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Joint Source-Channel Coding Over Additive Noise
Analog Channels Using Mixture of
Variational Autoencoders

Yashas Malur Saidutta

Abstract—In this paper, we present a learning scheme for
Joint Source-Channel Coding (JSCC) over analog independent
additive noise channels. We formulate the learning problem by
showing that the minimization loss function from rate-distortion
theory, is upper bounded by the loss function of the Variational
Autoencoder (VAE). We show that when the source dimension is
greater than the channel dimension, the encoding of two source
samples in the neighborhood of each other need not be near each
other. Such discontinuous projection needs to be accounted for
by using multiple encoders and selecting an encoder to encode
samples on a particular side of the discontinuity. We explore
two selection methodologies, one based on an intuitive rule and
the other where it is posed as a learning task in a Mixture-of-
Experts (MoE) setup. We analyze the gradients of these methods
and reason why the latter is better at avoiding local optima.
We show the efficacy of the proposed methodology by simulating
the performance of the system for JSCC of Gaussian sources
over AWGN channels and showing that the learned solutions
are close to or better than the ones proposed earlier. The
proposed methodology is also naturally capable of generalizing to
other source distributions which we showcase by simulating for
Laplace sources. The learned systems are also robust to changes
in channel conditions. Further, a single system can be trained
to generalize over a range of channel conditions provided the
channel conditions are known at both the transmitter and the
receiver. Finally, we evaluate our proposed methodology on three
different image datasets and showcase consistent improvement
over existing methods due to the VAE formulation.

Index Terms— Joint source-channel coding, machine learning,
deep learning, Variational Autoencoders.

I. INTRODUCTION

OINT Source-Channel Coding (JSCC) has been a complex
J and intriguing problem that has captured the interest of
researchers alike for more than half a century. Of particular
interest is the problem of JSCC over analog channels, the roots

Manuscript received July 18, 2020; revised December 1, 2020; accepted
February 1, 2021. Date of publication May 10, 2021; date of current
version June 17, 2021. This work was supported by the National Science
Foundation under Award ID MLWiNS-2003002 and in part by Intel Company.
(Corresponding author: Yashas Malur Saidutta.)

Yashas Malur Saidutta and Faramarz Fekri are with the Department of
Electrical and Computer Engineering, Geogia Institute of Technology, Atlanta,
GA 30318 USA (e-mail: yashas.saidutta@gatech.edu; faramarz.fekri@
gatech.edu).

Afshin Abdi was with the Department of Electrical and Computer Engineer-
ing at Geogia Institute of Technology, Atlanta, GA 30318 USA. He is now
with the Qualcomm Technologies, Inc., San Diego, CA 92121 USA (e-mail:
abdi@gatech.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3078489.

Digital Object Identifier 10.1109/JSAC.2021.3078489

, Student Member, IEEE, Afshin Abdi
and Faramarz Fekri

, Member, IEEE,
, Fellow, IEEE

of which can be traced back to the works of Shannon in the
1940s [1]. Shannon visualized JSCC over analog channels
as a geometric mapping of a symbol in the source space
projected onto a lower-dimensional surface embedded in the
source space. However, two main questions arise, “Why analog
communication?” and “Why Joint Source-Channel Coding?”.
Even though digital communication is popular, it suffers from
a notable setback, i.e., a system designed for a particular
channel condition does not show graceful performance change
if the channel conditions vary from the design parameters [2],
[3]. To answer the second question, the separation theorem [4]
assumes infinite delay and complexity, which might be prob-
lematic for many practical communication systems. In this
work, to exploit the insight of prior research, we initially focus
on the JSCC of Gaussian sources over AWGN channels for
bandwidth compression. We propose a learned neural network
based solution that brings diverse ideas from machine learn-
ing like Variational Autoencoders (VAEs) and Mixture-of-
Experts (MoE) to achieve/match state-of-the-art performance.
Additionally, we show that the designed methodology can be
generalized to other source distributions like Laplacian sources
and images.

A. Joint Source-Channel Coding of Gaussian Sources over
AWGN Channels

The basic premise of the problem is to send a sample
from an m-dimensional multivariate Gaussian source over a
k-dimensional AWGN channel. It can also be alternatively
viewed as sending m symbols of a scalar Gaussian source
over k uses of an AWGN channel. Bandwidth compression
is achieved when m > k. The encoder is a function map
denoted as g. : R™ — R* and the decoder is denoted as
ga : RF — R™. A more concrete definition of the problem
will be given in Sec. II. Reference [5] suggested the use of
linear encoders that achieve the Shannon limit when m = k.
However, for m # k, linear encoders leave large performance
gaps from the optimal Shannon limit when channel noise
is low [6], [7]. To overcome this, [8]-[10] suggested the
use of a Vector Quantization (VQ) based method called
Power Constrained Channel Optimized Vector Quantization
(PCCOVQ). However, the size of the resulting codebook
increases exponentially with increasing source or channel
dimensions, and also increases as the channel conditions
improve. This leads to scalability issues. By leveraging the
insight obtained from the PCCOVQ codebook, a parametric
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curve was suggested [11], [12]. This was able to overcome
the scalability issues for m = 2,k = 1. Intuition was used to
extend the use of these parametric curves when m > 2,k =1
[2], [13]-[16]. Ad-hoc solutions to the k& # 1 problem were
proposed in [2] that make use of m,k = 1 systems as sub-
components. However, the reliance on intuition to parametrize
the encoders led to poor performance. Further, the use of
MMSE decoder in [2] requires O(p™) computations to decode
a received symbol, where p is the number of points on the
grid per dimension. To relax the parametric assumption, [3]
considered encoders and decoders as a mapping defined by a
table and used functional optimization to learn very efficient
maps. However, using a tabular mapping leads to scalability
issues similar to that of PCCOVQ. Additionally, if we con-
sider that the input dimension of the encoder and decoder
table is defined over grid size of p points per dimension,
the computational cost of updating the encoder/decoder table
is exponential, i.e., O(p™**). To overcome this, we suggested
the use of Deep Neural Networks to learn the encoders
and decoders while exploiting optimization [17]-[19]. In this
paper, we further improve upon these neural network based
solutions and showcase their learning capability.

B. Deep Neural Networks for Joint Source-Channel Coding

In recent years, deep neural networks were explored for
JSCC of data with an explicit structure like images [20]-[23]
and text [24]. For data lacking explicit structure, there have
been applications of deep learning in areas like physical layer
communication [25]-[30] and channel coding [31]-[35] to
name a few. However, when it comes to JSCC, there are few
works like [20], [36]. The solutions presented in [36] only
explored the application on binary data over a binary AWGN
channel. The closest to our work in the setting of images is
that of [20]. However, the formulation of the loss is similar to
that of an autoencoder. Here, we show theoretically that the
Variational Autoencoder framework is more naturally suited
to solve the problem.

C. Variational Autoencoders

The VAE was proposed as a mechanism to train a deep gen-
erative model [37]. VAEs have been used in various applica-
tions like data generation [38], semi-supervised learning [39],
topic modeling of documents [40], disentangling factors of
data generation [41], [42] etc. However, it is of particular
interest to us because the VAE has the same encoder-decoder
structure like a JSCC system. Secondly, the VAE training
involves an optimization that has two terms: a reconstruction
error term and a Kullback-Leibler (KL) divergence term.
We show that, if viewed through the lens of Joint Source-
Channel Coding, the second term can be reinterpreted as a
power constraint term. This insight also helps set the ground-
work for the future use of the abundant VAE literature, for
furthering the design of JSCC over analog-channels systems
for general sources.

D. Mixture-of-Experts

The Mixture-of-Experts (MoE) methodology was a general
idea proposed to encapsulate the principle of “Divide and
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conquer” [43]. The system consists of an ensemble of learners
(called experts) and a classifier (called selector/gate). The
selector activates an individual component of the ensemble
based on the input. The MoE methodology can be used in
different ways. Our interest is to use it in a competitive
setting to combat discontinuity that the encoders face during
JSCC. In a competitive setting, the system attempts to not
only learn the experts but also their region of expertise while
simultaneously encouraging the system to associate each input
region with a single expert. The requirement of training a
selector along with an ensemble of experts adds a layer of
non-convexity to the training process. A lot of research has
focused on training such models using various methods like
the Newton-Raphson method [44], Expectation Maximiza-
tion [45], tensor decomposition [46], genetic training [47] etc.
In our problem, we use the original loss function proposed
by [43] with a modification where we train the experts and
the selector in an alternating manner.

The contributions of this paper are as follows:

1) We propose the use of VAEs to learn the encoders and
decoders for JSCC of sources over independent additive
noise channels.

2) We show that VAEs are very similar to the JSCC system
and their loss function minimizes an upper-bound on the
one obtained from rate-distortion theory.

3) We show that discontinuous projections play an impor-
tant role in bandwidth compression and propose the
use of multiple encoders with a universal decoder. Each
encoder network provides a possible encoding, only one
of which is selected for transmission. We explore two
possibilities of selection, one based on an intuitive rule
and the other where the selection itself is posed as a
learning problem.

4) We show that using the proposed system of VAESs in con-
junction with MoEs helps us not to rely on intuition from
imagination or prior work. Thus, we can improve upon
existing solutions for the JSCC of Gaussian sources over
AWGN channels.

5) We further show that the methodology is not dependent
on the source distribution being Gaussian by showcasing
its performance over Laplace sources.

6) We show that the solutions are robust to channel noise
variations of up to +5dB compared to the channel noise
conditions it is designed for. This robustness can be
further improved by training a single system over a range
of channel conditions.

7) Finally, we experiment on three different image datasets.
We show that the efficacy of the dual encoder is
affected by the limited size of the datasets and the
fact that the images are isolated points distanced from
each other in a high dimensional space. However,
the reformulation of the JSCC over analog channels as
a VAE lends itself to superior performance over existing
methods.

For notation, we use bold upper case letters to indicate
vector random variables, uppercase letters to denote random
variables and bold lower case letters to denote vectors. We use
the notation x(;y to denote the i'" component of a vector.
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Fig. 1. Analog point to point communication system.

II. PROBLEM DEFINITION AND SHANNON LIMITS
A. Problem Definition

Fig. 1 shows an analog point-to-point communication.
In our problem of interest, the source signal is an
m-dimensional random variable with i.i.d. components. In the
case of Gaussian sources, each component is zero mean and
with a variance of 2. The encoder g.(-) transforms the
input signal x to a k-dimensional symbol denoted by y.
This is then transmitted across a k-dimensional additive noise
channel. The noise is represented by z. In the case of an
AWGN channel, each noise component is i.i.d. zero mean
with variance 2. The decoder then attempts to reconstruct
the transmitted signal from the noisy received symbol ¥.
An analogous way of looking at this problem is that m inde-
pendent symbols from a 1-dimensional source are transmitted
over k independent uses of the channel. The objective of
the system is to minimize some distortion measure between
the input and the reconstruction while ensuring a power
constraint is satisfied. Most popularly the squared error defined
as E [| |X — X||2| is used. The transmission power constraint

is defined as %E HYH%] < Pp. Here, Py is the transmission
power constraint on a single channel use. The performance of
the system is characterized by the Signal to Distortion Ratio
(SDR) achieved at a particular Channel Signal to Noise Ratio
(CSNR). They are both defined as

0.2

wlixoxg,)

1E (11Y]12
CSNR(dB) = 101ogy (M) .

SDR(dB) = 101log;,

- (1b)

B. Asymptotic Shannon Limits for Gaussian Sources

The analogous view of the problem described in Sec. II-A
provides us with a way to derive the asymptotic Shannon
limits. The rate-distortion of a scalar Gaussian random variable
under the squared distortion criterion is given by [48]

1 o2
R(D) = 51og2+ (ﬁ) :
where, o2 is the variance of the random variable, D is the
distortion and logj (-) is used to represent max(0,logy(-)).

The capacity of an AWGN channel with power constraint Pr
and noise variance o2 is given by [48]

@)

1 P
Cawen = 5 log, (1 + —§> : 3)
g,

n

To ensure reliable transmission (under the assumption that we
are operating in the regime where D < ¢2) of m samples
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across k AWGN channel uses, we need mR(D) < kCawen-
The optimal distortion D, is obtained when the inequality is
satisfied by an equality. Thus, the optimal SDR, can be written
as

k Pr
SDRopt(dB) = ].OE loglo <1 + 0'_2> (4)

n

ITII. JOINT SOURCE-CHANNEL CODING AND
VARIATIONAL AUTOENCODERS

In this section, we consider the similarity between Vari-
ational Autoencoders (VAE) [37] and Joint Source-Channel
Coding. First, we provide background on VAEs. Next,
we showcase the similarity between VAEs and the Joint
Source-Channel Coding problem. Finally, we show that the
VAEs optimize an upper bound on the minimization loss
function from rate-distortion theory.

A. VAE Background

The VAE is a deep generative model that transforms a
latent variable W with some prescribed latent distribution
into a data random variable V whose distribution is unknown.
However, samples from the data distribution are available. Let
the generator of the VAE be denoted as g4(+; 0) where g4(+) is
a deep neural network with parameters 6. Then, the objective
of the generative model is to maximize the log-likelihood of
the observed data

max Ev [log (pe(v))] = max Ev [log Ew [pe(v|w)]] (5)

The formulation of py(v|w) depends on the type of recon-
struction loss to be minimized. Usually, squared error is used
as reconstruction error and pg(v|w) becomes N (v;¥,0?1),
where v = g4(w;0) and o? is a hyperparameter. To effi-
ciently maximize the log-likelihood, knowledge about the
intractable posterior pg(w|v) is required. Instead, a variational
approximation provided by a separate inference (encoder)
network is used. This approximation denoted by ¢4 (W|v),
is modeled as V' (w; 1y (v), diag (a’i(v)) ) , Where g1, (-) and
o4(-) are generated by the encoder network g.(-;¢). In the
end-to-end training objective both the generator likelihood
is improved and the KL divergence between the variational
approximation and the true posterior is minimized. This is
called as the Evidence Lower BOund (ELBO) loss function
is proposed [37]. The computation of the ELBO loss function
involves a sampling operation. Since the sampling operation
does not have defined gradients, [37] suggested a reparame-
trization trick. Thus the final form of the ELBO loss function
used to train VAEs becomes [37]

mz)x]Ev,ENE log po(vVIps (V) + o4(v) ® €)]
—Ev [KL(gs(w[v)|[p(w))] . (6)

Here, E is a standard normal random variable with indepen-
dent dimensions whose dimensionality is equal to that of the
latent dimension, € is a sample from E, and ® is an element-
wise multiplication operator between two vectors.
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Fig. 2. Joint source channel coding and variational Autoencoders.

B. Similarity Between Joint Source-Channel
Coding and VAEs

Fig. 2 shows the similarity between the reparametrized
VAE and the Joint Source-Channel Coding setup. The major
differences between the two setups are:

1) The VAE latent variable W is the analogue of the noisy
received signal Y.

a) In VAEs, the distribution of w is assumed to be
the standard normal distribution with independent
components.

b) In JSCC, the distribution of Y is dependent on the
distribution of the source and the channel noise.

2) The covariance matrix:

a) In VAEs, W is sampled from a normal distribu-
tion whose mean and covariance matrix are both
determined by the encoder.

b) In JSCC, Y is sampled from a normal distribution
(AWGN channel), whose mean is determined by
the encoder. The covariance matrix is a character-
istic of the channel.

After replacing v and w  with their JSCC
counterparts in (6), the KL divergence term becomes
Ex [KL(qs(¥|x)||lp(¥))]- Since, the channel is AWGN,
q4(¥|x) is normally distributed. As the differential entropy of
a Gaussian distribution is only dependent on the covariance
matrix, Ex [KL(¢s(§|x)||p(¥))] can be simplified to
Ex .z [logp(¥)] in the maximization objective. Applying all
this, we can simplify the loss function of VAEs (6) and use
it to train the JSCC system as

DgangEx,z [log pe(x|7)] + Ex z [log p(¥)] - (7)

Although the above loss function (7) is got from VAEs based
on the similarity of the system functioning, we show in
Sec. III-C that this loss function has a theoretical significance.
Further, even though the above loss function (7) assumes
AWGN channels, the same loss function holds for any inde-
pendent additive noise channel. This is because differential
entropy for any distribution is translation invariant.

Now, we choose the distribution to model py(x|y). For ease
of notation, let us define X := ¢,4(¥). Different choices reduce
different error metrics between x and X. For example,

D) If po(x]y) = N (x;%, ), then the system learns to

minimize the squared error, i.e., ||x—%||2. The value of
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determines the operating point, i.e., the power constraint
of the JSCC system.
2) If po(x|y) = f L Sexp” each
dimension is modeled by an i.i.d. Laplace distribution
with scale parameter A, then the system learns to mini-

mize the absolute error, i.e., ||x — X||;.

sxo—%wlh e,

For the sake of simplicity we assume the use of squared
distortion for the rest of the paper. The loss function in (7)
becomes

minEx z [[[x = %[[3] = AEx z [log p(3)] - ®)

1) Distribution of Received Codewords: Additionally, in the
case of VAEs, p(w) is assumed to have a standard indepen-
dent component multivariate Gaussian. However, for JSCC
this need not be true. Even though the asymptotic matching
distribution for transmission over an AWGN channel is the
Gaussian distribution, in the delay limited case it need not
be true. Instead we assume that p(§) has an independent
component Generalized Gaussian Distribution (GGD). This

can be written as
( 3! ) B
o )

k

p(y) = 11;11 20T 1/@
where, o and (3; are the scale and shape parameters; and I'()
represents the gamma function. The GGD generalizes on the
Laplacian and the Gaussian distributions. If 5 = 1 the PDF
becomes that of a Laplace distribution (double exponential
distribution) and if 5 = 2 the PDF becomes that of a Gaussian
distribution. Since, we do not know the values of «; and (3;
we pose this as a learning problem. The training methodology
for this becomes clear in the next subsection.

Putting all this together, for the JSCC of Gaussian sources
over AWGN channels where the reconstruction error is rep-
resented by MSE, the loss function used to train the system
is

IIlll’l Ex,z

|x—x||2+)\z<|};x) ) } . (10)

C. Information Theoretic View of Using VAEs for JSCC

Before going into the theorem let us define g4(y) =
[ q4(3|x)p(x)dx. This is the PDF of Y = g.(X; ¢) + Z.

Theorem 1: The minimization objective function of VAEs
used for JSCC tasked with minimizing the squared error
distortion while subject to independent additive noise is:

Ex z [|x — %|[3] (1)

where c is a constant. This objective is an upper bound on the
minimization objective function obtained from rate-distortion
theory, provided the following assumptions are satisfied.
1) The JSCC system operates
ie, 1(X;X)=kC.

2) The encoder and decoder are deterministic.

- )‘]EX,Z [logp(y)] + c,

at channel capacity,

Proof: The objective from rate distortion theory in terms
of the distortion-rate function for m-dimensional source can
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be written as,

12)

. 1 N
arg min —Ex x [Hx— x||%]

p(X]x):I(X;X)<mR
For reliable communication we have mR < kC. We can
write the Lagrangian of this constrained optimization as

1 . 5

argmin —Ey ¢ [|[x — %[|3] + AI(X;X) —kC)  (13)
p(x[x)

where, A > 0. To minimize the distortion, we assume that the

system will try to use the full channel capacity, i.e., we assume

that the optimal solution is on the boundary of the constraint

set. This assumption allows us to solve for A = — jgf‘g; =X
[49] giving us
1 .
argmin —Ey ¢ [[[x — %[[3] + X (I(X;X) — kC). (14)
m X

p(X[x)

Since the deterministic encoder and decoder parametrized
by ¢ and 0 determine the distribution p(x|x). We can write
(14) as

argminEx 7 [|[x — %[[3] + mAo(I(X;X) — kC). (15)

s

It remains to show that the objective function in (11) is an
upper bound on the objective function of (15).

Since X - Y — Y — X forms a MEII'kOV chainl from
the data processing inequality we have, I(X;X) < I(Y;Y).
Thus we get

Ex z [|lx — %3] + mAo(I(X; X) — kC)
< Ex.z [||x — %[|3] + mAo(I(Y;Y) — kC)

= Exz [||[x — %|3] + mlo H(Y) +ec. (16)

Here ¢ & —\o(H(Z) + kC) is a constant w.r.t. parameters ¢
and ¢.

The entropy of H(Y) is computed with respect to the
distribution of noisy received codewords denoted as g4(¥)

Exz [|Ix — %[13] — mAEg_,, ) log(gs())] + . (17

Since, g4 (y) is intractable to compute, we use an approxi-
mation p(y). We multiply and divide the argument of the log
term in (17) by p(y). After rearranging the terms we get

Ex.z [|Ix — %[|3]
—mAEyg ., ) log(p())]
—mAo KL(gs(¥)llp(¥)) + c.

Since, the K L divergence is always > 0, by dropping it we
get an upper bound that can be written as

(18)

Ex z [|[x — %|[3 — mXolog(p(¥))] + ¢ (19)

which is the same as (11) with A\ = mAg. O
Even though, we have presented the theorem for squared
error distortion, the proof holds for any differentiable distor-
tion metric such as |[x — X[} where |||, is the £, norm.
There are two sources that result in the objective becoming
an upper bound. The first is due to the data processing
inequality I(X;X) < I(Y;Y), and the second is due to
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KL(qs(y)||p(y)) > 0. To ensure a tight bound w.r.t. the sec-
ond source of relaxation, the distribution p(y) should be
designed to minimze the KL divergence. We do so by fitting
the parameters of p(¥) to minimize the negative log-likelihood
of samples from g¢4(y) i.e. argmin, 53— [log (p(¥; @, B))].
Here, o and [ are parameters of the distribution p(y).
These parameters are separate from the neural network
parameters 6, ¢.

Proposition 1: For JSCC of Gaussian sources over AWGN
channels subject to square distortion, \g = In 2%

Proof: 'When D = Dgpy, mR(Dopy) = kC. Using the

definition of R(D) in (2), we get

2kC

Dot = 022~ % (20)
The value of Ay can be obtained as
dDo t 2Do t
Ao = — P —1n2 P 21
0 AkC) n (21)
[

IV. DISCONTINUITY IN JOINT SOURCE-CHANNEL CODING

In bandwidth compression, we attempt to represent a source
generating signals in an m-dimensional space by project-
ing it onto a k-dimensional space. Since the data occu-
pies an m-dimensional space and is being represented by a
k-dimensional point when m > k, the representation is lossy.
Using an example, we show that for m = 2, k = 1 Gaussian
JSCC over AWGN samples, good performing solutions need
to make use of discontinuity. It is important to note that the
discontinuity is not in the curves on which the source symbols
are projected onto. It is in the mapping function which the
encoder is trying to learn. The basis for discontinuous mapping
is also supported by topology theory that shows us that it
is not possible to perform dimensionality reduction using a
continuous map [1], [50].

To better understand this consider the m = 2, k = 1
system and the solution of [2] in Fig. 3a. The encoded signal
space consists of two spirals (solid blue and dashed red). Any
source symbol is represented as a point in the 2D plane. It is
then projected onto the closest spiral. The encoding of the
projected point is the distance to the projected point from the
origin, along the spiral curve (denoted as d). The distance
is transformed using a function f that performs a mapping
f(d) : R>9 — R>o mapping. Finally, if the projected point
lies on the blue spiral, + f(d) is transmitted and if it lies on the
red spiral — f(d) is transmitted. Such a system has proven very
successful. Even the functional optimization methods of [3]
obtained a similar solution and achieved a gap of 0.5dB from
the asymptotic Shannon limit.

From Fig. 3 we, observe that a spiral-like system has
discontinuity during projection, and it requires at least two
encoders to model it. Consider two points for encoding,
represented by % and ®. In Fig. 3a although the two points
are close, their projections onto the spirals, represented by
A and V respectively, are far away and their final encodings
y1 and yo are of the opposite sign. Consider the possibility
of using a single encoder as shown in Fig. 3b. Since neural
networks are continuous, the encoder network is forced to
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X(1)

(a) Boundary in 2 : 1 encoding.

(c) Problem is overcome using two encoders.

Fig. 3. Boundary effects on a single neural network encoder in 2 : 1
encoding.
1 k4
Encoder 1 y»
90C @)
Selection Yy y Decoder 2
x Mechanism 9a(50)
Encoder N y™
9™

)

Fig. 4. Multi-encoder system with selection mechanism.

interpolate between the two values. This can lead to spurious
encodings in the vicinity of the boundary. Neural networks can
learn to closely approximate discontinuous functions. How-
ever, the presence of a decoder which depends on the encoder
and vice-versa biases the system to poor performing solutions
when a single encoder network is used. Alternatively, if there
are two encoder networks, one encoder can learn on one side
of the boundary (the boundary is represented by the line C'D)
and the other encoder on the other side. So, given two encoders
and an appropriate selection mechanism, we can effectively
model the discontinuity and improve the performance of the
system.

Fig. 4 shows the proposed JSCC system employing multiple
encoder networks. The multiple encoder networks provide
various possible encodings. The selection mechanism then
selects only one of the encodings for transmission. Finally,
the noisy received codeword is processed by the decoder
neural network. The individual encoder neural networks’
encoding functions are represented as g£7’>(~; d)(i)) where, ¢ €
{1,..., N} indexes the encoder networks, N represents the
number of encoder networks and ¢(?) represents the parame-
ters of the i*" encoder network. The encoded value provided
by the i*" encoder network is represented as y(*). The decoder
neural network implements the decoding function represented
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by ga(-,0), where 0 represents the parameters of the decoder
network.

In the following subsections, we explore two ideas for
modeling the selection mechanism. The first uses an intuition-
based rule as the basis for selection. The second approach
removes this intuition-based selection process and trains a
separate selector neural network. This network automatically
learns which encoder network to choose as a function of
the source signal. Finally, we analyze the gradients between
the two methods and try to understand their similarity and
differences.

A. Rule Based Selection Methodology

Based on the discontinuity hypothesis presented above,
the most obvious methodology of selection is to select the
encoder that leads to the least approximation error. Thus,
the encoding function can be defined as

ge (x) = g (x) where, j = argmin ||x — ga(g{” (x))|]3-
(22)

However, implementation of this idea revealed a shortcoming.
Since the system is solely guided by the projection error,
the methodology learns a solution that prefers the use of high
power encodings. This eventually leads the system to squander
the power budget on higher probability symbols at the cost of
high errors on the lower probability symbols. On an average
this leads to poorer overall performance. To circumvent this,
it is necessary to account for power during the selection
process.

Let us denote the individual loss of encoder ¢ encoding a
sample x subject to noise sample z as

L) 5 (x,2) = [1x — ga(g®? (x) + 2)| I3

e (1(ex) +2) |
Ay ( )“) . 23)

=1

Bi

ay

As the noise applied by the channel is unknown during the
selection, we use the noiseless version as a proxy. Thus,
the overall encoding function g.(x) is defined as

ge (x) = g¥) (x) where, j = arg min E&?OE (x,0) (24)

K3

During training, for every source sample x an encoder is
chosen. This encoding is perturbed by the channel noise and
then decoded by the decoder. The loss as in (10) is computed
between the chosen encoder and the decoder. The gradients
w.r.t. the loss are then applied to the decoder and the chosen
encoder. The overall training loss function can be defined as

N
Lytorute = D L in. 200 e0)Eoon (%,2)  (25)
i=1

where, 1. ) is an indicator function that
i=arg min; £, (x,0)

returns 1 if the encoder network-i has the least 51(342)13 (x,0)
Vj € {1,..., N}. We abbreviate this loss as the MoE_RULFE
loss to indicate the Mixture-of-Experts RULE loss.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 07,2021 at 01:18:32 UTC from IEEE Xplore. Restrictions apply.



2006

Algorithm 1: Rule based training

Initialize: The encoders and decoder neural networks
with parameters {¢(), ... ¢(N) 0} are initialized using
variance-scaling initialization [51];

for iter :=1 to iteryq, do Training loop

Sample x from X and z from Z;

for :=11 N do

Compute y = i (x;¢();
Compute L%j[)oE (x,0) as given in (23);

end

Evaluate rule: j = argmin, £{. . (x,0);

Set: y = y);

Channel: ¥ =y + z;

Decode: X = g4 (3;0);

Compute Loss: Compute the loss £ as given in (25);

Apply gradients: 6 < 0 +nVyL and
¢(j) - ¢(j) + 77V¢<J>C

end

A clearer functioning of the overall training of the system
using the rule-based selection criterion is given in Algo. 1. For
ease of notations, we assume a batch size of 1 while describing
the algorithm. It is important to note that the gradients of the
loss are applied on the decoder and only on the chosen encoder
network j. This is because the loss is computed using the
encoding from the encoder network j. Applying the gradients
on any other encoding network will just corrupt the training
process.

Further, since the prior work on Gaussian joint source-
channel coding advocated the use of spiral like solutions
in [2], [3], [13]-[16], we augmented the input to each of the
encoder networks with an extended hyper-spherical coordinate
representation of the source symbol x. The standard hyper-
spherical coordinate representation is defined as

Ty = [1xll2
X/
T(j11) = cos ' (%) where j € {1,..m — 2}
cos™! tm1 if X() >0
x72n71 + x?n (26)
T'(m) =
—1 Tm—1 .
21 — cos if Xy < 0.

[ 2 2
Tim—1 + Lim

However, due to a discontinuity in the representation when
X(m) changes sign, using the standard hyperspherical coordi-
nate representations causes learning difficulty for the neural
networks. Instead we use an extended representation where
Teot = [T(1),T(2)s- - - T(m—1), SIN(T (1)), €OS((m) ) | We only
used the hyperspherical coordinates for the experiments con-
ducted using the rule based selection methodology. For the self
learned selection methodology presented next, we removed the
use of such intuition completely.
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B. Self Learned Selection Methodology

In this methodology, the selection mechanism uses a selector
network. The selector network, whose function is represented
as gs(;¢) (parametrized by (), accepts the input source
symbol x and outputs a multinomial probability vector p with
size N (number of encoder networks) for that input source
symbol. p(;) represents the probability of selecting encoder
network-:; to provide the encoding for that source symbol.
Since we want a system where one encoder specializes in a
region and the other encoders do not, we focus on using a
loss that encourages the system to learn competitive encoder
networks.

One of the most straightforward loss functions to learn
competitive mixture-of-experts can be written as

N .

> P Liter (x.2)
i=1

We call this the Mixture-of-Experts LINear (MoE_LIN) loss.
However, both in our experiments and as found by [43], this
loss did not perform well. Instead, the following replacement
was suggested, which we call the Mixture-of-Experts EXPo-
nential (MoE_EXP) loss

N
D (x,
—log (Z P(i) exp “yor ))] - (28)

=1

Lyioe_LiN = Ex 7 27

Lviok_Exp = Ex 7

Lyor_Exp i a better loss function to train the mixture-of-
experts system because the gradients to the individual experts
are not only weighted by the probabilities prescribed by the
selector network but also by the values of the losses themselves
[43]. This encourages the system to specialize.

Algorithm 2: Self learned selection training

Initialize: The encoders and decoder neural networks
with parameters {¢(1), ... #(N) @} are initialized using
variance-scaling initialization [51];

Initialize: The selector network with parameters (;

for iter :=1 to iter,,q, do Training loop

Sample: x ~ X and z ~ Z;

for i=11to N do
‘ Compute £1(\14)0E (x,z) as given in (23);

end

Compute Loss: Compute the loss Lyop gxp as given
in (28);

Apply gradients to the decoder:

0 «— 0 +nVoLriok EXP;

Apply gradients to the selector:
¢ — ¢ +nVLroE_EXPS

for i =1 to N do Apply gradients to the encoders

Apply gradients to encoder network-::

d)(l) — ¢(1) + nV¢(i)£MoE7EXP;
end
end

The overall training of the system using the self-learned
selection criterion is given in Algo. 2. For ease of notations,
we again assume a batch size of 1. Unlike the rule-based
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training, gradients are applied to all the encoders so that they
can improve their respective encodings. However, as the next
subsection makes it clear, the loss function is formulated in
such a way that a larger gradient is applied to the better
performing encoder network.

C. Comparison of Rule Based and Self Learned Selection
Methods by Gradient Analysis

To better understand the effect on the individual encoder
networks, let us look at the gradients given by the various
loss functions. For ease of writing, let us assume the case of
k = 1. The gradient of Lyjog LN W.I.L. y(” is given as

d‘cl(\ji)oE (X’ Z)

Similarly, the gradient of Ly1og Exp W.IL y(i) is given as

dlyMoE_LIN

(29)

i

P() eXP_LI(:ILE(x’Z) dﬁM B (x,2)

dy(l)

dLyoE_EXP

dy(l) B le\il P exp—ﬁl(\?oE(x,z)

(30)

The gradient from Lyor gxp is better because the gradient
is scaled based on the relative performance of the encoder
network-; w.r.t. all other encoder networks. If the encoder
network-7 is the best performing encoder network for that x,
it will get the highest weight and the other encoder-networks’
gradients will be damped down. In contrast, the gradient of
Lnor_ LN 1s only scaled by the selector network probability,
which initially can be very off thus interfering with the ability
of the encoder networks to specialize [43].

The gradient of the rule based loss function Lyior RULE
can be written as

dLlyok_RULE acl) . (x,z)

Ay oy
We can see that the gradient in (30) is similar to a soft version
of the gradient in (31). The rule based system only trains
the chosen encoder where as the mixture-of-experts system
with the loss (28) trains all the encoder networks while softly
giving more preference to the better performing network.
This prevents spurious initialization artefacts from leading to
selection biases against encoder networks in the beginning
of the training. Further, when an encoder network has much
better performance than other encoder networks for some x
(, ie., CMoE(X 0) >>£M0E(x,0) Vje{l,...,N}and j #
1), the gradients become approximately the same.

€29

i=arg min; ‘C’MoE(x 0)

V. EXPERIMENTAL RESULTS
A. Implementation Details

All the neural networks are fully connected neural networks
with three layers. The encoder networks and the decoder
network each have 40m hidden neurons, where m is the source
dimension. The selector network has 10m neurons in each
layer. We use the RBF activation function defined as

® (thn—l + bn)2)

where h,, is the output of the n'”* layer of the neural network,
W, is the a matrix that represents the weights between layer

hn = €xXp (_ (32)
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n and n — 1, p,, is the scaling vector, and b,, are the biases.
We use a large batch size of 3000 to ensure that there are
sufficient samples in the low probability regions of the source
distribution.

The neural networks are trained for each power setting
and m, k values separately for a maximum of 107 iterations.
The weights of the network are initialized using the variance
scaling initializer [51]. Prior training of the selector network
is required to ensure that its selection of any encoder is
equiprobable. This ensures that spurious selector network
initialization of the does not bias the training to train only a
subset of the encoders. We try out five possible initializations
by training the systems for 10° iterations. We test each of these
networks with 5 x 10* samples and select the best performing
network for further training. This is done because the networks
tend to get stuck in local optima. The results are presented by
testing the system over a batch of 107 samples.

When training k # 1 systems, we observed that the system
has a tendency to move towards sub-optimal solutions by
increasing the power across a subset of channels while ensur-
ing that the average transmission power constraint is satisfied.
To overcome this, we modify the loss functions in (10) and
(23) to individually weigh the channel powers, i.e., the term
ko
l; (%) in (10) is replaced by Z Al (‘y”)‘) . The \;
are dynamically adjusted every 10% 1terat10ns by measuring
the power across each of the channels. It is observed that
eventually A; all approach 1 indicating that their purpose is to
modify the optimization landscape to prevent the system from
moving towards local optima.

Finally, when Pr is close to 02 (CSNR = 0dB,5dB),
we find that the system moves to a local optima where it learns
a trivial encoding g.(x) = 0V x. This is because the two
terms of the loss function (10) are almost equal. So, we add
a regularization term as below to the final loss function (10)

Zl . var (y(l)) + (mean (y(l)))Q 1
£~ 2 8 var (l)) 2Pp 2
(33)

This regularization term forces the K L divergence between
the input distribution across each channel to be N (0, Pr).
We do not modify the individual encoder loss (23).

For training the «; and ;, we incorporated certain insights
to prevent overfitting. Firstly, a; was fixed as a function of
01 by ﬁxing the variance of individual GGD distributions to
be Pr + o2. Secondly, we set 3, = BV I € {1,...,k}.
We then ﬁt the @ parameter by initializing it to 2 and
restricting its range to [1,2]. The training for 5 was done
once in every 10* iterations of the encoder decoder training
by performing gradient descent on the negative of maximum
likelihood computed over 10* samples.

We observed that during the training, gradients to the
selector network in Mixture-of-Experts can saturate. To avoid
this we used the standard loss function of (28) to train the
encoders and the decoder networks. To train the selector
networks we used the modified loss function

Lspr = vLymor_exp + (1 —7)Lror_LIN (34)
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Fig. 5. Encoding functions for m = 2,k = 1 systems at CSNR = 30dB.

TABLE 1

ENCODER(E), DECODER(D), AND SELECTOR(S) NETWORK
ARCHITECTURES USED ON MNIST, FASHION MNIST
(FMNIST), AND CIFAR-10 DATASETS. FULLY CONNECTED
LAYERS ARE REPRESENTED AS F(.J), WHERE J IS THE
NUMBER OF NEURONS. CONVOLUTIONAL LAYERS ARE
REPRESENTED AS C (S, F') WHERE S IS THE STRIDE
FOR DOWNSAMPLING, AND F' IS THE NUMBER OF
FILTERS. CT'(S, F') REPRESENTS THE TRANSPOSE
CONVOLUTIONAL LAYER WITH THE SAME ARGUMENTS
AS THE CONVOLUTIONAL LAYER EXCEPT THAT S 1S
THE STRIDE FOR UPSAMPLING. THE KERNEL
S1ZES FOR BOTH THESE LAYERS ARE 4

[ Component | Architecture
MNIST(E) {F(200), F(200)}
MNIST(D) {F(200), F(200)}

{F(512), F(128),
VINIST®) F(64),F(2)}
{C(1,32),C(2,32),
FMNIST(E) C(2,64), F(k)}
{F(3136),CT (2,32),
FMNIST(D) T (2,32),C7 (1,1)}
FMNIST(S) {C(1,32),C(2,32),C(2,64),

F(512), F(128),F(32),F(2)}
{C(2,16),C(2,32),C(2,64),
C(1,128) , F(k)}
{F(2048),CT (1,128),CT (2,64),
CT (2,32),CT (2,16),CT (1,3)}
{C(2,16),C(2,32),C(2,64),
C(2,128),F(128),F(32),F(2)}

CIFAR-10(E)

CIFAR-10(D)

CIFAR-10(S)

which gives stronger gradients to the selector network. The
value of ~ is slowly decayed from 1 to 0.01 0.01 as training
progresses. However, for m = 3, k = 2 this leads to overfitting
of the selector network and we the standard Lyior mxp loss.
The learning rate was initialized to 1072 and decayed by
0.97 every 10° training iterations for Gaussian and Laplace
sources.

Table I lists the structure of the encoder, decoder, and
selector networks used for the experiments on MNIST, Fashion
MNIST, and CIFAR-10 datasets. The architecture for MNIST
and Fashion MNIST used ReLU (-) activation functions. The
architecture for the CIFAR-10 employed the GDN activation
function proposed by [52]. All the systems were trained with
an ADAM optimizer [53] with the default parameters. For
images we used a constant learning rate of 10~%. All imple-
mentations were done in TensorFlow [54].

B. Visualizing the Encoders and the Decoders

Fig. 5 showcases the various encoding functions for the
m =2,k =1 system at CSNR = 30dB. The two axes of the
figures represent the two dimensions of the input samples x.

(c) Projection based MoE
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The value of encoding is represented by the color. Fig. 5a
is the encoder proposed by [2]. The encoding is a projection
onto a spiral followed by a transformation, as explained in
Sec. IV. The system achieves a simulated SDR that is 0.96dB
less than SDR,;. Fig. 5b is the encoding solution learned
by a single encoder system. The simulated SDR of this
setup is 2.86dB away from the Shannon limit. Fig. 5c is
the encoding solution learned when the selection between the
encoder networks is based on the projection error as described
in (22) whose SDR is 1.3dB 1.3dB away from the Shannon
limit. Fig. 5d shows the encoder learned by the rule-based
multi-encoder system whose SDR is 1.1dB away from the
Shannon limit. Fig. 5e shows the encoding solution learned
by the self-learned selection based MoE. The SDR of the
system is 0.96dB away from the Shannon limit. The takeaway
from these figures is four-fold. Firstly, more than one encoder
network is crucial for the system performance. Secondly,
the selection criterion plays an important role in the type of
solution learned. Thirdly, randomly initialized neural networks
approach similar solutions as proposed in literature without
any constraints guiding or requiring them to do so. Finally,
the neural network based systems also learn a projection based
encoding. This is confirmed by the constant encoding regions
that are spiral in structure.

Fig. 6 shows the various decoding surfaces for m = 3,k =
2. As we cannot easily visualize the encoding surface, we visu-
alize the decoding surface. Based on intuition, [13] proposed
the helicoid surface for projection an example of which is
shown in Fig. 6a. However, both the learned systems in Fig. 6b
and Fig. 6¢ (for CSNR = 20dB) show non trivial solutions
whose decoding surfaces are not easily parametrized. Thus
neural networks can help us find solutions to those systems
where human intuition fails. Quantitatively at CSNR = 30dB,
the rule-based system’s SDR is 1.5dB away from the Shannon
limit, and the self-learned is 1.71dB away from the Shannon
limit, whereas the helicoid system is 2.7dB away from the
Shannon limit.

C. Simulation Results

Fig. 7 shows the simulation results of the various learned
systems across CSNR values ranging from 0dB to 30dB.
We also appropriately plot the comparisons with relevant
literature. Fig. 7a shows the performance of the rule-based
and the self learned systems for m = 2,k = 1 and m =
3,k = 2 along with results from [2], [3], and the squared
error selection system (22). For, m = 2,k = 1, we find
that at CSNR, = 30dB, both the self learned system and [2]
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Fig. 6. Decoding surfaces for m = 3,k = 2.
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Fig. 7. Simulation of proposed systems across various CSNRs compared
with Akyol et. al. [3] and Hu et. al. [2].

have a simulated SDR, 0.96dB away from the Shannon limit.
The system designed by [3] achieves a better 0.5dB gap.
We also find that the squared error or projection error based
selection system performs worse than both the other learned
systems. This is true for all values of m,k, and we do not
plot it in the subsequent graphs to avoid cluttering. We find
that for m = 3,k = 2 both the learned systems drastically
outperform the results of [2]. The self-learned system achieves
a gap of 1.71dB from the Shannon limit and the rule based

oo 0! 2 40

(b) Rule based decoding surface

2009

0

(c) Self learned decoding surface

a gap of 1.5dB in comparison with the 3.61dB gap of [2].
All the numbers are at CSNR = 30dB. Fig. 7b shows the
simulation performance of both the self learned and rule
based system along with [2]. Both, the learning based systems
outperform the parametric curve based system. Additionally,
the self learned selection system outperforms the rule based
learning system by 0.17dB and 0.11dB at CSNR = 30dB
for m = 3,k = 1 and m = 4,k = 1 respectively. Fig. 7c
plots the system performance for m = 10,k = 6 and m =
10,k = 9. For m = 10,k = 6 the parametric curve based
system, self-learned systems and rule-based systems achieve
gaps of 2.46dB, 2.96dB, and 2.84dB respectively from the
Shannon limit. For m = 10,k = 9, the learned systems
significantly outperform the parametric curve based systems.
The parametric curve based system, self-learned systems and
rule-based systems achieve gaps of 4.11dB, 2.55dB, and
2.30dB respectively from the Shannon limit.

Complexity Analysis: Based on our neural network architec-
ture (two consecutive layers of size 40m) our time and space
complexity of both encoders and decoders are O(m?). The
training complexity for every iteration is also O(m?). Since,
there are no implementation details or complexity discussion
in [2], we explore a nearest-neighbor based projection method.
Using the k-d tree to implement the nearest neighbbor search,
we compute the complexity when k& = 1. Assume that p is
the number of points on a grid on a single dimension of
source or channel space. The encoding complexity on average
is O(log p), and the space complexity is O(p). The decoding
complexity is O(p™) and the space complexity is O(p). For
the case of k& # 1, the complexity depends on other design
factors. For example, a 10 : 6 system can be implemented
using four 2 : 1 blocks and two 1 : 1 blocks, or using one
5: 1 block and five 1 : 1 blocks. The training complexity for
every iteration of [3] is O(p™**). The space complexity of
the encoder is O(p™) and that of the decoder is O(p").

D. Generalization Experiments

The generalization experiments are performed for the self-
learned selection methodology since it is the more flexible
setup.

1) Robustness to Changes in Noise Power: For the exper-
iments in Sec. V-C, we tested the system at the CSNR at
which it was trained. In Fig. 8, we vary the CSNR7., i.e., the
testing CSNR, to be +5dB of the CSNRy,, i.e., the training
CSNR. We find that even if the CSNRr. = CSNR7,. == 5dB
the performance of the system is at most 1dB lesser than the
system tested at CSNR;..
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Fig. 9. Simulation results of a single m = 2, k = 1 system trained over the
range of CSNR € [20dB, 30dB].

2) Training Over a Range of CSNR: Although, as shown
in the previous experiment, the learned systems are pretty
robust, is it possible to have a single system that can operate
over a range of CSNRs when the operating CSNR is known?
To answer this, we modified the encoder, decoder, and the
selector networks to accept an extra input of CSNR. The size
of the neural network was retained to be the same as before.
The training was randomized by sampling random CSNR in
the range of [20dB, 30dB] and training the system for one itera-
tion for that value. We also explored the setup when the CSNR,
is available only at the receiver. We then compared the system
with two benchmarks. The first is where separate systems
were trained for every CSNR = {20dB,21dB,...,30dB}.
The second is the system trained at CSNR = 25dB and
tested over the range of CSNR € [20dB, 30dB]. We used two
metrics for comparison, the average of distance from SDR,,:
computed at CSNR = {20dB,...,30dB} and the maximum
distance from SDR,,; computed over the same points. The
system trained over the range of CSNRs achieved an average
gap of 1.03dB and a maximum gap of 1.09dB. The system
trained with CSNR available only at the receiver achieved
an average gap of 1.22dB and a maximum gap of 1.73dB.
The separately trained systems achieved an average gap of
0.97dB and a maximum gap of 0.99dB. The system trained
at CSNR = 25dB achieved an average gap of 1.22dB and
a maximum gap of 1.65dB. The system trained over a range
of CSNRs can generalize much better than the system trained
at a fixed CSNR. This indicates that the system, provided
the CSNR is known, can learn multiple modes of operation
specific to each CSNR. However, the CSNR information
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Fig. 10. Simulations of m = 2,k = 1 for a Laplace distributed source.

is transmitter. In comparison, the system with the CSNR
available only at the receiver performs poorly. Consider the
example of m = 2,k = 1 case where the encoders learn a
projection map onto some spiral. The operating CSNR decides
how tightly wound this spiral is. As the CSNR increases,
the arms of the spiral come closer to each other. Without this
information at the transmitter, the encoder learns a solution
that is best for the average case. This results in degraded
performance.

3) Generalization to Other Input Distributions: Laplacian
Sources: The system designed in Sec. IV-B can generalize
to other source distributions too. In Fig. 10 we show the
performance of systems m = 2,k = 1 trained for a Laplace
distributed source. We also plot the results of [2] for compari-
son. Our design methodology is not modified in any fashion to
accommodate information about the new source distribution.
We compare the performance of our system with the solution
proposed in [2]. The performance between both the systems
is indistinguishable.

E. Joint Source-Channel Coding for Images

Figs. 11 showcases the performance of our JSCC system
on images for the MNIST, the Fashion MNIST dataset [55]
and the CIFAR-10 dataset [56] for CSNR = 20dB. We com-
pared the results against two methods. The first is a base-
line of JPEG2000 operating along with a capacity acheiving
channel coding and modulation scheme. The target com-
pression ratio is computed as zzr-—. The compression
ratios for MNIST and Fashion MNIST datasets correspond to
{94.2,47.1,23.6,11.8}. The compression ratios for CIFAR-10
corresponds to {36.9,18.5,12.3}. For those images where
such a compression ratio cannot be acheived the mean value
of the image is transmitted. The compression ratios tested
here are beyond the capability of JPEG2000, particularly for
the MNIST and Fashion MNIST datasets. We also com-
pared our performance with that of DeepJSCC Wireless
(DeepJSCC-W/L) which we implmented [20]. PSNR is the
metric used for comparison. For, the MNIST dataset we
observed that DeepJSCC-W/L had some issues with local
optima for k£ = {80, 160}. This could be because of the simple
architecture considered for that experiment.

We observe that both the single and the dual encoder VAE
outperform the JPEG2000 and DeepJSCC-W/L for all the
datasets and configurations tested upon. However, the dual
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1,3:2, and 4 : 1 systems.

encoder does not give any improvement in performance when
compared to the single encoder. We hypothesized this to be
because of the nature of the dataset and its size. The dual
encoder excels when two sufficiently close datapoints have
to be projected to two different and possibly distant values.
However, the relatively small size of the image datasets, allows
the system to interpret the images as relatively distant and
isolated from each other, which renders the dual encoder setup
unnecessary. To test out this hypothesis we performed an
experiment on Gaussian JSCC with both small and large num-
ber of training samples, for m = 10,k = 9 at CNSR = 30dB.
We first trained the dual and the single encoder systems with
each training batch being sampled as a new set of samples.
For reference, the Shannon limit for this configuration is
27.0dB. The dual encoder setup achieved a performance of
SDR = 24.7dB. The single encoder setup trained achieved
SDR = 22.7dB, which is 2dB worse than the dual encoder.
For the next set of experiments we initialized a common
dataset of 50000 samples and trained both the single and dual
encoder setup using the common dataset. We found that both
the dual and single encoder VAE performed at SDR = 11.2dB.
Not only is this much worse than the performance when fresh
batches of samples were used, the use of limited samples
also affects the efficacy of the dual encoder over the single
encoder. Overcoming this bottleneck can drastically improve
the performance of JSCC for images. This is left as an open
future research direction.

F. Empirical Analysis of the Theorem

Here we discuss some of the empirical insights into the
tightness of the bound proposed in Theorem 1 along two

k
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directions. First, we focus on the two relaxations that cause
the VAE ELBO objective to be an upper bound on the Rate-
Distortion objective. We show that the quantities 1(Y;Y) —
I(X;X) and KL(qy(§)||p(§)) are small. We also test our
assumption that the system operates close to the channel
capacity, whether I(X; X) is close to kC'? These quantities are
computed using the trained systems. Since these quantities are
sample estimates of Mutual Information (MI) and KL diver-
gence, we restrict ourselves to analyzing the low-dimensional
cases, k = 1 or k = 2 for Gaussian sources.

1) Mutual Information Gap: Fig. 12 showcases the esti-
mated values of I(X;X) and I(Y;Y). We estimated the
Mutual Information using both a non-parametric nearest neigh-
bor MI estimator [57] and a neural network based method
[58]. The largest difference between I(Y;Y) and I(X;X)
was 0.3nats at CSNR = 30dB for the 3 : 2 system.

2) KL Divergence Gap: Fig. 13 showcases the
estimated  values of KL(qs(¥)|lp(¥)). The KL
divergence is estimated as a Monte-Carlo estimate of

Egnq,(9) 108(q6(F)) — log(p(¥))]. log(p(y)) is computed
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using the model that we fit on y during training. We estimate
log(qs(§)) as log (Ey~g,(x) [pz(3 | ¥)]) where, pz(3y)
represents the channel model. Since the number of samples
required for a reliable estimate of these quantities increases
exponentially with the dimension of Y, we restrict
our computation to the & = 1 case. We find that for
CSNR > 10dB the KL divergence is < 0.1nats for all the
systems. For training the CSNR < 5dB systems the use of
the extra regularization term (33) to force the system away
from trivial solutions, interferes with the distribution of the
samples y, which in turn leads to a poor fit.

3) Capacity Gap: Fig. 14 showcases the relative dif-
ference between total channel capacity and I(X; 5() ie.

1.0 - kfc(xix)) % 100.0. This is to test the first assumption

AWGN

of the Theorem 1. We find that the largest relative difference
is 6.18% at CSNR = 30dB for the 3 : 2 system, which is
reasonably small.

VI. CONCLUSION

In this paper, we proposed a scheme for Joint Source-
Channel Coding over analog additive noise channels that lever-
ages the knowledge of Variational Autoencoders. Specifically,
we showed that the minimization objective obtained from rate-
distortion theory is upper bounded by the objective used to
train the VAEs for JSCC. When the source dimension is greater
than the channel dimension, two source samples that are close
to each other can be encoded in such a way that in the encoding
space they are not in each other’s neighborhood. To account
for such projections, we proposed a Mixture-of-Encoders setup
where for each sample one of the multiple encoders is selected
for transmission. We proposed two selection methodologies,
one based on an intuitive rule and another where the selection
criterion is learned. The simulated performance of both these
methods for JSCC of Gaussian sources over AWGN channels
showed that the learned systems perform close to or better
than existing methods. Further, these learned systems are
robust to changes in channel conditions. Finally, we showed
that the proposed methodology generalizes to other source
distributions like the Laplacian and more realistic setups like
images.
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