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Abstract—This paper considers a diamond network with n
interconnected relays, namely a network where a source com-
municates with a destination by hopping information through n
communicating/interconnected relays. Specifically, the main focus
of the paper is on characterizing sufficient conditions under
which the n + 1 states (out of the 2n possible ones) in which
at most one relay is transmitting suffice to characterize the
approximate capacity, that is the Shannon capacity up to an
additive gap that only depends on n. Furthermore, under these
sufficient conditions, closed form expressions for the approximate
capacity and scheduling (that is, the fraction of time each relay
should receive and transmit) are provided. A similar result is
presented for the dual case, where in each state at most one
relay is in receive mode.

I. INTRODUCTION

Computing the Shannon capacity of a wireless relay net-
work is an open problem. In a half-duplex n-relay network,
each relay can either transmit or receive at a given time instant
and therefore a scheduling question arises: What fraction
of time each relay in the network should be scheduled to
receive/transmit information so that rates close to the Shannon
capacity of the network can be achieved?

For an n-relay half-duplex network, there are 2n possible
receive/transmit configuration states, because each relay can
either be scheduled for reception or transmission. However,
in [1], it has been surprisingly shown that only n + 1 out of
these 2n possible states are sufficient to achieve the network
approximate capacity, i.e., an additive gap approximation
of the Shannon capacity, where the gap is only a function
of n. This result opens novel research directions, such as
characterizing a set of n + 1 critical states for each network
efficiently (in polynomial time in n).

In this work, we investigate the question above in the con-
text of diamond networks with n interconnected relays, where
the source communicates with the destination by hopping
information through n half-duplex relays that can commu-
nicate with each other. In particular, we analyze the linear
deterministic approximation of the Gaussian noise channel,
and characterize sufficient conditions under which at most
one relay is required to transmit at any given time to achieve
the approximate capacity. This leads to a significant reduction
in the average power consumption at the relays, compared
to a random network with identical n (where potentially at
each point in time more than one relay is transmitting) and
hence, the proposed scheduling is energy-efficient. The other
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advantage of a schedule with at most one relay in transmit
mode is that it simplifies the synchronization problem at the
destination. Our result can be readily translated to obtain
sufficient conditions under which operating the network only
in states with at most one relay in receive mode is sufficient
to achieve the approximate capacity. The proposed scheduling
and approximate capacity can be translated to obtain similar
results for the practically relevant Gaussian noise channel.

To the best of our knowledge, this is the first work that
provides network conditions that suffice to characterize a set of
n+1 critical states for arbitrary values of n in relay networks
where, in addition to broadcasting and signal superposition,
we also have signal interference at the relays.

Related Work. The cut-set bound has been shown to offer
a constant (i.e., which only depends on n) additive gap
approximation of the Shannon capacity for Gaussian relay
networks [2]–[6]. Such approximation, for an n-relay Gaussian
half-duplex network can be computed by solving a linear
program involving 2n cut constraints and 2n variables corre-
sponding to the receive/transmit configurations of the n half-
duplex relays. However, it has been shown that it suffices to
operate the network in only n+1 states out of the 2n possible
ones to achieve the approximate capacity [1]. Finding this
set of n + 1 critical states in polynomial time in n for half-
duplex Gaussian relay networks is an open problem. These
critical states and the approximate capacity can be computed
in polynomial time for the following networks: (i) n = 2
relay half-duplex diamond networks with non-interconnected
relays [7] and interconnected relays [8]; (ii) line networks [9];
(iii) a special class of layered networks [10]; and (iv) dia-
mond networks with n non-interconnected relays under certain
network conditions expressed in [11]. We highlight that the
result presented in this paper subsumes the result for diamond
networks studied in [11] (where there is no signal interference
among the relays) and our recent result in [8] for n = 2.

Paper Organization. Section II introduces the notation, de-
scribes the Gaussian and the linear deterministic half-duplex
diamond network with n interconnected relays and summa-
rizes known capacity results. Section III presents the main
result of the paper, the proof of which is in Section IV. Specif-
ically, Section III characterizes sufficient conditions under
which the set of (at most) n+1 network states in which at most
one relay is transmitting (and the set with at most n+1 states
with at most one relay receiving) suffice to characterize the
approximate capacity of the binary-valued linear deterministic



Fig. 1: Diamond network with n = 3 interconnected relays
(with cut Ω = {3} and state S = {2, 3}).

approximation of the Gaussian noise channel. Some of the
proofs can be found in the appendix.

II. NOTATION AND SYSTEM MODEL

Notation: We denote the set of integers {i, . . . ,m} by [i : m],
and {1, . . . ,m} by [m]; note that [i : m] = ∅ if i > m.
For a variable θ and a set X , θX = {θx : x ∈ X}. We use
boldface letters to refer to matrices. For a matrix M, det (M)
is the determinant of M, MT is the matrix transpose of M
and MA,B is the submatrix of M obtained by retaining all the
rows indexed by the set A and all the columns indexed by the
set B. Matrix columns and rows are indexed beginning from 0
(instead of 1). b·c and d·e are the floor and ceiling operations,
respectively, and [a]

+
= max{a, 0}. 0p×q is the zero matrix

of dimension p× q; Ip is the p× p identity matrix.
The Gaussian half-duplex diamond network with n inter-

connected relays consists of a source (node s) that wishes
to communicate with a destination (node d) through n in-
terconnected relays. At each time instant t, the input/output
relationship of this network is described as

Yd(t)=

n∑
i=1

Si(t)hdiXi(t) + Zd(t),

Yi(t)=(1−Si(t))
(
hisXs(t)+

∑
j∈[n]

Sj(t)hijXj(t)+Zi(t)
)
,

(1)

for i ∈ [n]. Note that, at each time instant t: (i) Si(t) is a binary
random variable that indicates the state of relay i ∈ [n], with
Si(t) = 0 (respectively, Si(t) = 1) indicating that relay i is
receiving (respectively, transmitting); (ii) Xi(t) is the channel
input at node i that satisfies the unit average power constraint
E[|Xi(t)|2] ≤ 1 for i ∈ {s} ∪ [n]; (iii) hij with i ∈ [n] ∪ {d}
and j ∈ {s} ∪ [n] is the time-invariant complex channel gain
from node j to node i; note that hds = 0 and, since the relays
operate in half-duplex mode, without loss of generality we let
hii = 0; (iv) Zi(t) ∼ CN (0, 1) is the complex additive white
Gaussian noise at node i ∈ {d} ∪ [n]; and finally, (v) Yi(t) is
the received signal at node i ∈ {d} ∪ [n].

The Shannon capacity CG of the network in (1) is not known
for general n. However, the capacity can be approximated
within a constant O(n) bit gap. More precisely, we can
focus on the binary linear deterministic approximation of the
Gaussian noise network model [2], for which the approximate

capacity is known and provides an approximation for CG. The
linear deterministic model (a.k.a. ADT model [2]) correspond-
ing to the Gaussian noise network in (1) has an input-output
relationship given by

Yd(t)=

n∑
i=1

Si(t)D
η−ηdiXi(t),

Yi(t)=(1−Si(t))
(
Dη−ηisXs(t)+

∑
j∈[n]

Sj(t)D
η−ηijXj(t)

)
,

(2)

for i ∈ [n], where

Dη−m =

[
0(η−m)×m 0(η−m)×(η−m)

Im 0m×(η−m)

]
,

and

ηij =
⌈
log |hij |2

⌉+
, i ∈ [n] ∪ {d}, j ∈ {s} ∪ [n], i 6= j.

Here, the vectors Xs(t), Xi(t), Yd(t), and Yi(t) with i ∈ [n]
are binary of length η = max ηij , where the maximization
is taken over all channels ηij in the network; D is the so-
called η × η shift matrix, and Si(t), i ∈ [n] is the i-th relay
binary-value state random variable.

The approximate capacity of the linear deterministic model
in (2) is given by the solution of

CLD = max
λ

t

s.t. t ≤ gΩ ,
∑
S⊆[n]

λSf
Ω
S , ∀Ω ⊆ [n],

gp ,
∑
S⊆[n]

λS ≤ 1,

λS ≥ 0, ∀S ⊆ [n],

(3)

where: (i) S = {i ∈ [n] : Si = 1} is the set of relay nodes
in transmit mode; (ii) λS ≥ 0 is the fraction of time that the
network operates in state S and hence,

∑
S⊆[n] λS≤1; (iii) λ

is referred to as a network schedule and is a vector obtained
by stacking together λS for all S ⊆ [n]; (iv) Ω ⊆ [n] denotes
a partition of the relays in the ‘side of s’, i.e., {s} ∪ Ω is a
network cut; similarly, Ωc = [n]\Ω is a partition of the relays
in the ‘side of d’. Moreover, we define

fΩ
S , I (Xs, XΩ∩S ;Yd, YΩc∩Sc |XΩc∩S ,S) = rank

(
FΩ
S
)
,

where FΩ
S is the transfer matrix from X{s}∪(Ω∩S) to

Y{d}∪(Ωc∩Sc), corresponding to the ADT model [2].
It turns out that |CG − CLD| ≤ κ, where κ = O(n) is

independent of the channel gains and operating SNR and
hence, CLD in (3) provides an approximation for the Shannon
capacity of the network in (1)1.

Example 1. Consider the relay diamond network with n = 3
interconnected relays in Fig. 1. For the cut Ω = {3} and state
S = {2, 3}, we have {s} ∪ (Ω∩S) = {s, 3} and {d} ∪ (Ωc ∩

1We highligth that schemes such as quantize-map-and-forward [2] and
noisy network coding [4], together with the cut set bound, allow to characterize
the capacity of Gaussian relay networks up to a constant additive gap.



Sc) = {d, 1}. The input-output relationship for this cut and
state is given by[

Yd
Y1

]
=

[
Dη Dη−ηd3

Dη−η1s Dη−η13

] [
Xs

X3

]
.

Therefore, we have

fΩ
S = det

(
F
{3}
{2,3}

)
= det

[
Dη Dη−ηd3

Dη−η1s Dη−η13

]
. �

In this work, we seek to identify sufficient network condi-
tions which allow to determine a set of n + 1 states (out of
the 2n possible ones) that suffice to achieve the approximate
capacity in (3) of the linear deterministic network and can be
readily translated into a similar result for the original noisy
Gaussian channel model in (1).

III. MAIN RESULT: CONDITIONS FOR OPTIMALITY OF
STATES WITH AT MOST ONE RELAY TRANSMITTING

Without loss of generality, we assume that the relay nodes
are arranged in increasing order of their left link capacities,
that is, η1s ≤ η2s ≤ · · · ≤ ηns. We define P to be an (n+2)×
(n + 2) matrix, the rows and columns of which are indexed
by [0 : n+ 1], and

Pi,j =


−f [i:n]
{j} , (i, j) ∈ [n+ 1]2,

0, (i, j) = (0, 0),

1, otherwise,

(4)

where we define fΩ
{n+1} = fΩ

∅ , for consistency. Moreover, for
i ∈ [0 : n+1] we use P(i) to denote the minor of P associated
with the row 0 and column i of the matrix P, that is

P(i) , det
(
P[n+1],[0:n+1]\{i}

)
.

Finally, we define

S , {{1}, {2}, . . . , {n},∅},

to be the set of the n + 1 states, where at most one relay is
transmitting in each state.

The main result of this paper is presented in Theorem 1,
which characterizes sufficient network conditions for the op-
timality of operating the network only in states S ∈ S.

Theorem 1. Whenever det (P) 6= 0 and (−1)n+1P(n+1)

det(P) ≥ 0,
then it is optimal to operate the network in states in S to
achieve CLD in (3).

Example 2. Consider the relay network in Fig. 1 with link
capacities given by η1s = 1, η2s = 3, η3s = 5, ηd1 = 6, ηd2 =
5, ηd3 = 3, η12 = 3, η21 = 4, η32 = 5, η23 = 3, η31 = 2 and
η13 = 4. For this network, the matrix P is given by

P =


0 1 1 1 1
1 −6 −5 −3 0
1 0 −6 −4 −1
1 −3 −1 −7 −3
1 −5 −5 −3 −5

 . (5)

It is not difficult to check that det (P) 6= 0 and P(4) =
det
(
P[4],[0:3]

)
≥ 0, i.e., the conditions in Theorem 1 are sat-

isfied. Thus, operating this network in S = {{1}, {2}, {3},∅}
achieves CLD in (3). �

Remark 1. Note that S consists of all the states where at
most one relay is transmitting, while the rest of the relays
are receiving. A similar condition can be obtained for the
optimality of the states S′ = {[n], [n]\{1}, [n]\{2}, . . . , [n]\
{n}} (where at most one relay is in receive mode).

Remark 2. For the case when the relays are non-
interconnected, i.e., ηij = 0 for all (i, j) ∈ [n]2, the result in
Theorem 1 subsumes the result in [11]. Moreover, for n = 2,
the result in Theorem 1 is equivalent to the one in [8], where
we characterized the set of at most 3 states that suffice to
achieve CLD in (3) for n = 2.

Remark 3. The conditions in Theorem 1 are a consequence
of the relaying scheme used to operate the network in states S.
This scheme is based on information flow preservation at each
relay, i.e., the amount of unique linearly independent bits that
each relay decodes is equal to the amount of unique linearly
independent bits that each relay transmits. The conditions in
Theorem 1 ensure the feasibility of this scheme.

In the remaining of this section, we analyze the variables fΩ
S

and present some of their properties, which play an important
role in the proof of Theorem 1, presented in Section IV.

A. Properties of fΩ
S

We here present two properties of fΩ
S = rank(FΩ

S ) that we
will leverage in the proof of Theorem 1.

Proposition 1. For all Ω ⊆ [n] and S ⊆ [n], we have that

fΩ
S ≥ max

i∈Ωc∩Sc
ηis + max

j∈Ω∩S
ηdj , (6)

with equality if Ωc ∩ Sc = ∅ or Ω ∩ S = ∅.

Proof. Let

i? = arg max
i∈Ωc∩Sc

ηis, and j? = arg max
j∈Ω∩S

ηdj .

Then, the submatrix of FΩ
S induced by row blocks {d, i?} and

column blocks {s, j?} is[
Dη−ηds Dη−ηdj?

Dη−ηi?s Dη−ηi?j?

]
=

[
0η×η Dη−ηdj?

Dη−ηi?s Dη−ηi?j?

]
,

the rank of which is ηi?s + ηdj? . This provides a lower bound
on the rank of FΩ

S . Moreover, if Ωc ∩ Sc = ∅, then FΩ
S only

consists of one row induced by {d} and columns induced by
{ηdj : j ∈ Ω ∩ S} and hence, rank(FΩ

S ) = maxj∈Ω∩S ηdj .
Similarly, if Ω ∩ S = ∅, then FΩ

S has only one column and
hence, rank(FΩ

S ) = maxi∈Ωc∩Sc ηis. This concludes the proof
of Proposition 1.

Proposition 2. For a given state S ⊆ [n], fΩ
S is submodular

in Ω, that is,

fΩ1

S + fΩ2

S ≥ f
Ω1∩Ω2

S + fΩ1∪Ω2

S , (7)



for any subsets Ω1,Ω2 ⊆ [n]. Similarly, for a given cut Ω ⊆
[n], fΩ

S is submodular in S , that is, fΩ
S1 + fΩ

S2 ≥ fΩ
S1∪S2 +

fΩ
S1∩S2 for any subsets S1,S2 ⊆ [n].

Proof. The proof is given in [1].

IV. PROOF OF THEOREM 1
In this section, we present the proof of Theorem 1, which

consists of three main steps. We first introduce an auxiliary
optimization problem in (8) in Section IV-A, which is a
relaxed version of the problem in (3) and hence, its solution
CU provides an upper bound on the optimum value of (3),
i.e., CU ≥ CLD. In Section IV-B, we propose a solution
(λ?, t?) for the (relaxed) optimization problem in (8), where
λ?S = 0 for all S /∈ S. We show that, under the conditions of
Theorem 1, (λ?, t?) is feasible and optimal, which leads to
CU = t?. Finally, in Section IV-C we show that the proposed
solution is feasible for the original problem in (3), implying
that CLD ≥ t?. Therefore, putting the three results together,
we get t? = CU ≥ CLD ≥ t?. This shows that CLD = t? that
can be attained by λ? that satisfies the claim of Theorem 1,
which concludes the proof of the theorem.

A. An Upper Bound for the Approximate Capacity

The optimization problem in (3) consists of 2n cut con-
straints. We can relax these constraints except for n + 1 of
them. More formally, we define

CU = max
λ

t

s.t. t ≤ g[i:n] =
∑
S⊆[n]

λSf
[i:n]
S , i ∈ [n+ 1],

gp ,
∑
S⊆[n]

λS ≤ 1,

λS ≥ 0, S ⊆ [n],

(8)

where [n+ 1 : n] = ∅.
Note that the optimization problem in (8) is less constrained

compared to (3). Hence, the problem in (8) has a wider feasible
set than (3), and its maximum objective function cannot be
smaller than that of the problem in (3), i.e., CU ≥ CLD.

B. An Optimal Solution for the Optimization Problem in (8)
We show that under the conditions of Theorem 1, the states

in S are optimal for the upper bound CU on the approximate
capacity obtained by solving (8), that is, there exists an optimal
solution with (t, λS) ≥ 0 and λS = 0, for all S /∈ S.
In particular, we leverage the Karush–Kuhn–Tucker (KKT)
conditions to prove the following proposition.

Proposition 3. Let det (P) 6= 0 and (−1)n+1P(n+1)

det(P) ≥ 0. Then,
(λ?, t?) given by

λ?{i} = (−1)i
P(i)

det (P)
, i ∈ [n+ 1],

λ?S = 0, S /∈ S,

t? = g?[i:n] =
∑
S∈S

λ?Sf
[i:n]
S , i ∈ [n+ 1],

(9)

and λ?∅ = λ?{n+1} are such that:
(i) λ?{i} ≥ 0, for every i ∈ [n+ 1];

(ii) and (λ?, t?) is an optimal solution for the optimization
problem in (8).

Consequently, we have CU = t?.

We present the proof of claim (i) in Appendix A. The proof
of claim (ii) is presented below.

Proof of claim (ii) of Proposition 3. The proof leverages the
KKT conditions. More precisely, for KKT multipliers µ =
(µp, µ1, . . . , µn+1) and σ = (σS : S ⊆ [n]), the Lagrangian
for the optimization problem in (8) is given by

L(µ,σ,λ, t) =− t+
∑

i∈[n+1]

µi(t− g[i:n])

+ µp(gp − 1)−
∑
S⊆[n]

σSλS .
(10)

In the following, we proceed with a choice of (µ,σ) where
µ is the solution of[

µp µ1 . . . µn µn+1

]
P=

[
1 0 . . . 0 0

]
, (11)

and

σS = µp −
n+1∑
i=1

µif
[i:n]
S , (12)

for every S ⊆ [n]. We next prove the optimality of (λ?, t?)
by showing that the set of KKT multipliers (µ,σ) defined
in (11) and (12) together with (λ?, t?) satisfy the following
four groups of conditions.

• Primal Feasibility. We first show that, if det (P) 6= 0 and
(−1)n+1P(n+1)

det(P) ≥ 0, then the solution in (9) is feasible for the
optimization problem in (8). Note that by setting λS = 0,
for all S ⊆ [n] with S 6= S in (8), we obtain an optimization
problem over (n+2) variables (including t and λS for S ∈ S).
We also force constraints t ≤ g[i:n] for i ∈ [n+ 1] and gp ≤ 1
to hold with equality. This leads to a system of (n+ 2) linear
equations in (n+ 2) variables, given by

P
[
t λ{1} . . . λ{n} λ∅

]T
=
[
1 0 . . . 0 0

]T
,

where P is the matrix defined in (4). The solution of this
system of linear equations is given in (9). Therefore, the
solution (λ?, t?) automatically satisfies the constraints of (8)
corresponding to g[i:n] for all i ∈ [n+ 1] and to gp. Fur-
thermore, the feasibility of the remaining constraints, namely
λ?S ≥ 0 for S ∈ S, is established by claim (i) of Proposition 3.

• Complementary Slackness. We need to show that (µ,σ) and
the optimum solution (λ?, t?) given in (9) satisfy
• µi(t

? − g?[i:n]) = 0 for all i ∈ [n+ 1];
• µp(g

?
p − 1) = 0;

• and σSλ?S = 0 for every S ⊆ [n].
The first and the second conditions are readily implied by (9)
for any choice of µ. Moreover, the third condition holds for
S /∈ S, since we have λ?S = 0 whenever S /∈ S. Finally,



consider some S ∈ S, say S = {j} where j ∈ [n + 1] (and
j = n+ 1 if S = ∅). Then, the definition of σ{j} in (12) and
the j-th column of the matrix identity in (11) imply that

σ{j} = µp −
n+1∑
i=1

µif
[i:n]
{j} = µ ·P[0:n+1],j = 0.

This ensures that σSλ?S = 0, for all S ∈ S.

• Stationarity. We aim to prove that, when evaluated in µ
as in (11) and σS in (12), the derivatives of the Lagrangian
in (10) with respect to t and λS ,S ⊆ [n], are zero. By taking
the derivative of L(µ,σ,λ?, t?) with respect to t we get

∂

∂t
L(µ,σ,λ?, t?) = −1 +

n+1∑
i=1

µi

= −1 + µ ·P[0:n+1],0 = −1 + 1 = 0.

Similarly, by taking the derivative with respect to λS we get

∂

∂λS
L(µ,σ,λ?, t?) = µp −

n+1∑
i=1

µif
[i:n]
S − σS

= σS − σS = 0,

in which we used the definition of σS in (12).

• Dual Feasibility. In this last part, we need to prove that the
KKT multipliers in (11) and (12) are non-negative.

Towards proving this claim for the µ variables, we first
use induction to show that sign(µi) = sign(µj) for all
i, j ∈ [n + 1]. Then, we argue that since

∑n+1
i=1 µi = 1

(from the first column of the matrix identity in (11)), we have
µ1, µ2, . . . , µn+1 ≥ 0. Lastly, for each j ∈ [n + 1], the j-th
column of the same identity implies that µp =

∑n+1
i=1 µif

[i:n]
{j} ,

from which it directly follows that µp ≥ 0. We refer to Ap-
pendix B for a more detailed proof of this argument.

Next, we focus on the KKT multipliers σS ,S ⊆ [n] in (12).
For an arbitrary state S = {a1, a2, . . . , ak}, we can write

n+1∑
i=1

µif
[i:n]
S =

n+1∑
i=1

µif
[i:n]
{a1,...,ak}

=

n+1∑
i=1

µi

k−1∑
j=1

(
f

[i:n]
{a1,...,aj+1} − f

[i:n]
{a1,...,aj}

)
+ f

[i:n]
{a1}


≤
n+1∑
i=1

µi

k−1∑
j=1

(
f

[i:n]
{aj+1} − f

[i:n]
∅

)
+ f

[i:n]
{a1}


=

n+1∑
i=1

µi

 k∑
j=1

f
[i:n]
{aj}

− (k − 1)f
[i:n]
∅


=

k∑
j=1

n+1∑
i=1

µif
[i:n]
{aj} − (k − 1)

n+1∑
i=1

µif
[i:n]
∅

=

k∑
j=1

µp − (k − 1)µp = µp,

where the inequality is due to Proposition 2, i.e., fΩ
S is

submodular in S. Thus, we get σS = µp−
∑n+1
i=1 µif

[i:n]
S ≥ 0.

This concludes the proof of claim (ii) of Proposition 3.

C. Feasibility of (λ?, t?) for CLD

In Section IV-B, we have shown that the solution (λ?, t?)
given in (9) is optimal for the optimization problem in (8). This
implies that t? = CU ≥ CLD where CLD is the approximate
capacity of the network, obtained by solving the problem
in (3). In the following, we aim to prove that (λ?, t?) in (9) is a
feasible solution for the optimization problem in (3), which in
turn implies CLD ≥ t?, and concludes the proof of Theorem 1.
Towards this end, it suffices to show the feasibility of such a
solution for (3), as stated in the following proposition.

Proposition 4. The solution (λ?, t?) given in (9) is feasible
for (3) and thus, CLD ≥ t?.

Proof. Note that the two optimization problems in (3) and (8)
have identical objectives and similar constraints. More pre-
cisely, the constraints in (8) are a subset of those in (3) and
hence, they are clearly satisfied for (3) also because (λ?, t?) is
an optimum solution for (8). Thus, we only need to focus on
the constraints of the form t? ≤ g?Ω =

∑
S⊆[n] λ

?
Sf

Ω
S , which

exclusively appear in (3).
Towards this end, we consider an arbitrary cut

Ω = [a1 : b1] ∪ [a2 : b2] ∪ . . . ∪ [ak : bk] ⊆ [n], where
a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ ak ≤ bk. We also define
ak+1 = n + 1. Recall from Proposition 2 that, for a
given state S, the function fΩ

S is submodular in Ω. Then, for
Ω1 = Ω ∪ [ai+1 : n] and Ω2 = [bi + 1 : n] with i ∈ [k], we
have Ω1 ∪Ω2 = Ω ∪ [ai : n] and Ω1 ∩Ω2 = [ai+1 : n]. Thus,

f
Ω∪[ai+1:n]
S + f

[bi+1:n]
S ≥ fΩ∪[ai:n]

S + f
[ai+1:n]
S , (13)

for every i ∈ [k]. Moreover, note that for ak+1 = n + 1, we
have [ak+1 : n] = [n+ 1 : n] = ∅, and Ω ⊆ [a1 : n]. There-
fore, we can write∑
S⊆[n]

λ?Sf
Ω
S

=
∑
S⊆[n]

λ?S

[
k∑
i=1

(
f

Ω∪[ai+1:n]
S − fΩ∪[ai:n]

S

)
+ f

Ω∪[a1:n]
S

]

≥
∑
S⊆[n]

λ?S

[
k∑
i=1

(
f

[ai+1:n]
S − f [bi+1:n]

S

)
+ f

[a1:n]
S

]

=

k+1∑
i=1

∑
S⊆[n]

λ?Sf
[ai:n]
S −

k∑
i=1

∑
S⊆[n]

λ?Sf
[bi+1:n]
S

=

k+1∑
i=1

g?[ai:n] −
k∑
i=1

g?[bi+1:n]

= (k + 1)t? − kt? = t?,

where the inequality follows from (13). This implies that
t? ≤

∑
S⊆[n] λ

?
Sf

Ω
S for any Ω ⊆ [n] and hence, concludes

the claim of Proposition 4. This also completes the proof of
Theorem 1.



APPENDIX A
PROOF OF CLAIM (i) IN PROPOSITION 3

We start by noting that, under the conditions in Theorem 1,
namely det (P) 6= 0 and (−1)n+1P(n+1)

det(P) ≥ 0, we readily have
that λ?∅ in Proposition 3 is larger than or equal to zero, i.e.,

λ?∅ = λ?{n+1} = (−1)n+1 P(n+1)

det (P)
≥ 0.

Thus, in what follows we focus on showing that λ?{i} ≥ 0 for
all i ∈ [n]. Towards this end, we first highlight that (λ?, t?) in
Proposition 3 are the solutions of a system of linear equations
constructed as follows: (i) setting λS = 0, for all S ⊆ [n]
with S 6= S in (8); and (ii) forcing constraints t ≤ g[i:n] for
i ∈ [n+1] and gp ≤ 1 in (8) to hold with equality. This system
of (n+ 2) linear equations in (n+ 2) variables, is given by

P
[
t λ{1} . . . λ{n} λ∅

]T
=
[
1 0 . . . 0 0

]T
, (14)

and hence, the equation corresponding to the row i + 1 for
i ∈ [0 : n] of (14) is given by

t? =

n+1∑
j=1

λ?{j}f
[i+1:n]
{j}

(a)
= λ?∅ηis +

i−1∑
j=1

λ?{j}ηis + λ?{i}η(i−1)s +

n∑
j=i+1

λ?{j}f
[i+1:n]
{j}

=

1−
n∑
j=i

λ?{j}

 ηis + λ?{i}η(i−1)s +

n∑
j=i+1

λ?{j}f
[i+1:n]
{j}

= ηis + λ?{i}
(
η(i−1)s − ηis

)
+

n∑
j=i+1

λ?{j}

(
f

[i+1:n]
{j} − ηis

)
,

where the equality in (a) follows from: (i) letting ηjs = 0 for
j /∈ [n]; (ii) the fact that η1s ≤ η2s ≤ · · · ≤ ηns; and (iii)
using the property in Proposition 1.

Using the above expression, we can now get the following
recursive relation for λ?{i} for i ∈ [n],

λ?{i}
(
ηis − η(i−1)s

)
= (ηis − t?) +

n∑
j=i+1

λ?{j}

(
f

[i+1:n]
{j} − ηis

)
,

(15)

where ηjs = 0 for j /∈ [n].
We now proceed to the proof that the λ?{i}’s for all i ∈ [n]

obtained from (15) are such that λ?{i} ≥ 0. In particular, the
proof is based on contradiction and leverages the property of
fΩ
S given in Lemma 1 (proof in Appendix C) and the property

of P given in Lemma 2 (proof in Appendix D).

Lemma 1. If η1s ≤ η2s ≤ · · · ≤ η(n−1)s ≤ ηns, then
f

[a:n]
{j} − η(a−1)s ≥ f

[b:n]
{j} − η(b−1)s for all n ≥ j ≥ a ≥ b ≥ 1.

Lemma 2. If η1s ≤ η2s ≤ · · · ≤ ηns and there exists an
i ∈ [n] such that ηis = η(i−1)s = f

[i:n]
{i} , then det (P) = 0.

Let K = {i : λ?{i} < 0, i ∈ [n]}, and k be the maximum ele-
ment of K. We also let L = {j ∈ [1 : k − 1] : ηjs = η(j−1)s},

and ` be the maximum element of L, with ` = 0 if L is empty.
Recall that ηjs = 0 for j /∈ [n].

We now show that K cannot be non-empty (hence proving
that λ?{i} ≥ 0 for all i ∈ [n]), using two main steps: (1) using
the recursive relation in (15), we show that λ?{j} ≤ 0 for all
j ∈ [`+ 1 : k − 1]; and (2) using the facts that λ?{j} ≤ 0 for all
j ∈ [`+ 1 : k − 1] and λk < 0 by assumption, we show that
(λ?, t?) does not satisfy the equation corresponding to row
`+ 1 of (14), thereby giving us the required contradiction.
• Step 1: λ?{j} ≤ 0 for all j ∈ [`+ 1 : k − 1].
Since ` is the maximum element of L, ηis > η(i−1)s for all
i ∈ [`+ 1 : k − 1]. Therefore, using (15) we have that

sign(λ?{i})=sign

(ηis−t?)+

n∑
j=i+1

λ?{j}

(
f

[i+1:n]
{j} −ηis

).
Using the above relation, we show by induction that λ?{i} ≤ 0,
for every i ∈ [`+ 1 : k − 1].
⇒ Recursive Case. Assume that λ?{i} ≤ 0 for i ∈ [k−m+ 1 :
k−1], for some m ∈ [1 : k − `− 1]. Using the above equation
of sign(λ?{i}) for i = k −m, we obtain

(
η(k−m)s − t?

)
+

n∑
j=k−m+1

λ?{j}

(
f

[k−m+1:n]
{j} − η(k−m)s

)
(a)

≤ (η(k−m)s − t?) +

n∑
j=k+1

λ?{j}

(
f

[k−m+1:n]
{j} − η(k−m)s

)
(b)

≤ (η(k−m)s − t?) +

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} − ηks

)
=
(
η(k−m)s − ηks

)
+

(ηks − t?) +

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} − ηks

)
(c)
=
(
η(k−m)s − ηks

)
+ λ?{k}

(
ηks − η(k−1)s

) (d)

≤ 0, (16)

where the labeled inequalities/equalities follow from: (a)
the assumptions λ?{j} ≤ 0 for j ∈ [k −m+ 1 : k − 1] and

λ{k} < 0 and the fact that
(
f

[k−m+1:n]
{j} − η(k−m)s

)
≥ 0

for j ∈ [k −m+ 1 : n] by Proposition 1; (b) the fact that
λ?{j} ≥ 0 for j ∈ [k + 1 : n] (since k is the maximum element

of K) and using Lemma 1 from which f
[k+1:n]
{j} − ηks ≥

f
[k−m+1:n]
{j} − η(k−m)s; (c) using (15) for k = i; and (d) the

fact that η1s ≤ η2s ≤ · · · ≤ ηns and the assumption λ{k} < 0.
⇒ Base Case. The base case is m = 1 and it readily follows
by noting that (16) holds for m = 1.
• Step 2: (λ?, t?) does not satisfy the equation corresponding
to row `+ 1 of (14).
Since ` ∈ L, we have that η`s = η(`−1)s. Therefore,



equation (15) corresponding to i = ` is given by

0 = (η`s − t?) +

n∑
j=`+1

λ?{j}

(
f

[`+1:n]
{j} − η`s

)
(a)

≤ (η`s − t?) +

n∑
j=k+1

λ?{j}

(
f

[`+1:n]
{j} − η`s

)
(b)

≤ (η`s − t?) +

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} − ηks

)
= (η`s − ηks) + (ηks − t?) +

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} − ηks

)
(c)
= (η`s − ηks) + λ?{k}

(
ηks − η(k−1)s

) (d)
< 0, (17)

where the labeled inequalities/equalities follow from: (a) the
facts that λ?{j} ≤ 0 for j ∈ [`+ 1 : k − 1] and λ{k} < 0, and

the fact that f [`+1:n]
{j} − η`s ≥ 0 for j ∈ [`+ 1 : n] by Propo-

sition 1; (b) the fact that λ?{j} ≥ 0 for j ∈ [k + 1 : n] (since
k is the maximum element of K) and using Lemma 1 from
which f [k+1:n]

{j} − ηks ≥ f [`+1:n]
{j} − η`s for j ∈ [k + 1 : n]; (c)

using (15) for k = i; and (d) (strict inequality) the fact that ηks
cannot be equal to η`s without making the matrix P singular,
hence violating the condition det (P) 6= 0 in Theorem 1. This
is proved in the remaining part of this appendix.

By letting λ?{0} = 0, the difference between the equations
corresponding to i = k and i = k − 1 in (15) is given by
equation (18), at the top of the next page. Since ` ∈ L, we
know that η`s = η(`−1)s. Now, if ηks = η`s = η(`−1)s, then
it implies that ηks = η(k−1)s = η(k−2)s; this follows since
` ∈ [1 : k − 1] and η1s ≤ η2s ≤ · · · ≤ ηns. Moreover, if ηks =
η(k−1)s = η(k−2)s, then equation (18) becomes

λ?{k}

(
f

[k:n]
{k} −η(k−1)s

)
=

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} −f [k:n]

{j}

)
. (19)

Since by assumption λ?{k} < 0 and f
[k:n]
{k} − η(k−1)s ≥ 0

from Proposition 1, we have that the left-hand side of (19)
is smaller than or equal to zero. Moreover, since λ?{j} ≥ 0 for
all j ∈ [k + 1 : n] (because k is the maximum element of K)
and f

[k+1:n]
{j} ≥ f

[k:n]
{j} (from Lemma 1), then the right-hand

side of (19) is greater than or equal to zero. Thus, we must
have that both sides of (19) are equal to zero, which implies
that f [k:n]

{k} = η(k−1)s = ηks. However, from Lemma 2 we have
that this makes P singular, which contradicts the assumption
of Theorem 1 that det (P) 6= 0. Therefore, ηks cannot be equal
to η`s and (17) is strictly less than 0, completing the proof of
claim (i) in Proposition 3.

APPENDIX B
PROOF THAT THE KKT MULTIPLIERS IN (11) ARE

NON-NEGATIVE

We start by showing that sign(µi) = sign(µj) for all i, j ∈
[n+ 1]. In particular, we show this by induction.
⇒ Recursive Case. Assume that sign(µi) = sign(µj) for
all i, j ∈ [k − 1], where k ∈ [2 : n+ 1]. Then, we show

by induction that sign(µk−1) = sign(µk). Towards this
end, we consider column k − 1 and column n + 1 of
the identity in (11), which provides us with the relation
µp =

∑n+1
j=1 f

[j:n]
{k−1}µj =

∑n+1
j=1 f

[j:n]
∅ µj . Then, we have

n+1∑
j=1

f
[j:n]
{k−1}µj −

n+1∑
j=1

f
[j:n]
∅ µj = 0,

or similarly

k−1∑
j=1

(
f

[j:n]
{k−1} − f

[j:n]
∅

)
µj +

(
f

[k:n]
{k−1} − f

[k:n]
∅

)
µk

+

n+1∑
j=k+1

(
f

[j:n]
{k−1} − f

[j:n]
∅

)
µj = 0,

and hence,
k−1∑
j=1

(
f

[j:n]
{k−1} − η(j−1)s

)
µj

−
(
η(k−1)s − η(k−2)s

)
µk = 0,

(20)

where η0s = 0 and where the last implication fol-
lows from Proposition 1. Moreover, from (6) we have
that

(
f

[j:n]
{k−1} − η(j−1)s

)
≥ 0 for j ∈ [k − 1], and also(

η(k−1)s − η(k−2)s

)
≥ 0. It therefore follows that µk has the

same sign as µ1, µ2, . . . , µk−1.
⇒ Base Case. The base case is k = 2 and it readily follows
by noting that (20) holds for k = 2.

Thus, by induction, we obtain that µ1, µ2, . . . , µn+1 all
have the same sign. Since from the first column of the
identity in (11) we have

∑n+1
i=1 µi = 1, it follows that

µ1, µ2, . . . , µn+1 ≥ 0. Moreover, since µp =
∑n+1
j=1 f

[j:n]
{i} µj

for all i ∈ [n + 1] it directly follows that µp ≥ 0. This
concludes the proof.

APPENDIX C
PROOF OF LEMMA 1

The matrix F
[a:n]
{j} , j ∈ [a : n] is given as follows

F
[a:n]
{j} =


0η×η Dη−ηdj

Dη−η1s Dη−η1j

Dη−η2s Dη−η2j

...
...

Dη−η(a−1)s Dη−η(a−1)j

 .

Since a ≥ b, the matrix F
[b:n]
{j} is given by the first b

block rows of F
[a:n]
{j} . Since η1s ≤ η2s ≤ · · · ≤ ηns, from the

definition of Dη−m in (2) and recalling that we index rows
and columns of a matrix starting from zero, it follows that
columns [η(b−1)s : η − 1] are zero in F

[b:n]
{j} .

Now, consider the lower left block of F
[a:n]
{j} , namely

Dη−η(a−1)s . From (2), for every j ∈ [η(b−1)s : η(a−1)s − 1],
the row η − η(a−1)s + j of the matrix Dη−η(a−1)s has a 1
in column j and zero elsewhere. Therefore, these rows form



∑
j∈[k−2]∪{n+1}

λ?{j}
(
ηks − η(k−1)s

)
+ λ?{k}

(
η(k−1)s − f

[k:n]
{k}

)
+ λ?{k−1}

(
ηks − η(k−2)s

)
+

n∑
j=k+1

λ?{j}

(
f

[k+1:n]
{j} − f [k:n]

{j}

)
= 0,

(18)

additional linearly independent rows in the matrix F
[a:n]
{j} com-

pared to F
[b:n]
{j} . Since there are η(a−1)s − η(b−1)s such rows,

it follows that f [a:n]
{j} ≥ f

[b:n]
{j} +

(
η(a−1)s − η(b−1)s

)
. This con-

cludes the proof of Lemma 1.

APPENDIX D
PROOF OF LEMMA 2

We show that, if η1s ≤ η2s ≤ · · · ≤ ηns and there exists an
i ∈ [n] such that ηis = η(i−1)s = f

[i:n]
{i} , then columns i and

n + 1 of the matrix P are identical, i.e., P is singular and
hence, det (P) = 0. Towards this end, we start by noting that
Pj,i = −f [j:n]

{i} and Pj,(n+1) = −f [j:n]
∅ where j ∈ [n+ 1].

Now, if j ∈ [i + 1 : n + 1], then using Proposition 1 and
the fact that ηis = η(i−1)s, we have that f [j:n]

{i} =f [j:n]
∅ . Thus,

for all j ∈ [i+ 1 : n+ 1] we have that Pj,i = Pj,(n+1).
We now focus on the case j ∈ [1 : i] and show that

f
[j:n]
{i} =f [j:n]

∅ for all j ∈ [i]. Recall that f [i:n]
{i} = rank

(
F

[i:n]
{i}

)
,

where F
[i:n]
{i} is defined as

F
[i:n]
{i} =


0η×η Dη−ηdi

Dη−η1s Dη−η1i

Dη−η2s Dη−η2i

...
...

Dη−η(i−1)s Dη−η(i−1)i

 ,

where Dη−m is defined in (2). From the above equation, it
follows that

f
[i:n]
{i} ≥ max

x∈[i−2]∪d

{
rank

(
Dη−η(i−1)s

)
+ rank

(
Dη−ηxi

)}
(a)
= max

x∈[i−2]∪d

{
η(i−1)s + ηxi

}
(b)
= η(i−1)s,

where the labeled equalities follow from: (a) the fact that the
rank of Dη−m is equal to m; and (b) the assumption that
ηis = η(i−1)s = f

[i:n]
{i} which implies that ηxi = 0 for all

x ∈ [i−2]∪d. Moreover, for j ∈ [i] the matrix F
[j:n]
{i} consists

of the first j block rows of F[i:n]
{i} , and its entire column block

is zero since ηxi = 0 for all x ∈ [i− 2] ∪ d. Thus,

f
[j:n]
{i} = max

`∈[j−1]
{η`s} = η(j−1)s = f

[j:n]
∅ ,

where the second equality follows from the assumption η1s ≤
η2s ≤ · · · ≤ ηns. Thus, also for j ∈ [i] we have that Pj,i =
Pj,(n+1). This concludes the proof of Lemma 2.
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