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Abstract—In this paper, we introduce a framework for Joint
Source-Channel Coding of distributed Gaussian sources over a
multiple access AWGN channel. Although there are prior works
that have studied this, they either strongly rely on intuition to
design encoders and decoder or require the knowledge of the
complete joint distribution of all the distributed sources. Our
system overcomes this. We model our system as a Variational
Autoencoder and leverage insight provided by this connection to
propose a crucial regularization mechanism for learning. This
allows us to beat the state of the art by improving the signal
reconstruction quality by almost 1dB for certain configurations.
The end-to-end learned system is also found to be robust
to channel condition variations of ±5dB and shows a drop
in signal reconstruction quality by at most 1dB. Finally, we
propose a novel lower bound on the optimal distortion in signal
reconstruction and empirically showcase the tightness of the
bound in comparison with the existing bound.

Index Terms—joint source-channel coding, distributed encod-
ing, multiple access channels, machine learning, deep learning

I. INTRODUCTION

The beginnings of the research on Joint Source-Channel
Coding (JSCC) of analog sources over analog channels can be
traced back to the works of Shannon [1] and Kotelnikov [2].
Particularly for Gaussian sources over AWGN channels, there
are multiple works performing JSCC in a centralized manner
[3], [4]. However, with increasing prevalence of wireless
sensor networks, distributed source-channel coding schemes
that use Multiple Access Channels (MAC) are becoming very
important. In as early as 1980, Cover, El Gamaal and Salehi
showed that transmission of distributed correlated sources
over a MAC does not obey the separation theorem [5]. With
that in mind, we consider the problem of JSCC of Gaussian
sources over a linear AWGN MAC. A linear MAC is a
wireless channel where the signals of multiple transmitters
that are concurrently transmitting add up because of the
superposition property of the wireless medium. Such channels
are of particular interest because with suitable pre and post-
processing any arbitrary function of distributed sources can
be recovered [6]. Although, in this paper we do not explore
functional compression, the insight gained here will be useful
to develop such systems in the future.

This work is supported Jointly by Intel and National Science Foundation
under NSF-Intel MLWINS award ID 2003002.

There have been a couple of works that have explored the
problem of JSCC of distributed Gaussian sources over a linear
AWGN MAC. Lapidoth et. al. [7] first studied this and derived
a lower bound on the optimal distortion achievable. They
showed that for a low power region, uncoded transmission
is optimal. For the higher power region, they proposed a
high dimensional vector quantizer which relies on long-delays.
Such systems are complex and unsuitable when the sources
have high throughput. Instantaneous or delay free joint source-
channel coding of distributed Gaussian sources over AWGN
was first explored in [8], [9] for two correlated gaussian
sources and subsequently generalized to N sources [10].
However, all these solutions were intuition based. To overcome
this reliance on intuition, a purely optimization based method
was suggested in [11]. This led to impressive improvements
of performance. However, the suggested solution required the
complete knowledge of joint distribution of all the source di-
mensions. To overcome these shortcomings of both the above
approaches we propose an optimization driven framework that
does not require the knowledge of the joint distribution.
We propose to use machine learning particularly neural

networks to solve this optimization problem. Neural networks
have been used to perform centralized JSCC in the past [3],
[4], [12], [13] and have yielded some impressive insights and
results, allowing us to extend to domains beyond the ones
supported by human intuition.
Notations: Bold uppercase letters represent random vectors

and bold lowercase represent their realization. Uppercase let-
ters represent random variables and lower case letters represent
their realization.

II. PROBLEM DEFINITION AND BOUNDS ON OPTIMAL
DISTORTIONS

A. Problem definition
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Fig. 1: Distributed encoding framework over a linear MAC
AWGN channel
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Fig. 1 represents the communication system under consid-
eration. There are N distributed Gaussian sources denoted
by Xi ∀i ∈ {1, ..., N} which are independently encoded by
their corresponding encoders gie(·). The output of the encoder
gie(·) is denoted as Yi and its output power is denoted as
PT
i = E

[
Y 2
i

]
. The linear MAC AWGN channel is defined

as Ŷ = ΣN
i=1Yi +Z where, Z ∼ N (0,σ2

n) is the independent
AWGN noise. The central decoder receives Ŷ and attempts to
reconstruct the vector [X1, . . . , XN ]T .
Although the neural network framework we propose does

not make use of the assumption that {X1, . . . , XN} are jointly
Gaussian, the assumption is essential to compute the bounds
introduced in Sec. II-B. In that vein, X := [X1, . . . , XN ]T

and X ∼ N (0,ΣX) where ΣX is the covariance matrix.

Continuing with the same notation, X̂ :=
[
X̂1, . . . , X̂N

]T
.

B. Lower bound on optimal distortion

In this section we present two lower bounds on the distortion
where the second is an extension of the bound in [7]. We
assume that all dimensions of X have the same variance
denoted by σ2

X and the correlation coefficient between any
two dimensions is the same and is denoted by ρX. Let R be
the total rate to communicate all dimensions of X and D is
the average distortion over all dimensions. Dopt represents the
average optimal distortion of the system in Fig. 1.

Lemma 1. For Gaussian sources encoded in a distributed
manner to a centralized decoder, provided ρX ∈

(
− 1

N−1 , 1
]

and D < σ2
X we have:

R(D) =
1

2
log

NρXσ2
X + α+ η

η
+
N − 1

2
log

σ2
X + η

η
(1)

where, α = (1−ρX)σ2
X, β = N(σ2

X−D), γ = Nα(NρXσ2
X+

α) − N(NρXσ2
X + 2α)D, δ = −Nα(NρXσ2

X + α)D, and

η =
−γ+

√
γ2−4βδ
2β .

Proof. This is the same as Lemma 2 [14] when the distributed
source dimensions are accessible without noise.

Lemma 2. For any two encoder outputs Yi and Yj , E [YiYj ] ≤
|ρX|

√
PT
i PT

j if E [Yi] = E [Yj ] = 0.

Proof. For any two random variables Yi, Yj , the maximum
correlation coefficient is defined as [15],

R(Xi, Xj) = supψi,ψjρ (ψi(Xi),ψj(Xj)) (2)

where ρ(·) represents the pearson correlation coefficient and
ψi(·) and ψj(·) are non-constant functions. Further, when
E [Xi|Xj ] = aXj and E [Xj |Xi] = bXi, where a and b
are constants, it can be shown that R(Xi, Xj) = |ρX| [15].
Since Xi and Xj are jointly Gaussian and their marginal
means are zero, the conditions E [Xi|Xj ] = aXj and
E [Xj |Xi] = bXi hold [16]. If E [Yi] = E [Yj ] = 0, then
E [YiYj ] ≤ |ρX|

√
PT
i PT

j .

Proposition 1. The average optimal distortion Dopt is lower
bounded by D′ where D′ is the solution of the equation

R(D) =
1

2
log2



1 +
ΣN

i=1P
T
i + 2ΣN

i=1,j>i|ρX|
√
PT
i PT

j

σ2
n





(3)
where R(D) is as given in Lemma 1. This is true provided
that the following assumptions hold,
1) E

[
gie(Xi)

]
= 0.

2) Assumptions of Lemma 1.

Proof. We split the linear MAC AWGN into two components
the linear MAC and the AWGN component as shown in Fig. 2.
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Fig. 2: Distributed communication system broken into sub-
parts.
To compute the capacity of the AWGN component, we

compute the input power to the AWGN channel as PAWGN =
E
[
(Y1 + ...+ YN )2

]
. Applying Lemma 2, the capacity of the

AWGN channel denoted as C is bounded by,

C ≤ 1

2
log2



1 +
ΣN

i=1P
T
i + 2ΣN

i=1,j>i|ρX|
√
PT
i PT

j

σ2
n





(4)

The optimal distortion is the solution to the equation R(D) =
C. Since, we know only an upper bound on the capacity,
solving (3) we get a lower bound on the optimal distortion.

Proposition 2. The optimal distortion Dopt is lower bounded
by D′′, where D′′ is given by

D′′ =



 σ2
ndet(Σ)

ΣN
i=1P

T
i + 2ΣN

i=1,j>i|ρX|
√
PT
i PT

j + σ2
n





1
N

(5)

under the following assumptions
1) E

[
gie(Xi)

]
= 0.

2) The distortions across all dimensions are the same i.e.
D1 = ... = DN = D.

3) ΣX ' DI where I is the identity matrix of size N .

Proof. The proof is similar to proof of Theorem IV.1 of [7]
with an extension to N dimensional sources.
Similar to Prop. 1, we get the same limit on C as in

(4).A centralized system, where all dimensions are encoded
at a single encoder can achieve as good or better distortion
by exploiting the knowledge provided by the other inputs.
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Thus, the distortion achieved by it (denoted Dopt,cent) is a
lower bound on the distortion achieved by the separate encoder
system i.e. Dopt,cent ≤ Dopt. The rate-distortion function for
the centralized case is [17]

R(D) =
1

2
log2

det(Σ)

DN
⇔ Σ ' DI (6)

The optimal centralized distortion is achieved by equating the
rate and the capacity. Since only a bound on capacity is known
we get

Dopt,cent ≥



 σ2
ndet(Σ)

ΣN
i=1P

T
i + 2ΣN

i=1,j>i|ρX|
√
PT
i PT

j + σ2
n





1
N

(7)

III. CONNECTING TO VAES

We model the encoders and decoders using neural networks.
A straightforward loss function to train them is obtained by the
Lagrangian of minimizing mean square error under an average
power constraint

min
Φ1,...,ΦN ,Θ

1

N
E
[
||x− gd

(
ΣN

i=1g
i
e (xi) + z

)
||22

]
+

λΣN
i=1E[||gie (xi) ||22] (8)

where the encoder neural networks gie(·) are parametrized by
Φi and the decoder network gd(·) is parametrized by Θ.

A. VAE Formulation
However, we take a different approach by looking at this

problem as a Variational Autoencoder (VAE). VAEs were
proposed as generative models trained to produce realistic
samples from a latent distribution [18]. The objective of the
VAE is to maximize the log-likelihood of the source symbols
under the generative model modeled by a neural network
which is parametrized by Θ′. Let, V represent the source
symbols and W represent the latent variable.

EV [log(pΘ′(v))]

≥ EV,w∼qΦ′ (w|v)

[
log (pΘ′(v|w))− log

(
qΦ′ (w|v)
p(w)

)]

(9)

To efficiently train the generative model, another neural net-
work called the encoder that approximates the true poste-
rior distribution over the latent variable given data sample
pΘ′ (w|v) by qΦ′ (w|v) is used. The entire system is trained
by maximizing the Variational Lower bound (VLBO) denoted
in the RHS of (9).
In VAEs, qΦ′ (w|v) is assumed to be of the form

N (w;µW(v), diag(ΣW(v))), where µW(v),ΣW(v) are
outputs of the encoder neural network fe(v;Φ′) parametrized
by Φ′. The VLBO in its current form is not amenable to end-
to-end gradient descent because of the sampling operation
to generate w. However, the assumption that qΦ′ (w|v) is
normally distributed allows us to rewrite the VLBO using the

reparametrization trick [18] and results in the setup shown in
Fig. 3, where * represents elementwise multiplication.
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Fig. 3: VAE with reparametrization

This is similar to the original problem that we are solving in
Fig. 1, provided that we make certain changes. The covariance
matrix of qΦ′ (w|v) is not generated by the encoder, it is a
characteristic of the channel which is constant. This leads to a
special architecture of the VAEs called the Constant Variance
VAE [19]. We then make the following equivalences,

• The encoder of the VAE models the encoders of the JSCC
and the linear part of the MAC i.e. fe(·) ≡ ΣN

i=1g
i
e(·).

• The data sample input to the VAE is equivalent to the
symbol we are trying to encode i.e. x ≡ v.

• The latent variable is equivalent to the noisy received
codeword i.e. w ≡ ŷ.

• Φ′ ≡ Φ := {Φ1, ...,ΦN} and Θ′ ≡ Θ.

In JSCC, qΦ (ŷ|x) becomes N
(
ŷ;ΣN

i=1g
i
e(xi),σ2

n

)
by con-

struction. The choice of pΘ(x|ŷ) depends on the type of
data and the distortion we are attempting to minimize. In
our case, we are trying to minimize MSE. Since, maximizing
the likelihood of the data under a normal distribution is
equivalent to minimizing the MSE, we assume pΘ(x|ŷ) =
N

(
x; gd(ŷ),σ2I

)
, where σ is a hyperparameter. If the data

was binary and we were looking to minimize the Hamming
distortion, then we would assume pΘ(x|ŷ) to be a Bernoulli
distribution which would lead to cross-entropy loss. By in-
corporating these we get the loss function for minimization
as

L(Φ,Θ) =
1

σ2
EX,Z

[
||x− gd

(
ΣN

i=1g
i
e (xi) + z

)
||22

]

− EX,Z

[
log

(
pŶ (Σ

N
i=1g

i
e (xi) + z)

)]
(10)

Eqn. (10) follows by rewriting (9) and dropping the term
EX,Z

[
log

(
qΦ(ΣN

i=1g
i
e (xi) + z|x)

)]
which represents the dif-

ferential entropy of the normal distribution qΦ (ŷ|x). This is
because the differential entropy depends only on σ2

n which
is constant w.r.t. Φ and Θ. Since, we do not know the
form of pŶ (·) we hypothesize that it can be modeled as
a Gaussian Mixture Model (GMM) whose parameters are
learned during training. Since minimizing the loss function
(10) also minimizes the negative log-likelihood of observing
the samples of Ŷ conditioned on the parameters of the GMM;
Φ, Θ and the GMM parameters can all be learned by gradient
descent in one unified training step. The value of σ2 is chosen
according to the average power constraint at which we want
to design the system.
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IV. IMPLEMENTATION

A. Training
The loss function described in (10) is prone to overfitting

because of the GMM training component. Hence we introduce
an extra regularization term as,

Lreg(Φ,Θ,Ω) = L(Φ,Θ) + λ1EX

[
ΣN

i=1||gie(xi)||22
]

(11)

where Ω is the set of parameters of the GMM and λ1 is the
weighting factor. Each of the encoders and the decoders are
implemented using fully connected neural networks with three
hidden layers of 10 and 10N neurons, respectively. The test
results are reported over 106 samples.
For all experiments we assume that all dimensions of X

have the same variance denoted by σ2
X and the correlation

coefficient between any two dimensions is the same denoted
by ρX. This is not a requirement of the system design but is
done so that the bounds in Prop. 1 can be used.

B. Simulations
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(a) N = 2, ρX = 0.5 and ρX = 0.9
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(b) N = 3, ρX = 0.95

Fig. 4: Simulation results for various N and ρX values in
comparison with the works of [9]–[11].

Fig. 4 showcases the performance of trained systems
in comparison with the works of [9]–[11]. CSNR stands
for the Channel Signal to Noise Ratio in dB, defined as
10 log10

(1/N)ΣN
i=1E[Y 2

i ]
σ2
n

. SDR stands for the Signal to Dis-

tortion Ratio in dB, defined as 10 log10
σ2
X
D , where D is the

average distortion across all dimensions of X. Our learned
system comfortably outperforms the works of [9], [10] for
most of the powers tested on, which we consider as SOTA
since they do not require knowledge of the joint distribution

of X. For example at medium powers like CSNR = 30dB
for N = 3 and ρX = 0.95, our learned system has an
SDR = 16.05dB and [10] has an SDR = 15.10dB, which
showcases that our learned encoders and decoder outperform
the existing SOTA by almost 1dB. However, it underperforms
at extremely high powers. The following configurations are
presented here because they were also tested in [9]–[11] which
serve as a basis for our comparison.
One of the key observations in our learned systems and prior

work [9]–[11] is the tendency of the system to assign unequal
powers to the transmitters in some cases, for example when
the correlation is low. Thus, the optimal distortion obtained
by solving Prop. 1, which is computed with respect to the
power assignments specific to our learned system cannot be
compared against the simulated SDR of [9]–[11]. Forcing the
system to assign equal powers to the transmitters in such cases
leads to performance degradation.

C. Robustness

5 10 15 20 25 30
4

6

8

10

12

14

Fig. 5: Robustness of N = 2, ρX = 0.5 with CSNRte =
CSNRtr ± 5dB

Fig. 5 portrays the robustness of the system to changes
in the CSNR during deployment. CSNRtr represents the
CSNR used during the training of the system and CSNRte

represents the CSNR used during the test phase. We per-
turb the CSNRte by ±5dB w.r.t. the CSNRtr and plot
the changes in SDR. We compare against the SDR of
CSNRtr = CSNRte. We observe that the SDR drops by
1dB for the worst case and showcases that the system is
robust to changes in the channel conditions during deployment
without any need for retraining.

D. Effect of GMM regularization

-20 -10 0 10 20
0

0.05

0.1

0.15

Fig. 6: Histogram of Ŷ samples and the trained GMM to model
it for N = 2, ρX = 0.5 at CSNR = 25dB.
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(a) N = 3, CSNR = 15dB.
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(b) CSNR = 15dB, ρX = 0.9

15 20 25 30 35 40
0
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4
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(c) N = 3, ρX = 0.9

Fig. 7: Comparison of bounds D′ and D′′.

Fig. 6 showcases the histogram of the samples of Ŷ and
the pdf of the GMM that has learned to model it. This extra
learned regularization in (11) helps us get better performance
of SDR = 11.59dB than the standard loss function (8) which
gave SDR = 11.14dB at N = 2, ρX = 0.5 and CSNR =
25dB. Similarly, at N = 3, ρX = 0.95 and CSNR = 30dB,
it gave a 1dB improvement in the simulated SDR.

E. Comparison of the bounds

In Fig. 7 we compare the bounds from Prop. 1 (D′) and
Prop. 2 (D′′). For these simulations we assumed that all
encoders have equal power i.e. PT

1 = · · · = PT
N . The figures

plot the percentage of improvement in the bound, defined as,
% Imp. = 100D′−D′′

D′′ . Prop. 2 is derived by assuming that all
the dimensions of X are available at central encoder. Since D′

does not use that, it is expected and empirically found valid
that D′ ≥ D′′. A rigorous proof of this is put off for later.
In Fig. 7a and Fig. 7b as ρX and N increase respectively,
% Imp. increases. Without loss of generality we assume
that the centralized encoder compresses the sources in the
order of X1 to XN . When compressing some dimension Xi

conditioned on X1, ..., Xi−1, the uncertainty in Xi is reduced
when either i is large or when ρX increases. The centralized
encoding is thus able to leverage the lower uncertainty and able
to more efficiently compress the symbols when compared to
the distributed case which has to encode Xi independently.
This is also clear when ρX = 0 and D′ becomes equal to D′′.
Thus, D′′ decays faster than D′ and using Prop. 1 provides a
much tighter lower bound for performance of system in Fig. 1.
Finally, in Fig. 7c, we see that as the CSNR increases both
bounds predict approximately the same i.e. D′′ ≈ D′. This is
because at higher powers the available rate is high enough that
the loss due to compression is negligible and the dominating
loss caused by the channel noise affects both systems equally.

V. CONCLUSION

In this paper, we explored a neural network based so-
lution for designing encoders and decoders for distributed
joint source-channel coding of distributed Gaussian sources
over a linear AWGN MAC. We have modeled our system
as a Variational Autoencoder and leveraged this insight to
propose crucial learned regularization that helped us improve
the performance beyond the state of the art by sometimes
as much as 1dB better reconstruction quality. The learned
system was also found to be robust to changes in the channel
conditions. Finally, we derived a novel lower bound on the
optimal distortion for distributed Gaussian sources over a lin-
ear AWGN MAC and empirically showcased its improvement

over existing bounds by testing it over various correlations,
power constraints and number of sources.
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