)

Here, α0 serves as an upper limit on the possible angle used in
the weighting. Intuitively, this means that if the angle between
the system and the path is more than α0, then the weighting
will be entirely on the second term, making the system head
directly towards the closest point on the path.

The desired velocity angle, which is the output of the
leftmost block in Fig. 6, is then given by γ(~vdes) where γ(·)
is the velocity angle calculated according to equation (2).

2) Tangent Roll Angle Selection: The next stage of the
flight controller maps this desired velocity angle to a desired
tangent roll angle, ξdes. Recall that the tangent roll angle, ξ,
describes the orientation of the system relative to the tangent
plane and determines the amount of fluid dynamic force that
contributes to turning on a sphere of radius ‖~x‖ centered at
G.

The desired tangent roll angle is calculated using saturated
proportional control based on the error in the velocity angle,
specifically:

ξdes=min{max{kγ (γ(~v)− γ(~vdes)) , ξmin}, ξmax}, (31)

where kγ is the proportional gain. We then calculate an error
signal, eξ(t) = ξ(~jB(t))− ξdes, where the current tangent roll
angle, ξ(~jB(t)), is calculated using equation (3).

3) Desired Moment Vector Selection: In selecting the de-
sired moments, we utilize the rolling moment to control
tangent roll angle, ξ, and yawing moment to drive aerodynamic
side slip angle, β, to zero. The PTO controller articulates the
elevator to passively trim the system to a high angle of attack,
resulting in large tether tension, during spool out and a low
angle of attack, resulting in low tether tension, during spool
in. Therefore, it is desirable that the deflection of the ailerons
and rudder contribute negligible or zero pitching moment. This
helps ensure that the PTO controller will be solely responsible
for the pitch behavior. Ultimately, the desired moment vector
is given by two PID controllers,

~Mdes =

kpLeξ(t) + kiL
∫ t

0
eξ(τ)dτ + kdL ėξ(t)
0

kpNβ(t) + kiN
∫ t

0
β(τ)dτ + kdN β̇(t)

 (32)

where β(t) is the fluid dynamic side slip angle.
4) Control Allocation Module: In order to map the de-

sired moment vector to control surface deflections, we invert
a linearized approximation of the nonlinear mapping from
deflections to hydrodynamic moments. This approximation is
calculated by neglecting the effect of angular velocity on the
apparent flow at each fluid dynamic surface, then linearizing
to obtain an expression in the following form:

~Mnet = ~Mo +A

δaδe
δr

 , (33)

where δa, δe, and δr represent the deflection angles of the
ailerons, elevator, and rudder, respectively. The variable ~Mo is
given by:

~Mo =
1

2
ρAr‖~va‖2

4∑
ia=1

~ra,ia×(CLo,ia~uL,ia + CDo,ia~uD,ia),

(34)
and the matrix A is formed by re-arranging the cross products
and deflection angles in (9) and (11) into a matrix where the
results of the cross products form the columns of the matrix:

A =
1

2
ρAr‖~va‖2

[
~a1 − ~a2,~a3,~a4

]
where

~ai=~ra,ia×(CL1,ia~uL,ia +CD1,ia~uD,ia) .
(35)

The resulting control surface deflections, δa and δr, are
computed by solving equation (33) for ~Mnet = ~Mdes where
~Mdes is given by equation (32). Note that the result for δe

obtained from this method is not used. Instead the value of δe
obtained from the PTO controller is passed to the plant.

C. Power Take-off (Winch) Controller

The iterative learning power take-off controller used in
this work seeks to satisfy the net-zero spooling constraint by
approximating the behavior over the next lap using feedback
from the previous lap. The commanded rate of tether release,
uT (t), is set by a spooling controller that seeks to spool tether
out at a high angle of attack during the portions of the lap in
which large tensions are possible, then spool tether in at a



low angle of attack during the remainder of the lap. The intra-
cycle spooling algorithm in this work is designed to maintain a
consistent tether length each lap, represented by the constraint:∫ tf,j

t0,j

ũj(τ)dτ = 0. (36)

where the index j refers to the lap or iteration number. This
ensures that the kite remains in a consistent depth within the
ocean velocity profile. In attempting to find the command
sequence that satisfies this constraint, we make several key
simplifying assumptions:

• The winch is capable of achieving the commanded speed.
• The winch is capable of achieving that speed quickly,

relative to the rate of change of the command.
• The commanded spooling speed is piecewise constant

over each of NR “spooling regions”, and alternates
between spooling in and spooling out at the maximum
speed, uspool.

The first two approximations should hold for a well-designed
winch/generator system, meaning that ũT (t) ≈ uT (t). The
three approximations together mean that the constraint equa-
tion of (36) can be written as:

0 = 11×NRU j−1∆j
T , (37)

where the matrix U j−1 ∈ RNR×NR is a diagonal matrix where
the element in the pth and qth column is given by:

U j−1
p,q =


uj−1
spool p = q = odd

− uj−1
spoolp = q = even

0 p 6= q.

(38)

As derived in [3], uj−1
spool is taken to be one third of the mean

flow speed at the vehicle center of mass (point B) over the last
lap of the system. The vector ∆j

T ∈ RNR is a vector containing
the time durations required to traverse each section of the
path during next (jth) lap. Because the timings of the next lap
are not known beforehand, it is desirable to define our tether
spooling controller in terms of the path variable, s, not time.
Therefore, we transform the time-domain constraint of (37) to
a path-domain constraint by using a numerical approximation
of the time derivative of the path variable from the previous
lap in each spooling region. Here, we denote the spooling
region with the index iR = 1, 2, . . . , NR. Specifically, we
approximate the ithR element of ∆j

T , written as ∆j
T,iR

in terms
of the path variable using logged data from the previous lap,
j− 1. This is where the feedback from the last lap enters into
the calculation of the control input (spooling regions) for the
next lap. Specifically,

∆j
T,iR
≈
sj−1
iR+1 − s

j−1
iR

δsj−1
iR

. (39)

Note that sj−1
iR

refers to the value of the path variable at the end
of the ithR region during the previous lap, j − 1. Additionally,

δsj−1
ir

is the mean of the time derivative of s(t) over the ithR
section of the path. Therefore

∆j
T =


1

δsj−1
1

0 . . . 0

0 1

δsj−1
2

. . . 0

...
...

. . .
...

0 0 0 1

δsj−1
NR+1

D

sj−1

1

sj−1
2
...

sj−1
NR+1

 , (40)

, δsj−1DSj−1. (41)

Furthermore, because the path is defined using a path variable
s ∈ {0, 1}, sjNR+1 = 1 for all j. The discrete difference opera-
tion matrix D ∈ RNR×NR is a matrix with ones along the main
diagonal and negative ones on the diagonal underneath the
main diagonal. Thus, after every lap, the problem of satisfying
our approximation of the net-zero spooling constraint becomes
one of solving an approximated version of the constraint
equation,

0 = 11×NRU j−1δsj−1DSj , (42)

for the vector Sj ∈ RNR+1, the elements of which define the
spooling regions for the next lap. Note that in general, this
is a single scalar equation and cannot be solved uniquely for
the elements of Sj . However, if we prescribe a structure to
the spooling regions, we can reduce the number of parameters
that define the spooling regions to one, resulting in a unique
solution. In the case of the figure-8 path geometry, we know
that the tension profile over the course of a figure-8 exhibits
two local minima, which occur roughly at s = 0.25 and s =
0.75. Therefore, we parameterize our vector Sj in terms of
a single scalar variable, σjw, which defines the width of the
spooling region. Therefore, Sj takes the form

Sj =


0.25
0.25
0.75
0.75

1

+


−1
1
−1
1
0

σjw. (43)

By substituting this expression into (42), we can solve directly
for the width of the spool-in regions, σjw. This then defines a
simple, switched spooling control structure:

ujT (s∗(t))=


uin 0.25− σjw ≤ s∗(t) ≤ 0.25 + σjw or

0.75− σjw ≤ s∗(t) ≤ 0.75 + σjw,

uout otherwise.
(44)

While (44) will yield zero net spooling under nominal condi-
tions, it is not robust to disturbances that cause the actual
flight speed (and therefore the time required to traverse a
particular section of the figure-8) to differ from that which
was used in computing ujT (s∗(t)). To add robustness to the
spooling strategy, we utilize a simple feedback controller to
track a target tether length, ljT,SP (s(t)), which is obtained by
integrating (44) over the path as follows:

ljT,SP (s(t)) = lT,0 +

∫ s(t)

0

ujT (σ)

δsj−1
dσ (45)

where lT,0 is the target tether length selected by the user.
It should finally be noted that if the equation (45) utilizes a



spooling rate that is not achievable due to saturation limits on
the winch, then this will result in the system spooling out (or
in) over a longer fraction of the lap than originally anticipated
but will still result in approximately zero net spooling for each
lap.

D. ILC-Based Path Optimization Controller

The purpose of the path adaptation algorithm is to use
previous iterations’ paths and corresponding performances to
adjust future paths to achieve convergence to an optimal path.
In applications where the next iteration starts at the exact time
that the current iteration ends, the path adaptation must take
place very quickly, so that the new path geometry is available
at the beginning of each iteration. By parameterizing the path
in terms of a small set of basis parameters, this work ensures
that the adaptation procedure is computationally feasible for
real-time implementation.

The following adaptation law is applied at the end of each
iteration (j):

bj+1 = bj +KL∇J̃(bj) + pj . (46)

In this update law, bj ∈ Rn represents the basis parameters
at iteration j, the matrix KL ∈ Rn×n represents the learning
gain and ∇J̃(b j) is the gradient of the estimated response
surface, J̃ , at the current basis parameters, bj , of iteration j.
The term pj is a persistent excitation term that is designed
to ensure sufficient exploration of the basis parameter space,
which then ensures convergence of bj to a region containing
the true optimal set of basis parameters, b∗.

The structure of the update law in (46), parallels the
structure of gradient-based ILC [22], with bj taking the place
of the control input sequence and ∇J̃(b j) taking the place of
the gradient of a (squared) tracking error cost function with
respect to the control input sequence. The first two terms of the
adaptation law reflect movement in the direction of perceived
increasing performance index.

By restricting the set of possible path geometries through
this parameterization of the generic path, ~p(s), we may sac-
rifice the global optimality of the final result. However, with
a proper choice of parameterization, this loss of optimality
may be negligible. Furthermore, by reducing the design space
through parameterization, the problem gains some structure,
and it becomes computationally feasible to solve in real-time.
Additionally, we apply a trust region to the basis parameters
in order to eliminate large changes in path shape that could
potentially destabilize the system.

To implement the course geometry adaptation strategy, three
mathematical operations must take place at each iteration:

1) The estimated response surface, J̃(b j), must be updated
based on performance over the previous iteration.

2) The estimated optimal basis parameters, b̃∗j , or the
estimated gradient of the response surface, ∇J̃(bj),
must be calculated from the estimated response surface.

3) The path geometry for the next iteration, ~pj+1(s), must
be updated according to the expression for ~p(s) and
equation (46).

These operations are shown as blocks in Fig. 7, which is in
turn a detailed depiction of the block labelled “ILC-Based Path
Optimization” from Fig. 5. We now consider how to quickly
and efficiently perform the response surface estimate update
and ILC-based basis parameter update steps. To estimate

Fig. 7. Detailed block diagram of the ILC-based path opti-
mization shown in Fig. 5.

J̃(b j), we model the performance index as the inner product
of a regressor vector, h(b) ∈ Rq , and a coefficient vector,
c ∈ Rq , as follows:

J̃(bj) = h(bj)
T cj . (47)

Here, J̃(bj) represents an approximation of the performance
index, and the regressor vector structure, h(bj), is selected to
encode the anticipated dependency of J on the basis parame-
ters (e.g., if we expect that J is quadratic with respect to the
basis parameters, then terms h(bj) should include the squares
of the basis parameters). The coefficients to the estimated
response surface, c are then identified at each iteration, j, using
recursive least squares (RLS), with an exponential forgetting
factor, λ, as follows:

Vj =
1

λ

(
Vj−1 −

Vj−1h(bj)h(bj)
TVj−1

1 + h(bj)TVj−1h(bj)

)
, λ ≤ 1

cj = cj−1 + Vjh(bj)
(
J(bj)− h(bj)

T cj−1

)
(48)

where Vj is the inverse of the weighted sample covariance
matrix.

Given a parameter estimate, cj , the corresponding gradient
of h(bj)

T cj , denoted by ∇J̃(bj), is computed either analyt-
ically or numerically.

Note that this method of parameterizing the response sur-
face implicitly assumes that the initial condition, x(0), and
environmental conditions, de(t), are constant from iteration
to iteration, as mentioned earlier. This realization further
motivates the introduction of the forgetting factor, λ, which
heavily weights recently acquired data in the estimate, cj
thus ensuring that the estimated response surface is weighted
towards data acquired using similar course geometries and
under similar flow conditions.

E. MHK-Specific Implementation

Although the algorithm described in this work is generic, the
performance index for this application is chosen to achieve two
simultaneous goals. The first term of this performance index
characterizes the mean power generation over a single itera-
tion, and the second term serves as a penalty on undesirable



paths, thus incorporating secondary design objectives. Specif-
ically, the performance index at each iteration is calculated
as

Jj =
1

te,j − ts,j

∫ te,j

ts,j

P (τ)− kwd(τ)dτ, (49)

where ts,j and te,j are the start and end times of the j-th
iteration, P (t) is the estimated power produced by (23), kw
is a scalar weight, and d(t) is the penalty that describes our
secondary design objectives. In this work, we use d(t) = α(t)
where α(t) is the interior angle to the path calculated at every
instant via the second equation in (27).

Table II summarizes critical parameters used in all three
controllers. In this work, we used a diagonal learning gain
matrix with KL = kLI

2×2 where kL ∈ R. The penalty
weights were tuned to reflect the goals of the designer. There
is a well-established trade-off between robustness and perfor-
mance when tuning penalty weights for an economic objective.
The learning gains were tuned heuristically by comparing
changes in the achieved performance to changes in the basis
parameters.

Note that table II shows different values for the penalty
weight kw used in (49) and the learning gain kL used in equa-
tion (46) depending on which flow speed is being examined.
This is because the power production of the system varies
dramatically with flow speed. Under idealized circumstances,
the power produced by an MHK system is proportional to the
flow speed cubed. Thus, the magnitude of the first term in (49)
and the gradient in (46) are expected to increase almost eight-
fold when the flow speed is doubled. Thus, in order to select
weights and gains for simulations, the algorithm was first tuned
for a constant 1 m/s flow speed and then the resulting weights
and gains were multiplied or divided appropriately by 0.8v3

f

where vf is the flow speed being used in simulation. Note that
0.8 was chosen heuristically and is meant to capture deviations
from the ideal power scaling laws. In the case of the variable
flow speed simulation vf = 1.5m/s was used.

V. RESULTS

To investigate the efficacy of our control and optimization
structure we simulated two test cases. In both test cases,
the algorithm was implemented on a realistic, 6 DoF kite
model with a lumped mass tether model, performing intracycle
flight, made possible by our new iterative learning spooling
controller. The test cases were:
• a spatially and temporally constant flow environment

where the flow velocity vector is independent of spatial
location and time, and

• a spatially and temporally varying flow environment
where the flow velocity vectors were calculated using
an ocean flow model that combines both high and low
frequency flow components as detailed in section III.

In both the constant and varying flow simulation results, we
simulated a system deployed from a fixed floating platform
located 200 m above the sea floor. The path under consid-
eration had a mean azimuth angle, b3, of 0◦ and a mean
elevation angle, b4, of −20◦. Note that the negative elevation
angle corresponds to deployment from a floating platform, as

depicted on the left of Fig. 2. A summary of plant parameters
used in simulation is given in table I.

In this work, we attempt to highlight the controller’s ability
to converge to optimal path parameters even when the initial
path parameters are far from the optimal values. Therefore,
we intentionally picked initial conditions that were far from
the optimum but represented a reasonable path geometry
that could be selected by someone versed in tethered energy
systems.

Table II
Important Controller Parameters

Variable Description Value Units

Path-Optimization Controller

k1L Learning gain for 1 m/s flow 21×10−6 rad2/W
k1w Penalty weight for 1 m/s flow 43 kW/rad
k2L Learning gain for 2 m/s flow 3.3×10−6 rad2/W
k2w Penalty weight for 2 m/s flow 274 kW/rad
kvL Learning gain variable flow 7.8×10−6 rad2/W
kvw Penalty weight variable flow 116 kW/rad
pmax Maximum persistent excitation 0.02 −
λ Forgetting factor 0.95 −

Flight Controller

α0 Angle weighting limit 6 deg
kγ Tangent roll proportional gain 0.2 −
ξmin Min prescribed tangent roll −20 deg
ξmax Min prescribed tangent roll 20 deg
kpL Roll moment proportional gain 6.3× 105 Nm/rad
kiL Roll moment integral gain 0 Nm/rad s
kdL Roll moment derivative gain 6.3× 105 Nms/rad
τL Roll moment filter time constant 0.001 s
kpN Yaw moment proportional gain 5730 Nm/rad
kiN Yaw moment integral gain 0 Nm/rad s
kdN Yaw moment derivative gain 0 Nms/rad
τN Yaw moment filter time constant 1 s

PTO Controller

− Spool in elevator deflection 23 deg
− Spool out elevator deflection 0 deg

A. Spatiotemporally Constant Flow Profile

The results in this section were obtained for two spatiotem-
porally constant flow profiles, one in which ~vf,i(t, ~ri) =[
1 0 0

]T ∀ ~ri, t, and one in which ~vf,i(t, ~ri) =[
2 0 0

]T ∀~ri, t. Both flow speeds were compared to base-
line simulations wherein the course geometry did not change
from the initial conditions. Note that changes in performance
for the baseline simulation are due to transient behavior in
the iteration domain of the spooling controller. Similarly, the
momentary peak in mean power in Fig. 8d is also due to
iteration domain transients in the PTO controller.

Results are shown in Fig. 8. Fig. 8a and 8e show how the
basis parameters change over the course of the 100 minute
simulation and Fig. 8c and 8g show the shape of the path at
the beginning and end of the optimization for both simulations.
It is interesting to note that under both flow speeds, b1
converged to nearly the same value, while b2 converged to
different values. This suggests that the optimal value of b1
may be relatively insensitive to flow speed whereas the optimal
value of b2 may vary with the flow speed. Also, because the



optimized path shape is significantly larger than the initial
path, the optimized path resulted in fewer iterations than the
unoptimized path, as noted in the legend of Fig. 8b, 8d, 8f,
and 8h.

Furthermore, the final converged values of power production
shown in Fig. 8d and 8h appear to nearly follow the ideal-
ized relationship between flow speed and power production.
Finally, note that the optimized path geometry produced ap-
proximately 100% to 200% more power than the unoptimized
path geometry.

B. Spatiotemporally Varying Flow Profile

Simulations in the realistic flow scenarios were compared
against a baseline wherein the course geometry was fixed at
the initial course geometry over the entire duration of the
simulation.

Fig. 9a shows the evolution of the basis parameters over the
course of 100 minutes of simulation, and Fig. 9c shows the
shape of the target path for both the first and last iteration. We
can see from the plots that the path shape parameters change
significantly from the initial conditions, resulting in a signif-
icantly larger course geometry. Similar to the constant flow
results in the previous section, the optimized path geometry
was larger than the initial path geometry, resulting in fewer
iterations over the whole simulation.

Fig. 9b and 9d show how the performance index and mean
power vary over the course of the 100 minute simulation time.
We can see from Fig. 9b that the ILC-based path optimization
significantly increases the performance index. In fact, Fig.
9d shows that it results in just under 25 kW on average,
whereas the unoptimized course produces results in 12.5 kW
on average, an increase of almost 100%. Additionally, this
plot demonstrates that the algorithm is not sensitive to high-
frequency, spatiotemporal variations in flow speed.

C. Convergence Sensitivity Analysis

The authors’ prior analysis in [10] provided a set of
conditions under which the proposed iterative learning-based
update would converge within a specified ball around the
optimal set of basis parameters, under somewhat aspirational
assumptions about the system. In particular, the theoretical
results of [10] were based on the assumptions of (i) strictly
parametric uncertainty in the performance index model (which
implies either insensitivity to initial conditions on each cycle
or an initial condition reset, since the performance index is
specified as a function of the basis parameters), (ii) Lipschitz
continuity of the performance index (with respect to basis
parameters), and (iii) persistent excitation. These assumptions
are formally stated as follows:
• Assumption 1: The initial condition, x(0), and the ex-

ternal disturbance, de(t), are iteration-invariant, and the
only uncertainties are parametric

J(bj ,x(0), ) = h(bj)
T , de(t))β

∗ for some β∗. (50)

• Assumption 2: The performance index, J(b) is convex
and differentiable everywhere, possesses a unique max-

imizer, and the gradient is Lipschitz continuous with
constant L, that is,

||∇J(bj+1)−∇J(bj)|| ≤ L||bj+1 − bj ||. (51)

• Assumption 3: The excitation signal at each iteration, pj ,
is chosen such that there exists an integer T > 0 for
which,

k+T∑
i=k

[
h

(
ξ +

i∑
k=0

(∆)k + pj+k

)]
×

[
h

(
ξ +

i∑
k=0

(∆)k + pj+k

)]T
� 0

∀ξ ∈ Rnb ,∆k ∈ Rnb , ‖∆k‖ ≤ ∆max, k = 0...T.

(52)

Assumption 1 can be approximately satisfied through suffi-
ciently small learning gains (kL); however, perfect satisfaction
requires either an initial condition reset between cycles or
a performance index that is independent of the initial state.
Assumption 2 will typically be satisfied in our application,
and Assumption 3 can be satisfied but requires a persistent
excitation signal (which is indeed included in the update law)
in instances where the environment alone does not provide
sufficient excitation. Given the realities of the tethered energy
system, particularly in regard to Assumption 1, it is interesting
to perform a simulation-based convergence analysis to observe
how convergence properties hold up in this non-idealized
case, when compared to theoretical guarantees. It is also
worth investigating whether the properties of the turbulent
environment alone will provide sufficient excitation so as to
rule out the need to explicitly include a persistent excitation
term in the update law.

To perform the aforementioned analysis, we first recall the
convergence result (under the aforementioned assumptions)
from [10], then examine the sensitivity of converged perfor-
mance with respect to the critical variables involved in this
convergence result (namely the excitation size, pmax, and the
learning gain, kL). The convergence result is given as follows:

Proposition 1: Suppose that Assumptions 1, 2 and 3 are
satisfied, ||pj || ≤ pmax, ∀j ≥ 0, and 0 < kL < 2

L . Further-
more, define B = {b : ‖OJ(b)‖ ≤ pmax/((2/L)− kL)},
and J

′
as the maximum scalar such that B ⊂ S, where

S =
{
b : J(b) ≥ J ′

}
. The following results hold:

1) limj→∞

∥∥∥J̃(bj)− J(b)
∥∥∥ = 0

2) The set S is attractive.
Readers are referred to [10] for the proof.

Given this result, we performed a sensitivity analysis com-
paring the sensitivity of the achieved performance to the
maximum persistent excitation, pmax. When the sensitivity of
the achieved performance was compared to the learning gain,
kL, it was found that as long as the learning gain was kept
between between 0 and 2/L, there was no substantial impact
on converged performance. In this analysis, the persistent
excitation maximum was varied between 0.005 and 0.030. This
analysis was performed using a spatiotemporally constant flow
speed of 2 m/s. In Fig. 10 it can be seen that as the persistent
excitation maximum increases, the set of basis parameters



(a) Basis parameters for a spatiotemporally constant flow speed
of 1 m/s

(b) Performance index for a spatiotemporally constant flow speed
of 1 m/s

(c) Change in the three-dimensional path shape for a spatiotem-
porally constant flow speed of 1 m/s

(d) Mean power for a spatiotemporally constant flow speed of 1
m/s

(e) Basis parameters for a spatiotemporally constant flow speed
of 2 m/s

(f) Performance index for a spatiotemporally constant flow speed
of 2 m/s

(g) Change in the three-dimensional path shape for a spatiotem-
porally constant flow speed of 2 m/s

(h) Mean power for a spatiotemporally constant flow speed of 2
m/s

Fig. 8. Summary results for a spatially and temporally constant flow profile at both 1 m/s and 2 m/s.

that the simulations converged to increases in size. This trend
agrees with theory and with intuition, due to the definition of
set B, where the term pmax appears in the numerator of the
bound defining the maximum extent of the attractive set.

A natural follow-up question surrounds the performance
implications of larger excitation signals, as larger excitation
leads to a larger converged set of basis parameters, which will
contain basis parameters farther from the optimal values. It can
be seen from Fig. 11, that as the persistent excitation maximum
increases, the performance level in all cases converges to
largely the same value. The reason for this occurrence can
be seen in Fig. 12 where the performance index is shown as
a function of basis parameters. In this figure, it can be seen

that deviations of up to around 20 percent in basis parameters
around their optimal values results in less than 5 percent per-
formance degradation. However, the performance degradation
farther away from this optimum is severe, so it is important
that the figure-8 path shape converge to within this relatively
flat “plateau” of basis parameters. Furthermore, the optimal
basis parameters depend on the prevailing flow speed (which
varies slowly, but significantly, in marine environments) as
well as the length of the kite’s tether, making the ILC update
a useful tool in achieving optimal operation.



(a) Basis parameters for a spatiotemporally varying flow speed (b) Performance index for a spatiotemporally varying flow speed

(c) Change in the three-dimensional path shape for a spatiotem-
porally varying flow speed

(d) Mean power for a spatiotemporally varying flow speed

Fig. 9. Summary results for a spatially and temporally varying flow profile consisting of a low frequency component and
high-frequency, turbulent component.

(a) Basis parameters versus time at a persistent excitation maxi-
mum of 0.005 when the flow speed is a constant 2 m/s.

(b) Basis parameters versus time at a persistent excitation maxi-
mum of 0.010 when the flow speed is a constant 2 m/s.

(c) Basis parameters versus time at a persistent excitation maxi-
mum of 0.015 when the flow speed is a constant 2 m/s.

(d) Basis parameters versus time at a persistent excitation maxi-
mum of 0.020 when the flow speed is a constant 2 m/s.

(e) Basis parameters versus time at a persistent excitation maxi-
mum of 0.025 when the flow speed is a constant 2 m/s.

(f) Basis parameters versus time at a persistent excitation maxi-
mum of 0.030 when the flow speed is a constant 2 m/s.

Fig. 10. Basis parameters versus time at a persistent excitation maximum ranging from 0.005 to 0.030 at a constant flow speed
of 2 m/s.



(a) Performance index versus time at a persistent excitation
maximum of 0.005 when the flow speed is a constant 2 m/s.

(b) Performance index versus time at a persistent excitation
maximum of 0.010 when the flow speed is a constant 2 m/s.

(c) Performance index versus time at a persistent excitation
maximum of 0.015 when the flow speed is a constant 2 m/s.

(d) Performance index versus time at a persistent excitation
maximum of 0.020 when the flow speed is a constant 2 m/s.

(e) Performance index versus time at a persistent excitation
maximum of 0.025 when the flow speed is a constant 2 m/s.

(f) Performance index versus time at a persistent excitation
maximum of 0.030 when the flow speed is a constant 2 m/s.

Fig. 11. Performance index versus time at a persistent excitation maximum ranging from 0.005 to 0.030 when the flow speed
is a constant 2 m/s.

Fig. 12. The above figure shows the performance index versus
basis parameters when the flow speed is a constant 2 m/s.

VI. CONCLUSION

This work presented an ILC-based path optimization imple-
mented on a realistic dynamic model of a marine hydrokinetic
(MHK) tethered energy system. This algorithm was shown to
be effective in both a constant flow field and a realistic 3-D
spatiotemporally varying flow field incorporating both low-
frequency current information and high-frequency turbulence.
Additionally, the results demonstrated that the ILC-based path
optimization was capable of augmenting the average power

production by nearly 100%, relative to the initial path geome-
try in a realistic, spatiotemporally varying turbulent flow field.
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