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Abstract—In this paper, we consider federated learning in

wireless edge networks. Transmitting stochastic gradients (SG)

or deep model’s parameters over a limited-bandwidth wireless

channel can incur large training latency and excessive power

consumption. Hence, data compressing is often used to reduce

the communication overhead. However, efficient communication

requires the compression algorithm to satisfy the constraints

imposed by the communication medium and take advantage of

its characteristics, such as over-the-air computations inherent in

wireless multiple-access channels (MAC), unreliable transmission

and idle nodes in the edge network, limited transmission power,

and preserving the privacy of data. To achieve these goals, we

propose a novel framework based on Random Linear Coding

(RLC) and develop efficient power management and channel

usage techniques to manage the trade-offs between power con-

sumption, communication bit-rate and convergence rate of feder-

ated learning over wireless MAC. We show that the proposed

encoding/decoding results in an unbiased compression of SG,

hence guaranteeing the convergence of the training algorithm

without requiring error-feedback. Finally, through simulations,

we show the superior performance of the proposed method over

other existing techniques.

Index Terms—Federated Learning, Analog Compression, Ma-

chine Learning, Edge Network

I. INTRODUCTION

The training data in a wireless edge network is generally
unevenly distributed over a large number of nodes with limited
resources such as communication bandwidth and battery power.
Transferring data from edge nodes to a central server to
train a deep model is often infeasible due to the limited
wireless bandwidth and battery power as well as privacy
concerns in some applications. Hence, it is desired to train
the deep model over an edge network in a distributed manner.
Federated learning [1], [2], [3], [4] enables such networks to
collaboratively learn a unified deep model without transmitting
the training data to a central server.
Federated learning differs from traditional distributed ma-

chine learning as 1) the number of edge nodes is generally very
large, and 2) the data observed by the nodes are usually unbal-
anced and non-iid. Hence, distributed optimization algorithms
which are often developed for high performance computing
clusters are not readily applicable to training deep models over
edge networks. The core idea is that each node uses its own
dataset to locally compute the gradients or updates the model’s
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parameters. Then the Stochastic Gradients (SGs) or parameters
are globally aggregated to improve the deep model. However,
the requirement to transmit the gradients or updates can put a
huge burden on the network especially for state-of-the-art deep
models with millions of parameters. There exist two possible
approaches to mitigate these shortcomings: (1) reducing the
frequency at which the nodes transmit their data [1], [5], [6], [7],
[8], and (2) compress the SGs or parameters to reduce number
of transmitted values. In this work, we will consider the second
approach with focus on SGs. The majority of existing methods
rely on quantizing the SGs [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], sparsification [19], [20], [21], [22], [23],
[24] or a combination of both. However, direct application
of these compression methods requires transmission of the
compressed values without any interference from other nodes
in the wireless channel. Therefore, such approaches require
channel assignments to individual nodes (e.g., through TDMA
or FDMA), which increases the latency. The majority of past
works in federated learning over wireless MAC are restricted
to the transmission of raw (uncompressed) SGs or parameter
updates [25], [26], [27], [28]. The exceptions are [29], [30]
which implicitly require SGs to have almost the same sparsity
patterns, and thus limiting their use to the iid datasets where
the SGs computed by the edge nodes have similar sparsity
pattern. In contrast, we seek to develop a framework that
incorporates the requirements of ML in wireless networks,
and exploits properties such as over-the-air computation over
wireless-MAC.

In section II, we overview the problem and the constraints
and characteristics of the wireless MAC. Section III presents
the background and preliminaries. The proposed framework is
introduced and analyzed in section IV. Finally, in section V, we
empirically validate our proposed method and the theoretical
results.

Notations
Bold lowercase letters represent vectors and the i-th element

of the vector x is denoted as xi or
⇥
x
⇤
i
. Matrices are denoted

by bold capital letters such as X , with the (i, j)-th element
is represented by Xi,j or

⇥
X

⇤
i,j
. A � B is the Hadamard

product of A and B. 1 is a vector or matrix of all ones, whose
size would be clear from the context.

Throughout the paper, for notational convenience, we often
omit the dependency of variables and parameters on time t. d
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Fig. 1: Wireless Edge Network

usually refers to the number of parameters of the deep model
and K is the number of nodes in the edge network.

II. PROBLEM STATEMENT

Figure 1 illustrates the wireless edge network considered
throughout this paper. We will refer to the edge device as edge
node or simply a node throughout. The uplink communication
is over a wireless Multiple Access Channel (MAC), which
naturally performs an analog over-the-air addition on incoming
signals from the edge nodes to the router. However, the
downlink communication from the edge router to the edge
nodes is wireless broadcast. Like edge nodes, the edge router
is also assumed to have some memory and computing power.
For the communication between edge nodes and the edge

router (ER), we assume symbol level synchronization (e.g., via
a synchronization channel or synchronized clocks). During the
uplink transmission, let xi 2 Rm be the symbols transmitted
by the i-th node. The received signal at the ER is given by

y =
X

i

hi � xi + ⌘, (1)

where hi 2 Cm is subchannels’ gains from node i to ER,
and ⌘ ⇠ CN (0,�2

I) is the MAC channel noise, assumed to
be complex Gaussian and independent across subchannels. In
the downlink, if ER broadcasts y to the edge network, each
node receives a noisy scaled replica of y. For simplicity, we
assume the channel state information is available at the nodes.
Hence, by compensating for the downlink channel gains, the
reconstructed value at the i-th node is given by byi = y + ⌘

0
i,

where ⌘
0
i ⇠ N (0,�2

i I).
Consider training a deep model with a cost function

F (✓) = E⇠[`(⇠;✓)] ⇡ 1
n

P
⇠2X `(⇠;✓), where ✓ 2 Rd is

the parameters of the deep model, `(⇠;✓) is the loss function
of the model corresponding to input data ⇠, X is the training
dataset and n = |X | is the number of training samples. Assume
that node i observes only subset Xi ⇢ X , |Xi| = ni. Hence, its
local objective function is fi(✓) = 1

ni

P
⇠2Xi

`(⇠;✓), and the
total cost function can be reformulated as F (✓) =

P
i ↵ifi(✓),

where ↵i = ni/n is introduced to compensate for unbalanced
training data sets among edge nodes.

In this paper, we focus on federated learning over wireless
edge, with the focus on compressing SGs to reduce communi-
cation overhead. However, the framework and its convergence
analysis can be extended to the compression and transmission
of parameter updates. Further, we require the compression
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Fig. 2: Federated learning over Wireless MAC. Node i observes data
⇠i and based on its local model, computes the model’s stochastic
gradient gi. Compression engine Ci compresses ↵igi to xi and
transmits over MAC. The edge router receives the noisy aggregated
data y =

P
i hi � xi + ⌘ and broadcasts it back to the edge nodes.

algorithm to be tailored to satisfy the constraints imposed
by the communication medium and take advantage of its
characteristics, i.e.,
P1 The MAC channel (1) can naturally compute weighted

average of the transmitted values.
P2 The transmission power of each individual node is

bounded, i.e., E
⇥
kxik2

⇤
 Pi.

P3 All edge nodes may not transmit at every round of
communication.

P4 Edge-node’s private information should not leak to ER.

III. PRELIMINARIES

The high level diagram of federated learning over wireless
MAC is shown in Fig. 2. Let gi 2 Rd be the stochastic gradient
computed at node i, such that E[gi] = rfi(✓). Therefore,
the SG of F (✓) would be given as g =

P
i ↵igi. For each

node, our goal is to design an efficient encoding algorithm
Ci(·) : Rd ! Rm to compress scaled SGs, where m ⌧ d and
will be selected to control the trade offs among the wireless
bandwidth requirement, the communication latency, and the
training convergence rate.

For simplicity, we assume that the channel state information
and hence hi is known at node i. After compensating for the
channel loss1, xi = h

�1
i � Ci(↵igi) would be the transmitted

signal at node i. Then the received signal at the ER is given
by

y =
X

i2K
Ci(↵igi) + ⌘, (2)

where K ⇢ {1, 2 . . . ,K} is the subset of nodes transmitting
their data. The aggregated signal y is then broadcasted back to
the nodes to estimate an SG of F (✓). Ideally, at each node, we
wish to be able to compute g =

P
i ↵igi, i.e., the stochastic

gradient of the objective function F (✓). However, due to the

1Note that here, for the presentation simplicity, we did not ignore sub-
channels with huge losses. However, in practice, those poor channels can be
discarded during data transmission.
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limited bandwidth, channel noise and the loss at the decoder of
Ci(·), the estimated SG may not be the same as g. We consider
two additional criteria in developing the encoders Ci(·)’s:
C1 For privacy, given y, the ER should not be able to infer

any information about individual gi’s.
C2 Each participating node should be able to estimate an

unbiased stochastic gradient of F (✓) from y. This ensures
the convergence of the SG-based learning algorithms.
Otherwise, the training procedure can drift away from
converging to the optimum (or good) solution, unless the
bias in SG is compensated by error-feedback [31], [32],
[17]. This, in turn, increases the memory footprint of the
compression algorithm.

Lemma 1. The condition in C1 imposes a Homomorphic
property on the encoder. As such to satisfy C1, it is necessary
that the encoder Ci(·) be identical linear transforms for all i.

As a result of Lemma 1, we focus on the encoders given by
Ci(z) = Az, where A 2 Rm⇥d to be designed. On the other
hand, note that if A is chosen to be fixed and deterministic,
the information in the SGs residing in the Null space of A
would be lost, hindering the learning algorithm from exploring
the entire space of parameters while trying to minimize the
objective function. As such, it is crucial to change A every
few iterations of training to allow the SGs to navigate different
directions in the parameter space.
One possible approach is generating elements of A, aij ,

iid according to a zero-mean distribution such as Gaussian,
Rademacher or aij 2 {�1, 0,+1}. However, in the proposed
Random Linear Coding, we restrict A to be of the form A =
1p
m
HR where H 2 {±1}m⇥d is a partial Hadamard matrix,

HH
T = dI , and R is a random diagonal Rademacher matrix,

i.e., R = diag(r), P(ri = 1) = P(ri = �1) = 0.5. Hence,
the encoding at the i-th node is given as

Ci(↵igi) = ↵iAgi =
↵ip
m
H(r � gi), (3)

where fast Walsh-Hadamard algorithms can be used to perform
multiplication by H . Note that the edge nodes must use a
common seed and follow the same random number generation
protocol to generate a common random matrix for encoding.

IV. PROPOSED METHOD: RANDOM LINEAR CODING

To develop the proposed RLC, first assume that all edge
nodes transmit their SG. Hence, the received signal over
wireless-MAC at ER would be y =

P
i A(↵igi)+⌘ = Ag+⌘.

The node i estimates SG from received y (or its noisy version
y + ⌘i) from ER via

bg = A
T
y. (4)

Lemma 2. bg is an unbiased SG estimator with mean squared
error

E
⇥
kg � bgk22

⇤
= (

d

m
� 1)kgk22 + d�2, (5)

where �2 is the variance of the communication noise.2

2Note that throughout the paper, the expectation is generally taken w.r.t.
randomness in the coding, i.e., random matrix A.

We have thus far incorporated P1 and privacy P4 into the
proposed RLC framework. Now, we take into account the
constraints P2 and P3, while ensuring that the estimated values
at the edge nodes be an unbiased SG of F (·). Specifically,
the developed RLC and the estimation algorithm ((4) or its
variants) should be insensitive to the local decisions made at
each individual node, as will be explained later.

A. Power Constraint
One major challenge in federated learning in wireless edge

networks is the limited transmission power. Note that the
average transmission power at node i can be computed as

E
⇥
kxik22

⇤
= E

⇥
kh�1

i � (↵iAgi)k22
⇤
= ↵2

i kgik22
kh�1

i k22
m

.

To control the transmission power, xi’s of all nodes can be
scaled appropriately by the same value such that the trans-
mission power constraint of all nodes are satisfied. Moreover,
since the contribution of sub-channels with huge losses (small
entries in hi) is remarkable in the transmission power, those
sub-channels might be ignored to preserve energy at the expense
of lower transmission rate. Note that the channel selection of
each node in the network is performed locally and might not be
known by others. Hence, it is desirable to have SG estimation
at the edge nodes be independent of those local decisions. Let

⇥
qi

⇤
l
=

(
[h�1

i ]l if sub-channel l is being used,

0 o.w.
(6)

To have an unbiased SG estimation given by (4) or its variants,
we suggest scaling the transmitted signal inversely proportional
to the number of channels as

xi = c↵i
m

mi

�
qi � (Agi)

�
, (7)

where mi is the number of sub-channels being selected for
data transmission by node i (i.e., mi = kqik0 the number of
non-zero entries of qi), and c is a global parameter shared by
all nodes to control all nodes’ transmission powers and may
vary at different transmission rounds. It can be easily verified
that the average transmitted power at node i is

E
⇥
kxik22

⇤
= mc2↵2

i kgik22
kqik22
kqik20

. (8)

Lemma 3. Let the transmitted signals by each edge node be
given as (7). The reconstruction given via bg = 1

cA
T
y provides

an unbiased SG estimator. Moreover, the variance of error is
bounded as

E
⇥
kg � bgk22

⇤
 (

X

i

d
mi

↵ikgik)(
X

i

↵ikgik)�kgk22+
d
c2

�2. (9)

In summary, the proposed RLC framework controls the
transmitted power by appropriately adjusting c and choosing
”good” sub-channels. Specifically, for a given c, to satisfy the
power constraint P2 while minimizing the MSE (9), it suffices
to select the most number of elements from hi with the largest
magnitude such that E

⇥
kxik22

⇤
given via (8) is at most Pi.

Similarly, for given mi’s (and hence qi’s), maximizing global
c under the given power constraints, E

⇥
kxik2

⇤
 Pi for all i,

results in minimum MSE (9).
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B. Transmission by a Subset of Nodes
In the wireless network, due to nodes being idle and

unreliability in transmission, some nodes may not transmit
their data. Let bi 2 {0, 1} be a random variable denoting
whether node i is transmitting its data at the current iteration
of training or not. We assume an iid probabilistic transmission,
i.e., node i transfers its data with probability ⇡i at each round of
training, independent of other nodes, hence bi ⇠ Bernoulli(⇡i).
To compensate for this random behavior and still be able to
recover an unbiased SG estimate, we propose to scale the
transmitted signals by 1/⇡i, i.e.,

xi = c↵i
bi
⇡i

m

mi

�
qi � (Agi)

�
, (10)

where bi = 0 corresponds to node i not transmitting any data.
Intuitively, if a node does not transmit for ⌧ � 1 round of
training, at the ⌧ -th round, its effect on the computed SG
should be scaled proportionate to ⌧ to compensate for the
missing contribution in the previous rounds of training. Similar
to Lemma 3, it can be shown that the reconstruction given via
bg = 1

cA
T
y provides an unbiased and bounded-variance SG

estimator. However, the average transmission power would be
scaled by 1/⇡i.
Remark 1. As shown in [17], using local weighted error
feedback at individual nodes can improve the convergence rate
at the expense of larger memory usage at edge nodes, even for
biased SG compression. Hence, by relaxing the unbiasedness
constraint on RLC, for example, we can easily control the
transmission power by

xi = si (qi � (Agi)) , (11)

where si is an appropriately chosen constant, optimized locally
at node i. However, to ensure convergence, the remaining
portion of gi, given as ei = gi � 1

cA
T
xi should be stored

for transmission at later rounds of training. The details of this
approach are omitted here due to the lack of space and left as
future work. ⌅

V. EXPERIMENTS AND DISCUSSIONS

To evaluate the performance of the proposed RLC framework,
we considered training various deep models over networks of 32
and 50 nodes at different channel signal to noise ratios. Further,
we assume that all nodes have the same power constraint P ,
and they may transmit their data with probability ⇡i = 0.5. For
comparison, we also implemented the digital communication
scheme which first compresses and encodes the stochastic
gradients and then transmits the compressed values of each
node one at a time. For digital data compression, we used
quantized compressive sampling (QCS) [17] which provides
state-of-the-art performance in terms of compression gain and
convergence rate. To have the same number of channel uses
(hence, the same latency per training iteration) for a network
of K nodes, if the compression gain of RLC is set to be �, the
digital communication scheme have to achieve a compression
gain of Ke times larger, Ke�, where Ke is the number of non-
idle transmitting nodes. Further, we optimize the parameters of

Fig. 3: Convergence rate vs training iteration for Cifarnet. QCS has
approximately 350 times more channel uses than RLC.

QCS to achieve the minimum MSE while having the desired
compression gain. We also consider baseline transmission
(no SG compression and assuming infinite channel band-
width). Due to the large number of nodes in the network and
unbalanced distributed dataset over nodes, analog compression
based on sparsity such as [30] causes large amount of distortion
in the reconstructed SG, hindering the convergence of the
learning algorithm.

First, we consider a network of 50 edge nodes, communicat-
ing to the ER with channel signal to noise ratio SNR = 18dB.
Hence, P/�2 ⇡ 63 and the capacity of end-to-end channel is
C = 3 bits per symbol. We then consider training Cifarnet,
a deep convolutional model with approximately one million
parameters, over Cifar10 dataset using stochastic gradient
descent (SGD) algorithm. Traditional communication of SGs
using QCS with a compression gain of 30 requires total
transmission of approximately 53e6 symbols, which results
in 17.8e6 channel uses. On the other hand, the proposed
RLC framework with compression gain of 20 achieves the
same performance with only 50e3 channels uses, reducing the
communication latency by a factor of at least 350. Moreover, as
shown in Fig. 3, the convergence rate of the proposed algorithm
follows that of the QCS and baseline (no SG compression)
closely, in terms of accuracy vs. number of iterations. But
since the communication latency of RLC is much lower, the
training time using RLC is orders of magnitude smaller than
digital communication.
Next, we consider training a Lenet-5 like convolutional

network [33] over MNIST dataset using SGD with step-size
µ = 0.05. We consider different compression gains � = 2, 5, 20
and 100 over a network of 32 nodes (with unbalanced datasets).
The experiments are ran several times with different initial
points to derive the mean and variance of the performance
during federated learning, and are compared against QCS
with the same communication requirements and Baseline (no
compression and infinite communication bandwidth). As shown
in 4, for low compression gains, the performance of training
with compressed SGs are close to the baseline, although RLC
slightly performs better than digital communication with QCS.
However, for large compression gains, RLC outperforms QCS
significantly. we have observed similar results with different
SGD step-sizes, different channel SNRs and different neural
networks.
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(d) compression gain = 100

Fig. 4: Convergence rate vs training iteration for Lenet over a network
of 32 nodes. Baseline (blue) represents the ideal case of no SG
compression and infinite communication resources.

Comparing results of analog compression via RLC for
federated learning over wireless-MAC with those of digital
communication methods confirms that designing a compression
method that utilizes the characteristics and constraints of
the wireless-MAC, P1–P4, can significantly improve the
convergence rate and reduce the training latency.
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