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Abstract: The effects of Lorentz and CPT violations on macroscopic objects are explored.
Effective composite coefficients for Lorentz violation are derived in terms of coefficients for
electrons, protons, and neutrons in the Standard-Model Extension, including all minimal and
non-minimal violations. The hamiltonian and modified Newton’s second law for a test body are
derived. The framework is applied to free-fall and torsion-balance tests of the weak equivalence
principle and to orbital motion. The effects on continuous media are studied, and the frequency
shifts in acoustic resonators are calculated.
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1. Introduction

Lorentz invariance is one of the few principles at the heart of both General Relativity (GR)
and the Standard Model (SM) of particle physics. However, attempts to reconcile gravity with
quantum mechanics suggest that this fundamental symmetry of nature may be broken slightly at
low energies [1,2]. While Lorentz violations are expected to be minuscule, simple estimates imply
that they may be within the reach of high-precision experiments. Spurred by this observation and
the development of the Standard-Model Extension (SME) [3–5], hundreds of searches for Lorentz
violations in a wide variety of systems have been performed in recent decades [6–9].

The SME is a framework that is designed to characterize all realistic violations of Lorentz and
CPT invariance in an effective field theory. It contains both the SM and GR as a Lorentz-invariant
limit, which is augmented by all possible terms involving conventional fields. The SME includes
terms that violate Lorentz invariance and CPT invariance as well as other fundamental principles,
such as diffeomorphism invariance [10,11] and the equivalence principle [12]. A term in the SME’s
action consists of combinations of SM fields, the spacetime metric gµν, and their derivatives contracted
with a tensor coefficient for Lorentz violation to form an observer-independent coordinate scalar.
The coefficients for Lorentz violation may vary in space and time and could be dynamical in
nature. This is especially important when considering Lorentz violations in GR [5,10–12]. However,
empirical studies generally assume that the coefficients for Lorentz violation are constant in inertial
frames, in which case the coefficients impart a nontrivial tensor structure to the vacuum. The dynamics
of particles and fields are altered by interactions with this Lorentz-violating background.

A term in the action of the SME is classified, in part, by the mass dimension d of its conventional
piece. The restriction to the lowest dimensions d = 3 and d = 4 is called the minimal SME [3–5].
The full theory contains an infinite series of terms with d ≥ 3 [13–16], which, when taken together,
should encompass the low-energy effective limit of any fundamental theory unifying gravity and
particle physics. The effects of Lorentz violation typically scale by d-dependent powers of the energy
and momentum. As a result, higher-energy particles generally give better sensitivity to non-minimal
d > 4 violations. Most tests involving ordinary matter are highly non-relativistic, reducing their
sensitivity to non-minimal violations. However, since the energy is bounded below by the mass of the
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particle, a subset of effects remain finite in the limit of zero velocity. Non-relativistic experiments like
those discussed below are particularly sensitive to these forms of Lorentz violation.

In this work, we examine the effects of Lorentz violation on macroscopic matter due to microscopic
violations in free Dirac fermions. The primary goal is to connect Lorentz violations of arbitrary d in
electrons, protons, and neutrons to signals in large objects comprised of these particles.

Ignoring violations that lead to spin-dependent effects, the modified Dirac Lagrangian for a
fermion of species w is given by [15]

Lw = 1
2 ψ̄w(γ

νi∂µ − Mw)ψw − 1
2 ψ̄w(âw

µ
eff − ĉw

µ
eff)γµψw + h.c. (1)

The Lorentz violation is controlled by the operators âw
µ
eff and ĉw

µ
eff, which depend on the

four-momentum pµ = i∂µ. Expanding in pµ, they take the form

âw
µ
eff = ∑

d

aw
(d)µα1 ...αd−3
eff pwα1 . . . pwαd−3 ,

ĉw
µ
eff = ∑

d

cw
(d)µα1 ...αd−3
eff pwα1 . . . pwαd−3 , (2)

where aw
(d)µα1 ...αd−3
eff and cw

(d)µα1 ...αd−3
eff are constant tensor coefficients for Lorentz violation. The aw

(d)
eff

coefficients are limited to odd d ≥ 3. They violate CPT in addition to Lorentz invariance and can affect

particles and antiparticles differently. The cw
(d)
eff coefficients are nonzero for d = even ≥ 4. They are

CPT even and generally produce the same effects in particles and antiparticles.
The above theory yields a modified Dirac equation for electrons, protons, and neutrons,

which affects the dynamics of any object made of these particles. The result for ordinary matter
is a modified Newton’s second law, which depends on macroscopic coefficients cT for the observed

test body T. The cT coefficients are linear combinations of the aw
(d)
eff and cw

(d)
eff coefficients for electrons,

protons, and neutrons. These combinations depend on the relative numbers of particles of each species.
So, different forms of matter with different particle contents can, in principle, be used to disentangle
the violations in different species.

The d = 3 and d = 4 violations in (1) are part of the minimal SME [3,4] and have received
intense scrutiny in the intervening decades since its construction [9]. It has been shown that the

d = 3 violations associated with the aw
(3)µ
eff coefficients can be removed from the theory through a

field redefinition and have no physical effects [3]. We will therefore restrict attention to violations with

d ≥ 4. Note, however, that aw
(3)µ
eff violations are observable through Lorentz-violating matter–gravity

couplings [17]. The d = 4 coefficients cw
(4)µν
eff are observable. They do, however, mimic a species-specific

defect in the spacetime metric ηµν, which can be removed from one particle through a coordinate
transformation [13,18,19]. We use this freedom to eliminate analogous coefficients from the photon sector.
Other minimal violations in photons produce birefringence and are strictly limited by astrophysical
tests [20–30]. We can therefore safely neglect the effects of minimal Lorentz violations in the pure-photon
sector of the SME. We will also neglect violations in electromagnetic interactions [31,32], matter–gravity
couplings [17,33,34], and non-minimal violations in photons [13]. Including these would be of interest,
but would complicate the analysis. They are expected to produce similar effects to those found here.

To date, constraints on minimal cw
(4)
eff coefficients have been placed in studies involving

astrophysics [15,34–41], tests of the equivalence principle [34,42,43], gravimeters [44], accelerators [45–47],
electromagnetic cavities [48–50], atomic systems [51–62], and acoustic resonators [63]. The sensitivities
in electrons have reached levels of parts in 1020 in experiments involving atomic clocks [58] and
trapped ions [59,60]. Constraints on protons and neutrons have reached the 10−29 level in tests using
comagnetometers [61,62]. Many of the atomic constraints have been translated into similarly stringent
bounds on non-minimal d > 4 violations [64,65]. Tight constraints on non-minimal violations have
also been inferred from laboratory [66] and astrophysical [13] tests of relativistic kinematics and from
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Penning-trap experiments [67]. See [9] for an extensive list of constraints on Lorentz violation in other
sectors. While experiments based on microscopic physics give sensitivities that are orders of magnitude
beyond what has been demonstrated with macroscopic matter, each experiment is based on different
assumptions. So, macroscopic tests of Lorentz invariance play an important complementary role.

This paper is organized as follows. The basic theory is discussed in Section 2. An effective
hamiltonian for ordinary macroscopic matter is constructed in Section 2.1, and a modified Newton’s
second law is derived in Section 2.2. Section 2.3 provides a brief review of observer rotations of
spherical SME coefficients and derives, for the first time, the boosts of the spherical coefficients to first
order in boost velocity. Several applications are discussed in Section 3, including tests of the weak
equivalence principle in Section 3.1 and tests involving planetary orbits in Section 3.2. A Lagrangian
for continuous media is given in Section 3.3 and used to derive the frequency shift in piezoelectric
acoustic resonators. Section 4 summarizes the results of the work. A useful product identity for
spherical-harmonic tensors is derived in the Appendix A.

2. Theory

2.1. Hamiltonian

Ignoring spin-dependent violations, the leading-order effects of Lorentz violation on a free Dirac
fermion of species w are described by the effective hamiltonian hw = Ew + δhw, where [15]

δhw = E−1
w (âw

µ
eff − ĉw

µ
eff)pwµ . (3)

Here, Ew =
√

p 2
w + M2

w is the conventional free-particle energy for species mass Mw.
The hamiltonian for antiparticles is given by (3) with the opposite sign on âw

ν
eff. Other forms of

the hamiltonian (3) may be convenient in practice. A common signal in searches for Lorentz violation
is unexpected direction dependence, indicating a violation of rotational symmetry. The prominent role
played by rotations in the field motivates the spherical-harmonic expansion

δhw = ∑
dkjm

Ed−3−k
w |pw|k Yjm(p̂w) (aw

(d)
kjm − cw

(d)
kjm) , (4)

where 0 ≤ k ≤ d − 2, k − j = even ≥ 0, |m| ≤ j, and p̂w = pw/|pw|. The relativistic spherical

coefficients for Lorentz violation aw
(d)
kjm and cw

(d)
kjm are

aw
(d)
kjm = (−1)k

√

4πk!
(k+j+1)!!(k−j)!!

(

d−2
k

) (

Y k∗
jm

)a1 ...ak aw
(d)a1 ...ak0...0
eff ,

cw
(d)
kjm = (−1)k

√

4πk!
(k+j+1)!!(k−j)!!

(

d−2
k

) (

Y k∗
jm

)a1 ...ak cw
(d)a1 ...ak0...0
eff , (5)

where ( m
n ) are binomial coefficients, and Y k

jm are the orthonormal spherical-harmonic tensors recently
derived in Ref. [68]. We use Latin indices a, b, . . . to indicate the restriction to spatial dimensions.
In many cases, a non-relativistic approximation is warranted, leading to a third version,

δhw = ∑
kjm

|pw|k Yjm(p̂w)
(

aw
NR
kjm − cw

NR
kjm

)

, (6)

where the non-relativistic spherical coefficients for Lorentz violation are

aw
NR
kjm = ∑

dl

(

(d−3−k+2l)/2
l

)

Md−3−k
w aw

(d)
(k−2l)jm

,

cw
NR
kjm = ∑

dl

(

(d−3−k+2l)/2
l

)

Md−3−k
w cw

(d)
(k−2l)jm

, (7)
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with k − j = even ≥ 0. All spherical coefficients, including the composite coefficients derived below,
obey the complex conjugation relation K∗

jm = (−1)mKj(−m).
Next, we envision a small but macroscopic volume of matter of mass M containing a large number

of electrons, protons, and neutrons. We write the Lorentz-violating change in the hamiltonian for
the volume as δH = δHe + δHp + δHn, where δHe, δHp, and δHn represent the total free-particle
hamiltonians for electrons, protons, and neutrons, respectively. Each can be written as

δHw = Nw ∑
kjm

〈

|pw|k Yjm(p̂w)
〉

w

(

aw
NR
kjm − cw

NR
kjm

)

, (8)

where Nw is the number of particles of species w in the volume, and brackets 〈〉w indicate the
average over all the particles of that species. We then split the bulk motion from the internal
motion of the particles. Let p be the total momentum, which is conjugate to the center-of-mass
position x. Then, p′

w = pw − Mw
M p is the conventional momentum of a particle in the center-of-mass

frame. Normally, p/M is the velocity of the center of mass and v′
w = p′

w/Mw is the velocity of a
particle relative to the center of mass, but this may no longer be true in the Lorentz-violating case.
However, in leading-order calculations, we can assume the usual relations in the Lorentz-violating
contributions to the hamiltonian, since corrections to the velocity would produce higher-order effects.

The average in (8) can be written as

〈

|pw|k Yjm(p̂w)
〉

w
=

√

(k+j+1)!!(k−j)!!
4πk! Y k

jm ·
〈

p�k
w

〉

w

=

√

(k+j+1)!!(k−j)!!
4πk! Y k

jm · ∑
q

(

k
q

)

M
k−q
w Mq−k

〈

p
′�q
w

〉

w
� p�(k−q) , (9)

where � represents the symmetric tensor product, and Y k
jm are the rank-k spherical-harmonic

tensors [68]. The product p
′�q
w can be expanded in spherical-harmonic tensors, giving

p
′�q
w = ∑

j′m′

√

4πq!
(q+j′+1)!!(q−j′)!! |p

′
w|qYj′m′(p̂′

w)Y
q∗
j′m′ . (10)

We then make the simplifying assumption that the internal-momentum distribution is
approximately isotropic. This implies that the j′ = m′ = 0 term in the sum dominates when averaged
over the particles, yielding the approximation

〈

p
′�q
w

〉

w
≈

〈

|p′
w|q

〉

w
Y q∗

00 /
√

q + 1, which vanishes for
odd values of q. Replacing q with 2q, calculation then gives

〈

|pw|k Yjm(p̂w)
〉

w
≈ ∑

q

(k+j+1)!!(k−j)!!
(2q+1)!(k−2q+j+1)!!(k−2q−j)!! M

k−2q
w M2q−k

〈

|p′
w|2q

〉

w
|p|(k−2q)Yjm(p̂) , (11)

where the sum is limited to integers q for which the arguments of all factorials are nonnegative.
The Lorentz-violating hamiltonian for the small macroscopic volume of matter then reads

δH ≈ − ∑
kjm

M1−k|p|kYjm(p̂) cT
kjm , (12)

where we define composite coefficients for Lorentz violation

cT
kjm = ∑

wq

(k+2q+j+1)!!(k+2q−j)!!
(2q+1)!(k+j+1)!!(k−j)!!

ρw

ρ
Mk−1

w

〈

|p′
w|2q

〉

w

(

cw
NR
(k+2q)jm − aw

NR
(k+2q)jm

)

. (13)

The q index sums over all nonnegative integers, the index k is restricted to nonnegative values,
and j = k, k − 2, k − 4, . . . ≥ 0.
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The macroscopic coefficients for Lorentz violation in (13) are the dimensionless combinations of
the particle coefficients that affect macroscopic matter at the leading order. They are defined so that
they depend on the material’s particle content and not the size or shape of the object. The macroscopic
coefficients are controlled by the mass fractions ρw/ρ, where ρw is the mass density for each species
and ρ = ∑w ρw is the total density. Materials with different particle contents have different cT

kjm

coefficients, so constraints on Lorentz violation in multiple different forms of matter could be combined
to separately constrain violations in electrons, protons, and neutrons.

Writing the cT
kjm in terms of the relativistic coefficients,

cT
kjm = ∑

wdql

(

(d−3−k−2q+2l)/2
l

)

(k+2q+j+1)!!(k+2q−j)!!
(2q+1)!(k+j+1)!!(k−j)!!

ρw

ρ
M

d−4−2q
w

×
〈

|p′
w|2q

〉

w

(

cw
(d)
(k+2q−2l)jm

− aw
(d)
(k+2q−2l)jm

)

, (14)

we note that both aw
(d)
kjm and cw

(d)
kjm coefficients for all dimensions d contribute at each k, so the

effects of CPT-even and CPT-odd Lorentz violation cannot be disentangled using only normal
matter. We therefore define a single set of effective cT

kjm coefficients for matter. These will, however,
differ from the macroscopic coefficients for antimatter due to CPT violation. Additionally note that
for fixed d, the cT

kjm combinations depend on the internal velocity v′
w = p′

w/Mw through
〈

|v′
w|2q

〉

w
.

Under normal circumstances, the electron internal energy is less than a keV. The internal energies
of protons and neutrons are typically on the order of 10 MeV. So, while the non-relativistic internal
motions contribute to the macroscopic hamiltonian, their effects for fixed d are highly suppressed
relative to the p′

w-independent terms with q = 0. The suppressed terms could, however, be used to
access different combinations of coefficients. Ignoring the contributions for the internal velocities gives
the simplifying approximation

cT
kjm ≈ ∑

wdl

(

(d−3−k+2l)/2
l

) ρw

ρ
Md−4

w

(

cw
(d)
(k−2l)jm

− aw
(d)
(k−2l)jm

)

. (15)

Combined with (12), this connects the underlying coefficients for Lorentz violation to the dynamics
of macroscopic matter. In ordinary neutral matter made of atoms with atomic number Z and atomic
mass Ma, the composite coefficients simplify to

cT
kjm ≈ ∑

dl

(

(d−3−k+2l)/2
l

)

[

Z

Ma
Md−3

n

(

cnpe
(d)
(k−2l)jm

− anpe
(d)
(k−2l)jm

)

+ Md−4
n

(

cn
(d)
(k−2l)jm

− an
(d)
(k−2l)jm

)

]

, (16)

where we define coefficient combinations

cnpe
(d)
kjm = −Mp + Me

Mn
cn

(d)
kjm +

(

Mp

Mn

)d−3

cp
(d)
kjm +

(

Me

Mn

)d−3

ce
(d)
kjm (17)

for even d, with a similar expression for odd-d anpe
(d)
kjm coefficients. These coefficient combinations

lead to different effects in different types of matter and can be tested in experiments comparing test
bodies made of different elements. These include the equivalence-principle experiments discussed
in Section 3.1. In contrast, the remaining parts of cT

kjm involving the neutron coefficients for Lorentz
violation produce identical affects in all matter and are not testable through matter-comparison
experiments. Note that the above combinations mirror ones arising in studies of matter–gravity
coupling in the SME [34]. A partial match to this work is given in the next section.

Lorentz violation introduces signatures other than composition-dependent dynamics. Searches for
these signatures in ordinary matter are less dependent on the precise makeup of the mass. In this case,
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it may suffice to assume roughly equal numbers of neutrons, protons, and electrons, which leads to
the approximation

cT
kjm ≈ ∑

dl

(

(d−3−k+2l)/2
l

)

1
2 Md−4

n

(

c′npe
(d)

(k−2l)jm
− a′npe

(d)

(k−2l)jm

)

, (18)

where

c′npe
(d)

kjm
= cn

(d)
kjm + cp

(d)
kjm +

(

Me

Mn

)d−3

ce
(d)
kjm , (19)

with a similar expression for anpe
(d)
kjm. Note that this approximation also neglects the difference in the

proton and neutron masses.
A cartesian version of the macroscopic coefficients for Lorentz violation may be convenient in

some applications. Defining

(

cT
k

)a1 ...ak = ∑
jm

√

(k+j+1)!!(k−j)!!
4πk! cT

kjm

(

Y k
jm

)a1 ...ak , (20)

the Lorentz-violating hamiltonian becomes

δH = −∑
k

M1−k
(

cT
k

)a1 ...ak pa1 . . . pak . (21)

Inverting the relation gives

cT
kjm =

√

4πk!
(k+j+1)!!(k−j)!!

(

Y k∗
jm

)a1 ...ak
(

cT
k

)a1 ...ak . (22)

The
(

cT
k

)a1 ...ak tensors are real and totally symmetric. The k index on composite coefficients is
restricted to nonnegative integers, and the angular-momentum indices obey j = k, k − 2, k − 4, . . . ≥ 0
and |m| ≤ j.

2.2. Equations of Motion

The Lorentz-violating hamiltonian δH depends on the center-of-mass momentum p, but is
independent of the center-of-mass position x. This implies that the net force, defined as the rate
of change in the canonical momentum, is unchanged by Lorentz violation: F = ∂t p = −∇xδH.
The Lorentz violation enters through the altered relationship between the momentum p and the
center-of-mass velocity: ẋ = ∇pH = p/M + ∇p δH. Combining the two Hamilton’s equations,
we arrive at a modified Newton’s second law,

Mẍ = (1 − C) · F , (23)

where Lorentz violation is governed by the symmetric dimensionless tensor

Cab = −M
∂2δH

∂pa∂pb

= ∑
k

k(k − 1)
(

cT
k

)abc1 ...ck−2 vc1 . . . vck−2 . (24)

We write this in terms of the conventional velocity v = p/M for convenience. Note that v

can be taken as ẋ in leading-order calculations. We then find a Lorentz-violating force δF ≈ −C ·
F that depends on the velocity v and the conventional force F. Alternatively, we can write the
equations of motion as M(1 + C) · ẍ = F, where the effects of Lorentz violation can be viewed as a
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velocity-dependent anisotropic mass matrix M(1 + C). This generalizes the modifications from d = 4
violations found in Refs. [69,70].

The velocity-dependent C tensor can be expanded in spin-weighted spherical harmonics. This is
done by expanding the tensor in the helicity basis [13]:

êr = êr = v̂ = sin θ cos φ êx + sin θ sin φ êy + cos θ êz,

ê± = ê∓ = 1√
2
(êθ ± iêφ) . (25)

The velocity direction v̂ = v/|v| defines the “radial” direction, and êθ and êφ are the usual unit
vectors associated with spherical-coordinate angles θ and φ. The components Cab = êa · C · êb in the
helicity basis are spin-weighted functions and can be expanded in spin-weighted spherical harmonics

sYjm. The result is

Crr = ∑
kjm

k(k − 1)|v|k−2
0Yjm(v̂) cT

kjm ,

C+− = ∑
kjm

(

k − 1
2 j(j + 1)

)

|v|k−2
0Yjm(v̂) cT

kjm ,

Cr± = ∑
kjm

(∓)(k − 1)
√

j(j+1)
2 |v|k−2

±1Yjm(v̂) cT
kjm ,

C±± = ∑
kjm

1
2

√

(j − 1)j(j + 1)(j + 2)|v|k−2±2Yjm(v̂) cT
kjm . (26)

All of the objects appearing in these expressions are dimensionless.
We note that only composite coefficients with k ≥ 2 affect the macroscopic dynamics at the leading

order. For these coefficients, the effects are proportional to |v|k−2. Since v is the velocity relative to
the speed of light, the Lorentz violation from k > 2 will be highly suppressed in most applications.
Consequently, the dominant effects are likely those from the k = 2 macroscopic coefficients cT

2 . In the

k = 2 restriction, the tensor Cab = 2
(

cT
2

)ab
is constant, and its cartesian components are linear

combinations of the spherical coefficients cT
2jm:

Cxx =
√

1
π cT

200 −
√

5
4π cT

220 +
√

15
2π Re cT

222 ,

Cyy =
√

1
π cT

200 −
√

5
4π cT

220 −
√

15
2π Re cT

222 ,

Czz =
√

1
π cT

200 +
√

5
π cT

220 ,

Cxy = −
√

15
2π Im cT

222 ,

Cxz = −
√

15
2π Re cT

221 ,

Cyz =
√

15
2π Im cT

221 . (27)

The resulting velocity-independent effects are then limited to j = 0 isotropic violations and j = 2
quadrupole anisotropies.

The k = 2 case can be partially mapped onto previous analyses of composite matter in the
SME. In particular, Ref. [34] derives the effects of d = 3 and d = 4 violations in matter and gravity,
including the matter–gravity coupling. Dropping the violations involving gravity and those that are
cubic in velocity, the coefficients in that work correspond to Cab = −2c̄Tab − c̄Tttδab. This provides a
map for d = 4 coefficients in the two approaches, which can be extended to higher-d violations through

their contributions to
(

cT
2

)ab
coefficients. This connection could, in principle, be used to convert bounds

on c̄T to bounds on d > 4 violations. Note, however, that this may be problematic in analyses involving
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boosts of the apparatus, since the contributions from different d transform differently. Rotations and
boosts of the coefficients are described in the next section.

2.3. Lorentz Transformations

Many tests of Lorentz invariance search for changes in a signal with changes in the orientation or
velocity of the apparatus. The changes in orientation are typically due to the daily rotation of the Earth,
but can be achieved through the use of turntables. The changes in velocity are usually those resulting
from the orbital motion of the Earth. Assuming constant coefficients for Lorentz violation in inertial
frames, the above motions produce variations in the coefficients in non-inertial apparatus-fixed frames.
These variations lead to variations in experimental observables, producing potential signals of Lorentz
violation. In this section, we review rotations of spherical coefficients and discuss common frames
used in tests of Lorentz invariance. We also derive the boosts of spherical coefficients for Lorentz
violation to first order in boost velocity.

Rotations of spherical-harmonic expansion coefficients are given by Wigner matrices. Consider the
expansion of a spin-weighted function f (n̂) = ∑jm f jm sYjm(n̂), where n̂ is a direction unit vector.
We then consider two frames whose coordinates {x, y, z} and {x′, y′, z′} are related through







dx′

dy′

dz′






=







cos α − sin α 0
sin α cos α 0

0 0 1













cos β 0 sin β

0 1 0
− sin β 0 cos β













cos γ − sin γ 0
sin γ cos γ 0

0 0 1













dx

dy

dz






. (28)

The connection between spherical-harmonic components of f in these two frames is given as

f ′jm = ∑
m′

D
(j)
mm′(α, β, γ) f jm′

= ∑
m′

e−imαe−im′γ d
(j)
mm′(β) f jm′ , (29)

where D
(j)
mm′(α, β, γ) and d

(j)
mm′(β) = D

(j)
mm′(0, β, 0) are Wigner matrices.

By convention, tests involving the SME report results in a Sun-centered celestial equatorial inertial
reference frame with spacetime coordinates {T, X, Y, Z}. The Z axis points along the Earth’s rotation
axis, X points towards the vernal equinox, and Y completes the system. The standard time T is defined
so that T = 0 at the vernal equinox in the year 2000. A standard non-inertial laboratory frame {t, x, y, z}
is defined with x and y horizontal and z pointing vertically up. The x axis points at an angle ϕ east of
south. In order to incorporate boosts, we define an intermediate Earth-centered frame with coordinates
{T′, X′, Y′, Z′} that is boosted but not rotated relative to the Sun frame. The rotation relating the lab
frame and the Earth frame is







dX′

dY′

dZ′






=







cos α − sin α 0
sin α cos α 0

0 0 1













cos χ 0 sin χ

0 1 0
− sin χ 0 cos χ













cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1













dx

dy

dz






, (30)

where χ is the colatitude of the laboratory, and α is the right ascension of the laboratory zenith.
The transformation of spherical coefficients leads to

f lab
jm = ∑

m′
D

(j)
mm′(−ϕ,−χ,−α) f Earth

jm′ . (31)

The right ascension increases at Earth’s sidereal rate α̇ ≈ ω⊕ = 2π/23 h 56 min, producing a
sidereal variation in laboratory-frame coefficients. Horizontal turntables would give variations in ϕ

as well.
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Ignoring boosts, the Earth-frame and Sun-frame coefficients are the same up to a time-dependent
translation. We next determine the relationship between these frames to first order in the boost
velocity β. The transformation depends on the tensor structure of the underlying coefficients for

Lorentz violation. Here, we focus on the relativistic spherical aw
(d)
kjm and cw

(d)
kjm coefficients in (5).

The derivation is the same for both of these sets of coefficients, so we show the calculation for
aw

(d)
kjm only.

Inverting relationship (5) between the spherical and cartesian representations of the coefficients
for Lorentz violation, we can write

aw
(d)a1 ...ak0...0
eff = (−1)k (d−2−k)!

(d−2)! ∑
jm

√

k!(k+j+1)!!(k−j)!!
4π aw

(d)
kjm

(

Y k
jm

)a1 ...ak . (32)

Consider a “primed” frame that is moving with small boost velocity β relative to a second

“unprimed” frame. The difference between the cartesian coefficients δaw
(d)
eff = a′w

(d)
eff − aw

(d)
eff in the

two frames is then given by

δaw
(d)a1 ...ak0...0
eff = − 1

(k−1)! aw
(d)0...0(a1 ...ak−1
eff βak) − (d − 2 − k)aw

(d)0...0a1 ...akb
eff βb . (33)

Using (32), we can expand the right-hand side of the above expression in terms of spherical

coefficients. Expanding the boost velocity in spherical-harmonic tensors, βa =
√

4π
3 β ∑m Y1m(β̂)(Y∗

1m)
a,

and using the product identity derived in Appendix A, we can expand (33) in spherical-harmonic tensors.
Combining the result with (5) gives the change in the spherical coefficients for Lorentz violation. The result
is the first-order boost of the spherical coefficients

δaw
(d)
kjm = ∑

k′ j′m′m′′
Γ
(d)k′ j′m′m′′

kjm

√

4π
3 βY1m′′(β̂) aw

(d)
k′ j′m′ , (34)

where β = |β|, β̂ = β/β, and

Γ
(d)k′ j′m′m′′

kjm =

√

(k′−j′)!!(k′+j′+1)!!
(k−j)!!(k+j+1)!!















(−1)m′′
(d − 1 − k)

√
k A1k′

1(−m′′)j′m′ jm , k′ = k − 1 ,
√

k′ A1k
1m′′ jmj′m′ , k′ = k + 1 ,

0 , otherwise,

(35)

in terms of the A$1$2
j1m1 j2m2 JM constants in (A2).

The velocity of the Earth in the Sun frame is approximately given by (βX , βY , βZ) ≈
β(sin Ω⊕T, − cos η cos Ω⊕T, − sin η cos Ω⊕T), where the orbital speed is β ≈ 9.9 × 10−5, η ≈ 23.4◦

is the inclination of the orbit, and Ω⊕ = 2π/year is the orbital frequency. With this, we can write
√

4π
3 βY1m(β̂) = ∑m′ Bmm′ eim′Ω⊕T , where the nonzero Bmm′ constants are

B(±1)(±1) =
iβ√

2
cos2 η

2
, B(±1)(∓1) = − iβ√

2
sin2 η

2
, B0(±1) = − β

2
sin η . (36)

Combining the boost between the Sun and Earth frame with the rotation between the Earth and
laboratory frame, we find that the coefficients transform according to

aw
(d)lab
kjmr

= ∑
ms

eimr ϕ+imsαd
(j)
mrms(−χ)aw

(d)Sun
kjms

+ ∑
msma

eimr ϕ+imsα+imaΩ⊕Td
(j)
mrms(−χ) ∑

k′ j′m′m′′
Γ
(d)k′ j′m′m′′

kjms
Bm′′ma aw

(d)Sun
k′ j′m′ . (37)
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The indices mr, ms, and ma are the harmonic numbers for variations at the turntable rotation rate
ϕ̇, the sidereal rate α̇, and the annual rate Ω⊕, respectively. The cw

(d)
kjm coefficients in the laboratory and

Sun frames obey the same relationship.

3. Applications

3.1. Tests of the Equivalence Principle

The modified equations of motion (23) imply that the acceleration of a mass under the influence
of gravity depends on its particle content, giving an apparent violation of the weak equivalence
principle (WEP). Consequently, tests of the WEP may be adapted for searches for non-minimal Lorentz
violations in particle sectors of the SME. Most WEP tests involving macroscopic masses fall into two
main categories, free-fall experiments and torsion-pendulum experiments. We consider each of these
in turn.

In the first class of experiment, the vertical free-fall accelerations of two test masses made of
different materials are compared. In the experiments performed to date, each mass is released from
rest in a vacuum chamber. Accelerations are measured using lasers and corner-cube reflectors attached
to the masses [71–76].

We work in the standard laboratory frame described in Section 2.3 and assume that the
gravitational field g = −gêz is approximately uniform. The leading-order change in the acceleration is
given by δẍ = g C · êz, where the C tensor is a function of the unperturbed velocity v = −gtêz. For fixed

k ≥ 2, we can integrate twice to get the change in position after time t, δxl = g−1(−gt)k
(

cT,lab
k

)lz...z
,

in terms of the laboratory-frame cartesian composite coefficients for Lorentz violation. In principle,
free-fall experiments could search for ∼ tk displacements from the velocity-dependent k > 2 violations.
These effects, however, are highly suppressed by the small velocities. For the velocity-independent
k = 2 cases, the vertical acceleration is constant and given by

δz̈/g = 2(cT,lab
2 )zz =

√

1
π cT,lab

200 +
√

5
π cT,lab

220 . (38)

This includes the isotropic cT,lab
200 and the quadrupole cT,lab

220 . The quadrupole violations lead to
sidereal variations, which could be sought in future analyses. However, in order to understand
the reach of these experiments, we will ignore boosts and focus on isotropic violations cT,lab

200 ≈ cT
200.

In this particular limit, the acceleration is proportional to the gravitational field, ẍ = (1 −
√

1
π cT

200)g.
So, isotropic Lorentz violation mimics a difference in the inertial mass MI and gravitational mass
Mg. This type of behavior is traditionally characterized using the Eötvös parameter, defined as the
difference in free-fall acceleration ∆a divided by the average ā for the two test masses. In terms of
the masses, this gives η = ∆a/ā = ∆r/r̄, where r = Mg/MI . In the present context, we find get an
effective Lorentz-violating Eötvös parameter

ηLV = −
√

1
π ∆cT

200 = ∆

(

Z

Ma

)

Md−3
n

{

−cnpe
(d)
200 − d−3

2 cnpe
(d)
000 , d = even,

anpe
(d)
200 +

d−3
2 anpe

(d)
000 , d = odd,

(39)

for fixed dimension d. The differences in the test bodies enter through the difference ∆(Z/Ma) in the
ratio of the atomic number and atomic mass. Note that the simple correspondence (39) breaks down in
more general cases where there are accelerations perpendicular to g and velocity-dependent accelerations.

Using the above, we can translate published constraints on η to measurements on the

dimensionless isotropic-coefficient combinations −Md−4
n

(

cnpe
(d)
200 + d−3

2 cnpe
(d)
000

)

for even d and

Md−4
n

(

anpe
(d)
200 +

d−3
2 anpe

(d)
000

)

for odd d. A number of different ground-based experiments have compared
the free-fall of different materials in the Earth’s gravitational field at the level of η ∼ 10−9. Translating these
to constraints on the above combinations of SME coefficients, we find (3 ± 13)× 10−9 using copper
and uranium [72], (21 ± 60) × 10−9 using aluminum and beryllium [74], (−10 ± 58) × 10−9 using
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aluminum and copper [74], (17± 131)× 10−9 using aluminum and carbon [74], (21± 53± 74)× 10−9

using aluminum and copper [76], and (23 ± 30 ± 33)× 10−9 copper and tungsten [76]. We combine
these to produce a “best-fit” ground-based measurement and then translate this to constraints on the
isotropic-coefficient combinations. The results up to d = 8 are given in the second column of Table 1.

Table 1. Limits on isotropic Standard-Model Extension (SME) coefficients from tests of the equivalence
principle. The first column gives the coefficient combinations. The second column contains the
combined constraints from ground-based free-fall experiments. The third column lists constraints from
the space-based MICROSCOPE experiment. The last column gives the combined constraints from
torsion-pendulum experiments.

Coefficients Free Fall MICROSCOPE Torsion Pendulum

cnpe
(4)
200 +

1
2 cnpe

(4)
000 (−5 ± 12)× 10−9 (3 ± 27 ± 27)× 10−14 (3 ± 7)× 10−12 GeV

anpe
(5)
200 + anpe

(5)
000 (5 ± 13)× 10−9 GeV−1 (−3 ± 29 ± 29)× 10−14 GeV−1 (3 ± 8)× 10−12 GeV−1

cnpe
(6)
200 +

3
2 cnpe

(6)
000 (−6 ± 13)× 10−9 GeV−2 (3 ± 30 ± 30)× 10−14 GeV−2 (3 ± 8)× 10−12 GeV−2

anpe
(7)
200 + 2anpe

(7)
000 (6 ± 14)× 10−9 GeV−3 (−4 ± 32 ± 32)× 10−14 GeV−3 (4 ± 9)× 10−12 GeV−3

cnpe
(8)
200 +

5
2 cnpe

(8)
000 (−6 ± 15)× 10−9 GeV−4 (4 ± 34 ± 34)× 10−14 GeV−4 (4 ± 10)× 10−12 GeV−4

Similar tests of WEP in space [77–79] could also be used to search for Lorentz violation.
For example, the T-SAGE instrument aboard the MICROSCOPE satellite has placed a constraint
of η = (−1 ± 9 ± 9)× 10−15 on the difference between the free-fall accelerations of titanium and
platinum [79]. The resulting constraints on isotropic Lorentz violations are included in the third
column of Table 1, demonstrating that sensitivities to Lorentz violation on the order of 10−13 GeV4−d

are possible.
The classic Eötvös experiment [80] and its descendants represent another class of WEP tests based

on torsion pendulums. In the prototypical experiment, two test masses of different compositions are
attached to the ends of a rod hanging from a horizontal fiber. A difference in the gravitational and
inertial masses would lead to an imbalance in the horizontal components of the gravitational and
centrifugal forces, leading to a net torque about the fiber. Modern versions achieve high sensitivity by
seeking modulated signals due to the changing field from the Sun over the day [81,82] or by rotating
the apparatus in the laboratory [83–85].

The modified Newton’s law for a suspended test mass can be written as M(1 + C) · ẍ = Mg + f ,
where f is the net constraint force. While the general modification acts as an effective anisotropic
and velocity-dependent inertial-mass matrix M(1 + C), the k = 2 isotropic limit gives the same
Lorentz-violating Eötvös parameter as above. We again use this limit to estimate potential sensitivities
in these experiments. As in the free-fall experiments, we convert measurements of η to constraints
on isotropic coefficient combinations, giving (−16 ± 13) × 10−11 using gold and aluminum [81],
(0.7 ± 1.0) × 10−11 using platinum and aluminum [82], (−15 ± 77) × 10−11 using beryllium and
copper [83], (15 ± 19)× 10−11 using beryllium and copper [84], (0.5 ± 7.6)× 10−11 using beryllium
and aluminum [84], and (−0.2 ± 1.2) × 10−11 using beryllium and titanium [85]. The resulting
combined constraints on the dimension d isotropic coefficients are given in the last column of Table 1.

Anisotropic violations could also be tested in these experiments. The daily rotation of the
laboratory in ground-based experiments will lead to variations at multiples of the sidereal frequency.
Signals in space-based experiments will arise at harmonics of the satellite rotation rate. Boosts will
introduce additional frequencies in the variations of the signal, including the annual frequency due to
the motion of the Earth around the Sun. A search for these types of variations in MICROSCOPE data
was recently carried out [86], where d = 3 and d = 4 violations in the matter–gravity couplings of the
SME are constrained down to the expected 10−13 GeV4−d range. A similar analysis could be used to
constrain higher-order Lorentz violation.

Future space-based tests include STEP [77] and GG [78], which could reach sensitivities two or
three orders of magnitude better than MICROSCOPE. Other promising opportunities for future studies
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include experiments utilizing drop towers [87], balloons [88], bouncing masses [89], and sounding
rockets [90].

3.2. Orbits

In this section, we consider the effects of Lorentz violation on a satellite in a gravitational orbit
around a larger body. For simplicity, we will restrict attention to approximately circular orbits and
neglect effects depending on both eccentricity and coefficients for Lorentz violation. We work in a
fixed orbit-centered frame with the z axis along the orbital axis and z = 0 in the orbital plane of the
Lorentz-invariant limit. We also use an orbit time t defined so that the satellite velocity is along the x

direction at t = 0. The position of the satellite can be described using cylindrical coordinates {ρ, ϕ, z}
in the orbit frame. We denote the corresponding basis unit vectors as {êρ, êϕ, êz}.

At the leading order, the acceleration of the satellite is given by ẍ = g − C · g, where g =

−R3ω2|x|−3x is the gravitational field in terms of the usual semi-major axis R and the orbit angular
frequency ω. This leads to the change in position δx of the satellite due to Lorentz violation that
satisfies δẍ = −ω2δx + 3ω2(êρ · δx)êρ + Rω2C · êρ, neglecting terms involving the small eccentricity.
The above implies that the cylindrical-basis components obey the coupled differential equations

δẍρ − 2ωδẋϕ − 3ω2δxρ = Rω2Cρρ ,

δẍϕ + 2ωδẋρ = Rω2Cϕρ ,

δẍz + ω2δxz = Rω2Czρ . (40)

The components Cab = êa · C · êb can be taken as functions of the conventional velocity v ≈ Rωêϕ.
Since the velocity v is periodic with period 2π/ω, the Cab components in (40) drive changes in

the motion at harmonics of ω. We characterize this driving force using the form Cab = ∑m C
[m]
ab eimωt,

where C
[−m]
ab = C

[m]∗
ab . The C

[m]
ab driving amplitudes arise naturally out of the spherical-harmonic

expansion of the Cab components. Recall that the spherical-harmonic expansion of C uses the helicity
vectors (25) defined with respect to the velocity v. Matching to the cylindrical basis gives êr = êϕ

and ê± = −(êz ± iêρ)/
√

2 in the orbital plane. The velocity vector points at polar angle θ = π/2 and
azimuthal angle φ = ωt. This leads to the driving amplitudes

C
[m]
ρρ = ∑

kj

[

(

k − 1
2 j(j + 1)

)

0Yjm(êx)− 1
4

√

(j − 1)j(j + 1)(j + 2)
(

1 + (−1)j+m
)

+2Yjm(êx)
]

×(Rω)k−2cT,orb
kjm ,

C
[m]
ϕρ = ∑

kj

(− i
2 )(k − 1)

√

j(j + 1)
(

1 + (−1)j+m
)

+1Yjm(êx)(Rω)k−2cT,orb
kjm ,

C
[m]
zρ = ∑

kj

(− i
4 )
√

(j − 1)j(j + 1)(j + 2)
(

1 − (−1)j+m
)

+2Yjm(êx)(Rω)k−2cT,orb
kjm , (41)

in terms of the orbit-frame coefficients for Lorentz violation cT,orb
kjm . These depend on spherical

harmonics for the êx direction, which lies at θ = π/2 and φ = 0.

The orbit-specific C
[m]
ab coefficient combinations determine the leading-order effects of Lorentz

violation for a particular satellite. However, they must be connected to the standard Sun-frame
coefficients to be useful. Ignoring boosts, the Sun-frame coefficients cT

kjm and the orbit-frame coefficients

cT,orb
kjm are related through the rotation

cT,orb
kjm = ∑

m′
D

(j)
mm′(−γ − π

2 ,−η,−α + π
2 )c

T
kjm′

= ∑
m′

im−m′
eimγ+im′αd

(j)
mm′(−η)cT

kjm′ , (42)
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where α, γ, and η are a convenient set of Euler angles and are illustrated in Figure 1. The angle α is
between the Sun-frame X axis and the line of nodes, η is the inclination of the orbit relative to the X-Y
plane and γ is the angle between the orbit-frame x axis and the line of nodes. For our analysis, γ is
somewhat arbitrary. It can be chosen, for example, so that the pericenter lies on the êx axis. The α and
η angles for the eight planets are given in Table 2.

α

η

γ

X

Y

Z

x

yz

Figure 1. Euler angles relating the Sun frame {X, Y, Z} and the orbit frame {x, y, z}.

Table 2. Euler angles of the planets [91].

Merc. Ven. Earth Mars Jup. Sat. Ur. Nept.

α 11.1◦ 8.0◦ 0◦ 3.4◦ 3.3◦ 6.0◦ 1.8◦ 3.5◦

η 28.5◦ 24.4◦ 23.4◦ 24.7◦ 23.2◦ 22.6◦ 23.7◦ 22.3◦

To solve (40), we first seek force-free homogeneous solutions. Several homogeneous solutions
exist that can be connected to conventional perturbations to circular orbits. The general homogeneous
solution is

δxhom
ρ = δR − Rε cos ω(t − t1)

δxhom
ϕ = R δϕ − 3

2 δR ωt + 2Rε sin ω(t − t1) ,

δxhom
z = Rη′ sin ω(t − t2) . (43)

The constant δϕ represents a small translation along the orbit. The constant δR gives a transition
to a circular orbit that is larger or smaller by δR. To see this, note that while R and ω may
change, the combination R3ω2 is constant for Kepler orbits, so δ(R3ω2) = 3R2ω2δR + 2R3ωδω = 0.
Using this, we find that the change in position due to a change in radius is δx = δR êρ + Rδω têϕ =

δR êρ − 3
2 ωtδR êϕ, matching the above result. This variation is only valid for sufficiently small times.

The constant ε adds small eccentricity with a pericenter at time t1. It can be characterized using an
eccentricity vector ε = Re

(

iεe−iωt1(êx + iêy)
)

, which has magnitude ε and points to the pericenter.
The perturbations in the position can be written as δxρ = −Rε · êρ, δxϕ = −2Rε · êϕ. Setting t1 to
one quarter of the orbit period places the pericenter on the x axis. The angle η′ corresponds to a
small inclination from the orbit-frame x-y plane with the ascending node at time t2. Using these
results, we can distinguish between conventional perturbations of the orbit and those caused by
Lorentz violation.

For the Lorentz-violating inhomogeneous problem, we first consider the m = 0 and m = 1 special
cases separately, since these harmonics also appear in the homogeneous solutions. For m = 0, we find

that C
[0]
ϕρ = C

[0]
zρ = 0. The solution in this case is δxρ = − 1

3 RC
[0]
ρρ . This gives a change in the size of the

orbit without the corresponding change in the frequency required by Kepler’s third law. The effect
mimics a small change in either Newton’s constant G or the source mass. While it may be difficult
to detect, this form of Lorentz violation could be sought, in principle, by comparing the third-law
constant R3ω2 of different satellites orbiting the same source.
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For the m = ±1 case, two distinct effects arise. We first note that C
[1]
ρρ = iC

[1]
ϕρ, and neither C

[1]
ρρ or

C
[1]
ϕρ contain velocity-independent k = 2 contributions. So, only C

[1]
zρ gives effects that are unsuppressed

by small orbital velocities. Nonetheless, the C
[1]
ρρ = iC

[1]
ϕρ matrix element drives a speed-dependent

change in the eccentricity. The inhomogeneous solution can be taken as

δxρ = −Rωt Im
(

C
[1]
ρρ eiωt

)

= −Rωt
∣

∣C
[1]
ρρ

∣

∣ cos ω(t − t3)

δxϕ = −2Rωt Re
(

C
[1]
ρρ eiωt

)

= 2Rωt
∣

∣C
[1]
ρρ

∣

∣ sin ω(t − t3) (44)

where we parameterize the phase as C
[1]
ρρ = i

∣

∣C
[1]
ρρ

∣

∣e−iωt3 . The above is only valid for small t, but the

result is an eccentricity that increases at a rate of ε̇ = ω
∣

∣C
[1]
ρρ

∣

∣ with the pericenter at time t3. The rate of
change in the eccentricity vector is

ε̇ = ω Re
(

C
[1]
ρρ (êx + iêy)

)

. (45)

Note that this will add to the conventional eccentricity vector, which may point in a different direction.
The small eccentricities of the planets lead to crude limits on the above effect. As an example,

consider the Earth. The eccentricity added per orbit is 2π
∣

∣C
[1]
ρρ

∣

∣, and the Earth has made roughly
N ≈ 4.5 × 109 orbits over the age of the Solar System. Taking the Earth’s eccentricity ε ≈ 0.017 as an

upper bound on the eccentricity due to Lorentz violation, we find the constraint
∣

∣C
[1]
ρρ

∣

∣ . ε/2πN '
6 × 10−13. Since k = 2 Lorentz violations do not contribute, the dominant effects would likely be from
k = 3, which are linear in speed. Earth’s speed is about v ≈ 10−4, implying potential sensitivity on
the order of 10−9 to cT

3jm coefficients. Venus, with its smaller eccentricity and shorter year, is the only
planet yielding a slightly better sensitivity.

The C
[1]
zρ coefficient combination gives the modification

δxz = −Rωt Im
(

C
[1]
zρ eiωt

)

= Rωt
∣

∣C
[1]
zρ

∣

∣ sin ω(t − t4) , (46)

where we parameterize C
[1]
zρ = −

∣

∣C
[1]
zρ

∣

∣e−iωt4 . This implies a rotation of the orbital plane at an instantaneous

rate of Ω = ω
∣

∣C
[1]
zρ

∣

∣ about an in-plane axis pointing towards the satellite at time t4. We can account for
both the rate and the direction by defining a rotation vector

Ω = ω Im
(

C
[1]
zρ (êx + iêy)

)

. (47)

The orbit axes will gradually rotate according to ˙̂ea = Ω × êa. The resulting secular variations in
the Euler angles are

α̇ = ω
sin γ Im C

[1]
zρ + cos γ Re C

[1]
zρ

sin η
,

η̇ = ω
(

cos γ Im C
[1]
zρ − sin γ Re C

[1]
zρ

)

,

γ̇ = − cos η α̇ . (48)

Note that the C
[1]
zρ coefficient combination also depends on the Euler angles. A demonstration of

the above rotation is provided in Ref. [70], where the effects of d = 4 violations on binary systems
are simulated.
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Assuming a small net effect, we can approximate the total rotation of the orbital plane after N

orbits as 2πN
∣

∣C
[1]
zρ

∣

∣. Given that the orbital planes of the eight planets and the Sun’s equator all differ
by no more than about 10◦, we take this as an upper bound on the change in inclination for each planet
over the age of the Solar System. Mercury, with its short year, then produces the tightest constraint,
∣

∣C
[1]
zρ

∣

∣ . 1.5× 10−12. Unlike the change in eccentricity, velocity-independent k = 2 violations contribute
to the change in inclination. So ,planetary orbits could constrain cT

22m quadrupole coefficients at the
level of 10−12. The different orientations of the different orbits could, in principle, be used to access
different combinations of coefficients. However, the small inclinations imply that the effects of Lorentz
violation on all planets depend on similar combinations, reducing the sensitivity to the additional
coefficient space accessible through a combined analysis.

Planetary ephemerides could be used to place more rigorous bounds at levels comparable to the
simple estimate given above. For example, limits on the evolution of planetary orbits have been shown
to constrain the dimensionless s̄µν coefficients in the pure-gravity sector of the SME down to parts in
1012 [92,93]. Lunar laser ranging has also been used to test Lorentz symmetry in gravity [94,95] and
in matter–gravity couplings [96] down to parts in 1012. The s̄µν coefficients produce effects similar to
those found above [12], and we expect similar constraints on cT

22m coefficients. This implies sensitivities

at the level of ∼ 10−12 GeV4−d to a′npe
(d)

kjm
and c′npe

(d)

kjm
SME coefficient combinations.

Binary pulsars provide another test of Lorentz invariance in orbital dynamics [12,97]. These systems
have been used to test Lorentz invariance to parts in 1011 in gravity [98,99] and matter–gravity
couplings [40]. They have also been used to search for velocity-dependent effects from dimension
d = 5 terms [100] and from d = 8 cubic terms in the gravity sector of the SME [101]. We also note that
Lorentz violation can be constrained with non-binary pulsars [41,102]. Binary pulsars are unique among
orbital tests in that they provide clean access to neutron coefficients for Lorentz violation, and are therefore
complementary to tests involving ordinary matter.

The perturbations driven at higher frequencies with m > 1 are

δxρ = − 2R

m2(m2 − 1)
Re

(

(

m2C
[m]
ρρ − 2imC

[m]
ϕρ

)

eimωt
)

,

δxϕ = − 2R

m2(m2 − 1)
Re

(

(

(3 + m2)C
[m]
ϕρ + 2imC

[m]
ρρ

)

eimωt
)

,

δxz = − 2R

m2 − 1
Re

(

C
[m]
zρ eimωt

)

. (49)

Unlike the m = 1 case, which gave a secular evolution of the orbit, violations with m ≥ 2 produce
periodic deviations from the conventional orbit. For example, δxz produces periodic oscillations about
the average orbital plane. Among the effects from δxρ and δxϕ displacements is a time-dependent

change in the areal velocity δȦ = Rωδxρ +
1
2 Rδẋϕ = R2ωm−1 Im

(

C
[m]
ϕρ eimωt

)

, violating Kepler’s
second law. Again, these periodic variations are similar to ones arising in the gravity sector of the
SME [12] and could be sought in planetary motion or in lunar laser ranging. Note that since k ≥ j ≥ |m|,
the effects of Lorentz violation at frequencies greater than 2ω necessarily involve the orbital speed of
the satellite. Consequently, unsuppressed speed-independent periodic variations only arise at twice
the orbital frequency.

3.3. Acoustic Resonators

This section considers the effects of Lorentz violation in continuous media with particular focus on
acoustic resonances in piezoelectric materials. For continuous media, the Lorentz-violating hamiltonian
density can be taken as

δH = − ∑
kjm

ρ1−k|P |kYjm(P̂) cT
kjm , (50)
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where ρ is the mass density of the material, P is the momentum density, and P̂ = P/|P |. Using the
above, we can find modifications to the Hamilton equations of motion. Alternatively, we could instead
employ a Lagrangian approach, where the leading-order change to the Lagrange density can be
taken as

δL = ∑
kjm

ρ|v|kYjm(v̂) cT
kjm , (51)

where v = v(x, t) is the local velocity of the medium, and v̂ = v/|v|. Denoting the mechanical
displacement of the medium at equilibrium position x in a body-fixed frame as u = u(x, t), the velocity
is then given by v = u̇. Note that v ≈ P/ρ, but differs slightly from the usual result due to
Lorentz violation.

The conventional Lagrange density for a piezoelectric material is given by

L = 1
2 ρu̇2 − 1

2S abcdua
,buc

,d +
1
2 εabφ,aφ,b − eabcφ,aub

,c , (52)

where ua
,b = ∂ua/∂xb are spatial derivatives of the displacements ua, φ,a = ∂φ/∂xa is the gradient

of the electric potential φ, S abcd is the stiffness tensor, εab is the permittivity tensor, and eabc is the
piezoelectric tensor. The stiffness tensor S abcd is taken to be symmetric in the first pair of indices and
the last pair of indices and symmetric under interchange of the pairs, giving twenty-one independent
components. The permittivity tensor εab is symmetric, and the piezoelectric tensor eabc is symmetric in
the last two indices. The equations of motion for the system including Lorentz violation are given by

ρüa + ρCabüb = Tab
,b , 0 = Da

,a , (53)

where Tab = S abcduc
,d + ecabφ,c is the stress tensor, Da = −εabφ,b + eabcub

,c is the electric displacement

field, and Cab is the Lorentz-violating tensor from (24) evaluated at velocity v = u̇.
Periodic solutions to (53) can be found using methods similar to those used for orbits.

Solutions with period 2π/ω will, in general, include various harmonics of the fundamental frequency
ω. To find them, first expand each variable in Fourier modes: u = ∑m u[m]eimωt, φ = ∑m φ[m]eimωt,
and Cab = ∑m C[m]abeimωt. The equations of motion (53) lead to a set of coupled equations relating the
various Fourier components, which can be solved perturbatively. However, we are primarily interested
in changes to the frequency ω, which can be found using a simpler method.

We begin by assuming that the solution with Lorentz violation u has frequency and amplitudes
that are close to those for a conventional solution u0. Manipulating the equations of motion for u and
u0, one can show the relation

ρ
∫

V
d3x

(

ü · u0 + ü · C · u0 − u · ü0
)

=
∫

∂V
dσ ·

(

T · u0 − T0 · u − D0φ + Dφ0
)

, (54)

where the left-hand side is integrated over the volume V of the resonator, and the right-hand side is
integrated over the surface ∂V. The conventional stress tensor T0 depends on u0, the conventional
potential φ0, and the conventional displacement field D0. We then assume that the surface terms
vanish, giving

∫

V
d3x

(

ü · u0 − u · ü0
)

= −
∫

V
d3x ü · C · u0 . (55)

Assuming simple harmonic conventional solutions, this expression oscillates at frequencies
mω ± ω0 = (m ± 1)ω0 + mδω, where δω = ω − ω0 is the shift in the fundamental frequency from the

usual frequency ω0. Writing the amplitudes as u[m] = u
[m]
0 + δu[m], where δu[m] is the change due to

Lorentz violation, we can expand the frequency components of (55) in small parameters depending on
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coefficients for Lorentz violation. The zeroth-order equations are identically satisfied. The first-order
equations give

∫

V
d3x

(

(1 − m2)δu[m] · u
[±1]
0 − 2m2 δω

ω0
u
[m]
0 · u

[±1]
0

)

=
∫

V
d3x ∑

m′
m′2u

[m′ ]
0 · C[m−m′ ] · u

[±1]
0 . (56)

Note that u
[m]
0 = 0 for m 6= ±1, since we assume that u0 is simple harmonic. The shift in frequency

δω can be isolated by taking m = ∓1, which gives

δω

ω0
≈ −1

2

∫

V d3x
(

u
[−1]
0 · C[0] · u

[1]
0 + u

[1]
0 · C[−2] · u

[1]
0

)

∫

V d3x u
[1]
0 · u

[−1]
0

= −1
2

∫

V d3x 〈u0 · C · u0〉t
∫

V d3x 〈u0 · u0〉t
, (57)

where brackets 〈〉t indicate the time average. The C tensor in this expression is calculated using the
conventional velocity v0 = u̇0. The leading-order frequency shift is then completely determined by the
coefficients for Lorentz violation and the usual solution u0.

The time averages in (57) may be difficult to calculate in general, but are relatively simple in the
case of standing waves with local linear polarization, where we can take u0(x, t) → u0(x) sin(ω0t).
The velocity is replaced with v0(x, t) → ω0u(x) cos(ω0t) and is parallel to the displacement u0(x).
The time average in the denominator of (57) becomes 〈u0 · u0〉t → 1

2 u2
0. The numerator can be shown

to vanish for odd values of k. For fixed even values of k, the time average in the numerator becomes

〈u0 · C · u0〉t → 〈sin2(ω0t) cosk−2(ω0t)〉t u0 · C(ω0u0) · u0

=
(k − 3)!!

k!!
u0 · C(ω0u0) · u0 (58)

The frequency shift is then given by

δω

ω0
≈ − ∑

kjm

ωk−2
0

(k − 1)!!
(k − 2)!!

∫

V d3x |u0|kYjm(û0)
∫

V d3x |u0|2
cT,lab

kjm (59)

where k is restricted to even values k ≥ 2, and cT,lab
kjm are laboratory-frame coefficients. The dimensionless

factors multiplying the cT
kjm coefficients determine the sensitivity of an acoustic-resonator experiment.

Assuming oscillation amplitudes on the order of 100 angstrom and frequencies on the order of a MHz,
these factors scale as ∼ 10−10(k−2). This drastically reduces the sensitivity to violations with k 6= 2.
We therefore focus on the k = 2 case. The problem simplifies even further for cases in which the vibration
direction û0(x) is relatively constant over the volume of the resonator:

δω

ω0
≈ −∑

jm

Yjm(û0) cT,lab
2jm

≈ 1
2 ∑

dljm

Md−4
n

(

(d+2l−5)/2
l

)

Yjm(û0)
(

a′npe
(d)lab
(2−2l)jm

− c′npe
(d)lab
(2−2l)jm

)

, (60)

assuming in the last line that the medium is comprised of roughly equal numbers of neutrons, protons,
and electrons. The frequency shift is then limited to quadrupole j = 2 and isotropic j = 0 violations.

The rotational and orbital motion of the Earth implies that the laboratory frame is non-inertial.
As a result, the laboratory-frame coefficients will change as the orientation and velocity of the laboratory
change, producing periodic variations in the frequency shift. We account for these changes using
the transformation between the laboratory frame and Sun-centered frame discussed in Section 2.3.
The rotations introduce sidereal variations in the laboratory-frame coefficients. The coefficients also
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vary with the angle of the resonator in the laboratory. In experiments involving rotating turntables,
this produces variations at the turn rate. Annual changes in the velocity of Earth lead to annual
variations in the signal. These, however, enter through boosts and are suppressed by the boost velocity
β ≈ 10−4 relative to the other variations.

The fluctuations in the frequency shift take the form

δω

ω0
= ∑

mrmsma

Amrmsma eimr ϕ+imsω⊕T⊕+imaΩ⊕T , (61)

where ω⊕ = 2π/23 h 56min and Ω⊕ = 2π/1yr are respectively the sidereal and annual frequencies.
The time T⊕ is defined so that the laboratory zenith points at right ascension α = 0 when T⊕ = 0,
and time T = 0 at the vernal equinox. The angle ϕ is between the laboratory-frame x axis and south.
The laboratory frame is fixed to the resonator, which may be affixed to a turntable. In this case,
ϕ changes at the turntable rotation rate ωr. The indices mr, ms, and ma are the harmonic numbers
for variations at, respectively, the turntable rotation frequency ωr, sidereal frequency ω⊕, and annual
frequency Ω⊕. The amplitudes obey the relation A∗

mrmsma
= A(−mr)(−ms)(−ma), ensuring that the

frequency shift is real.
Applying the Lorentz transformations outlined in Section 2.3 to the laboratory-frame coefficients

in (60), we find that the modulation amplitudes due to rotations only are

Amrms(ma=0) =
1
2 ∑

dlj

Md−4
n

(

(d+2l−5)/2
l

)

Yjmr(û0) d
(j)
mrms(−χ)

(

a′npe
(d)

(2−2l)jms
− c′npe

(d)

(2−2l)jms

)

, (62)

in terms of the Sun-frame a′npe
(d)

kjm
and c′npe

(d)

kjm
coefficients. The isotropic j = 0 violations produce a

constant shift. The quadrupole j = 2 violations give variations at frequencies mrωr + msω⊕ up to the
second harmonic in both the turntable and sidereal rates: |mr|, |ms| ≤ 2. Note, however, that |mr| = 1
variations will be absent in oscillators with horizontal or vertical vibrations.

Including leading-order boost effects due to the orbital motion of the Earth gives variations at
frequencies mrωr + msω⊕ + maΩ⊕ with ma = ±1. The amplitudes for these are given by

Amrms(ma=±1) = 1
2 ∑

dlj

Md−4
n

(

(d+2l−5)/2
l

)

Yjmr(û0) d
(j)
mrms(−χ)

× ∑
k′ j′m′m′′

Γ
(d)k′ j′m′m′′

(2−2l)jms
Bm′′ma

(

a′npe
(d)

k′ j′m′ − c′npe
(d)

k′ j′m′

)

, (63)

where the numerical Γ
(d)k′ j′m′m′′

(2−2l)jms
constants are given in (35), and the Bm′′ma boost factors are in (36).

This gives sensitivity to other coefficients for Lorentz violation, but at levels suppressed by the small
boost velocity β ≈ 10−4 of the Earth.

Searches for Lorentz violation in quartz resonators have demonstrated sensitivities on the
order of parts in 1014 to d = 4 violations [63], and are expected to improve by two orders of
magnitude [103]. We therefore expect sensitivities near 10−16 GeV4−d to the dimension-d combinations

a′npe
(d)

2jm
and c′npe

(d)

2jm
.

4. Summary

A violation of Lorentz invariance would necessarily indicate new physics with potential origins in
quantum gravity. High-precision experiments have limited violations in a large variety of systems [9].
In this paper, we derive the effects of Lorentz violation on dynamics of ordinary matter. We include all
linear dimension-d violations in the electrons, protons, and neutrons, excluding violations involving
electromagnetic and gravitational interactions.



Symmetry 2020, 12, 2026 19 of 25

The effective hamiltonian for a macroscopic test body is derived in Section 2.1. The Lorentz-violating
contributions are given in (12) in terms of macroscopic coefficients for Lorentz violation cT

kjm.
Equation (14) relates these coefficients to underlying SME coefficients for electrons, protons, and neutrons.
Ignoring internal kinetic energy, the result reduces to (15). Equation (16) gives cT

kjm for matter with
equal numbers of electrons and protons, and (18) is for matter with equal numbers of electrons, protons,
and neutrons. The equations of motion are discussed in Section 2.2. A modified Newton’s second law is
given in (23). Section 2.3 discusses observer Lorentz transformations of the coefficients, relating coefficients
in the Sun-centered equatorial frame to a standard laboratory frame. The boosts are calculated to the first
order in velocity, resulting in (37).

Section 3 contains several applications. Tests of the the weak equivalence principle are discussed
in Section 3.1, including tests involving free-fall experiments [72–76], the space-based MICROSCOPE
experiment [79], and torsion-balance experiments [81–85]. Implied bounds on isotropic Lorentz violation
from these experiments are given in Table 1, demonstrating sensitivities down to ∼10−13 GeV4−d to
dimension d violations.

Planetary orbits are discussed in Section 3.2. The effects of Lorentz violation include a drift in
eccentricity, a rotation of the orbital plane, and periodic variations about conventional orbits. The small
eccentricities of Earth and Venus limit Lorentz violation at the ∼ 10−9 GeV4−d level. The approximate
alignment of the planets’ orbital planes leads to bounds of ∼ 10−12 GeV4−d. Improvements on these
rough constraints are expected in detailed studies of planetary ephemerides [92,93] and through lunar
laser ranging [94–96]. Binary pulsars offer another promising area of study that is particularly sensitive
to Lorentz violations in neutrons [12,40,97–101].

Section 3.3 gives the Lorentz-violating Lagrange density for continuous media (51). The shift in
resonant frequency in piezoelectric acoustic resonators is calculated, including boost effects. The shifts
vary periodically at frequencies involving the the turntable rotation rate, the Earth’s sidereal rotation
rate, and the Earth’s orbital frequency. Experiments have demonstrated sensitivities at parts in 1014

to dimension d = 4 Lorentz violations [63], and are expected to reach 10−16 GeV4−d to arbitrary
dimension d violations [103].

These results show that extreme precision can be achieved in studies of spacetime symmetries
in macroscopic matter. While not as sensitive as the best of the microscopic tests [58–62],
experiments involving ordinary matter rely on different assumptions, and may provide access to
different combinations of SME coefficients and, therefore, represent a powerful tool in our search for
new physics.

Funding: This research was funded by the United States National Science Foundation grant number PHY-1819412.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

This Appendix A derives the symmetric product identity for spherical-harmonic tensors. See Ref. [68]
for a detailed discussion of the Y$

jm tensors and the notation used here.
Expanding the symmetric product of two spherical-harmonic tensors on the basis of

spherical-harmonic tensors, we can write

Y$1
j1m1

�Y$2
j2m2

= ∑
JM

A$1$2
j1m1 j2m2 JMY ($1+$2)

JM . (A1)

The A$1$2
j1m1 j2m2 JM coefficients are nonzero for the usual angular-momentum-addition relations

M = m1 + m2 and j1 + j2 ≥ J ≥ |j1 − j2| and for j1 + j2 − J = even. The nonzero values are real and
given by
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A$1$2
j1m1 j2m2 JM = Y ($1+$2)∗

JM · (Y$1
j1m1

�Y$2
j2m2

)

= (2J + 1)(J + M)!(J − M)!
B$1+$2

JM

B$1
j1m1

B$2
j2m2

× (j1+j2−J−1)!!(j1−j2+J−1)!!(j2−j1+J−1)!!
(j1+j2+J+1)!!

×∑
n

(−1)n

n!(n+J−j2−m1)!(n+J−j1+m2)!(j1+j2−J−n)!(j1+m1−n)!(j2−m2−n)! ,

(A2)

where the sum is limited to n values that give nonnegative arguments in all factorials, and we define

B$
jm = (−1)j/2

√

($+j+1)!!($−j)!!
(2j+1)$!(j+m)!(j−m)! , (A3)

for convenience.
Our derivation starts by considering the vector

ξ =
iζ√

2
ê↑ +

i√
2ζ

ê↓ + êz (A4)

for an arbitrary complex number ζ. The unit vectors ê↑ = (êx + iêy)/
√

2, ê↓ = (êx − iêy)/
√

2, and êz

form a spin-eigenbasis for quantization along the z axis. A short calculation reveals that the j-fold
symmetric product of ξ is

ξ �j = ∑
m

CjmζmYjm , (A5)

where Yjm = Y j
jm are the traceless spherical-harmonic tensors, and

Cjm = (−i)m

√

j!(2j−1)!!
(j+m)!(j−m)! (A6)

for |m| ≤ j. The symmetric product in (A5) serves as a generating function for the traceless
spherical-harmonic tensors. Note that ξ · ξ = 0, which confirms that it is traceless.

Next, consider the inner product

ξ �J · (Y∗
j1m1

�Y∗
j2m2

) = (ξ �j1 · Y∗
j1m1

)(ξ �j2 · Y∗
j2m2

) , (A7)

where J = j1 + j2. The two sides of this equation evaluate to

∑
M

CJMζMYJM · (Y∗
j1m1

�Y∗
j2m2

) = Cj1m1
Cj2m2 ζm1+m2 , (A8)

which implies

YJM · (Y∗
j1m1

�Y∗
j2m2

) = δM,m1+m2

Cj1m1
Cj2m2

CJM
. (A9)

The complex conjugate of this gives the Aj1 j2
j1m1 j2m2 JM coefficients for traceless tensors.

To find the inner product for tensors of nonzero trace, we consider traces of the product

ξ
�j1
1 � ξ

�j2
2 = ∑

m1m2

Cj1m1
Cj1m1

ζ
m1
1 ζm2

2 Yj1m1
�Yj2m2 . (A10)

Using ξ1 · ξ2 = −(ζ1 − ζ2)
2/2ζ1ζ2, one can show that taking N traces gives

(−ζ1ζ2)
N g�N · (ξ�j1

1 � ξ
�j2
2 ) =

jN
1 jN

2

(j1 + j2)2N
(ζ1 − ζ2)

2Nξ
�(j1−N)
1 � ξ

�(j2−N)
2 , (A11)
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where g is the euclidean metric, and xn indicates the falling factorial. Matching terms by their powers
in ξ1 and ξ2, we find

g�N · (Yj1m1
�Yj2m2 ) =

(2N)!(−1)N jN
1 jN

2

(j1 + j2)2NCj1m1
Cj2m2

2N

∑
n=0

(−1)n

n!(2N−n)! C(j1−N)(m1+N−n)C(j2−N)(m2−N+n)

×Y(j1−N)(m1+N−n) �Y(j2−N)(m2−N+n) . (A12)

Finally, the identities

Y$
jm = D$

j Yjm � g�
1
2 ($−j) ,

D$
j g�N · Y$

jm = D$−2N
j Y$−2N

jm , (A13)

where

D$
j =

√

$!(2j+1)!!
j!($+j+1)!!($−j)!! , (A14)

can be used to show that

D$1+$2
J Y ($1+$2)∗

JM · (Y$1
j1m1

�Y$2
j2m2

) = D$1
j1
D$2

j2
D j1+j2

J D j1+j2
J Y∗

JM ·
(

g�
1
2 (j1+j2−J) · (Yj1m2 �Yj2m2)

)

. (A15)

Combining (A15) with identities (A12) and (A9) yields the final result in (A1) and (A2).
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