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Abstract—This paper considers a diamond network with n
interconnected relays, namely a network where a source com-
municates with a destination by hopping information through n
communicating/interconnected relays. Specifically, the main focus
of the paper is on characterizing sufficient conditions under
which the n + 1 states (out of the 2" possible ones) in which
at most one relay is transmitting suffice to characterize the
approximate capacity, that is the Shannon capacity up to an
additive gap that only depends on n. Furthermore, under these
sufficient conditions, closed form expressions for the approximate
capacity and scheduling (that is, the fraction of time each relay
should receive and transmit) are provided. A similar result is
presented for the dual case, where in each state at most one
relay is in receive mode.

I. INTRODUCTION

Computing the Shannon capacity of a wireless relay net-
work is an open problem. In a half-duplex n-relay network,
each relay can either transmit or receive at a given time instant
and therefore a scheduling question arises: What fraction
of time each relay in the network should be scheduled to
receive/transmit information so that rates close to the Shannon
capacity of the network can be achieved?

For an n-relay half-duplex network, there are 2" possible
receive/transmit configuration states, because each relay can
either be scheduled for reception or transmission. However,
in [1], it has been surprisingly shown that only n + 1 out of
these 2™ possible states are sufficient to achieve the network
approximate capacity, i.e., an additive gap approximation
of the Shannon capacity, where the gap is only a function
of n. This result opens novel research directions, such as
characterizing a set of n + 1 critical states for each network
efficiently (in polynomial time in n).

In this work, we investigate the question above in the con-
text of diamond networks with n interconnected relays, where
the source communicates with the destination by hopping
information through n half-duplex relays that can commu-
nicate with each other. In particular, we analyze the linear
deterministic approximation of the Gaussian noise channel,
and characterize sufficient conditions under which at most
one relay is required to transmit at any given time to achieve
the approximate capacity. This leads to a significant reduction
in the average power consumption at the relays, compared
to a random network with identical n (where potentially at
each point in time more than one relay is transmitting) and
hence, the proposed scheduling is energy-efficient. The other
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advantage of a schedule with at most one relay in transmit
mode is that it simplifies the synchronization problem at the
destination. Our result can be readily translated to obtain
sufficient conditions under which operating the network only
in states with at most one relay in receive mode is sufficient
to achieve the approximate capacity. The proposed scheduling
and approximate capacity can be translated to obtain similar
results for the practically relevant Gaussian noise channel.

To the best of our knowledge, this is the first work that
provides network conditions that suffice to characterize a set of
n+ 1 critical states for arbitrary values of n in relay networks
where, in addition to broadcasting and signal superposition,
we also have signal interference at the relays.

Related Work. The cut-set bound has been shown to offer
a constant (i.e., which only depends on n) additive gap
approximation of the Shannon capacity for Gaussian relay
networks [2]-[6]. Such approximation, for an n-relay Gaussian
half-duplex network can be computed by solving a linear
program involving 2" cut constraints and 2" variables corre-
sponding to the receive/transmit configurations of the n half-
duplex relays. However, it has been shown that it suffices to
operate the network in only n+ 1 states out of the 2" possible
ones to achieve the approximate capacity [1]. Finding this
set of n + 1 critical states in polynomial time in n for half-
duplex Gaussian relay networks is an open problem. These
critical states and the approximate capacity can be computed
in polynomial time for the following networks: (i) n = 2
relay half-duplex diamond networks with non-interconnected
relays [7] and interconnected relays [8]; (ii) line networks [9];
(iii) a special class of layered networks [10]; and (iv) dia-
mond networks with n non-interconnected relays under certain
network conditions expressed in [11]. We highlight that the
result presented in this paper subsumes the result for diamond
networks studied in [11] (where there is no signal interference
among the relays) and our recent result in [8] for n = 2.

Paper Organization. Section II introduces the notation, de-
scribes the Gaussian and the linear deterministic half-duplex
diamond network with n interconnected relays and summa-
rizes known capacity results. Section III presents the main
result of the paper, the proof of which is in Section IV. Specif-
ically, Section III characterizes sufficient conditions under
which the set of (at most) n+1 network states in which at most
one relay is transmitting (and the set with at most n+ 1 states
with at most one relay receiving) suffice to characterize the
approximate capacity of the binary-valued linear deterministic



Fig. 1: Diamond network with n = 3 interconnected relays
(with cut Q = {3} and state S = {2, 3}).

approximation of the Gaussian noise channel. Some of the
proofs can be found in the appendix.

II. NOTATION AND SYSTEM MODEL

Notation: We denote the set of integers {4,...,m} by [i : m],
and {1,...,m} by [m]; note that [i : m] = @ if i > m.
For a variable 6 and a set X, Oy = {6, : © € X'}. We use
boldface letters to refer to matrices. For a matrix M, det (M)
is the determinant of M, M7 is the matrix transpose of M
and M 4 5 is the submatrix of M obtained by retaining all the
rows indexed by the set .4 and all the columns indexed by the
set B. Matrix columns and rows are indexed beginning from 0
(instead of 1). |-| and [-] are the floor and ceiling operations,
respectively, and [a] " = max{a,0}. 0,x, is the zero matrix
of dimension p x g; I, is the p x p identity matrix.

The Gaussian half-duplex diamond network with n inter-
connected relays consists of a source (node s) that wishes
to communicate with a destination (node d) through n in-
terconnected relays. At each time instant ¢, the input/output
relationship of this network is described as

Z S hdz

Yi(t)=(1-5(t (h%X )Y S (D X,(0)+ Zi(1))

JE€[n]

)+ Za(t),
(1)

for i € [n]. Note that, at each time instant ¢: (i) S;(¢) is a binary
random variable that indicates the state of relay ¢ € [n], with
Si(t) = 0 (respectively, S;(t) = 1) indicating that relay 4 is
receiving (respectively, transmitting); (ii) X;(¢) is the channel
input at node 7 that satisfies the unit average power constraint
E[|X;(t)]?] <1 for i € {s} U [n]; (iii) hi; with i € [n] U {d}
and j € {s} U [n] is the time-invariant complex channel gain
from node j to node ¢; note that hgys = 0 and, since the relays
operate in half-duplex mode, without loss of generality we let
hii = 0; (iv) Z;(t) ~ CN(0,1) is the complex additive white
Gaussian noise at node i € {d} U [n]; and finally, (v) Y;(¢) is
the received signal at node i € {d} U [n].

The Shannon capacity C© of the network in (1) is not known
for general n. However, the capacity can be approximated
within a constant O(n) bit gap. More precisely, we can
focus on the binary linear deterministic approximation of the
Gaussian noise network model [2], for which the approximate

capacity is known and provides an approximation for C®. The
linear deterministic model (a.k.a. ADT model [2]) correspond-
ing to the Gaussian noise network in (1) has an input-output
relationship given by

Z S, (t
2

Y;(t):(l—Sl-(t))(D” maX +ZS DX (1)),

D7] Ndi X (t),

for i € [n], where

D™ — |: O(U—m)Xm ‘ O(U—m)x(n—m) :| ’
| P Omx(nfm)

and

mij = [log|hii 1?17, i € [n]U{d},j € {s}Un],i # .

Here, the vectors X;(t), X;(t), Yy(t), and Y;(t) with ¢ € [n]
are binary of length » = maxmn;;, where the maximization
is taken over all channels 7;; in the network; D is the so-
called n x 7 shift matrix, and S;(t),i € [n] is the i-th relay
binary-value state random variable.
The approximate capacity of the linear deterministic model
in (2) is given by the solution of
C'P = max ¢
Y

S.t. t<gQ

Z >\Sf$7 VQQ [TL],
SC[TL] (3)

Z,\S<1

SC[n]

As 20, VS C|n],

where: (1) S = {i € [n] : S; = 1} is the set of relay nodes
in transmit mode; (ii) As > 0 is the fraction of time that the
network operates in state S and hence, > SCin] As<1; (iii) A
is referred to as a network schedule and is a vector obtained
by stacking together \s for all S C [n]; (iv) © C [n] denotes
a partition of the relays in the ‘side of s, i.e., {s} UQ is a
network cut; similarly, Q¢ = [n]\ Q is a partition of the relays
in the ‘side of d’. Moreover, we define

fg é I(X37XQOS;Yd,YQcﬁSC"XQCﬂSaS) = rank (Fg) 5

where Fg is the transfer matrix from Xggu@ns) to
Yiayuaense), corresponding to the ADT model [2].

It turns out that |[C¢ — C'P| < k, where k = O(n) is
independent of the channel gains and operating SNR and
hence, CP in (3) provides an approximation for the Shannon
capacity of the network in (1)!.

Example 1. Consider the relay diamond network with n = 3
interconnected relays in Fig. 1. For the cut {2 = {3} and state
S ={2,3}, we have {s}U(2NS) ={s,3} and {d} U (Q°N

'We highligth that schemes such as quantize-map-and-forward [2] and
noisy network coding [4], together with the cut set bound, allow to characterize
the capacity of Gaussian relay networks up to a constant additive gap.



8¢) = {d,1}. The input-output relationship for this cut and

state is given by
Yd D7 D143 Xs
{yj = [Dnms Dnmg} {XJ :

Therefore, we have

Q_ {31 ) _ D
18 = det (P ) = det {Dnms

In this work, we seek to identify sufficient network condi-
tions which allow to determine a set of n + 1 states (out of
the 2" possible ones) that suffice to achieve the approximate
capacity in (3) of the linear deterministic network and can be
readily translated into a similar result for the original noisy
Gaussian channel model in (1).

&
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III. MAIN RESULT: CONDITIONS FOR OPTIMALITY OF
STATES WITH AT MOST ONE RELAY TRANSMITTING

Without loss of generality, we assume that the relay nodes
are arranged in increasing order of their left link capacities,
that is, 715 < Mas < -+ < 1. We define P to be an (n+2) x
(n + 2) matrix, the rows and columns of which are indexed
by [0:n + 1], and

—f G e+
Pij =10, (i,7) = (0,0), (4)
1, otherwise,

where we define f?n 41} = fg, for consistency. Moreover, for

i € [0:n+1] we use P(;) to denote the minor of P associated
with the row 0 and column 7 of the matrix P, that is

Py 2 det (Ppuga),jomti\fi}) -

Finally, we define

s {{1},{2},....{n}, @},

to be the set of the n + 1 states, where at most one relay is
transmitting in each state.

The main result of this paper is presented in Theorem 1,
which characterizes sufficient network conditions for the op-
timality of operating the network only in states S € S.

_ n+1
Theorem 1. Whenever det (P) # 0 and % >0,

then it is optimal to operate the network in states in S to
achieve CP in (3).

Example 2. Consider the relay network in Fig. 1 with link
capacities given by 715 = 1,725 = 3,735 = 5,7a1 = 6,742 =
5,Ma3 = 3,12 = 3,121 = 4,132 = 5,723 = 3,131 = 2 and
113 = 4. For this network, the matrix P is given by

0 1 1 1 1

1 6 -5 -3 0
P=|1 0 -6 —4 —1]. (5)
1 -3 -1 -7 -3
1 -5 -5 -3 -5

It is not difficult to check that det (P)# 0 and Py =
det (P[4]1[0:3]) > 0, i.e., the conditions in Theorem 1 are sat-
isfied. Thus, operating this network in S = {{1}, {2}, {3}, @}
achieves CIP in (3). o

Remark 1. Note that S consists of all the states where at
most one relay is transmitting, while the rest of the relays
are receiving. A similar condition can be obtained for the
optimality of the states S’ = {[n], [n]\ {1}, [n]\ {2},...,[n]\
{n}} (where at most one relay is in receive mode).

Remark 2. For the case when the relays are non-
interconnected, i.e., n;; = 0 for all (i, ) € [n]% the result in
Theorem 1 subsumes the result in [11]. Moreover, for n = 2,
the result in Theorem 1 is equivalent to the one in [8], where
we characterized the set of at most 3 states that suffice to
achieve C'P in (3) for n = 2.

Remark 3. The conditions in Theorem 1 are a consequence
of the relaying scheme used to operate the network in states S.
This scheme is based on information flow preservation at each
relay, i.e., the amount of unique linearly independent bits that
each relay decodes is equal to the amount of unique linearly
independent bits that each relay transmits. The conditions in
Theorem 1 ensure the feasibility of this scheme.

In the remaining of this section, we analyze the variables fg
and present some of their properties, which play an important
role in the proof of Theorem 1, presented in Section IV.

A. Properties of fg

We here present two properties of f5 = rank(F<) that we
will leverage in the proof of Theorem 1.

Proposition 1. For all Q} C [n] and S C [n], we have that

Q
> max_ 75 + max ng; 6)
fs = i€Qense "his jeQnSnJ’ (

with equality if QNS =T or QNS = 2.
Proof. Let

1 = arg max_ 7;s,

and J§* = arg max 7y;.
i€Qense J gjeQnS "1dj

Then, the submatrix of F$ induced by row blocks {d,i*} and
column blocks {s,j*} is

D7 s

D7 mi*s
the rank of which is 7;x, + 74;+. This provides a lower bound
on the rank of Fg Moreover, if Q¢ NS¢ = &, then Fg only
consists of one row induced by {d} and columns induced by
{ngj : j € QN S} and hence, rank(F%) = max;cons 7d;-
Similarly, if NS = &, then F¢ has only one column and
hence, rank(F$%) = max;cqcnse 7. This concludes the proof
of Proposition 1. O

D7 Nd5*
D= mi*5*

‘ D714+
D—=mix5* )

0%y
D7 1i*s

Proposition 2. For a given state S C [n), f$ is submodular
in Q), that is,

gl + fgz 2 féthz + fgluﬂg7 (7)



for any subsets Q1,0 C [n]. Similarly, for a given cut Q C
[n ] fs is submodular in S, that is, fs —|—f52 > f81u32 +
meSQ for any subsets S1,S2 C [n].

Proof. The proof is given in [1]. [

IV. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1, which
consists of three main steps. We first introduce an auxiliary
optimization problem in (8) in Section IV-A, which is a
relaxed version of the problem in (3) and hence, its solution
CY provides an upper bound on the optimum value of (3),

e., CY > C'P. In Section IV-B, we propose a solution
(A*,t*) for the (relaxed) optimization problem in (8), where
A5 =0 for all S ¢ S. We show that, under the conditions of
Theorem 1, (A*,t*) is feasible and optimal, which leads to
CY = t*. Finally, in Section IV-C we show that the proposed
solution is feasible for the original problem in (3), implying
that C'P > ¢*, Therefore, putting the three results together,
we get t* = CY > C'P > ¢*. This shows that C'P = ¢* that
can be attained by A* that satisfies the claim of Theorem 1,
which concludes the proof of the theorem.

A. An Upper Bound for the Approximate Capacity

The optimization problem in (3) consists of 2" cut con-
straints. We can relax these constraints except for n + 1 of
them. More formally, we define

CY = max ¢

A
SLE< g = Y Asfa, i€+,
K SC[n] (8)
9p = Z )‘S S 1a
SCn]
)\S >0, SC [n]a

where [n+1:n] = 2.

Note that the optimization problem in (8) is less constrained
compared to (3). Hence, the problem in (8) has a wider feasible
set than (3), and its maximum objective function cannot be
smaller than that of the problem in (3), i.e., CV > CI'P,

B. An Optimal Solution for the Optimization Problem in (8)

We show that under the conditions of Theorem 1, the states
in S are optimal for the upper bound CY on the approximate
capacity obtained by solving (8), that is, there exists an optimal
solution with (£,As) > 0 and A\s = 0, for all § ¢ S.
In particular, we leverage the Karush—-Kuhn-Tucker (KKT)
conditions to prove the following proposition.

(=1

Proposition 3. Ler det (P) # 0 and O Pty > 0. Then,

det(P)
(A*,t*) given by
P,
=Dy i€hT
)‘3 =0, S¢S, ©))
= Gl = ZAS [m], i€[n+1],
Ses

and N\ = )\f{kn 41y are such that:
(i) Aj;y 20, for every i € [n+1];

(ii) and (X*,t*) is an optimal solution for the optimization
problem in (8).
Consequently, we have CY = t*

We present the proof of claim (i) in Appendix A. The proof
of claim (i) is presented below.

Proof of claim (ii) of Proposition 3. The proof leverages the
KKT conditions. More precisely, for KKT multipliers p =

(tps pi1s -« s piny1) and o = (os : S C [n]), the Lagrangian
for the optimization problem in (8) is given by
i€[n+1] (10)
+up(gy —1) = D os)s.
SCln]
In the following, we proceed with a choice of (u, o) where
p is the solution of
e i fngr] P=[1 0 0 0] (b
and
n+1 )
o5 =pp— Y mifs", (12)

i=1
for every S C [n]. We next prove the optimality of (A*,¢*)
by showing that the set of KKT multipliers (u, o) defined
in (11) and (12) together with (A*,¢*) satisfy the following
four groups of conditions.

o Primal Feasibility. We first show that, if det (P) # 0 and

(_1)(;;:,()"“) > 0, then the solution in (9) is feasible for the
optimization problem in (8). Note that by setting A\s = 0,
for all S C [n] with S # S in (8), we obtain an optimization
problem over (n+2) variables (including ¢ and s for S € S).
We also force constraints ¢ < gj;.,, for i € [n+1] and g, < 1
to hold with equality. This leads to a system of (n + 2) linear

equations in (n + 2) variables, given by

Moy Ae]' =

where P is the matrix defined in (4). The solution of this
system of linear equations is given in (9). Therefore, the
solution (A*,t*) automatically satisfies the constraints of (8)
corresponding to gj;.,) for all ¢ € [n+1] and to g,. Fur-
thermore, the feasibility of the remaining constraints, namely
A5 > 0 for S €8, is established by claim (i) of Proposition 3.

o) and

Pt Ay 10 0 o],

e Complementary Slackness. We need to show that (p,
the optimum solution (A*,t*) given in (9) satisfy

o wi(t* —gf,y) =0 foralic[n+1];

. p,p(g; — 1) = 0,'

o and osNg =0 for every S C [n].
The first and the second conditions are readily implied by (9)
for any choice of p. Moreover, the third condition holds for
S ¢ S, since we have N5 = 0 whenever S ¢ S. Finally,



consider some S € S, say S = {j} where j € [n+ 1] (and
J=n+1if S = O). Then, the definition of o; in (12) and
the j-th column of the matrix identity in (11) imply that

n+1
oGy =ty — Y /hf{[]?] =1 Plomiay; = 0.
=1

=0, forall § €S.

e Stationarity. We aim to prove that, when evaluated in p
as in (11) and os in (12), the derivatives of the Lagrangian
in (10) with respect to t and \s,S C [n], are zero. By taking
the derivative of L(w, o, X*,t*) with respect to t we get

This ensures that o5\

o n+1
atﬁ(,u,o-,)\*,t*) =—-1+ Zui

= 14 p-Poigo=—1+1=0.
Similarly, by taking the derivative with respect to \s we get

n+1

Z,szsln -

:0'5—0'5:0,

8 * * _
D L, 0, Xt

in which we used the definition of os in (12).

e Dual Feasibility. In this last part, we need to prove that the
KKT multipliers in (11) and (12) are non-negative.

Towards proving this claim for the p variables, we first
use induction to show that sign(p;) = sign(p;) for all
i,j € [n + 1]. Then, we argue that since Y7 i = 1
(from the first column of the matrix identity in (11)), we have
H1s 42, -+ -5 Bnt1 > 0. Lastly, for each j € [n + 1], the j-th
column of the same identity implies that i, = Z?;ll wif Fj:?],
Sfrom which it directly follows that j, > 0. We refer to Ap-
pendix B for a more detailed proof of this argument.

Next, we focus on the KKT multipliers o0s,S C [n] in (12).
For an arbitrary state S = {ay,as, ...,ax}, we can write

n+1 in] n+1 fin]
Zﬂz S Z if{417,,,)ak}
=1 i=1
n+1 -k 1
_ Z (f[z n] _f[i:n] )+f[zn]
273 {a17...,a]'+1} {al,-<~7aj} {al}
i=1 =1
S S Jin] ]
<D om Z(f{am} )+f{a1}
i=1 =1
n+1 [ k ) )
S| (Som) e
i=1 | \i=1
kE n+1 [ ] n+1 [ ]
:ZZNif{a‘J} - *1 Z,Uz
j=1i=1
k

E—1)u

_Zﬂp

= HUp,

where the inequality is due to Proposition 2, i.e., fs
submodular in S. Thus, we get 05 = [ —Z?:Jrll lfsl il > 0
This concludes the proof of claim (ii) of Proposition 3. O
C. Feasibility of (X\*,t*) for CtP

In Section IV-B, we have shown that the solution (A*,¢*)
given in (9) is optimal for the optimization problem in (8). This
implies that t* = CY > C'P where C'P is the approximate
capacity of the network, obtained by solving the problem
in (3). In the following, we aim to prove that (A*,¢*) in (9) is a
feasible solution for the optimization problem in (3), which in
turn implies C*P > ¢*, and concludes the proof of Theorem 1.
Towards this end, it suffices to show the feasibility of such a
solution for (3), as stated in the following proposition.

Proposition 4. The solution (X*,t*) given in (9) is feasible
for (3) and thus, CIP > t*.

Proof. Note that the two optimization problems in (3) and (8)
have identical objectives and similar constraints. More pre-
cisely, the constraints in (8) are a subset of those in (3) and
hence, they are clearly satisfied for (3) also because (A*, t*) is
an optimum solution for (8). Thus, we only need to focus on
the constraints of the form ¢* < g = > g, AS [, which
exclusively appear in (3).
Towards this end, we
Q=lay:b1)UJfaz : bl U...Ulag : bx] C [n],
a1 <bp <as <by <...<a <b. We also define
ar+1 = n + 1. Recall from Proposition 2 that, for a
given state S, the function f§ is submodular in Q. Then, for
Oy =QUJa;41 :n] and Qy = [b; + 1 : n] with i € [k], we
have Ql U QQ =QU [0,1' : n] and Ql N Qz = [a,;_H : TL] ThUS,

fgu[aiJrl:n] +f‘[5'bi+1:n] > f‘gu[ai:n] +f£‘ai+1:n]7 (13)

for every i € [k]. Moreover, note that for axy; = n + 1, we
have [ax11:n]=[n+1:n]=9, and Q C [a; : n]. There-
fore, we can write

> ONsfS
SCn]

consider an arbitrary cut

where

k
QUla;41: QUla;:n QUla1:n
- Z As [Z (fsu . _fSU[ ]>+fsu[ ' ]]
scm L=t
k
> Z )\g [Z( a1+1n . [b+1n)+fa1n]‘|
SCln] i=1
k+1
a;:n b;+1:n
S S sy 3 gl
i=1 sCn] i=1 5]
k+1 k
= Z gf(a,i:n] - Zgrb,i-‘,-lzn]
=1 =1
= (k+ 1)t* — kt* = t*,

where the inequality follows from (13). This implies that
t* < s A5 fS for any Q C [n] and hence, concludes
the claim of Proposition 4. This also completes the proof of
Theorem 1. O



APPENDIX A
PROOF OF CLAIM (i) IN PROPOSITION 3

We start by noting that, under the conditions in Theorem 1,

—yn+1
namely det (P) # 0 and ( Udet(rp,()"“’ > 0, we readily have

that A%, in Proposition 3 is larger than or equal to zero, i.e.,

1 P(nt1)

(=1 det (P) 2 0.

Thus, in what follows we focus on showing that A*i > 0 for
all 7 € [n]. Towards this end, we first highlight that (A*,¢*) in
Proposition 3 are the solutions of a system of linear equations
constructed as follows: (i) setting As = 0, for all S C [n]
with § # S in (8); and (ii) forcing constraints ¢ < gj;.,,) for
i € [n+1] and g, < 1 in (8) to hold with equality. This system
of (n + 2) linear equations in (n + 2) variables, is given by

Ay Aol =

and hence, the equation corresponding to the row ¢ + 1 for
i € [0 :n] of (14) is given by

A% - )‘{n+1}

Plt Ay 10 0 0]’ (4)

n+1 [ |
i+1:n
Z Sy
1—1 [ ]
* i+1:n
2 Nolis 3 Xigyis + Ay i-1ys + Z A f iy
J=1 j=i+1
_ - ) - [i+1:n]
= | 1= D Ay | s+ Alyma-ns + Y A/
§=i j=i+1
— * [1+1:n]
= s + Aiy (N-1)s — his) Z AUy ( Gy ") )

Jj=i+1

where the equality in (a) follows from: (i) letting 7;; = 0 for
Jj & [n]; (i) the fact that n1s < m2s < -+ < mpg; and (iid)
using the property in Proposition 1.

Using the above expression, we can now get the following
recursive relation for A, for i € [n],

A?} (77is — N(i-1)s )
[’L 1:n] (15)
nzs - Z )\{]} ( {JJ}T - 7725) )
Jj=i+1

where 7,5 = 0 for j ¢ [n].

We now proceed to the proof that the A7,,’s for all i € [n]
obtained from (15) are such that )\fi} > 0. In particular, the
proof is based on contradiction and leverages the property of
[ given in Lemma 1 (proof in Appendix C) and the property
of P given in Lemma 2 (proof in Appendix D).

Lemma 1. If 715 <m2s < < Nu_1)s < s, then
F = s = F = novsforalln = j > a>b> 1.

Lemma 2. If s < 1mos <
i € [n] such that n;s = 1ii—1)s =

- < 77ns and there exists an
f{} then det (P) = 0.

Let K = {i: A};; <0,i € [n]}, and k be the maximum ele-
ment of IC. We also let £ = {j € [1: k — 1] : njs = n(j—1)s >

and ¢ be the maximum element of £, with ¢ = 0 if £ is empty.
Recall that n;, = 0 for j ¢ [n].

We now show that /C cannot be non-empty (hence proving
that A7,y > 0 for all i € [n]), using two main steps: (1) using
the recursive relation in (15), we show that A%} j < 0 for all
J € [0+1:k—1];and (2) using the facts that A7, < 0 for all
jE€+1:k—1] and Ay < 0 by assumption, we show that
(A*,t*) does not satisfy the equation corresponding to row
¢+ 1 of (14), thereby giving us the required contradiction.

o Step 1: A7,y <0 forall j € [l4+1:k—1].
Since £ is the maximum element of L, 7;s > n(;—1), for all
i € [€+1: k — 1]. Therefore, using (15) we have that

_nis>

Using the above relation, we show by induction that A} iy = 0,
for every i € [(+1: k —1].

= Recursive Case. Assume that \7,, <0 foric[k—m+1:
k—1],forsomem € [1:k—{— 11]. Using the above equation
of sign(A};,) for i = k —m, we obtain

[H—l:n]
{7}

Z Ay (

J=i+1

sign(Af;y) =sign | (1is—t)

(=14 3 Ay (75 = )
j=k—m+1
(a) m n
< (Mk—m)s —17) + Z A{y}( oy ]—77<kfm>s)
j=k+1
(®) * " * [k+1:n]
< (n(k—m)s —t )+ Z {5} (f{ - k,s)
Jj=k+1
= (n(kfm)s - nkts>
* - * [k+1:n]
+ | (ks — %) + Z ! (f{ - ks)
j=k+1
c) * (@)
= (N(k—mys — Mks) + Ak} (ks — N(k—1)s) < 0, (16)

where the labeled inequalities/equalities follow from: (a)
the assumptions /\* <0 for jelk—m+1:k—1] and

Aky < 0 and the fact that f{k metim] —U(k—m)s) >0
for j € [k —m+1:n] by Proposition 1; (b) the fact that

A{jy = 0for j € [k + 1:n] (since k is the maximum element

of K) and using Lemma 1 from which f{[ﬁrlm} — Nps >

f{[’;}_mﬂ:"] — N(k—m)s: () using (15) for k = i; and (d) the

fact that 115 < 195 < -+ < 1,5 and the assumption )\{k} < 0.
= Base Case. The base case is m = 1 and it readily follows
by noting that (16) holds for m = 1.

o Step 2: (A\*, t*) does not satisfy the equation corresponding
to row £+ 1 of (14).

Since / € L, we have that 7y, = Therefore,

Ne—-1)s-



equation (15) corresponding to ¢ = ¢ is given by

14 n)
0= n/s _t Z /\{j} ( +1 - 7723)
j= Z+1
(d) l4+1:n
14 3 i ()
Jj= k+1
(b)
[k+1:n]
nEs - t* Z )\{]} ( {j} - nks)
j=k+1
k+1:n
- (nls - nks) + nks _t Z )\{]} ( L?l - nks>

j=k+1

< (e (17)

where the labeled inequalities/equalities follow from: (a) the
facts that /\?j} <O0forje[f+1:k—1]and Ay <0, and
the fact that 7™ — s >0 for j € [ +1:n] by Propo-
sition 1; (b) the fact that A{;, >0 for j € [k +1: n] (since
k is the maximum element of K) and using Lemma 1 from
which o — e > fE3T e for j € (k412 n): (©)
using (15) for k = 4; and (d) (strict inequality) the fact that 7,
cannot be equal to nys without making the matrix P singular,
hence violating the condition det (P) # 0 in Theorem 1. This
is proved in the remaining part of this appendix.

By letting Xfo} = 0, the difference between the equations
corresponding to ¢ = k and ¢ = k — 1 in (15) is given by
equation (18), at the top of the next page. Since ¢ € L, we
know that 7ss = n(p_1)s- Now, if nxs = 105 = 1(4—1)s, then
it implies that nxs = Nr—1)s = Nk—2)s; this follows since
te(l:k—1]and ms < mos < -+ < nps. Moreover, if ng, =
N(k—1)s = M(k—2)s» then equation (18) becomes

Afk}(f{[if]—mk—l)s) Z A{a}( {[ﬁflm]‘f{[];:}n])' (9)

Jj=k+1

(d)
- 771@5) + A?k} (nks - n(k—l)s) < 0,

Since by assumption )\Ek < 0 and f{[lzi}n] — Nk-1)s = 0
from Proposition 1, we have that the left-hand side of (19)
is smaller than or equal to zero. Moreover, since A¥., > 0 for
all j € [k +1:n] (because k is the maximum element of K)
and f{[’;flm] > fg;:}"] (from Lemma 1), then the right-hand
side of (19) is greater than or equal to zero. Thus, we must
have that both sides of (19) are equal to zero, which implies
that f k = N(k—1)s = Nks- However, from Lemma 2 we have
that thls makes P singular, which contradicts the assumption
of Theorem 1 that det (P) # 0. Therefore, 7,5 cannot be equal
to ngs and (17) is strictly less than 0, completing the proof of
claim (¢) in Proposition 3.

APPENDIX B
PROOF THAT THE KKT MULTIPLIERS IN (11) ARE
NON-NEGATIVE

We start by showing that sign(p;) = sign(y;) for all ¢,j €
[n + 1]. In particular, we show this by induction.
= Recursive Case. Assume that sign(yu;) = sign(u;) for
all 4,j € [k—1], where k€ [2:n+1]. Then, we show

by induction that sign(ug_1) = sign(ug). Towards this
end, we consider column £ — 1 and column n + 1 of
the identity in (11) which provides us with the relation

n+1 n n+1 B
Hp _Z - ka 1M JZZJ-L g ],uj.Then, we have

n+1 n+1

Zf{k 111 Zf

Mj:07

or similarly

’S(f{“,;ﬂ}— B g (A = 25

=1
n+1
+ Z (f{gkn]l} ej n]) pj =0,
j=k+1
and hence,
k—1 o
Jn _ .
p <f{k—1} 77(]*1)5) H (20)
— (Mk=1)s — N(k—2)s) tre = 0,
where 79s = 0 and where the last implication fol-
lows from Proposition 1. Moreover, from (6) we have
that (f{[jk:f]l}fn(j_l)s) >0 for j € [k — 1], and also
N(k—1)s — n(k,g)s) > 0. It therefore follows that uy has the

same sign as fi1, [, .« ., fhl—1-
= Base Case. The base case is k = 2 and it readily follows
by noting that (20) holds for k£ = 2.

Thus, by induction, we obtain that pq, fo,. .., e+ all
have the same sign. Since from the first column of the
identity in (11) we have Z?:ll w; = 1, it follows that
M1, 2, - -+ fing1 = 0. Moreover, since p, = ZnH f[j .
for all ¢ € [n + 1] it directly follows that u, > O ThlS
concludes the proof.

APPENDIX C
PROOF OF LEMMA 1

The matrix F[{ }],j € [a : n] is given as follows

0,1 D7 "14;
D7 s D7
F[{G;L] _ D71 M2s D= "12j
J
D7 (a-1)s D7 "a-1);

b:n]

Since a > b, the matrix FE{J} is given by the first b

block rows of F[{L;f I Since s < Nos < -+ < Nps, from the
definition of D7~ in (2) and recalling that we index rows
and columns of a matrix starting from zero, it follows that
columns [1_1)s : 7 — 1] are zero in F&b:?}

Now, consider the lower left block of F!{a}], namely
D"~ "a=ns. From (2), for every j € [np—1)s : N(a—1)s — 1,
the row 1 —n(q—1)s +J of the matrix D7~ "«-1s has a 1

in column 5 and zero elsewhere. Therefore, these rows form



Z Ay (s — M(k—1)s) + Ak (77(k 1)s f{k )
jelk—2]u{n+1}
(18)
* [k+1 n) [k:n]
+ M1y (s = n0k—2)s) Z AUy ( P )
j=k+1
additional linearly independent rows in the matrix Fﬁf I com- REFERENCES

pared to F[{b:?] Since there are 7(,_1)s — 7(b—1)s Such rows,

it follows that f[a > f{[b oy (M(a—1)s

— N(b—1)s)- This con-
cludes the prooé of Lemma 1.

APPENDIX D
PROOF OF LEMMA 2

We show that, if 71, < 195 < 77” and there exists an
i € [n] such that 9y, = 13_1)s = then columns ¢ and
n + 1 of the matrix P are 1dentlcai[ i.e., P is singular and
hence, det (P% = 0. Towards this end, we start by noting that
P =—f{" and P pn) = —f5™ where j € [n +1].

Now, if 7 € [i + 1 : n + 1], then using Proposition 1 and
the fact that 7;s = 7(;_1)s» we have that f {[jz}n] [J n] . Thus,
for all j € [i +1:n+ 1] we have that P;; = Pj,(nﬂ).

We now focus on the case j € [1 z] and show that

f{] n]_ f[J ™ for all j € [i]. Recall that f[z 7" = rank (F[{Z ?])
[i:n]

where F {'} is defined as
0,1 D"
D7 "1s D7
F[{zl?] _ D725 D712 7
D s [ D

where D7~ is defined in (2). From the above equation, it
follows that

f{[ll}n] > Ier[?azxw {rank (D"~"G-=) + rank (D"~") }
(g) $Eglax {77(1—1)5 =+ ngcz}
)
= N(i—1)s>

where the labeled equalities follow from: (a) the fact that the
rank of D7~ is equal to m; and (b) the assumption that
Nis = N(i-1)s = f{ } which implies that n,; = 0 for all
x € [i— L]

2] Ud. Moreover, for j € [i] the matrix F} (i) consists

of the first j block rows of F! i'"], and its entire column block
is zero since 7,,; = 0 for all € [i — 2] U d. Thus,

o] _
fay =

[J n]
hax {nes} = ngi—1)s ,

where the second equality follows from the assumption 7;, <
M2s < --+ < Nns. Thus, also for j € [i] we have that P ; =
P; (n+1)- This concludes the proof of Lemma 2.
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