An Oxide Wear Model of Ultrasonic Bonding
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Abstract

A modeling approach is developed to better describe the relation between input electrical power and the
physical reaction of the bonding system during ultrasonic bonding. The major distinction between this
analysis and previously published works is to attempt to eliminate empirically driven correlations between
the input power and the kinetics of the bonding process. Two models, a piezoelectric model and an ultrasonic
bonding model, are combined in order to reach this goal. The piezoelectric model is used to calculate the
desired forcing, amplitude, and frequency that is created by the piezoelectric transducer during the actual
ultrasonic bonding process. For this process, a lumped parameter model, taken from literature, is used, that
converts input current and voltage to velocity and position of the bonding tooltip, respectively. This model
is then combined with an updated model of the relative amplitude between the bonding material and substrate
as the ultrasonic bond is being formed. Our model differs from existing friction power models by utilizing
the Archard Equation to account for the removal of the natural oxide film. The integrated model provides a
relationship between the bond growth and the driving power. The analysis enables comparison between the
transverse force on the bond tool and amplitude of the bond tool’s motion for different electrical input powers.
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I. Introduction

Ultrasonic bonding is widely used in different industries,
such as electronic packaging [1]. Obtaining a comprehensive
model of ultrasonic bonding is an important step in
uncovering a thorough understanding of the dependencies
between process parameters and outcomes on both the
microscopic and macroscopic scale. Several macroscopic
models have been developed to describe different types of
ultrasonic bonding. Finite Element Method (FEM) is
commonly used to more closely model microscopic
behaviors. Friction heating was modeled in ribbon bonding
by assuming the friction power was caused by the shear
stress at the interface [2]. An FEM model was used to
determine the pressure distribution at the bonded interface.

These FEM results were then used in a holistic model of the
wedge-wedge wire bonding process [3]. Oxide fracture in
wedge-wedge wire bonding was modeled using a shear lag
model developed for cold rolling [4]

Another popular approach is to link the rate of bond growth
to the friction power at the interface. A bond growth model
by Mayer and Schwizer [5] was developed that can be used
for determining the relative amplitude between the ball and
substrate, and the ratio of unbonded interface area to the total
interface area. It assumes that the rate of bond growth is
proportional to the power supplied to the interface. It also lets
the transverse force acting at the interface be composed of
the friction and the shear strength of the bonds formed. These
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two forces are weighted by the percentage of the unbonded
and bonded areas respectively [5].

The model derived by Mayer-Schwizer [5] has been
expanded upon. An equation was derived for the contact
height [6] [7]. Experimental observations have been used to
relate the ultrasonic transducer current to relative amplitudes
in this model [8]. Recently, this model has been expanded to
take into account the activated area to model ultrasonic
cleaning [9].

In the present work, we propose to develop a modified
version of the Mayer-Schwizer model that uses the Archard
Equation to determine the relationship between the bond
growth rate and wear. This model was conceived through
earlier work about how the Archard wear Equation could be
used to better understand oxide fracture [10]. Lumped
parameters models also have been used to understand the
system level dynamics of ultrasonic bonders [11]. A
modified version of the lumped parameter piezoelectric
model developed by Goldfarb and Celanovic [12] is used to
model the ultrasonic transducer. The main purpose of this
work is to present a modified modeling approach, which is
less dependent on experimentally obtained parameters, and
compare it to the existing model. The overall system level
model is first reviewed. Then the procedure on how the
Archard Equation is incorporated into the model is
described.

I1. Approach

The overall approach is to replace the relationship between
the bond growth ratio and friction power used in the Mayer
and Schwizer model with the Archard Equation. There are
two sections of the model. The first section, referred to as the
System Level model, accounts for the dynamics of the
ultrasonic transducer. The second section, referred to as the
Oxide Wear and Bond Growth model, replaces the friction
power relationship in the Mayer and Schwizer model. This
relationship is described briefly in this section.

A. System Level Model

The model of the entire bonding system is depicted in Figure
1 and Figure 2. The circuit depicted in Figure 1 is meant to
capture the electrical side, while the diagram in Figure 2 is
meant to capture the mechanical side
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Figure 1: Modified circuit based on Goldfarb Model [12].

Figure 2: Modified mechanical diagram based on Goldfarb
Model to capture other components of bonding [5] [12].

In Figure 2, F is the force produced by the transducer, m is
the mass, b is the damping, k is the stiffness, C is the
capacitance, n is the electromechanical transformation ratio,
x is the position of the transducer and tool, F, is the normal
force, Fy is the transverse force, and V is the voltage supplied
to the transducer. The charge across the piezoelectric
transducer has two components, q; = CV to account for the
capacitive behavior of piezoelectric elements and g, =
nx to account for the mechanically induced charge. These
diagrams give the following Equations:

mx +bx+ kx = F+ Fr €))
F=nv )

V =Vysin(wt) 3)
I=nx+CV 4)

where, w is the angular frequency of the voltage signal, ¢ is
time, and I is the current. Despite the lumped piezo model
only being valid below the first resonant frequency mode, it
allows for an estimation of the current supplied to the
transducer [12].

The transverse force given by the Mayer and Schwizer model
is composed of the friction force yF, and o the shear strength
of the bonds

Fr(t) = [1—y@®]uF, +y(@®)oS )
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wherey = % is the ratio of the bonded area Sy ;4.4 and

the total interface area S [5]. ¥ acts as a way to weight the
friction and shear strength of the bonds.

Another aspect of the Mayer-Schwizer model is the
relationship between A,;(t), the free air vibration
amplitude 4,(t), the overall system compliance c, and Fr(t)

[5]
Ape(t) = Ag(t) — cFr(t) (6)

The free air vibration amplitude is estimated using the free
air response X, (t), or the solution to Equations (1)-(3) such
that the transverse force is zero Fr = 0. The free air vibration
with no initial displacement or velocity x,(0) = 0,
Xy(0) = 0is given by:

xo(t) = Cycos(wt) + C;sin(wt)
+ [ Cysin(wyt) @)
+ C3cos(wyt)]e=Sen
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where w,, is the natural radial frequency, w, is the damped
natural radial frequency, and { is the damping coefficient.
With the free air vibration response, the free air vibration
amplitude can be estimated using the steady state amplitude

AO,ss
Agss = JCOZ +C? (11)
Agest(t) = ‘/Coz +C,° (1—e %) (12)

where A o5 (t) is an exponential estimation of how the free
air vibration changes with time. Results with A, (t) = A s
and Ao (t) = Ages:(t) are presented in the results section.
The solution for the free air vibration can be found for
different Voltage amplitudes ;. The power applied to the
transducer can be calculated as:

P = LpsVims (13)

where the root mean square is taken of both the current
obtained from Equation (4) and the voltage from Equation

).

B. Oxide Wear and Bond Growth

In the case of ultrasonic bonding, the surface oxide layer
prevents bonding from occurring. In the Mayer-Schwizer
model, these processes were accounted for using the
following equation:

y = Epunbonded (t) (14)

S
where Py,pondea (t) is the unbonded friction power and S is
the bond growth coefficient [5] [6]. To use this equation, an
experimentally determined value for § should be used.

To eliminate the dependency to experimental testing, the
Archard Equation is used. The Archard Equation gives the
oxide volume that is worn down due to the friction work that
is supplied to the surface. This worn volume can be
expressed in terms of the oxide wear height h and the total
interface area S giving the following equation:

, - KED

s (15)

where K is the wear is constant, D is the total sliding
distance, and H is the material hardness [10]. A diagram of
the bonding material-substrate contact is depicted in Figure
3. While the goal of this model is to look at ultrasonic
bonding in general, the bonding material will be referred to
as “ball” for convenience. As shown in the figure, 2L is the
ball diameter, h,,;q. is the initial oxide height, and x;, is the
coordinate for describing the interface surface area.
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Figure 3: Coordinates of Bonded Area.

In developing the model, three assumptions are made, the
first assumption, assumption (Al), is that the oxide wear
height is a function of x;, and t orh = h(x,,t). Based on
how the coordinate system is defined, the interface area is
assumed to be rectangular such that S = 2Lr, where r is the
width out of the page. To get the dependence upon x;,, we let
the stress F/S = W (x,)/r , where W (x,,) is the force per



unit length. The ball diameter 2L is brought into the force to
turn it into a force per unit length.

To get the dependence upon time it is assumed D = D(t)
such that

D) = f M A (L -y de (16)
0

where t*is a dummy integration variable. The unweighted
velocity is 4f A, (t). The addition of the 4f is due to the
fact that during one period, the ball moves 4 amplitudes in
length. The weighting factor [1—y(t)] is to take into
account that once the surface is completely bonded there is
no more motion between the ball and the substrate [5].

The second major assumption, assumption (A2), is that once
h(x,t) reaches a critical value, i.e. h., a bond forms.
Assumption (2) is not far from what occurs in ultrasonic ball
bonding. Surface oxides are removed due to the ultrasonic
vibrations and the normal force. Before the ultrasonic
vibrations begin, the normal force and the surface roughness
of the ball and substrate lead to the formation of cracks in the
oxide layer. After ultrasonic vibration, the cracks grow and
the oxides eventually detach. These oxide particles move
around the interface due to the ultrasonic vibration, tending
to move out to the periphery [13]. Once this process occurs
and the ball and substrate are separated by a small distance,
i.e. Njymp, bonding occurs. Recently this jump to contact
behavior for aluminum-aluminum bonding was simulated. It
was found that the critical separation distance for jump to
contact to occuris 5.8 A +0.05 A [14]. From this discussion,
letting |Rjymp|l = |hoxidze — Rerie| gives this the assumption
of bond formation once h(x, t) = h..;; some physical basis.

It is fair to point out that since h,yige > herie, the model
predicts that there will be an oxide layer with a thickness
hjymp rtemaining, which in reality would prevent any
bonding from occurring. This is because the Archard
Equation does not account for the cracking and detachment
of the oxide layer, or the motion of resulting oxide particles.
Both of these processes lead to the exposed surfaces and
jump to contact behavior. Since the oxides are not extracted
from the interface during bonding, oxides particles are still
present in the interface among micro-welds. The presence of
oxide particles in bonded regions has been experimental
confirmed [15]. To account for these processes would
require a more thorough investigation that is beyond the

scope of this work. Therefore, these processes are ignored
when it is assumed that at h(x,,, t) = h;; bonding occurs.

Because h(xy,t) is a function of two variables, plotting all
values (x3,t, h(xp,t)) in the domain of —L < x;, < L and
0 <t <tnee will yield 3d surfaces. Constant values
h(xp, t) result in level curves of these surfaces. These curves
relate x;, and t together. When h(x,,t) = h.; , or when a
bond forms, the exact position of where the bond forms will
be given by x;, for a given time t. This leads to

_ KW(xbonded)D (t)

hcrit - Hr (1 7)

where Xpongeq 18 the position of the growing bond area
relative to xp,.

Because of the second assumption (A2), the form of W (x;)
will determine how the bond grows. There have been several
investigations on how the interface evolves in wedge-wedge
wire bonding. Evidence suggests that bonding begins in the
central regions for wedge-wedge wire bonding [15]. A
second bonding pattern has also been reported that begins in
the periphery and moves towards the center, greatly
strengthening the bond [16]. In situ analysis of wedge-wedge
bonding shows the total interface area S grows. The analysis
also shows that there is both a static central region, where
there is micro-weld bond growth among interspersed oxide
particles, and a friction region that starts in the peripheral
region. In the final stages of bonding, the strongest bonded
areas are in the regions adjacent to the peripheral regions
[17].
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Figure 4: FEM results for stresses at the interface in ball bonding
for a load of 2.75 mN. The ball diameter is 34 um and the stresses
arein GPa [18].

Based on these observations, the third major assumption,
assumption (A3), assumes W (x,,) is parabolic, with a local
maximum at the center. Assumption (A3) is also supported
by FEM analysis based on an unpublished work by Tszeng



[18]. The results are shown in Figure 4 and Figure 5. The
stress achieves a maximum magnitude near the center. Also
the stress near the ends of the ball, or at L = 17um, is nearly
Zero.

Choosing a parabolic distribution also leads to bonding to
start at the center and end in the peripheral regions, which is
consistent with experimental results, assuming that the
interface in ball bonding evolves similar to wedge-wedge.
The parabolic distribution is

W(xb) =A+Bxb2. (18)

Stress [GPa]
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Figure 5: Normal Stress distribution achieves a maximum value
near the center of the bonding coordinate. The ball diameter is 34

um.

After making this third assumption (A3), Equations (17) and
(18) can be used to solve for X,pnged:

h.+Hr 1 A
Xbonded = i\/L—__' 19)

KB D(t) B

From this it follows that the bonded area is Syongeqd =
2Xpondea? - Therefore the bond growth ratio is given by

X,
y = bozded. (20)

Using Equations (1)-(3) and (20), a complete state space
model is found. After substituting Equation (19) into
Equation (20) and using with y; = x, y, = X, and y; = y the
state space equations are

Yi= Y2 2D
j k b + ! Fr(t)
Vo= ——Y1— Y21t It
m m n m (22)
+—Osin(wt)
2fK "
o= — LZB 2
Y3 = T HhoulPrBy, & B3 (23)

+ A)ZArel(yS)[l - y3]-

In order for the bond growth ratio to go to 1 as t goes to
infinity it is necessary to enforce conditions on the bond
growth ratio. Taking the limit of Equations (19) and (20)

. . ’ A .
results in t11m Xponded = L - and limy; =1 =
—00

too0
1

lim xp,pn4eq- This gives the condition
Lt

A
B = I (24)
W) = E,ax/2L and W(£L) = F;/2L, this gives

Fmax
A = 25
f > LF (25)
p — _min___max 26
TE (26)

Imposing these condition as t goes to infinity shows that
Fpin, must be zero for y = 1 as — oo . This also matches the
FEM results shown in Figure 5. F,,, is then determined by
integrating Equation (18) for —L < x;, < L. This gives
Fnax = 3/2F,. Equations (21)-(23) are solved numerically
for five voltages V, = {80,90,100,110,120}V with h.;; =
4.42nm and the following boundary conditions: y;(0) = O,
y,(0) = 0, and y5(0) = 0.05. The initial bond growth
ratio is set to a nonzero value to account for the cracks that
form due to contact before ultrasonic vibration is applied [6].
This initial bond growth is equivalent to assuming there is an
initial wear height h..;;. Also because of the presence of
1/y5in Equation (26), setting y;(0) = 0 would result in an
initially infinite bond growth rate. The constants used for the
model are shown in Table I. These constants are presented
for demonstration purposes. Most constants are taken from
other work [12] [5] [10] [14] [6]. The spring constant k was
set such that the transducer is resonating at f = 130 kHz by
using Equation (10).



Table I: Constants used Zor the model

Variable Value

Description

m 3.75 g* Mass

b 150 Ns/m* Damping

k 2.5 GN/m Spring Stiffness

n 10* Electro-Mechanical Ratio

C 1.2 uF* Capacitance

c 1.33 pm/N ** Tool Compliance

S 207.5 mm? ** Interface Area

B 55 x 10~Sm?/J ** Bond Growth Coefficient

F, 0.15 ** Normal Force

n 0.48 ** Coefficient of Friction

f 130,000 Hz** Frequency

o 125 Mpa ** Shear Strength of Bonds
Roxide 5 nm *** Initial Oxide Height

H 1400 kg/mm?*** Oxide Hardness

K 1Xx 107 5% Wear Constant
Rjump 5.8 A #kx Jump to Contact Distance

y5(0) 0.05 **x*%

Vo {80,90,100,110,120}

Volts

Initial Bond Growth Ratio

Input Voltage Amplitudes

* = from [12], **= from [5], ***= from [10], ****= from [14],

sHkkt=from [6]

II1. Results and Discussion

The estimation of the free air vibration amplitude using
Ay(t) = Ages:(t) in Equation (12), and the free air response
using Equation (7) are both calculated with V; = 100 V. As
shown in Figure 6, A .5 (t) is a good estimation of the free
air response amplitude. Using an exponential function in the
form of Ay s (t) is similar to using a constant value, since
the rise time is only about 10~ *seconds.

The relative amplitude as a function of the transverse force
for the five voltage amplitudes are calculated using
Equations (5) and (6). The relative amplitudes in Figure 7 are
calculated using Ay(t) = Ages:(t) or Equation (12), while
the relative amplitudes in Figure 8 use Ay(t) = Ay or

Equation (11). For both Figures, the power is calculated
using Equation (13).

e
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Figure 6: The free air response and estimation of the free air
amplitude for Vo = 100 V.
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Figure 7: Relative amplitude against the Transverse force for Vy =
{80,90,100,110,120} V.

The results in Fig. 7 using Ages(t) show the relative
amplitude has two regions. In the first region the relative
amplitudes sharply increase for nearly constant transverse
forces. Initially the bond does not grow very fast, which
causes the bonding ratio y(t) in Equation (5) to be nearly
zero. At this stage the transverse force mostly comprises the
friction force. In the second region, the relative amplitude is
linear with respect to the transverse force. As the power
increases, the relative amplitude increases since the
transducer produces larger forces at higher powers. Also as
the transverse force increases, the relative amplitude
decreases since the transverse force restricts the motion of
the ball.
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Figure 8: The same plot as in Figure 7, when the firee air vibration
amplitude is set equal to the steady state amplitude (Ay(t) =
A ss(t)).

There is only a linear region present in the results shown Fig.
8. This is because A s is a constant, which does not account
for when the transducer is initially starting up. Because A g5
is also the steady state value of A ¢, (t), results in the linear
region in Figure 7 match the results in Figure 8.
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Figure 9: The bond growth for the Archard Equation model for
Vo = 100V.

The bond growth coefficient is calculated using Equations
(21)-(23), or the Archard Equation model, and using the
approach from the Mayer-Schwizer model. The results using
the Archard Equation model are shown in Figure 9. The
equivalent Equation (23) for the Mayer-Schwizer model is

. _ PAfuE,

V3 S A (¥3)[1 = ys]. (27)

Equation (27) follows from Equation (14). The results of the
Mayer-Schwizer model are shown in Figure 10 using a § =
55 x 107°m?/J [5]. Comparing Figure 9 and Figure 10, it
can be seen that the bond growth for the Archard Equation
model is much slower. It takes about 0.8 ms to achieve a y
of 0.5 for the Archard Equation model, while it takes about
0.04 ms to achieve a y of 0.5 for the Mayer-Schwizer model.
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Figure 10: The bond growth ratio for the Mayer-Schwizer model
JforVy =100V and B = 55 X 107> m?/J.

This can be explained by determining the equivalent S5, or
Beq» for the Archard Equation model. If it is assumed that

Equation (27) and (23) are equal, the equivalent § for the
Archard Equation model is
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Figure 11: B for the Archard Equation model for Vo = 100 V.
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From Equation (28), Figure 11 is generated. Initially S, is
calculated as 50 X 107®m?%J. This value is one order of



magnitude smaller than the § used in the Mayer-Schwizer
model, which explains why the bond growth is much slower
for the Archard Equation model [5]. It is much slower also
because ., is inversely proportional with time, as shown in
Figure 11.

IV. Conclusions

In this work, a modeling approach was developed for
ultrasonic bonding. The model uses lumped parameters to
describe the kinetics of the transducer and tool, and the
Archard Equation to describe oxide cleaning and bond
growth. The modeling approach has three major
assumptions: (A1) the oxide wear height a function of x;, and
t  h(xpt), (A2) once h(xp,t) = hyq oxide cleaning
process is complete which allows a bond to form, and (A3)
the normal force per unit length distribution is parabolic.
Using an exponential estimation of the free air amplitude, the
relative amplitude between the bonding material and the
substrate was determined. It was found that as the power
increases the relative amplitude increases, and that with
larger transverse forces the relative amplitude decreases.
Compared to the Mayer-Schwizer model, the Archard
Equation model predicts a longer time for bond formation.
The longer bond formation time is because the equivalent
bonding coefficient is initially much smaller and is also
inversely proportional to time. As a result, the bond increases
at a slower rate compared to the Mayer-Schwizer model.

Several future adjustments can be made to the model; the
constant parameters, such as the interface area S, could be
replaced with functions, the model could be extended to a
function of 3 variables with an additional bonding coordinate
for the direction out of the page, equations could be
introduced to account for stronger bonding in the periphery,
and additional parameters, such as the initial surface
roughness and contamination, could be brought into the
model.
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