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Abstract 
A modeling approach is developed to better describe the relation between input electrical power and the 

physical reaction of the bonding system during ultrasonic bonding. The major distinction between this 

analysis and previously published works is to attempt to eliminate empirically driven correlations between 

the input power and the kinetics of the bonding process. Two models, a piezoelectric model and an ultrasonic 

bonding model, are combined in order to reach this goal. The piezoelectric model is used to calculate the 

desired forcing, amplitude, and frequency that is created by the piezoelectric transducer during the actual 

ultrasonic bonding process. For this process, a lumped parameter model, taken from literature, is used, that 

converts input current and voltage to velocity and position of the bonding tooltip, respectively. This model 

is then combined with an updated model of the relative amplitude between the bonding material and substrate 

as the ultrasonic bond is being formed. Our model differs from existing friction power models by utilizing 

the Archard Equation to account for the removal of the natural oxide film. The integrated model provides a 

relationship between the bond growth and the driving power. The analysis enables comparison between the 

transverse force on the bond tool and amplitude of the bond tool’s motion for different electrical input powers.  
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I. Introduction 

Ultrasonic bonding is widely used in different industries, 

such as electronic packaging [1]. Obtaining a comprehensive 

model of ultrasonic bonding is an important step in 

uncovering a thorough understanding of the dependencies 

between process parameters and outcomes on both the 

microscopic and macroscopic scale. Several macroscopic 

models have been developed to describe different types of 

ultrasonic bonding. Finite Element Method (FEM) is 

commonly used to more closely model microscopic 

behaviors. Friction heating was modeled in ribbon bonding 

by assuming the friction power was caused by the shear 

stress at the interface [2]. An FEM model was used to 

determine the pressure distribution at the bonded interface. 

These FEM results were then used in a holistic model of the 

wedge-wedge wire bonding process [3]. Oxide fracture in 

wedge-wedge wire bonding was modeled using a shear lag 

model developed for cold rolling [4] 

 

Another popular approach is to link the rate of bond growth 

to the friction power at the interface. A bond growth model 

by Mayer and Schwizer [5] was developed that can be used 

for determining the relative amplitude between the ball and 

substrate, and the ratio of unbonded interface area to the total 

interface area. It assumes that the rate of bond growth is 

proportional to the power supplied to the interface. It also lets 

the transverse force acting at the interface be composed of 

the friction and the shear strength of the bonds formed. These 
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two forces are weighted by the percentage of the unbonded 

and bonded areas respectively [5].  

 

The model derived by Mayer-Schwizer [5] has been 

expanded upon. An equation was derived for the contact 

height [6] [7]. Experimental observations have been used to 

relate the ultrasonic transducer current to relative amplitudes 

in this model [8]. Recently, this model has been expanded to 

take into account the activated area to model ultrasonic 

cleaning [9]. 

 

In the present work, we propose to develop a modified 

version of the Mayer-Schwizer model that uses the Archard 

Equation to determine the relationship between the bond 

growth rate and wear. This model was conceived through 

earlier work about how the Archard wear Equation could be 

used to better understand oxide fracture [10]. Lumped 

parameters models also have been used to understand the 

system level dynamics of ultrasonic bonders [11]. A 

modified version of the lumped parameter piezoelectric 

model developed by Goldfarb and Celanovic [12] is used to 

model the ultrasonic transducer.  The main purpose of this 

work is to present a modified modeling approach, which is 

less dependent on experimentally obtained parameters, and 

compare it to the existing model. The overall system level 

model is first reviewed. Then the procedure on how the 

Archard Equation is incorporated into the model is 

described.  

 

II. Approach 

The overall approach is to replace the relationship between 

the bond growth ratio and friction power used in the Mayer 

and Schwizer model with the Archard Equation. There are 

two sections of the model. The first section, referred to as the 

System Level model, accounts for the dynamics of the 

ultrasonic transducer. The second section, referred to as the 

Oxide Wear and Bond Growth model, replaces the friction 

power relationship in the Mayer and Schwizer model. This 

relationship is described briefly in this section.  

 

A. System Level Model 

The model of the entire bonding system is depicted in Figure 

1 and Figure 2. The circuit depicted in Figure 1 is meant to 

capture the electrical side, while the diagram in Figure 2 is 

meant to capture the mechanical side 

 

 
Figure 1: Modified circuit based on Goldfarb Model [12]. 

 
Figure 2: Modified mechanical diagram based on Goldfarb 

Model to capture other components of bonding [5] [12]. 

In Figure 2, 𝐹 is the force produced by the transducer, 𝑚 is 

the mass, 𝑏 is the damping, 𝑘 is the stiffness, 𝐶 is the 

capacitance, 𝑛 is the electromechanical transformation ratio, 

𝑥 is the position of the transducer and tool, 𝐹𝑛 is the normal 

force, 𝐹𝑇 is the transverse force, and 𝑉 is the voltage supplied 

to the transducer. The charge across the piezoelectric 

transducer has two components, 𝑞1 = 𝐶𝑉 to account for the 

capacitive behavior of piezoelectric elements and 𝑞2 =

 𝑛𝑥 to account for the mechanically induced charge. These 

diagrams give the following Equations: 

 𝑚𝑥̈ + 𝑏𝑥̇ +  𝑘𝑥 =  𝐹 + 𝐹𝑇 (1) 

 𝐹 =  𝑛𝑉  (2) 

 𝑉 = 𝑉0𝑠𝑖𝑛(𝜔𝑡)  (3) 

 𝐼 = 𝑛𝑥̇ + 𝐶𝑉̇  (4) 

 

where, 𝜔 is the angular frequency of the voltage signal, 𝑡 is 

time, and 𝐼 is the current. Despite the lumped piezo model 

only being valid below the first resonant frequency mode, it 

allows for an estimation of the current supplied to the 

transducer [12].  

 

The transverse force given by the Mayer and Schwizer model 

is composed of the friction force 𝜇𝐹𝑛 and 𝜎 the shear strength 

of the bonds  

 

 𝐹𝑇(𝑡)  =  [1 − 𝛾(𝑡)]μ𝐹𝑛 + 𝛾(𝑡)𝜎𝑆  (5) 
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where 𝛾 =
𝑆𝑏𝑜𝑛𝑑𝑒𝑑

𝑆
 is the ratio of the bonded area 𝑆𝑏𝑜𝑛𝑑𝑒𝑑 and 

the total interface area 𝑆 [5]. 𝛾 acts as a way to weight the 

friction and shear strength of the bonds.  

 

Another aspect of the Mayer-Schwizer model is the 

relationship between 𝐴𝑟𝑒𝑙(𝑡), the free air vibration 

amplitude 𝐴0(𝑡), the overall system compliance 𝑐, and 𝐹𝑇(𝑡) 

[5] 

 

 𝐴𝑟𝑒𝑙(𝑡) =  𝐴0(𝑡) −  𝑐𝐹𝑇(𝑡) (6) 

 

The free air vibration amplitude is estimated using the free 

air response 𝑥0(𝑡), or the solution to Equations (1)-(3) such 

that the transverse force is zero 𝐹𝑇 = 0. The free air vibration 

with no initial displacement or velocity 𝑥0(0)  =  0, 

𝑥0̇(0)  =  0 is given by:  

 

 𝑥0(𝑡) = 𝐶0𝑐𝑜𝑠(𝜔𝑡) + 𝐶1𝑠𝑖𝑛(𝜔𝑡)
+ [ 𝐶2𝑠𝑖𝑛(𝜔𝑑𝑡)

+ 𝐶3𝑐𝑜𝑠(𝜔𝑑𝑡)]𝑒−𝜁𝜔𝑛 

(7) 

 𝐶0 =
−𝑏𝜔𝑛𝑉𝑜

(𝑘−𝜔2𝑚)2+(𝑏𝜔)2  𝐶1 =
(𝑘−𝜔2𝑚)𝑛𝑉0

(𝑘−𝜔2𝑚)2+(𝑏𝜔)2  

 
(8) 

 𝐶2 =
−(𝐶1𝜔+𝜁𝜔𝑛𝐶0)

𝜔𝑑
          𝐶3 = −𝐶0 (9) 

 
𝜔𝑛 = √

𝑘

𝑚
    𝜁 =

𝑏

2√𝑘𝑚
    𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 (10) 

 

where 𝜔𝑛 is the natural radial frequency, 𝜔𝑑 is the damped 

natural radial frequency, and 𝜁 is the damping coefficient. 

With the free air vibration response, the free air vibration 

amplitude can be estimated using the steady state amplitude 

𝐴0,𝑠𝑠 

 
𝐴0,𝑠𝑠 = √𝐶0

2 + 𝐶1
2 (11) 

 
𝐴0,𝑒𝑠𝑡(𝑡) =  √𝐶0

2 + 𝐶1
2  (1 − 𝑒−𝜁𝑤𝑛) (12) 

 

where 𝐴0,𝑒𝑠𝑡(𝑡) is an exponential estimation of how the free 

air vibration changes with time. Results with 𝐴0(𝑡) = 𝐴0,𝑠𝑠 

and 𝐴0(𝑡) = 𝐴0,𝑒𝑠𝑡(𝑡) are presented in the results section. 

The solution for the free air vibration can be found for 

different Voltage amplitudes 𝑉0. The power applied to the 

transducer can be calculated as: 

 

 𝑃 = 𝐼𝑟𝑚𝑠𝑉𝑟𝑚𝑠   (13) 

 

where the root mean square is taken of both the current 

obtained from Equation (4)  and the voltage from Equation 

(3). 

 

B. Oxide Wear and Bond Growth 

In the case of ultrasonic bonding, the surface oxide layer 

prevents bonding from occurring. In the Mayer-Schwizer 

model, these processes were accounted for using the 

following equation: 

 

 
𝛾̇ =

𝛽

𝑆
𝑃𝑢𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑡) (14) 

 

where 𝑃𝑢𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑡) is the unbonded friction power and 𝛽 is 

the bond growth coefficient [5] [6]. To use this equation, an 

experimentally determined value for 𝛽 should be used.  

 

To eliminate the dependency to experimental testing, the 

Archard Equation is used. The Archard Equation gives the 

oxide volume that is worn down due to the friction work that 

is supplied to the surface. This worn volume can be 

expressed in terms of the oxide wear height ℎ and the total 

interface area 𝑆 giving the following equation:  

 

 
ℎ =

𝐾𝐹𝑛𝐷

𝐻𝑆
  (15) 

 

where 𝐾 is the wear is constant, 𝐷 is the total sliding 

distance, and 𝐻 is the material hardness [10]. A diagram of 

the bonding material-substrate contact is depicted in Figure 

3. While the goal of this model is to look at ultrasonic 

bonding in general, the bonding material will be referred to 

as “ball” for convenience. As shown in the figure, 2𝐿 is the 

ball diameter, ℎ𝑜𝑥𝑖𝑑𝑒  is the initial oxide height, and 𝑥𝑏 is the 

coordinate for describing the interface surface area.  

 
Figure 3: Coordinates of Bonded Area. 

In developing the model, three assumptions are made, the 

first assumption, assumption (A1), is that the oxide wear 

height is a function of 𝑥𝑏 and 𝑡 or ℎ =  ℎ(𝑥𝑏 , 𝑡). Based on 

how the coordinate system is defined, the interface area is 

assumed to be rectangular such that 𝑆 = 2𝐿𝑟, where 𝑟 is the 

width out of the page. To get the dependence upon 𝑥𝑏, we let 

the stress 𝐹/𝑆 =  𝑊(𝑥𝑏)/𝑟 , where 𝑊(𝑥𝑏) is the force per 

L -L 

xb ℎ𝑜𝑥𝑖𝑑𝑒 
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unit length. The ball diameter 2𝐿 is brought into the force to 

turn it into a force per unit length.  

 

To get the dependence upon time it is assumed 𝐷 = 𝐷(𝑡) 

such that  

 

 
𝐷(𝑡) = ∫ 4𝑓𝐴𝑟𝑒𝑙(𝑡∗)[1 − 𝛾(𝑡∗)]

𝑡

0

𝑑𝑡∗ (16) 

 

where 𝑡∗is a dummy integration variable.  The unweighted 

velocity is 4𝑓𝐴𝑟𝑒𝑙(𝑡).   The addition of the 4𝑓 is due to the 

fact that during one period, the ball moves 4 amplitudes in 

length. The weighting factor [1 − 𝛾(𝑡)] is to take into 

account that once the surface is completely bonded there is 

no more motion between the ball and the substrate [5]. 

 

The second major assumption, assumption (A2), is that once 

ℎ(𝑥, 𝑡) reaches a critical value, i.e. ℎ𝑐𝑟𝑖𝑡 , a bond forms. 

Assumption (2) is not far from what occurs in ultrasonic ball 

bonding. Surface oxides are removed due to the ultrasonic 

vibrations and the normal force. Before the ultrasonic 

vibrations begin, the normal force and the surface roughness 

of the ball and substrate lead to the formation of cracks in the 

oxide layer. After ultrasonic vibration, the cracks grow and 

the oxides eventually detach. These oxide particles move 

around the interface due to the ultrasonic vibration, tending 

to move out to the periphery [13]. Once this process occurs 

and the ball and substrate are separated by a small distance, 

i.e. ℎ𝑗𝑢𝑚𝑝, bonding occurs. Recently this jump to contact 

behavior for aluminum-aluminum bonding was simulated. It 

was found that the critical separation distance for jump to 

contact to occur is 5.8 Å ± 0.05 Å [14].  From this discussion, 

letting |ℎ𝑗𝑢𝑚𝑝|  = |ℎ𝑜𝑥𝑖𝑑𝑒 − ℎ𝑐𝑟𝑖𝑡| gives this the assumption 

of bond formation once ℎ(𝑥𝑏 , 𝑡) = ℎ𝑐𝑟𝑖𝑡 some physical basis.  

 

It is fair to point out that since  ℎ𝑜𝑥𝑖𝑑𝑒 > ℎ𝑐𝑟𝑖𝑡, the model 

predicts that there will be an oxide layer with a thickness 

ℎ𝑗𝑢𝑚𝑝 remaining, which in reality would prevent any 

bonding from occurring. This is because the Archard 

Equation does not account for the cracking and detachment 

of the oxide layer, or the motion of resulting oxide particles. 

Both of these processes lead to the exposed surfaces and 

jump to contact behavior. Since the oxides are not extracted 

from the interface during bonding, oxides particles are still 

present in the interface among micro-welds. The presence of 

oxide particles in bonded regions has been experimental 

confirmed [15]. To account for these processes would 

require a more thorough investigation that is beyond the 

scope of this work. Therefore, these processes are ignored 

when it is assumed that at ℎ(𝑥𝑏 , 𝑡) = ℎ𝑐𝑟𝑖𝑡 bonding occurs.  

 

Because ℎ(𝑥𝑏 , 𝑡) is a function of two variables, plotting all 

values (𝑥𝑏 , 𝑡, ℎ(𝑥𝑏 , 𝑡)) in the domain of −𝐿 ≤ 𝑥𝑏 ≤ 𝐿  and 

0 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥  will yield 3d surfaces. Constant values 

ℎ(𝑥𝑏 , 𝑡) result in level curves of these surfaces. These curves 

relate 𝑥𝑏 and 𝑡 together. When ℎ(𝑥𝑏 , 𝑡) = ℎ𝑐𝑟𝑖𝑡  , or when a 

bond forms, the exact position of where the bond forms will 

be given by 𝑥𝑏 for a given time 𝑡. This leads to  

 

 
ℎ𝑐𝑟𝑖𝑡 =

𝐾𝑊(𝑥𝑏𝑜𝑛𝑑𝑒𝑑)𝐷(𝑡)

𝐻𝑟
  (17) 

 

where 𝑥𝑏𝑜𝑛𝑑𝑒𝑑 is the position of the growing bond area 

relative to 𝑥𝑏 .  

 

Because of the second assumption (A2), the form of 𝑊(𝑥𝑏) 

will determine how the bond grows. There have been several 

investigations on how the interface evolves in wedge-wedge 

wire bonding. Evidence suggests that bonding begins in the 

central regions for wedge-wedge wire bonding [15]. A 

second bonding pattern has also been reported that begins in 

the periphery and moves towards the center, greatly 

strengthening the bond [16]. In situ analysis of wedge-wedge 

bonding shows the total interface area 𝑆 grows. The analysis 

also shows that there is both a static central region, where 

there is micro-weld bond growth among interspersed oxide 

particles, and a friction region that starts in the peripheral 

region. In the final stages of bonding, the strongest bonded 

areas are in the regions adjacent to the peripheral regions 

[17].  

 

 
Figure 4: FEM results for stresses at the interface in ball bonding 

for a load of 2.75 mN. The ball diameter is 34 𝜇m and the stresses 

are in GPa [18].  

Based on these observations, the third major assumption, 

assumption (A3), assumes 𝑊(𝑥𝑏) is parabolic, with a local 

maximum at the center. Assumption (A3) is also supported 

by FEM analysis based on an unpublished work by Tszeng 
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[18]. The results are shown in Figure 4 and Figure 5. The 

stress achieves a maximum magnitude near the center. Also 

the stress near the ends of the ball, or at 𝐿 = 17𝜇m, is nearly 

zero. 

 

Choosing a parabolic distribution also leads to bonding to 

start at the center and end in the peripheral regions, which is 

consistent with experimental results, assuming that the 

interface in ball bonding evolves similar to wedge-wedge. 

The parabolic distribution is 

 

 𝑊(𝑥𝑏) = 𝐴 + 𝐵𝑥𝑏
2. (18) 

 

 
Figure 5:  Normal Stress distribution achieves a maximum value 

near the center of the bonding coordinate. The ball diameter is 34 

μm. 

After making this third assumption (A3), Equations (17) and 

(18) can be used to solve for 𝑥𝑏𝑜𝑛𝑑𝑒𝑑 : 

 

 

𝑥𝑏𝑜𝑛𝑑𝑒𝑑 = ±√
ℎ𝑐𝑟𝑖𝑡𝐻𝑟

𝐾𝐵

1

𝐷(𝑡)
−

𝐴

𝐵
. (19) 

 

From this it follows that the bonded area is 𝑆𝑏𝑜𝑛𝑑𝑒𝑑 =

2𝑥𝑏𝑜𝑛𝑑𝑒𝑑𝑟 . Therefore the bond growth ratio is given by 

 

 𝛾 =
𝑥𝑏𝑜𝑛𝑑𝑒𝑑

𝐿
. (20) 

 

Using Equations (1)-(3) and (20), a complete state space 

model is found. After substituting Equation (19) into 

Equation (20) and using with 𝑦1 = 𝑥, 𝑦2 = 𝑥̇, and 𝑦3 = 𝛾 the 

state space equations are 

 𝑦1̇ =  𝑦2  (21) 

 
𝑦2̇ =  −

𝑘

𝑚
𝑦1 −

𝑏

𝑚
𝑦2 +

1

𝑚
𝐹𝑇(𝑡)

+
𝑛𝑉0

𝑚
𝑠𝑖𝑛(𝑤𝑡) 

(22) 

 
𝑦3̇ =  −

2𝑓𝐾

𝐻ℎ𝑐𝑟𝑖𝑡𝐿2𝑟𝐵𝑦3

(𝐿2𝐵𝑦3
2

+ 𝐴)2𝐴𝑟𝑒𝑙(𝑦3)[1 − 𝑦3].  
(23) 

 

In order for the bond growth ratio to go to 1 as 𝑡 goes to 

infinity it is necessary to enforce conditions on the bond 

growth ratio. Taking the limit of Equations (19) and (20) 

results in lim
t→∞

𝑥𝑏𝑜𝑛𝑑𝑒𝑑 = ±√−
𝐴

𝐵
 and lim

t→∞
𝑦3  =  1 =

1

𝐿
lim
t→∞

𝑥𝑏𝑜𝑛𝑑𝑒𝑑. This gives the condition 

 

 
𝐵 = −

𝐴

𝐿2
.  (24) 

 If 𝑊(0)   = 𝐹𝑚𝑎𝑥/2𝐿 and 𝑊(±𝐿)  =  𝐹𝑚𝑖𝑛/2𝐿, this gives 

 

 
𝐴 =  

𝐹𝑚𝑎𝑥

2𝐿
 (25) 

 
𝐵 =

𝐹𝑚𝑖𝑛 − 𝐹𝑚𝑎𝑥

2𝐿3
 . (26) 

 

Imposing these condition as 𝑡 goes to infinity shows that 

𝐹𝑚𝑖𝑛 must be zero for 𝛾 → 1 as → ∞ . This also matches the 

FEM results shown in Figure 5. 𝐹𝑚𝑎𝑥 is then determined by 

integrating Equation (18) for −𝐿 ≤ 𝑥𝑏 ≤ 𝐿. This gives 

𝐹𝑚𝑎𝑥 = 3/2𝐹𝑛.  Equations (21)-(23) are solved numerically 

for five voltages 𝑉0 = {80,90,100,110,120}𝑉 with ℎ𝑐𝑟𝑖𝑡 =

4.42nm and the following boundary conditions: 𝑦1(0)  =  0, 

𝑦2(0)  =  0, and 𝑦3(0)  =  0.05. The initial bond growth 

ratio is set to a nonzero value to account for the cracks that 

form due to contact before ultrasonic vibration is applied [6]. 

This initial bond growth is equivalent to assuming there is an 

initial wear height ℎ𝑐𝑟𝑖𝑡 . Also because of the presence of 

1/𝑦3in Equation (26), setting 𝑦3(0)  =  0 would result in an 

initially infinite bond growth rate.  The constants used for the 

model are shown in Table I. These constants are presented 

for demonstration purposes. Most constants are taken from 

other work [12] [5] [10] [14] [6]. The spring constant 𝑘 was 

set such that the transducer is resonating at 𝑓 = 130 kHz by 

using Equation (10).  
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Table I: Constants used for the model 

Variable Value Description 

m 3.75 g* Mass 

b 150 Ns/m* Damping 

k 2.5 GN/m Spring Stiffness 

n 10* Electro-Mechanical Ratio 

C 1.2 μF* Capacitance 

c 1.33 μm/N ** Tool Compliance 

S 207.5 mm2 ** Interface Area 

𝛽 55 × 10−5m2/J ** Bond Growth Coefficient 

Fn 0.15 ** Normal Force 

μ 0.48 ** Coefficient of Friction 

𝑓 130,000 Hz** Frequency 

𝜎 125 Mpa ** Shear Strength of Bonds 

ℎ𝑜𝑥𝑖𝑑𝑒 5 nm *** Initial Oxide Height 

H 1400 kg/mm2*** Oxide Hardness 

K 1× 10−5*** Wear Constant 

ℎ𝑗𝑢𝑚𝑝 5.8 Å **** Jump to Contact Distance 

𝑦3(0)  0.05 ***** Initial Bond Growth Ratio 

Vo {80,90,100,110,120} 

Volts 

Input Voltage Amplitudes 

* = from [12], **= from [5], ***= from [10], ****= from [14], 

*****=from [6] 

 

III. Results and Discussion 

The estimation of the free air vibration amplitude using 

𝐴0(𝑡) = 𝐴0,𝑒𝑠𝑡(𝑡)  in Equation (12), and the free air response 

using Equation (7) are both calculated with 𝑉0 = 100 𝑉. As 

shown in Figure 6, 𝐴0,𝑒𝑠𝑡(𝑡) is a good estimation of the free 

air response amplitude. Using an exponential function in the 

form of 𝐴0,𝑒𝑠𝑡(𝑡) is similar to using a constant value, since 

the rise time is only about 10−4seconds.   

The relative amplitude as a function of the transverse force 

for the five voltage amplitudes are calculated using 

Equations (5) and (6). The relative amplitudes in Figure 7 are 

calculated using 𝐴0(𝑡) = 𝐴0,𝑒𝑠𝑡(𝑡) or Equation (12), while 

the relative amplitudes in Figure 8 use 𝐴0(𝑡) = 𝐴0,𝑠𝑠  or 

Equation (11). For both Figures, the power is calculated 

using Equation (13). 

 
Figure 6: The free air response and estimation of the free air 

amplitude for 𝑉0 = 100 𝑉. 

 
Figure 7: Relative amplitude against the Transverse force for 𝑉0 =
{80,90,100,110,120} 𝑉. 

The results in Fig. 7 using 𝐴0,𝑒𝑠𝑡(𝑡) show the relative 

amplitude has two regions. In the first region the relative 

amplitudes sharply increase for nearly constant transverse 

forces. Initially the bond does not grow very fast, which 

causes the bonding ratio 𝛾(𝑡) in Equation (5) to be nearly 

zero. At this stage the transverse force mostly comprises the 

friction force. In the second region, the relative amplitude is 

linear with respect to the transverse force.  As the power 

increases, the relative amplitude increases since the 

transducer produces larger forces at higher powers. Also as 

the transverse force increases, the relative amplitude 

decreases since the transverse force restricts the motion of 

the ball. 
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Figure 8: The same plot as in Figure 7, when the free air vibration 

amplitude is set equal to the steady state amplitude (𝐴0(𝑡) =
𝐴0,𝑠𝑠(𝑡)). 

There is only a linear region present in the results shown Fig. 

8. This is because 𝐴0,𝑠𝑠 is a constant, which does not account 

for when the transducer is initially starting up.  Because 𝐴0,𝑠𝑠 

is also the steady state value of 𝐴0,𝑒𝑠𝑡(𝑡), results in the linear 

region in Figure 7 match the results in Figure 8.  

 
Figure 9: The bond growth for the Archard Equation model for 

𝑉0 = 100𝑉. 

The bond growth coefficient is calculated using Equations 

(21)-(23), or the Archard Equation model, and using the 

approach from the Mayer-Schwizer model. The results using 

the Archard Equation model are shown in Figure 9. The 

equivalent Equation (23) for the Mayer-Schwizer model is 

 

 
𝑦3̇ =

𝛽4𝑓𝜇𝐹𝑛

𝑆
𝐴𝑟𝑒𝑙(𝑦3)[1 − 𝑦3]. (27) 

 

Equation (27) follows from Equation (14). The results of the 

Mayer-Schwizer model are shown in Figure 10 using a 𝛽 =

 55 × 10−5m2/J [5]. Comparing Figure 9 and Figure 10, it 

can be seen that the bond growth for the Archard Equation 

model is much slower. It takes about 0.8 ms to achieve a 𝛾 

of 0.5 for the Archard Equation model, while it takes about 

0.04 ms to achieve a 𝛾 of 0.5 for the Mayer-Schwizer model.  

 
Figure 10: The bond growth ratio for the Mayer-Schwizer model 

for 𝑉0 = 100 𝑉 and 𝛽 = 55 × 10−5 𝑚2/𝐽. 

This can be explained by determining the equivalent 𝛽, or 

𝛽𝑒𝑞 , for the Archard Equation model. If it is assumed that 

Equation (27) and (23) are equal, the equivalent 𝛽 for the 

Archard Equation model is 

 

 
𝛽𝑒𝑞  =  −

𝐾

𝐻ℎ𝑐𝑟𝑖𝑡L𝐵𝜇𝐹𝑛𝑦3

(𝐿2𝐵𝑦3
2 + 𝐴)2. (28) 

 
Figure 11: 𝛽𝑒𝑞  for the Archard Equation model for 𝑉0 = 100 𝑉. 

From Equation (28), Figure 11 is generated. Initially 𝛽𝑒𝑞  is 

calculated as 50 × 10−6m2/J. This value is one order of 
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magnitude smaller than the 𝛽 used in the Mayer-Schwizer 

model, which explains why the bond growth is much slower 

for the Archard Equation model [5]. It is much slower also 

because 𝛽𝑒𝑞  is inversely proportional with time, as shown in 

Figure 11. 

 

IV. Conclusions 

In this work, a modeling approach was developed for 

ultrasonic bonding. The model uses lumped parameters to 

describe the kinetics of the transducer and tool, and the 

Archard Equation to describe oxide cleaning and bond 

growth. The modeling approach has three major 

assumptions: (A1) the oxide wear height a function of 𝑥𝑏 and 

𝑡  ℎ(𝑥𝑏 , 𝑡), (A2) once ℎ(𝑥𝑏 , 𝑡) = ℎ𝑐𝑟𝑖𝑡 oxide cleaning 

process is complete which allows a bond to form, and (A3) 

the normal force per unit length distribution is parabolic.  

Using an exponential estimation of the free air amplitude, the 

relative amplitude between the bonding material and the 

substrate was determined. It was found that as the power 

increases the relative amplitude increases, and that with 

larger transverse forces the relative amplitude decreases. 

Compared to the Mayer-Schwizer model, the Archard 

Equation model predicts a longer time for bond formation. 

The longer bond formation time is because the equivalent 

bonding coefficient is initially much smaller and is also 

inversely proportional to time. As a result, the bond increases 

at a slower rate compared to the Mayer-Schwizer model.  

 

Several future adjustments can be made to the model; the 

constant parameters, such as the interface area 𝑆, could be 

replaced with functions, the model could be extended to a 

function of 3 variables with an additional bonding coordinate 

for the direction out of the page, equations could be 

introduced to account for stronger bonding in the periphery, 

and additional parameters, such as the initial surface 

roughness and contamination, could be brought into the 

model.  
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