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Abstract—In this paper, we study Joint Source-Channel Coding

(JSCC) for distributed analog functional compression over both

Gaussian Multiple Access Channel (MAC) and AWGN channels.

Notably, we propose a deep neural network based solution for

learning encoders and decoders. We propose three methods of

increasing performance. The first one frames the problem as an

autoencoder; the second one incorporates the power constraint

in the objective by using a Lagrange multiplier; the third method

derives the objective from the information bottleneck principle.

We show that all proposed methods are variational approxima-

tions to upper bounds on the indirect rate-distortion problem’s

minimization objective. Further, we show that the third method is

the variational approximation of a tighter upper bound compared

to the other two. Finally, we show empirical performance results

for image classification. We compare with existing work and

showcase the performance improvement yielded by the proposed

methods.

I. INTRODUCTION

With the number of IoT devices set to exceed 75 billion
by 2025 [1] and promising new applications like cooperative
autonomous driving [2], it is important to design systems
where distributed sensors communicate efficiently in a target-
aware manner. Analog communication based JSCC has seen a
recent resurgence due to its attractive robustness properties to
channel conditions [3], [4]. Along these lines, in this paper, we
study the problem of analog distributed functional joint source-
channel coding (JSCC) using deep neural networks (DNN).
Fig. 1 shows the problem setup. Consider an example where

separate wireless cameras observe different parts of a scene
that has to be classified. We know that a system that uses all the
parts in predicting the class label will perform better than any
system using only a single part. Instead of transmitting all the
observed raw data to a centralized location, it is more efficient
in terms of communication to send the features relevant for
the classification task. Further, in delay critical applications,
employing asymptotic coding schemes may not be viable.
Thus, in this paper, we study the problem where separate
sensors independently encode a single sample for transmission

This work is supported by National Science Foundation under award ID
MLWiNS-2003002 and a Gift from Intel Co.

across a noisy channel. The central receiver uses this received
data for classification.
We categorize the prior works as below:

Deep neural networks for JSCC: Many works perform
JSCC for data recovery using DNNs over orthogonal channels
[3]–[9], and MAC [10]. Recent works have looked at the
centralized analog functional JSCC problem [11]–[13]. Very
recently, [13] proposed a system for analog JSCC for face
recognition from multiple cameras. However, their method is
similar to our first baseline method, and subsequent methods
proposed in this paper show better performance.
Distributed Functional Compression: Unlike the problem
here, the CEO problem assumes that given the random vari-
able to be reconstructed, the observations at the sensors are
independent [14]–[19]. Further, in contrast to our one sample
encoding, others have studied asymptotic methods [20]–[22].
Additionally, many works study the problem for linear target
functions [23]–[25]. Also, none of these works perform JSCC.
Distributed Functional JSCC over MAC: Beginning with
[26], many works have looked into this problem when target
functions have known simple forms [27]–[29]. Interestingly
[30] showed the existence of discontinuous universal encoding
functions when the sensors observe scalar variables.
Variational Information Bottleneck: Information Bottleneck
was proposed as a generalization of Rate-Distortion Theory
[31] and used in centralized applications [32], [33]. Recently,
[34]–[36] introduced distributed variational information bottle-
neck. However, their objective function simplifications make
use of independence assumptions similar to the CEO problem
and also do not look at JSCC.
Distributed Learning: Model parallelism in distributed learn-
ing assumes some communication between nodes [37], [38].
Miscellaneous: The work [39] on distributed quantization
for classification is the closest to our work. However, not
accounting for the communication channel leads to a different
training criterion.
The contributions of the paper are
1) We propose three deep learning based methods to per-

form analog JSCC for distributed functional compres-
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sion for use over Gaussian MAC and AWGN channels.
2) We showcase the theoretical connection of proposed

methods to the indirect rate-distortion problem. We also
theoretically contrast the proposed methods.

3) Finally, we show empirical results on the CIFAR-10
dataset to validate these methods and insights.

Notation: Bold uppercase letters denote random variables.
Bold lowercase letters denote the samples.

II. PROBLEM DEFINITION
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Fig. 1: JSCC for functional compression.

Fig. 1 shows the problem under consideration where V is
an information source and X is a correlated random variable
such that I (V ;X) > 0. The sensor nodes observe parts of the
correlated random variable X . We represent the random vari-
able observed by the edge node-i as Xi where i 2 {1, ..., N}
indexes the nodes. We assume that knowing the value of x is
equivalent to knowing all the values of x1, . . . ,xN and vice-
versa. Each Node-i uses some deterministic encoding function
denoted as a mapping g

i
e(·;�i) where �i are the parameters.

Yi 2 RK is used to denote the signal transmitted by node-i.
The transmitters are subject to an average power constraint of
the form 1

KN

PN
i=1 E

h
kYik22

i
 PT . Ŷ represents the noisy

received signal at the receiver. We represent the decoder by a
function gd(·;✓) where ✓ is its parameters. The output of the
decoder is the recovered value of v denoted by v̂. The objec-
tive of this problem is to minimize the distortion between V
and V̂ while satisfying a rate constraint I(X; V̂ )  C where
C is the channel capacity. Revisiting the earlier example, xi

corresponds to different parts of the scene observed by the
cameras (edge nodes), and v is the unknown true class label
of the observed scene.

In the case of the orthogonal AWGN channel, the received
noisy signal Ŷ is given by

Ŷ =

2

64
Ŷ1
...

ŶN

3

75 =

2

64
Y1
...

YN

3

75+

2

64
Z1
...

ZN

3

75 . (1)

Here, Zi s N
�
0,�2

zIK
�
are iid random variables represent-

ing noise. IK represents the identity matrix of dimension K

and �
2
z is the noise power. In the Gaussian MAC scenario the

received noisy signal Ŷ is given by

Ŷ =
NX

i=1

Yi +Z, (2)

where Z s N
�
0,�2

zIK
�
is the noise. The Channel Signal to

Noise Ratio (CSNR) in dB is defined as 10 log10
⇣
1 + PT

�2
z

⌘
.

III. METHODOLOGY

In this section, we propose three methods. The first one
frames the problem as an autoencoder; the second one in-
corporates the power constraint in the objective by using a
Lagrange multiplier; the third method derives the objective
from the information bottleneck principle [31].

A. DiFJ-AU: Distributed Functional JSCC via Autoencoders

In this methodology, we train the system to minimize the
empirical distortion loss as

LAU = EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e(xi;✓i) + z;�

!!#
.

(3)
Here DV (·, ·) is some differentiable distortion measure used
to compute the discrepancy between the true value v and its
recovered value v̂. To ensure the power constraint is satisfied,
the output of the encoding function yi is normalized as ỹi =p
KPT

yi

kyik2
prior transmission. In this method, the power

constraint implicitly enforces the rate constraint. Prior works
have popularized this approach in joint source-channel coding
[3], [12]. In the absence of prior works, this method will serve
as a strong performing baseline.

B. DiFJ-SL: Distributed Functional JSCC via Standard La-

grangian

The optimization problem is written as

argmin
�1,...,�N ,✓

EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e(xi;✓i) + z;�

!!#

such that
1

KN

NX

i=1

E
h
kYik22

i
 PT . (4)

The constrained optimization problem in (4) is converted into
an unconstrained optimization problem by using Lagrange
multipliers. The loss function for minimization is

LSL = EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e(xi;✓i) + z;�

!!

+ �
1

KN

NX

i=1

kYik22

#
. (5)

Here � is the Lagrange multiplier. Similar to the earlier
method, the power constraint implicitly enforces the rate
constraint.

C. DiFJ-VIB: Distributed Functional JSCC via Variational

Information Bottleneck

The information bottleneck principle proposed by [31] is
the generalization of the rate-distortion theory proposed by
Shannon [40]. The rate-distortion theory is a principled way
of finding a compressed representation of X , denoted by
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Ŷ , that minimizes DX(X, Ŷ ) while simultaneously ensuring
I(X; Ŷ )  R, where R is the rate constraint. The choice
of the distortion measure governs which features are relevant
and preserved in the compressed representation. However, [31]
proposed the use of another random variable V to determine
the features relevant for preservation. Thus, the information
bottleneck theory is a principled way of finding a compressed
representation of X , denoted by Ŷ , that maximizes I(V ; Ŷ )
while ensuring I(X; Ŷ )  R.
The resulting minimization objective is written as

argmin
p(ŷ|x)

�I

⇣
V ; Ŷ

⌘
+ �I

⇣
X; Ŷ

⌘
. (6)

However, it is not possible to compute these quantities in
closed form. Hence, we use variational upper bounds [32] like

� EV ,Ŷ [log (q(v | ŷ))]�H(V )

+ �EX,Ŷ [log p(ŷ | x)]� �EX,Ŷ [log r(ŷ)] . (7)

Here, q(v|ŷ) is the variational approximation to p(v|ŷ), r(ŷ)
is the variational approximation to p(ŷ).
Based on our problem setup in Fig. 1, we make further

simplification to (7). �H(V ) is a constant w.r.t. the encoder
and decoder parameters. Since the encoder is deterministic
and the noise is independent of the encoding values, com-
puting expectations w.r.t X, Ŷ is equivalent to computing
expectations w.r.t. X,Z. Since the goal is to reduce the
distortion measure DV (·, ·) between the true and the pre-
dicted value, we model the variational distribution q(v|ŷ) as
1
Z exp�DV (v,gd(ŷ)) where Z is the normalization constant.
We use a separate external parametric model to represent the
variational distribution r(ŷ). Fig. 1 shows that V ! X !
(X1, . . .XN ) ! (Y1, . . .YN ) ! Ŷ ! V̂ forms a Markov
Chain. Also, Yi ?? Xj |Xi 8i 6= j. Hence the joint distribution
decomposes as

p(x,x1, . . . ,xN ,y1, . . . ,yN , ŷ)

=p(x1, . . . ,xN |x)
 

NY

i=1

p(yi|xi)

!
p(ŷ|y1, . . . ,yN ).

(8)

From our problem definition, knowledge of x provides
complete knowledge about the samples x1, . . . ,xN . Hence,
p(x1, . . . ,xN |x) is a delta-dirac function at the appropriate
value of x1, . . . ,xN determined by x. Since the encoders are
deterministic functions, p(yi|xi) = �

�
yi � g

i
e (xi)

�
. If the

communication is over a Gaussian MAC p(ŷ|y1, . . . ,yN ) =
pZ (ŷ �

P
i yi). Hence, EX,Ŷ [log p(ŷ | x)] = H(Z), where

H(·) signifies the entropy. If the channel is orthogonal
AWGN then, p(ŷ|y1, . . . ,yN ) =

Q
i=1 pZi (ŷi � yi). Hence,

EX,Ŷ [log p(ŷ | x)] =
P

i H(Zi). BothH(Z) and
P

i H(Zi)
are constant w.r.t. the encoder and decoder parameters. Thus,
the objective becomes

LIB = EX,V ,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!

� � log

 
r

 
NX

i=1

g
i
e (xi) + z

!!#
. (9)

Unlike the previously proposed methods, the second term in
the loss function explicitly imposes the rate constraint.

D. Theoretical connections to the Indirect Rate-Distortion

Problem

This subsection shows that all objectives are variational
approximations to upper bounds on the indirect rate-distortion
problem’s minimization objective [41], [42]. In the presen-
tation of both the theorems here, we assume a Gaussian
MAC; however, they apply to any channel with an independent
additive noise component.
The work closest in deriving the rate-distortion function

for distributed functional computation is that of [22, Theorem
43]. Even though our power constraint is similar to the sum
rate constraint in (14) of [22], they require computation of
graph entropies that are neither easy to compare or compute.
Hence, we compare it with the single letter indirect rate-
distortion problem for the source X = [X1, . . . ,XN ]. In
the indirect rate-distortion problem [41], the encoder observes
the source V through a noisy channel whose output is X .
The receiver uses the encoded x got through another noisy
communication channel to recover the value v [42] . The rate-
distortion objective for this problem is [43]

min
p(v̂|x):I(X;V̂ )R

EV ,V̂ [DV (v, v̂)] . (10)

For, JSCC R  C where C is the capacity of the communi-
cation channel. Hence, we can write (10) as an unconstrained
Lagrangian optimization of the form

min
p(v̂|x)

EV ,V̂ [D(v, v̂)] + �

⇣
I(X; V̂ )�R

⌘
. (11)

Here � is the Lagrange multiplier.

Theorem 1. For a fixed � along with deterministic encoders

and decoder, the DiFJ-VIB objective function for the system

in Fig. 1

EX,V ,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!

� � log

 
r

 
NX

i=1

g
i
e (xi) + z

!!#
�H(Z) (12)

is an upper bound on the indirect rate-distortion problem

objective

EV ,V̂ [DV (v, v̂)] + �I(X; V̂ ) (13)

Proof. From Fig. 1, X ! Ŷ ! V̂ is a Markov Chain. Hence,
I

⇣
X; V̂

⌘
 I

⇣
X; Ŷ

⌘
. Further, I

⇣
X; Ŷ

⌘
= H(Ŷ ) �

H(Z) (refer simplification made in Sec. III-C). Thus, we can
write an upper bound on (13) as

EV ,V̂ [DV (v, v̂)] + �H(Ŷ )�H(Z). (14)
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Since the encoders and the decoder are deterministic, we can
simplify (14) as

EX,V ,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!

� � log

 
pŶ

 
NX

i=1

g
i
e (xi) + z

!!#
�H(Z). (15)

For any random variable Ŷ with true distribution pŶ (·), any
arbitrary (variational) approximation rŶ (·) satisfies H(Ŷ ) 
�EŷspŶ (·)

⇥
log rŶ (ŷ)

⇤
. Thus, we get an upper bound on (15)

as

EX,V ,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!

� � log

 
rŶ

 
NX

i=1

g
i
e (xi) + z

!!#
�H(Z). (16)

Theorem 2. For a fixed � along with deterministic encoders

and decoder, the objective functions

EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!#
+B1, (17a)

EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!#

+ �
1

KN

NX

i=1

EX

h��gie (xi)
��2
2

i
+B2 (17b)

where B1 and B2 are constants, are the variational approx-

imations to an upper bound on the indirect rate-distortion

problem objective

EV ,V̂ [DV (v, v̂)] + �I(X; V̂ ). (18)

Proof. From Fig. 1, X ! (Y1, . . .YN ) ! Ŷ ! V̂ is
a Markov Chain. Hence I

⇣
X; V̂

⌘
 I (X; (Y1, . . .YN )).

We also note that H ((Y1, . . .YN ) |X) = 0 because the
encoders are deterministic, and the mapping between X to
(X1, . . .XN ) is one-to-one. Thus (18) is upper bounded by

EV ,V̂ [DV (v, v̂)] + �H (Y1, . . .YN ) . (19)

Since for any random variable (Y1, . . .YN ) with true distri-
bution pY1,...YN (·), any arbitrary (variational) approximationQN

i=1 qi(yi) satisfies H(Y )  �EY1,...YN

hPN
i=1 log qi(yi)

i
.

Thus, we get an upper bound on (15). Further, using the

deterministic behavior of the encoders and the decoder, we
can write the upper bound on (15) as

EV ,X,Z

"
DV

 
v, gd

 
NX

i=1

g
i
e (xi) + z

!!#

� �

NX

i=1

EX

⇥
log(qi(g

i
e (xi)))

⇤
+A+ log(Z). (20)

In the DiFJ-AU system, the encoders ensure that the en-
coded samples yi always have the norm

p
KPT . Thus, the

support of Yi is an improper subset of the surface of a
hypersphere in K dimensions with radius

p
KPT . In this

system, if we assume that the variational approximation qi(yi)
is a uniform distribution over the support of Yi and to be of
the form qi(yi) =

1
Di

. Then, we can see that (20) is the same
as (17a) where B1 = �

P
i log(Di) +A+ log(Z).

If we assume qi(yi) = N (yi;0, PT IK), then (20) takes
the form of (17b). Here, � corresponds to KN�

PT
and B2 =

A+ log(Z) + K�
2 log(2⇡ePT ).

Remark 1. All three loss functions LAU , LSL, and LIB

are variational approximations to upper bounds on the

indirect rate-distortion problem objective. Since X !
(X1, . . .XN ) ! (Y1, . . .YN ) ! Ŷ ! V̂ is a Markov Chain,

then I(X;Y1, . . . ,YN ) � I(X; Ŷ ) � I(X; V̂ ). Thus, LIB

is the variational approximation to a tighter upper bound on

the indirect rate-distortion objective.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation Details

We use the CIFAR-10 dataset for showing empirical results
on the proposed methods [44]. Here, we use 45000 images
for training, 5000 for validation, and 10000 for testing. We
report results over ten transmissions for all the images in the
test set. We divide each image into equal-sized square patches
made available to the encoders; these patches represent the
xis. Let us consider the case of N = 4 encoders. We divide
the original CIFAR-10 image into four disjoint quadrants.
We show the first quadrant to the encoder in edge node-1,
the second quadrant to edge node-2, and so on. The random
variable v is the class label. Our objective is to recover this
label at the edge router.
We model the distribution over the received Ŷ , rŶ (·) as

a product of independent Generalized Gaussian Distributions
(GGD), one for each dimension of Ŷ .

rŶ (ŷ) =
KY

k=1

�k

2↵k�
⇣

1
�k

⌘ exp
�
⇣

|ŷ[k]�µk|
↵k

⌘�k

(21)

where ŷ[k] is the kth element of the vector ŷ; ↵k > 0 and �k >

0 are the scale and shape parameters, respectively, and µk is
the mean. We learn the parameters by performing gradient
descent on the negative log-likelihood of the observed samples
of ŷ. For low values of CSNR, we found that restricting �1 =
· · · = �k = 2 and ↵1 = · · · = ↵k helped prevent overfitting.
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TABLE I: Architecture of the DNNs used for the system in Fig. 1.
Name Architecture Details

VGG_Block(F ) [Conv(F ,3⇥ 3),Conv(F ,3⇥ 3),MaxPool(2⇥ 2)]
Gaussian MAC - Encoder [VGG_Block(32),VGG_Block(64),VGG_Block(128),FCN(1024),FCN(512),FCN(K)]
Gaussian MAC - Decoder [FCN(512),FCN(1024),FCN(2048),FCN(128),FCN(10)]

Orthogonal AWGN - Encoder [VGG_Block(64),VGG_Block(128),VGG_Block(512),VGG_Block(512),FCN(1024),FCN(512),FCN(K)]
Orthogonal AWGN - Decoder [FCN(512),FCN(1024),FCN(2048),FCN(512),FCN(10)]

Table I gives the details of the architectures used. We denote
the convolutional layer as Conv(F ), where F represents the
number of filters. We do the max-pooling operation on non-
overlapping patches. FC(H) represents a fully connected layer
with H hidden neurons. We train the systems for 400 epochs
using an Adam Optimizer [45] with an initial learning rate
of 10�3, subject to a decay of 0.5 when the validation loss
stagnates.

B. Simulation Results

TABLE II: Classification Accuracy for N = 4 over GMAC
Method K CSNR=0dB CSNR=10dB CSNR=20dB
DiFJ-AU 20 80.86% 81.41% 81.48%
DiFJ-SL 20 82.55% 83.58% 83.72%
DiFJ-VIB 20 82.78% 84.12% 84.43%

DiFJ-AU 5 76.29% 78.09% 78.09%
DiFJ-SL 5 79.29% 82.25% 82.58%
DiFJ-VIB 5 79.02% 82.71% 83.07%

Gaussian MAC: Table II presents the classification accuracies
for the simulations over a Gaussian MAC. Here, the DiFJ-
AU method serves as a baseline. We observe that both DiFJ-
SL and DiFJ-VIB outperform the results of DiFJ-AU. We
also observe that DiFJ-VIB and DiFJ-SL are close to each
other at low CSNR, but DiFJ-VIB performs better at higher
CSNR. The increasing gap is probably because of the MI
gap I(X;Y1, . . . ,YN )� I(X; Ŷ ). A more in-depth study is
required to verify this hypothesis.
To verify that all encoders transmit meaningful information,

we performed two analyses. First, across all experiments over
GMAC, we observed that the average power of each individual
encoder is in the range [0.8PT , 1.2PT ] where PT is the global
power constraint. Second, dropping any one of the encoders
for K = 5 and CSNR=0dB (trained with DiFJ-VIB) results in
a 5% drop in, accuracy.

TABLE III: Classification Accuracy for N = 4 over orthogo-
nal AWGN Channels

Method C=4 C=8 C=12 C=16 C=20
NN-REG [39] 48.63% 63.32% 68.07% 73.43% 78.12%
NN-GBI [39] 48.33% 60.88% 65.16% 71.57% 81.18%
DiFJ-AU 46.66% 61.89% 69.55% 71.4%3 73.74%
DiFJ-SL 61.76% 74.52% 79.62% 80.97% 81.79%
DiFJ-VIB 61.19% 74.46% 79.66% 81.03% 82.23%

Orthogonal AWGN Channels: Table III showcases the re-
sults for the experiments performed on orthogonal AWGN
Channels. The total channel capacity in bits is computed as

C =
NK

2
log+2

✓
1 +

PT

�2
z

◆
. (22)

We vary the values of PT and vary K to get the different
capacities. We choose the values of capacity and N = 4 to

match that of [39]. Since [39] does not model the communi-
cation channel, their performance serves as an upper bound
on the performance of a digital communication system. We
note that DiFJ-AU is the only system whose performance is
below this upper bound. Both DiFJ-SL and DiFJ-VIB perform
better than [39]. Similar to our observations in the low CSNR
regime of Gaussian MAC, the performance gap between the
DiFJ-SL and DiFJ-VIB remains small.

C. Robustness

TABLE IV: Robustness of DiFJ-VIB over GMAC with sys-
tems trained at a particular CSNR (CSNRTr) and tested over
a range of CSNRs (CSNRTe)

K CSNRTr CSNRTe=0dB CSNRTe=10dB CSNRTe=20dB
20 0dB 82.78% 83.62% 83.76%
20 10dB 82.78% 84.12% 84.17%
20 20dB 82.88% 84.12% 84.43%
5 0dB 79.02% 81.66% 81.84%
5 10dB 78.67% 82.71% 82.53%
5 20dB 77.96% 82.48% 83.07%

Due to space constraints, we only present the robustness
results for DiFJ-VIB systems operating over the Gaussian
MAC in Table IV. All learned systems are robust to deviations
in noise power. We observe that even when the training
CSNR varies from the CSNR at the testing time by 20dB, the
accuracy drops by only around 1% w.r.t. the system whose
CSNRTe=CSNRTr. Further, the robustness increases with K.

V. CONCLUSION

In this paper, we studied analog joint source-channel cod-
ing for distributed functional computation using deep neural
networks. We proposed and studied three methods, DiFJ-AU,
DiFJ-SL, and DiFJ-VIB. We first framed the problem like an
autoencoder by minimizing only the distortion and enforcing
the power constraint by scaling the individual encodings to
have a norm equal to the power constraint. We incorporated the
power constraint into the objective by using a Lagrange mul-
tiplier in the second method. Finally, we used the Variational
Information Bottleneck to derive the objective for training.
We showed that all objectives are variational approximations
to upper bounds on the minimization objective from the
indirect rate-distortion problem. Further, the objective of DiFJ-
VIB is a variational approximation of a tighter upper bound
when compared to DiFJ-AU and DiFJ-SL. Finally, we showed
empirical performance results over the CIFAR-10 dataset. For
both Gaussian MAC and AWGN channels, we found that the
system trained using the objective from DiFJ-VIB performed
better than or close to the performance of DiFJ-SL which, in
turn was better than the system DiFJ-AU. Further, our systems
performed better than the upper bounds obtained from other
existing methods for the case of orthogonal AWGN channels.
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