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ABSTRACT Fluctuations in osmolarity are one of the most prevalent stresses to
which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria
cope with high osmolarity by accumulating compatible solutes (osmolytes) in the
cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus, a
halophile, utilizes at least six compatible solute transporters for the uptake of os-
molytes: two ABC family ProU transporters and four betaine-carnitine-choline trans-
porter (BCCT) family transporters. The full range of compatible solutes transported
by this species has yet to be determined. Using an osmolyte phenotypic microarray
plate for growth analyses, we expanded the known osmolytes used by V. parahae-
molyticus to include N,N-dimethylglycine (DMG), among others. Growth pattern anal-
ysis of four triple-bccT mutants, possessing only one functional BCCT, indicated that
BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was
unusual in that it could take up both compounds with methylated head groups (gly-
cine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline).
Bioinformatics analysis identified the four coordinating amino acid residues for GB in
the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ecto-
ine docked in the same binding pocket in BccT1. Using site-directed mutagenesis,
we showed that a strain with all four residues mutated resulted in the loss of uptake
of GB, DMG, and ectoine. We showed that three of the four residues were essential
for ectoine uptake, whereas only one of the residues was important for GB uptake.
Overall, we have demonstrated that DMG is a highly effective compatible solute for
Vibrio species and have elucidated the amino acid residues in BccT1 that are impor-
tant for the coordination of GB, DMG, and ectoine transport.

IMPORTANCE Vibrio parahaemolyticus possesses at least six osmolyte transporters,
which allow the bacterium to adapt to high-salinity conditions. In this study, we identi-
fied several additional osmolytes that were utilized by V. parahaemolyticus. We demon-
strated that the compound DMG, which is present in the marine environment, was a
highly effective osmolyte for Vibrio species. We determined that DMG is transported via
BCCT family carriers, which have not been shown previously to take up this compound.
BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues
essential for the coordination of these compounds. The data suggest that for BccT1, GB
is more easily accommodated than ectoine in the transporter binding pocket.

KEYWORDS BCCT, DMG, Vibrio, ectoine, osmolytes

In order to grow in high-osmolarity environments, bacteria accumulate compounds
called compatible solutes (osmolytes) within the cytoplasm of the cell, via either

uptake or biosynthesis (1–4). These compounds balance the internal osmolarity with
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that of the environment and maintain the turgor pressure of the cell (3, 5, 6). Osmolytes
also protect proteins, nucleic acids, and other vital molecular machinery by increasing
the hydration shell around these molecules (7). Osmolytes fall into several classes of
compounds, including sugars (trehalose), polyols (glycerol and mannitol), free amino
acids (proline and glutamine), amino acid derivatives (ectoine [ect]), and quaternary
amines (glycine betaine [GB], choline, and L-carnitine) (4, 5, 8–12).

Biosynthesis of compatible solutes is energetically costly, and therefore, bacteria
encode compatible solute transporters to scavenge available osmolytes from the
environment (12–14). Compatible solute transporters include members of the multi-
component ATP binding cassette (ABC) family, such as ProU (proVWX) in Escherichia coli,
OpuC in Bacillus subtilis, and OpuC (proVWX) in Pseudomonas syringae (15–19), and the
single-component betaine-carnitine-choline transporter (BCCT) family, which are Na�

or H� dependent. Members of the BCCT family include BetT in E. coli, which transports
choline with high affinity, and GB transporters in B. subtilis (OpuD) and Corynebacterium
glutamicum (BetP), among many others (20–23).

BCCTs are energized by sodium- or proton-motive force symport and are organized
into 12 transmembrane (TM) segments (20, 22, 24, 25). Aromatic residues found in TM4
and TM8 make up the GB binding pocket in BCCT family transporters examined to date.
These residues are highly conserved in BCCTs that transport trimethylammonium
compounds such as GB, L-carnitine, and �-butyrobetaine (21, 24, 26, 27). An additional
tryptophan residue is present in TM8 just outside the binding pocket and is thought to
participate in the coordination of substrates during conformational changes that occur
during transport (26).

Vibrio parahaemolyticus is a halophilic bacterium present in marine and estuarine
environments in association with plankton, fish, and shellfish (28–33). Vibrio parahae-
molyticus is the leading bacterial cause of seafood-related gastroenteritis worldwide,
frequently associated with consuming raw or undercooked seafood (30, 34). Vibrio
parahaemolyticus is a halophile that grows optimally in 3% NaCl (�500 mM), which is
approximately the salinity of seawater, but can grow at salinities of up to 9% NaCl (�1.5
M) (35). Vibrio parahaemolyticus encounters a range of salinities in tidal habitats and
possesses four BCCTs, encoded by bccT1 (VP1456), bccT2 (VP1723), bccT3 (VP1905), and
bccT4 (VPA0356), and two ProUs, encoded by proVWX (ProU1) (VP1726 to VP1728)
and proXWV (ProU2) (VPA1109 to VPA1111), for the uptake of compatible solutes (36).
In addition to compatible solute transporters, V. parahaemolyticus also possesses
biosynthesis systems for the compatible solutes ectoine, ectABC-asp_ect (VP1719 to
VP1722), and GB, betIBA-proXWV (VPA1112 to VPA1114), whose expression is induced at
high salinity (36). It was demonstrated that the expression of these biosynthesis
systems in Vibrio species was under tight regulation, controlled by the quorum sensing
regulators OpaR and AphA as well as CosR, a global regulator of the osmotic stress
response (37–40). Previously, we reported that in V. parahaemolyticus, bccT1, bccT3,
bccT4, and both proU operons are responsive to salinity (40, 41). BccT1 had the broadest
substrate specificity, transporting GB, choline, proline, and ectoine, while BccT2 and
BccT3 transport GB, choline, and proline, and BccT4 transports only choline and proline
(Fig. 1) (41). Interestingly, the number of osmolyte transporters present among Vibrio
species varies, which suggested differences in the osmolytes utilized and osmotoler-
ance (36). It was shown that Vibrio alginolyticus contained four BCCTs and two ProUs,
Vibrio harveyi and Vibrio splendidus possessed six BCCTs and two ProUs, and Vibrio
vulnificus possessed a single ProU and a BccT3 homolog, whereas Vibrio cholerae
possessed only a BccT3 homolog (36).

In this study, we examined a range of osmolytes utilized by V. parahaemolyticus
using an osmolyte phenotypic microarray plate, which identified 14 potential os-
molytes. We determined the ability of several Vibrio species to utilize dimethylglycine
(DMG), one of the most effective osmolytes that we identified and a compound not
previously shown to be an osmolyte in Vibrio. We examined V. parahaemolyticus
transport of DMG using several osmolyte transporter mutants and showed that BCCT
carriers were required, representing a new transporter family for the uptake of DMG. In
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V. parahaemolyticus, BccT1 has the broadest substrate uptake ability in terms of the
number and diversity of compounds (methylated head groups and cyclic compounds).
Our in silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the
same binding pocket in BccT1. We investigated via mutagenesis and functional com-
plementation the amino acid residues that are required for the coordination of GB,
DMG, and ectoine. This analysis describes for the first time the residues that coordinate
DMG and ectoine in a BCCT family transporter.

RESULTS
V. parahaemolyticus can utilize a wide range of compatible solutes. To deter-

mine the range of compatible solutes that can be utilized by V. parahaemolyticus, a
Biolog 96-well PM9 osmolyte phenotypic microarray plate was used. Growth analyses
were performed using a V. parahaemolyticus ΔectB deletion mutant, which is unable to
synthesize ectoine de novo and therefore has a growth defect at high salinity in the
absence of exogenous osmolytes (35, 36). The ΔectB mutant was grown in 23 unique
osmolytes, 14 of which rescued the growth of the ΔectB mutant (see Fig. S1 in the
supplemental material). Previously unrecognized osmolytes for this species included
N,N-dimethylglycine (DMG), �-amino-N-butyric acid (GABA), trimethylamine-N-oxide
(TMAO), glutathione, dimethylsulfoniopropionate, morpholinepropanesulfonic acid
(MOPS), creatine, N-acetyl L-glutamine, and octopine, in addition to those already
known to provide osmoprotection, such as trehalose, �-glutamic acid, GB, ectoine, and
L-proline (Fig. S1).

To confirm the data from the phenotypic microarray analysis, we performed growth
analyses with wild-type (WT) V. parahaemolyticus RIMD2210633 and the ΔectB mutant
in the presence of the compatible solute DMG, GABA, or TMAO in M9 minimal medium
supplemented with glucose and 6% NaCl (M9G 6% NaCl) (Fig. 2). In the wild-type strain,
in the absence of DMG, there was an �4-h lag phase with a growth rate of 0.04 h�1,
whereas in the presence of DMG, the lag phase was �1 h, and cells had a higher growth

FIG 1 (A) BCCT transporters present in V. parahaemolyticus RIMD2210633 and their known substrates.
bccT1, bccT3, and bccT4 are induced by high salinity. (B and C) Structures of BCCT substrates with
methylated headgroups highlighted in blue boxes (B) or cyclic compounds (C). AA, amino acids.
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FIG 2 Growth analyses of the V. parahaemolyticus RIMD2210633 wild type (WT) and a ΔectB mutant in
M9G 6% NaCl. Growth medium was supplemented with DMG (A), GABA (B), or TMAO (C). The optical
density (OD595) was measured every hour for 24 h; the means and standard errors from at least two
biological replicates are shown.
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rate (0.06 h�1 in the presence of DMG), indicating that DMG is a very effective
compatible solute for V. parahaemolyticus (Fig. 2A). The growth of the ΔectB mutant
was rescued by the addition of exogenous DMG, with a lag phase of less than 1 h (Fig.
2A). The growth of the wild-type strain in the presence of GABA had a slightly increased
growth rate of 0.045 h�1 (Fig. 2B). The growth of the wild-type strain in the presence
of TMAO was not changed, with a growth rate of 0.04 h�1 (Fig. 2C). However, the
presence of exogenous GABA or TMAO rescued the growth of the ΔectB mutant, which
confirmed that V. parahaemolyticus can utilize these as compatible solutes (Fig. 2). The
ΔectBmutant was rescued to a greater extent with exogenous DMG, with a growth rate
of 0.07 h�1, than with GABA (0.02 h�1) or TMAO (0.01 h�1) (Fig. 2). In addition, growth
analyses of the wild type in M9G 6% NaCl supplemented with either GB or ectoine
confirmed that both are effective compatible solutes (Fig. S2) (35).

DMG is an effective compatible solute for Vibrio species. To investigate whether
DMG can also act as an osmolyte in other Vibrio species, we grew four species
representing divergent clades of Vibrio in M9G plus 4% NaCl or 5% NaCl with and
without DMG at 37°C for 24 h. Growths of V. harveyi 393, V. cholerae N16961, V.
vulnificus YJ016, and V. fluvialis ATCC 33809 were all rescued by exogenous DMG (Fig.
S3A to D). In the absence of DMG, V. harveyi grew with a 9-h lag phase, while this strain
grew with a 3-h lag phase and an increased growth rate, from 0.04 h�1 to 0.06 h�1, in
the presence of DMG (Fig. S3A). In the presence of DMG, the growth rate of V. cholerae
was increased from 0.02 h�1 to 0.04 h�1 (Fig. S3B). V. vulnificus is unable to grow in
M9G 4% NaCl in the absence of DMG, but growth was rescued in the presence of DMG
with a 10-h lag phase and a growth rate of 0.04 h�1 (Fig. S3C). Vibrio fluvialis grown in
the presence of DMG also had a reduced lag phase (Fig. S3D). To demonstrate that the
changes in the Vibrio species growth patterns were not due to the catabolism of DMG,
we grew all strains in M9 medium supplemented with DMG as the sole carbon source.
None of the species strains tested grew in the presence of DMG (Fig. S4). Thus, DMG is
a bona fide compatible solute for these Vibrio species strains examined.

BCCTs are responsible for the transport of DMG. We examined whether the
BCCTs in V. parahaemolyticus were required for the transport of DMG, and to accom-
plish this, we used a bccT-null mutant (quadruple ΔbccT1-ΔbccT3-ΔbccT4-ΔbccT2 mu-
tant). We grew the wild type and the bccT-null mutant in M9G 6% NaCl with and
without DMG at 37°C for 24 h (Fig. 3). The bccT-null mutant did not exhibit a reduced
lag phase or an increased growth rate in the presence of DMG, while the wild-type
strain grew with a reduced lag phase of �1 h (Fig. 3), which indicated that a BCCT
carrier is required for the transport of DMG. Although V. parahaemolyticus encodes two

FIG 3 Growth analysis of V. parahaemolyticus RIMD2210633 wild-type and bccT-null (ΔbccT1-ΔbccT3-
ΔbccT4-ΔbccT2) mutant strains in M9G 6% NaCl with and without DMG. The optical density (OD595) was
measured every hour for 24 h; means and standard errors from at least two biological replicates are
displayed.
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ABC family compatible solute transporters, ProU1 and ProU2, which are present in the
bccT-null mutant, these do not appear to be involved in DMG uptake.

To determine which of the four BCCT family carriers present in V. parahaemolyticus
transports DMG, a set of four triple-bccT mutants, each possessing a single functional
bccT gene, was utilized in growth assays. The triple ΔbccT2-ΔbccT3-ΔbccT4 mutant,
which contains only bccT1, had a slightly reduced lag phase and a slightly higher
growth rate through exponential phase in M6G 6% NaCl supplemented with DMG (Fig.
4A). This suggested that BccT1 transported DMG with low efficiency. In contrast, the
triple ΔbccT1-ΔbccT3-ΔbccT4 mutant, which contains only bccT2, had a reduction in lag
phase similar to that of the wild type (Fig. 4B). This suggested that BccT2 transported
DMG as efficiently as the wild-type strain. The triple ΔbccT1-ΔbccT2-ΔbccT4 mutant,
which contains only bccT3, grew similarly to the bccT1-only strain, with a marginally
reduced lag phase, and grew marginally better through exponential phase in the
presence of DMG (Fig. 4C). This suggested that DMG is transported by BccT3 with low
efficiency. The triple ΔbccT1-ΔbccT2-ΔbccT3 mutant showed no difference in growth
in the absence or presence of DMG, which indicated that BccT4 does not transport
DMG into the cell (Fig. 4D).

In order to examine DMG uptake by the BCCT family transporters further, we used
E. coliMKH13, a mutant strain that has deletions in betIBA-betT, proU, proP, and putP and
cannot grow in M9G 4% NaCl (42). This strain has been utilized successfully in previous
studies to assess transporter function in several species (26, 41, 43). We cloned each of
the bccT genes into an expression plasmid, used each construct to complement E. coli
MKH13, and examined growth in M9G 4% NaCl supplemented with DMG (Fig. 5).

FIG 4 Growth analysis of V. parahaemolyticus RIMD2210633 wild-type and triple mutant ΔbccT2-ΔbccT3-ΔbccT4 (A),
ΔbccT1-ΔbccT3-ΔbccT4 (B), ΔbccT1-ΔbccT2-ΔbccT4 (C), or ΔbccT1-ΔbccT2-ΔbccT3 (D) strains in M9G 6% NaCl with
and without DMG. The optical density (OD595) was measured every hour for 24 h; means and standard errors from
at least two biological replicates are displayed.
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Escherichia coli MKH13 strains complemented with bccT1, bccT2, and bccT3 grew in the
presence of DMG, confirming that these three are carriers for DMG (Fig. 5). The bccT4
complemented strain and the empty expression plasmid did not grow, which indicated
that BccT4 cannot take up DMG (Fig. 5).

BccT1 sequence homology to structurally characterized BCCTs. From a struc-
ture/function standpoint, BccT1 is of particular interest as it can transport GB, DMG, and
ectoine, among other substrates (Fig. S5). While GB and DMG have similar structures
with methylated head groups, ectoine is a cyclic compound and may require coordi-
nation by different amino acid residues in the BCCT transporter (24). Furthermore, BCCT
family transporters of ectoine typically do not possess the conserved aromatic residues
located in TM4 and TM8 that coordinate GB binding (24). The hydropathy profile of
BccT1 was aligned with that of the BCCT transporter BetP from C. glutamicum (CgBetP),
whose structure has been studied extensively. We found that BccT1 possessed 12 TM
segments (TM1 to TM12) along with N- and C-terminal tail extensions. BccT1 shared
matched positions with 89% of residues in CgBetP, which indicated that the structures
were highly conserved (Fig. S6). In CgBetP, the residues that form the GB binding
pocket are Trp189, Trp194, and Tyr197 in TM4 and one residue located in TM8, Trp374.
An additional residue located in TM8 below the binding pocket (Trp377) is thought to
be involved in substrate coordination during conformational changes (26). In addition,
we aligned the C. glutamicum BCCT family transporters LcoP (CgLcoP) and EctP
(CgEctP), which were reported to take up GB and ectoine (44, 45). CgBetP, CgLcoP, and
BccT1 possessed amino acids identical to the residues corresponding to TM4 and TM8
described above (Fig. S7).

Structural modeling of BccT1. The structural models of BccT1 consist of 11
transmembrane helices (TM2 to TM12) and a periplasmic helix (H7) (Fig. 6A). The first
108 amino acids of BccT1, including TM1, could not be modeled because of their poor
sequence similarity with CgBetP. Nonetheless, the BccT1 models are very similar to the
CgBetP structure, with root mean square deviations (RMSDs) of 0.26 Å (399 C� atoms)
and 0.22 Å (391 C� atoms) for closed-state (CcS) and open substrate-bound-state (CiS)
models, respectively. The residues involved in the central binding pocket, cytoplasmic
and periplasmic gates, as well as the rest of the substrate pathway are mostly con-
served in BccT1. More specifically, a comparison of BccT1 models with the GB-bound
structure of CgBetP showed that all the substrate binding residues are conserved and
located in TM4 and TM8 (Fig. S7).

FIG 5 E. coli strain MKH13 complemented with the empty vector, bccT1 (pBAVP1456), bccT2
(pBAVP1723), bccT3 (pBAVP1905), or bccT4 (pBAVPA0356) and grown for 24 h with DMG. The final optical
density (OD595) was compared to that of a strain harboring pBAD33. Means and standard errors from at
least two biological replicates are shown. Statistics were calculated using Student’s t test (*, P � 0.05; ***,
P � 0.001).
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The closed state (CcS) represents a transition state between outward- and inward-
facing open states where the substrate is bound in a central cavity with both substrate
entry and exit ports occluded. Unlike open states, the substrate makes optimal inter-
actions with the active-site residues in the CcS state (46); therefore, the CcS model of
BccT1 was used for our substrate docking studies. The GB-docked BccT1 model showed
a binding free energy change (ΔG) of �4.8 kcal/mol (Table 1). Briefly, the aromatic rings
of Trp380, Trp381, and Trp384 form a small hydrophobic pocket that binds GB in this
BccT1 model (Table 1 and Fig. 6B). The quaternary amine group of GB binds to this

FIG 6 Predicted overall structure of BccT1 and its active-site interactions with different substrates. (A) Side view of
the overall structure of BccT1. �-Helices are depicted by cylinders, and the directionality of the polypeptide chain
is shown by a color gradient from blue (N terminus) to red (C terminus). Eleven transmembrane helices (TM2 to
TM12) and a periplasmic helix (H7) make the core of the structure. Two small helices, IH1 and EH2, connect
TM4-TM5 and TM9-TM10, respectively. (B to D) Interactions of the active-site residues of BccT1 with the substrates.
Interacting residues of the BccT1 CcS state with docked glycine betaine (B) and DMG (C) as well as those in the CiS
state with docked ectoine (D) are represented as sticks. Substrates and BccT1 residues are shown in orange and
gray, respectively. Dashed lines show hydrogen-bonding distances between BccT1 residues and various atoms in
the substrates. Illustrations were prepared using PyMOL (PyMOL Molecular Graphics System, version 2.0;
Schrödinger, LLC).

TABLE 1 Results of the docking study showing the free energy change upon substrate binding and BccT1 residues mediating
interactions with each substrate

Substrate
Binding free energy
(kcal/mol)

Residues involved in hydrogen-bonding
interactions Residues involved in van der Waals interactions

Glycine betaine �4.8 Ile160 Gly161, Ser266 Trp203, Trp208, Tyr211, Trp380, Trp381, Trp384
DMG �4.4 Ile160 Gly161, Ser266 Trp203, Trp208, Tyr211, Trp380, Trp381, Trp384
Ectoine �6.1 Trp203, Tyr211 Trp208, Trp380, Trp381, Trp384
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pocket by cation-� and van der Waals interactions. Other aromatic residues, Trp203,
Trp208, and Tyr211, of BccT1 also contribute to the hydrophobic interactions with GB.
The GB carboxylic group interacts with the peptide backbones of Ile160 and Gly161 as
well as the side chain of Ser266 via hydrogen bonding (Fig. 6B).

Docking analysis of DMG and ectoine binding residues in BccT1. Next, we
sought to determine the DMG and ectoine binding residues in BccT1 by docking.
Docking of DMG to the BccT1 CcS model (Fig. 6C) predicted a mode of interaction
identical to that of GB with a favorable ΔG of �4.4 kcal/mol (Table 1). This was expected
since DMG and GB have very similar chemical structures.

To identify the mode of ectoine binding to BccT1, ectoine was first docked to the
active site of the CcS model of BccT1. However, the ΔG of ectoine binding to the CcS
model of BccT1 was too low (�2.8 kcal/mol), likely because of the spatially constrained
fitting of the large ectoine ring into the smaller hydrophobic pocket comprised of the
aromatic rings of Trp380, Trp381, and Trp384. Therefore, we turned our attention to the
CiS model of BccT1 ectoine docking, keeping all other docking parameters constant.
The substrate binding site in the CiS state differs from that in the CcS state in the
relative orientations of the Trp380 and Trp381 side chains remodeling the hydrophobic
pocket. More specifically, during the CcS-to-CiS transition, aromatic rings of Trp380 and
Trp381 are known to flip 90°, opening up the hydrophobic pocket (46). Interestingly,
ectoine docking to the CiS state of BccT1 was accompanied by a significant ΔG of
�6.1 kcal/mol (Table 1). The ectoine binding in this BccT1 state is stabilized by
hydrogen-bonding interactions between the ectoine carboxyl group and the peptide
backbone of Ala157 as well as the side chain of Tyr211 (Fig. 6D). Furthermore, the
ectoine ring nitrogens are involved in hydrogen bonding with Tyr211 and the peptide
backbone of Trp203. The bound ectoine also shows van der Waals interactions with the
aromatic residues Trp203, Trp208, Trp381, and Trp384 (Fig. 6D).

Site-directed mutagenesis of BccT1 uncovers the ectoine binding pocket. Our
structural modeling and docking experiments predicted BccT1 residues that are likely
involved in the binding and transport of GB, DMG, and ectoine. Therefore, we selected
these residues in BccT1, namely, Trp203, Trp208, Tyr211, and Trp384, for a mutagenesis
study. We utilized functional complementation of E. coli MKH13 as a readout for the
uptake of GB, DMG, and ectoine by BccT1 with the following single-amino-acid sub-
stitutions: Trp203Cys, Trp208Leu, Tyr211Leu, and Trp384Leu. We also tested a BccT1
mutant with all four of these residues replaced by alanine, which is chemically inert and
possesses a nonbulky methyl functional group. The replacement of Trp203 resulted in
reduced growth of the E. coli MKH13 strain in the presence of GB, while strains
harboring the other three single-replacement mutants Trp208Leu, Tyr211Leu, and
Trp384Leu grew similarly to a strain expressing WT BccT1 (Fig. 7A). This indicates that
Trp203 is important, but not essential, for the uptake of GB by BccT1. In the absence of
each of the other three residues 208, 211, and 384, GB may be accommodated by an
alternate residue. The replacement of all four residues with alanine resulted in no
growth of the E. coli MKH13 strain (Fig. 7A). This indicated that these four residues are
involved in the coordination of GB in BccT1.

The replacement of Trp203 or Trp384 resulted in no uptake of DMG, as strains
expressing these mutants did not grow (Fig. 7B). The replacement of Tyr211 resulted in
a reduced ability to take up DMG, as evidenced by the growth of this strain to a lower
final optical density (OD) (Fig. 7B). The replacement of all four residues resulted in no
growth of E. coli MKH13, which indicated that these residues make up the binding
pocket for DMG (Fig. 7B).

The replacement of residue Trp203, Tyr211, or Trp384 individually was sufficient to
completely abolish the uptake of ectoine by E. coli MKH13, as the strains expressing
these mutants were unable to grow (Fig. 7C). However, the replacement of Trp208 did
not result in a statistically significant difference in growth from that of a WT BccT1-
expressing strain, indicating that Trp208 is not required for the uptake of ectoine (Fig.
7C). The replacement of all four residues with alanine also resulted in the abrogation of
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ectoine transport (Fig. 7C). Together, these results indicated that DMG and ectoine
share a binding pocket with GB. The coordination of DMG requires Trp203 and Trp384,
while the coordination of ectoine requires Trp203, Tyr211, and Trp384. These results
suggest that the coordination of DMG and ectoine cannot be as easily accommodated
by alternate residues as can GB.

Distribution of BccT1. The BccT1 protein is 562 amino acids long and is present in

all sequenced V. parahaemolyticus genomes (�800 genomes). A highly homologous
protein is also present in all V. alginolyticus, V. antiquarius, and V. diabolicus strains (95%
sequence identity); V. natriegens and V. nereis (90% sequence identity); as well as V.
harveyi and V. campbellii sequenced strains (86% sequence identity) (Fig. S8). In general,
phylogenetic analysis indicated that BccT1 is conserved within the Harveyi clade, and
when present in other clades, it is present in all strains of each species. Overall, within
the family Vibrionaceae, BccT1 is present in 35 Vibrio species and in 11 Photobacterium
species (Fig. S8). It is of interest to note that in all species, the residues corresponding

FIG 7 Functional complementation of E. coli MKH13 with BccT1 (WT) and five BccT1 mutants grown in
GB (A), DMG (B), or ectoine (C). Strains were grown for 24 h, and the final optical density (OD595) was
compared to that of the strain expressing wild-type BccT1 (pBAVP1456). Means and standard errors from
at least two biological replicates are shown. Statistics were calculated using Student’s t test (*, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
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to Trp203, Trp208, Tyr211, and Trp384, which coordinate substrates, are conserved
(data not shown), suggesting an ability to take up a range of osmolytes in these species.

DISCUSSION

Here, we demonstrated that the halophile V. parahaemolyticus can utilize at least 14
compatible solutes, which included DMG, GABA, and TMAO. The transporters BccT1,
BccT2, and BccT3 were carriers for DMG, a highly effective osmoprotectant for V.
parahaemolyticus, V. vulnificus, V. harveyi, V. cholerae, and V. fluvialis. DMG is the
N-dimethyl derivative of glycine, while GB is the N-trimethyl derivative. Some halophilic
bacteria were shown to accumulate DMG, an intermediate compound produced during
de novo biosynthesis (47–55). DMG was found to be suitable for osmotic adaptation on
its own, without modifications by bacteria (47). Additionally, DMG is an intermediate of
aerobic GB catabolism and is available in the environment (56–60). None of the Vibrio
species strains examined in this study could grow on DMG as a sole carbon and energy
source. Several species have been shown to possess genes for the conversion of GB to
DMG and the conversion of DMG to sarcosine, which can then be catabolized to glycine
(58, 61–66). These genes have not been described within the family Vibrionaceae, and
none of the species strains under study contained homologs of these genes.

DMG is known to be transported by major facilitator superfamily (MFS) transporters
and ATP binding cassette (ABC) family transporters (56, 67). Here, we demonstrated that
the BCCT family of transporters can also take up DMG. BccT1 and BccT2 transport DMG
when expressed in a heterologous E. coli background (Fig. 5). However, in the native
background, a V. parahaemolyticus strain expressing only BccT2 is fully rescued to
wild-type levels by the presence of DMG, while a strain expressing BccT1 is only
partially rescued (Fig. 4A and B). This difference may be explained by the fact that bccT2
is not induced by high salinity and has a basal level of transcription in the cell, whereas
bccT1 expression is repressed under low-salinity conditions (40, 41). Therefore, in a
strain containing only bccT2, expression is constitutively active at low salinity, allowing
for more rapid adaptation to high salinity via the uptake of DMG, resulting in a reduced
lag phase. In C. glutamicum, the transporter EctP is not induced by external osmolarity,
and the EctP transport capacity is maximal at low osmolarity and may act as a rescue
system that is available at low osmolarity, ensuring that cells can respond to osmotic
stress (45). The same could be true of BccT2 in V. parahaemolyticus, acting as an
immediate rescue system to scavenge available osmolytes in the event of osmotic
stress.

DMG was not shown previously to be transported by the BCCT family of carriers, and
the amino acid residues important for the uptake of DMG by a BCCT are unknown. Our
in silico docking study showed that GB was coordinated by residues in the binding
pocket of BccT1 (Fig. 6B) identical to those previously reported for CgBetP (26, 27). The
coordination of DMG by BccT1 was identical to that of GB (Fig. 6C). Likewise, an ABC
transporter, OpuAC, from B. subtilis has been reported to interact very similarly with GB
(Protein Data Bank [PDB] ID 2B4L) and a sulfonium analog of DMG, dimethylsulfonio-
acetate (DMSA) (PDB ID 3CHG) (18, 19). Our mutagenesis studies demonstrated that GB,
DMG, and ectoine are coordinated in the same binding pocket of BccT1, but the
residues required for coordination are strict for DMG and ectoine, while GB may be
accommodated by alternate residues in single-amino-acid mutants (Fig. 7). It was
demonstrated previously in an ABC-type transporter that while the replacement of a
single aromatic residue in the binding pocket results in decreased affinity of the protein
for GB, the substrate is still coordinated with reasonable affinity. Only when any
combination of two residues was mutated was transport completely abolished (68). We
did not see a reduction in the ability of E. coli MKH13 to grow when only one residue
is mutated, and the uptake of GB was completely abolished only when all four residues
were mutated. This is likely due to the coordination of GB at alternate positions within
the binding pocket that do not affect the overall growth ability of E. coli MKH13 but
may affect the affinity of BccT1 for GB. Comparative protein analyses also demonstrated
that in other Vibrio species with BccT1 homologs, the residues that coordinate GB, DMG,
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and ectoine are conserved. There is a very high percent identity shared with BccT1
among BCCT family transporters in these species, and therefore, the ability of these
transporters to take up a broad range of substrates is most likely conserved.

All 14 substrates that V. parahaemolyticus was demonstrated to take up are available
in the marine environment, including GB, choline, DMG, and ectoine (4, 57, 58, 69). Five
of the six compatible solute transporters encoded by V. parahaemolyticus are induced
by high salinity and collectively take up a broad range of compatible solutes (40, 41).
Although there is redundancy in the compounds taken up by each BCCT, the ability to
take up many different compatible solutes likely provides V. parahaemolyticus and
other Vibrio species with a fitness advantage in the marine environment that allows
them to thrive and grow optimally under high-salt conditions.

Members of the BCCT family are widespread among bacteria, present in both
Gram-positive and Gram-negative bacteria as well as Archaea. For example, using the
InterPro database (http://www.ebi.ac.uk/interpro/) accession no. IPR000060 for BCCT as
a search, 23,000 BCCT proteins fall within the domain Bacteria, 604 BCCT proteins fall
within the Archaea, and 78 BCCTs fall within the Eukaryota. Of the 604 Archaea
representatives, 593 were from the Stenosarchaea group, of which 549 were within the
Halobacteria, suggesting an important function in osmotolerance. Surprisingly, there
have been no studies on BCCT function from representatives of Archaea or Eukaryota
to date, with the exception of a recent study on the distribution of BCCTs in corals (70).

MATERIALS AND METHODS
Bacterial strains, media, and culture conditions. All strains and plasmids used in this study are

listed in Table 2. Vibrio parahaemolyticus strains were grown in either lysogeny broth (LB) (Fisher
Scientific, Fair Lawn, NJ) with 3% (wt/vol) NaCl (LB3%) or M9 minimal medium (47.8 mM Na2HPO4, 22 mM
KH2PO4, 18.7 mM NH4Cl, 8.6 mM NaCl; Sigma-Aldrich) supplemented with 2 mM MgSO4, 0.1 mM CaCl2,
and 20 mM glucose as the sole carbon source (M9G) and NaCl as indicated. Dimethylglycine (DMG) was
used at a final concentration of 20 mM when supplied as a carbon source. E. coli strains were grown in

TABLE 2 Strains and plasmids used in this study

Strain or plasmid Genotype or description Reference(s) or source

Strains
V. parahaemolyticus
RIMD2210633 O3:K6 clinical isolate; Strr 87, 88
RIMD2210633 ΔectB RIMD2210633 ΔectB (VP1721) Strr 36
SOYBCCT124 RIMD2210633 ΔVP1456 ΔVP1723 ΔVPA0356 Strr 41
SOYBCCT123 RIMD2210633 ΔVP1456 ΔVP1723 ΔVP1905 Strr 41
SOYBCCT134 RIMD2210633 ΔVP1456 ΔVP1905 ΔVPA0356 Strr 41
SOYBCCT234 RIMD2210633 ΔVP1723 ΔVP1905 ΔVPA0356 Strr 41
SOYBCCT1342 RIMD2210633 ΔVP1456 ΔVP1723 ΔVP1905 ΔVPA0356 Strr 41

V. cholerae N16961 O1, El Tor strain, Bangladesh, clinical, 1975 89
V. vulnificus YJ016 Clinical isolate 90
V. fluvialis ATCC 33809 Synonym, NCTC 11327 or 606; clinical isolate 91
V. harveyi 393 Isolated from barramundi in Australia 92
Escherichia coli
DH5� �pir Δlac pir Thermo Fisher Scientific
�2155 �pir ΔdapA::erm pir for bacterial conjugation 93
MKH13 MC4100 (ΔbetTIBA) Δ(putPA)101 Δ(proP)2 Δ(proU) Spr 42

Plasmids
pBAD33 Expression vector; araBAD promoter; Cmr; p15a origin 71
pBAVP1456 pBAD33 harboring full-length VP1456 This study
pBAVP1723 pBAD33 harboring full-length VP1723 41
pBAVP1905 pBAD33 harboring full-length VP1905 41
pBAVPA0356 pBAD33 harboring full-length VPA0356 This study
pBAVP1456W203C pBAD33 harboring full-length VP1456 with Trp203Cys mutation This study
pBAVP1456W208L pBAD33 harboring full-length VP1456 with Trp208Lys mutation This study
pBAVP1456Y211L pBAD33 harboring full-length VP1456 with Tyr211Lys mutation This study
pBAVP1456W377L pBAD33 harboring full-length VP1456 with Trp377Lys mutation This study
pBAVP1456-3 pBAD33 harboring full-length VP1456 with Trp203Ala, Trp208Ala, and

Tyr211Ala mutations
This study

pBAVP1456-4 pBAVP1456-3 harboring full-length VP1456 with Trp377Ala mutation This study
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either LB supplemented with 1% NaCl (LB1%) or M9G supplemented with 1% (wt/vol) NaCl (M9G 1%
NaCl). All strains were grown at 37°C with aeration. Chloramphenicol (Cm) was added to the media at
25 �g/ml when necessary.

Growth analysis. Vibrio parahaemolyticus and an in-frame deletion mutant of ectB were grown
overnight in M9 minimal medium supplemented with 1% NaCl and 20 mM glucose as the sole carbon
source. Cultures were subsequently diluted 1:50 into fresh medium and grown for 5 h. Cultures were
pelleted, washed two times with 1� phosphate-buffered saline (PBS) to remove excess salt, and then
diluted 1:50 into M9G, and 100 �l was then added to each well of a 96-well Biolog PM9 plate containing
different osmolytes and/or salt concentrations (Biolog, Inc., Hayward, CA). The plates were incubated at
37°C with intermittent shaking in a Tecan Sunrise microplate reader, and the optical density at 595 nm
(OD595) was measured every hour for 24 h. The area under the curve (AUC) was calculated using Origin
2018 for the wild type (WT) and the ΔectBmutant. Statistics were calculated using Student’s t test; growth
in 6% NaCl in the presence of a compatible solute was compared to growth in 6% NaCl with no
exogenous compatible solutes.

For growth analysis with individual compatible solutes, wild-type (WT), ΔectB mutant, and quadruple
ΔbccT1-ΔbccT3-ΔbccT4-ΔbccT2mutant (bccT-null) strains were grown overnight in M9G 1% NaCl. Cultures
were subsequently diluted 1:50 into fresh medium and grown for 5 h to late exponential phase.
Exponential-phase cultures were then diluted 1:40 into 200 �l of M9G 6% NaCl with and without
exogenous compatible solutes in a 96-well microplate and grown at 37°C with intermittent shaking for
24 h. The compatible solute N,N-dimethylglycine (DMG), trimethylamine-N-oxide (TMAO), �-amino-N-
butyric acid (GABA), glycine betaine (GB), or ectoine (ect) was added to a final concentration of 500 �M.
Growth analysis with each compatible solute was repeated according to the above-described procedure
with each of four triple-bccT mutants, ΔbccT2-ΔbccT3-ΔbccT4, ΔbccT1-ΔbccT3-ΔbccT4, ΔbccT1-ΔbccT2-
ΔbccT4, and ΔbccT1-ΔbccT2-ΔbccT3.

Growth analyses of V. cholerae N16961, V. harveyi 393, V. vulnificus YJ016, and V. fluvialis ATCC 33809
(synonym, NCTC 11327 or 606) were conducted by growing strains overnight in M9G supplemented with
2% NaCl (M9G 2% NaCl). Strains were diluted 1:40 into 200 �l of M9G 4% NaCl, or M9G 5% NaCl for V.
fluvialis, with and without exogenous DMG, in a 96-well microplate and grown at 37°C with intermittent
shaking for 24 h. To test DMG as a carbon source, V. cholerae, V. vulnificus, V. fluvialis, and V. parahae-
molyticus were grown overnight in LB1%, and V. harveyi was grown in LB2%. Cells were pelleted, washed
two times with 1� PBS, and diluted 1:40 into 200 �l of M9 medium with 20 mM DMG as the sole carbon
source and 1% NaCl (2% NaCl for V. harveyi). Strains were grown in M9G 1% NaCl (2% NaCl for V. harveyi)
as a control. Strains were grown in a 96-well microplate as described above.

Functional complementation of E. coli strain MKH13 with VP1456, VP1723, VP1905, and
VPA0356. Full-length VP1456 (bccT1) or VPA0356 (bccT4) was amplified from the V. parahaemolyticus
RIMD2210633 genome using primers listed in Table 3. All primers were purchased from Integrated DNA
Technologies (Coralville, IA). The Gibson assembly protocol using NEBuilder HiFi DNA assembly master
mix (New England BioLabs, Ipswich, MA) was followed to ligate the VP1456 or VPA0356 fragment with

TABLE 3 Primers used in this study

Use and primer Sequence (5=–3=)a Length (bp)

Expression
VP1456 Fwd tgggctagcgaattcgagctTTTGCTGTAAATATGCAATAAAAGTG 1,740
VP1456 Rev ggatccccgggtaccgagctTTAGCGGTAAGCGGAAAG

VPA0356 Fwd tgggctagcgaattcgagctAGCGGCTTTTTGAACATC 1,671
VPA0356 Rev ggatccccgggtaccgagctTTAAACCAAACCTTGATCC

Mutagenesis
BCCT1 TRP203CYS F CATGTTTCACtgcGGTGTTCACGGTTGGAG 7,096
BCCT1 TRP203CYS R GTCGCGCCCATCGCGAGT

BCCT1 TRP208LEU F TGTTCACGGTctgAGTATTTACGC 7,096
BCCT1 TRP208LEU R CCCCAGTGAAACATGGTC

BCCT1 TYR211LEU F TTGGAGTATTctgGCCCTTGTTGCGTTG 7,096
BCCT1 TYR211LEU R CCGTGAACACCCCAGTGA

BCCT1 TRP384LEU F GTGGGTATCTctgTCTCCGTTTG 7,096
BCCT1 TRP384LEU R CAAGCCCAGTAGAACACTG

BCCT1 203208211ALA F tgcgagtattgcgGCCCTTGTTGCGTTGGCG 7,096
BCCT1 203208211ALA R ccgtgaacacccgcGTGAAACATGGTCGCGCC

BCCT1 TRP384ALA F GTGGGTATCTgcgTCTCCGTTTG 7,096
BCCT1 TRP384ALA R CAAGCCCAGTAGAACACTG

aRegions of complementarity for Gibson assembly are indicated by lowercase type.
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the expression vector pBAD33 (71), which had been linearized with SacI. Regions of complementarity for
Gibson assembly are indicated by lowercase type in the primer sequences in Table 3. The resulting
expression plasmid, pBAVP1456 or pBAVPA0356, was transformed into E. coli DH5� for propagation.
Plasmids were then purified, sequenced, and subsequently transformed into E. coli strain MKH13, which
has large deletions that include all compatible solute transporters (putP, proP, and proU) and the choline
uptake and GB biosynthesis loci (betT-betIBA) (42). E. coli MKH13 strains containing pBAVP1456,
pBAVP1723, pBAVP1905, or pBAVPA0356 were grown overnight in minimal medium supplemented with
1% NaCl and 20 mM glucose (M9G1%) and subsequently diluted 1:40 into M9G supplemented with 4%
NaCl (M9G 4% NaCl). E. coli MKH13 strains containing pBAVP1456, pBAVP1723, pBAVP1905, or
pBAVPA0356 were grown overnight in M9G 1% NaCl with chloramphenicol and subsequently diluted
1:100 into M9G 4% NaCl with 500 �M the indicated compatible solute and chloramphenicol for plasmid
maintenance. The expression of each BccT protein was induced with 0.01% arabinose, and functional
complementation was determined by measuring the OD595 after 24 h of growth at 37°C with aeration.
Growth was compared to that of an MKH13 strain harboring empty plasmid pBAD33, which cannot grow
in M9G 4% NaCl without exogenous compatible solutes. Statistics were calculated using Student’s t test.

Site-directed mutagenesis was performed on pBAVP1456 with a Q5 site-directed mutagenesis kit
(New England BioLabs, Ipswich, MA) and primers listed in Table 3. Primers were designed to create
nucleotide substitutions resulting in the following amino acid changes: Trp203Cys, Trp203Ala,
Trp208Leu, Trp208Ala, Tyr211Leu, Tyr211Ala, Trp384Leu, and Trp384Ala. Site-directed mutagenesis was
performed according to the manufacturer’s protocol to create single-amino-acid substitutions
Trp203Cys, Trp208Leu, Tyr211Leu, and Trp384Leu. Residues 203, 208, and 211 were mutagenized to
encode alanines, and residue 384 was subsequently mutagenized in this plasmid backbone to encode an
alanine.

Homology modeling of BccT1 and docking of GB, DMG, and ectoine. A BLAST search of the BccT1
sequence against the Protein Data Bank (PDB) as the search database showed the highest sequence
identity with the 3.2-Å X-ray crystal structure of a GB transporter from C. glutamicum (CgBetP) (PDB ID
4AIN). Homology modeling of BccT1 was done with the SWISS-MODEL server using the CgBetP structure
(PDB ID 4AIN) as a template (72). CgBetP is an active trimer correctly represented in its three-dimensional
(3D) structure with the three protomers (chains) showing different stages of the substrate transport cycle
with an alternating-access mechanism (46). More specifically, chain A of the CgBetP structure represents
the closed apo state (Cc), whereas chains B and C represent a closed substrate-bound (CcS) and an open
substrate-bound (CiS) state, respectively. Chain B and chain C of CgBetP were used as the templates to
generate CcS- and CiS-like homology models of BccT1, respectively. The energy-minimized models of
BccT1 were verified using a 3D profile method of Verify3D that evaluates the correlation between the
amino acid sequence (one dimensional [1D]) and the model (3D) by comparing it to the other known
structures in the database. Residues showing poor stereochemical properties or close contacts in each
monomeric model were fixed manually in COOT (73). Models were then subjected to energy minimiza-
tion using the 3Drefine server to reduce any other structural restraints (74). The quality of the resulting
models was finally verified with Verify3D and PROCHECK (75, 76). The CcS and CiS models of BccT1
showed Verify3D scores of 88.6% and 84.0%, respectively, which indicated good quality of the models
(see Fig. S9 in the supplemental material). The stereochemical properties of the models were examined
by a Ramachandran plot using PROCHECK. Both the CcS and CiS BccT1 models contain 99.2% of all the
residues in the allowed region and none in the disallowed region (Fig. S10).

For docking studies, ligand models for GB, DMG, and ectoine were obtained from Chemical Entities
of Biological Interest (ChEBI) EMBL (77). Polar hydrogens were added to the ligand structures in PRODRG
(78). AutoDock tools v1.5.6 was used to assign the rotatable bonds in the ligands and to add all polar
hydrogens in the BccT1 models to prepare them for the docking. The ligand-centered maps for BccT1
models were assigned a grid size of 20 by 20 by 20 Å3. The docking experiments of GB, DMG, and ectoine
ligands with the BccT1 receptor model were performed using AutoDock Vina (79). The binding free
energies and BccT1 residues making interactions with the ligands are listed in Table 1. The structural
illustrations were prepared using PyMOL (PyMOL Molecular Graphics System, version 2.0; Schrödinger,
LLC).

Bioinformatics and phylogenetic analyses. Transmembrane helix probabilities of C. glutamicum
BetP (GenBank accession number CAA63771.1) and BccT1 (GenBank accession number Q87PP5.1) were
generated using OCTOPUS and aligned via the AlignMe program (http://www.bioinfo.mpg.de/AlignMe)
(80–82). The sequences of the V. parahaemolyticus protein BccT1 (GenBank accession number Q87PP5.1),
CgBetP (GenBank accession number CAA63771.1), CgEctP (GenBank accession number CAA04760.1), and
CgLcoP (GenBank accession number ASW14702.1) were downloaded from the NCBI database and
aligned using the ClustalW algorithm (83). Aligned sequences were displayed and annotated using
ESPript (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) (84).

Phylogenetic analysis was conducted using the BccT1 (VP1456) protein as a seed to identify all
homologs within the family Vibrionaceae with completed genome sequences available. Unique protein
sequences that had �95% sequence coverage and �70% amino acid identity with BccT1 were obtained
from the NCBI database and aligned using the ClustalW algorithm (83). The evolutionary history of BccT1
was inferred by using the maximum likelihood method and the Le_Gascuel_2008 model as determined
by best-fit model selection in MEGAX (85, 86). The tree with the highest log likelihood (�10,453.23) is
shown. The percentages of trees in which the associated taxa clustered together are shown next to the
branches. The initial tree(s) for the heuristic search was obtained automatically by applying neighbor-
joining and BioNJ algorithms to a matrix of pairwise distances estimated using a Jones-Taylor-Thornton
(JTT) model and then selecting the topology with the superior log-likelihood value. A discrete gamma
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distribution was used to model evolutionary rate differences among sites (5 categories [�G, parame-
ter � 0.4143]). The tree is drawn to scale, with branch lengths measured in the number of substitutions
per site. This analysis involved 49 amino acid sequences and a total of 525 positions in the final data set.
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