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Abstract: The effects of Lorentz and CPT violations on macroscopic objects are explored.
Effective composite coefficients for Lorentz violation are derived in terms of coefficients for
electrons, protons, and neutrons in the Standard-Model Extension, including all minimal and
non-minimal violations. The hamiltonian and modified Newton’s second law for a test body are
derived. The framework is applied to free-fall and torsion-balance tests of the weak equivalence
principle and to orbital motion. The effects on continuous media are studied, and the frequency
shifts in acoustic resonators are calculated.
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1. Introduction

Lorentz invariance is one of the few principles at the heart of both General Relativity (GR)
and the Standard Model (SM) of particle physics. However, attempts to reconcile gravity with
quantum mechanics suggest that this fundamental symmetry of nature may be broken slightly at
low energies [1,2]. While Lorentz violations are expected to be minuscule, simple estimates imply
that they may be within the reach of high-precision experiments. Spurred by this observation and
the development of the Standard-Model Extension (SME) [3-5], hundreds of searches for Lorentz
violations in a wide variety of systems have been performed in recent decades [6-9].

The SME is a framework that is designed to characterize all realistic violations of Lorentz and
CPT invariance in an effective field theory. It contains both the SM and GR as a Lorentz-invariant
limit, which is augmented by all possible terms involving conventional fields. The SME includes
terms that violate Lorentz invariance and CPT invariance as well as other fundamental principles,
such as diffeomorphism invariance [10,11] and the equivalence principle [12]. A term in the SME’s
action consists of combinations of SM fields, the spacetime metric g, and their derivatives contracted
with a tensor coefficient for Lorentz violation to form an observer-independent coordinate scalar.
The coefficients for Lorentz violation may vary in space and time and could be dynamical in
nature. This is especially important when considering Lorentz violations in GR [5,10-12]. However,
empirical studies generally assume that the coefficients for Lorentz violation are constant in inertial
frames, in which case the coefficients impart a nontrivial tensor structure to the vacuum. The dynamics
of particles and fields are altered by interactions with this Lorentz-violating background.

A term in the action of the SME is classified, in part, by the mass dimension 4 of its conventional
piece. The restriction to the lowest dimensions d = 3 and d = 4 is called the minimal SME [3-5].
The full theory contains an infinite series of terms with d > 3 [13-16], which, when taken together,
should encompass the low-energy effective limit of any fundamental theory unifying gravity and
particle physics. The effects of Lorentz violation typically scale by d-dependent powers of the energy
and momentum. As a result, higher-energy particles generally give better sensitivity to non-minimal
d > 4 violations. Most tests involving ordinary matter are highly non-relativistic, reducing their
sensitivity to non-minimal violations. However, since the energy is bounded below by the mass of the
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particle, a subset of effects remain finite in the limit of zero velocity. Non-relativistic experiments like
those discussed below are particularly sensitive to these forms of Lorentz violation.

In this work, we examine the effects of Lorentz violation on macroscopic matter due to microscopic
violations in free Dirac fermions. The primary goal is to connect Lorentz violations of arbitrary d in
electrons, protons, and neutrons to signals in large objects comprised of these particles.

Ignoring violations that lead to spin-dependent effects, the modified Dirac Lagrangian for a
fermion of species w is given by [15]

Lo = %II_JW('YViay — M) o — %ll;w(ﬁwsz - éwgff)’)/l,[l/}zu +h.c. (1)

The Lorentz violation is controlled by the operators ﬁwgff and éwsz, which depend on the
four-momentum p, = idy,. Expanding in p,,, they take the form
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where awiff) H--Rd-3 and Cwiff) 1243 4re constant tensor coefficients for Lorentz violation. The awéff)

coefficients are limited to odd d > 3. They violate CPT in addition to Lorentz invariance and can affect
particles and antiparticles differently. The ngfif) coefficients are nonzero for d = even > 4. They are
CPT even and generally produce the same effects in particles and antiparticles.

The above theory yields a modified Dirac equation for electrons, protons, and neutrons,
which affects the dynamics of any object made of these particles. The result for ordinary matter
is a modified Newton'’s second law, which depends on macroscopic coefficients c! for the observed
test body T. The cT coefficients are linear combinations of the awgfif) and cwé?f) coefficients for electrons,
protons, and neutrons. These combinations depend on the relative numbers of particles of each species.
So, different forms of matter with different particle contents can, in principle, be used to disentangle
the violations in different species.

The d = 3 and d = 4 violations in (1) are part of the minimal SME [3,4] and have received
intense scrutiny in the intervening decades since its construction [9]. It has been shown that the
d = 3 violations associated with the awgf) # coefficients can be removed from the theory through a
field redefinition and have no physical effects [3]. We will therefore restrict attention to violations with
d > 4. Note, however, that uwgf) # violations are observable through Lorentz-violating matter—gravity
couplings [17]. The d = 4 coefficients cwgf) " are observable. They do, however, mimic a species-specific
defect in the spacetime metric ##Y, which can be removed from one particle through a coordinate
transformation [13,18,19]. We use this freedom to eliminate analogous coefficients from the photon sector.
Other minimal violations in photons produce birefringence and are strictly limited by astrophysical
tests [20-30]. We can therefore safely neglect the effects of minimal Lorentz violations in the pure-photon
sector of the SME. We will also neglect violations in electromagnetic interactions [31,32], matter—gravity
couplings [17,33,34], and non-minimal violations in photons [13]. Including these would be of interest,
but would complicate the analysis. They are expected to produce similar effects to those found here.

To date, constraints on minimal cwgf) coefficients have been placed in studies involving
astrophysics [15,34—41], tests of the equivalence principle [34,42,43], gravimeters [44], accelerators [45—47],
electromagnetic cavities [48-50], atomic systems [51-62], and acoustic resonators [63]. The sensitivities
in electrons have reached levels of parts in 10% in experiments involving atomic clocks [58] and
trapped ions [59,60]. Constraints on protons and neutrons have reached the 10~2’ level in tests using
comagnetometers [61,62]. Many of the atomic constraints have been translated into similarly stringent
bounds on non-minimal d > 4 violations [64,65]. Tight constraints on non-minimal violations have
also been inferred from laboratory [66] and astrophysical [13] tests of relativistic kinematics and from
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Penning-trap experiments [67]. See [9] for an extensive list of constraints on Lorentz violation in other
sectors. While experiments based on microscopic physics give sensitivities that are orders of magnitude
beyond what has been demonstrated with macroscopic matter, each experiment is based on different
assumptions. So, macroscopic tests of Lorentz invariance play an important complementary role.

This paper is organized as follows. The basic theory is discussed in Section 2. An effective
hamiltonian for ordinary macroscopic matter is constructed in Section 2.1, and a modified Newton’s
second law is derived in Section 2.2. Section 2.3 provides a brief review of observer rotations of
spherical SME coefficients and derives, for the first time, the boosts of the spherical coefficients to first
order in boost velocity. Several applications are discussed in Section 3, including tests of the weak
equivalence principle in Section 3.1 and tests involving planetary orbits in Section 3.2. A Lagrangian
for continuous media is given in Section 3.3 and used to derive the frequency shift in piezoelectric
acoustic resonators. Section 4 summarizes the results of the work. A useful product identity for
spherical-harmonic tensors is derived in the Appendix A.

2. Theory

2.1. Hamiltonian

Ignoring spin-dependent violations, the leading-order effects of Lorentz violation on a free Dirac
fermion of species w are described by the effective hamiltonian hy, = E; + dhy, where [15]

Shw = Ey' (”weff éwsz)igwu . (©)

Here, E, = /p2+ M2 is the conventional free-particle energy for species mass M.
The hamiltonian for antiparticles is given by (3) with the opposite sign on 4y Other forms of
the hamiltonian (3) may be convenient in practice. A common signal in searches for Lorentz violation
is unexpected direction dependence, indicating a violation of rotational symmetry. The prominent role
played by rotations in the field motivates the spherical-harmonic expansion

d d
Ohy = Z Ed 3= k|Pw‘k ]m(p )(aw]E],L Cw;(cj,zq)/ (4)
dkjm

where 0 < k < d—-2,k—j=even >0, |m| < j,and p, = p,,/|p,|- The relativistic spherical
(d) ()

coefficients for Lorentz violation ay, im and ¢y jm AT€
(d  _ k 47rk! i (d)ay...ar0.. O
tog = (DN g (6) (V)™ awgg ™
d k 47k! ) kx\ 1.0 (d)ay...a;0...0
Cwkjm = (=1) (k+j+17)T!!(k—j)!! ( k )(y]:z) VT e T (5)

where () are binomial coefficients, and y]km are the orthonormal spherical-harmonic tensors recently
derived in Ref. [68]. We use Latin indices 4, b, ... to indicate the restriction to spatial dimensions.
In many cases, a non-relativistic approximation is warranted, leading to a third version,

Z |pw‘k i’w) (awkNjFrL Cwlk\]InR1) 4 (6)
kjm

where the non-relativistic spherical coefficients for Lorentz violation are

NR _ d—3—k+21)/2 d—3—k _ (d)
T = ;‘(( ) MY )
NR _ d—3—k+21)/2 d—3—k . (d)
Cwkjm = Z(( L )/ )Mw Cw (k—21)jm @)

dl
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with k — j = even > 0. All spherical coefficients, including the composite coefficients derived below,
obey the complex conjugation relation IC]?*m = (=1)"Kj(—m)-

Next, we envision a small but macroscopic volume of matter of mass M containing a large number
of electrons, protons, and neutrons. We write the Lorentz-violating change in the hamiltonian for
the volume as H = 6H, + 6Hp, + 6Hy, where 6H,, 6H), and dH, represent the total free-particle

hamiltonians for electrons, protons, and neutrons, respectively. Each can be written as

0Hy = Ny Z <|Pw|k ]m(pw)> (ﬂwkNji kaN]Sq) ’ 8
kjm

where Ny, is the number of particles of species w in the volume, and brackets (), indicate the
average over all the particles of that species. We then split the bulk motion from the internal
motion of the particles. Let p be the total momentum, which is conjugate to the center-of-mass
position x. Then, p/, = p,, — X
frame. Normally, p/M is the Veloc1ty of the center of mass and v}, = p/ /My is the velocity of a
particle relative to the center of mass, but this may no longer be true in the Lorentz-violating case.
However, in leading-order calculations, we can assume the usual relations in the Lorentz-violating
contributions to the hamiltonian, since corrections to the velocity would produce higher-order effects.
The average in (8) can be written as

2 p is the conventional momentum of a particle in the center-of-mass

(P Yim(py)), = LA YE (et

U Ity Ly (B) M TMI Kl o pt D, o)
q

where © represents the symmetric tensor product, and y]km are the rank-k spherical-harmonic

tensors [68]. The product p;? 7 can be expanded in spherical-harmonic tensors, giving
PO 4mq! .
1= Z WV’M m/(péo)y] T (10)

We then make the simplifying assumption that the internal-momentum distribution is
approximately isotropic. This implies that the j = m’ = 0 term in the sum dominates when averaged
over the particles, yielding the approximation ( p;?q>w ~ (|pL,|T >Z Uygg /+/q + 1, which vanishes for
odd values of q. Replacing g with 2g, calculation then gives

N k+i+1)!"(k—7)! k—2, _ N
(Pl Yin (o)) %2(2q+1)1((kjg+;+(1)u](3<72q—j)uMw TV |t 27 L1 F 20 (), (D)
7

where the sum is limited to integers g for which the arguments of all factorials are nonnegative.
The Lorentz-violating hamiltonian for the small macroscopic volume of matter then reads

SH ~ = Y M |p|“Yj(p) ¢ (12)
kjm

where we define composite coefficients for Lorentz violation

(k+2q+j+1) 1 (k29— Pw 5 rk—1 2q NR NR
Ck]m Z g+ DIEHFDIE)T o M <|Pw| > (Cl"(k+2q)jm_aw(k+2q)jm)' (13)

The g index sums over all nonnegative integers, the index k is restricted to nonnegative values,
andj=kk—2k—4,...>0.
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The macroscopic coefficients for Lorentz violation in (13) are the dimensionless combinations of
the particle coefficients that affect macroscopic matter at the leading order. They are defined so that
they depend on the material’s particle content and not the size or shape of the object. The macroscopic
coefficients are controlled by the mass fractions p,,/p, where p,, is the mass density for each species
and p = )}, pw is the total density. Materials with different particle contents have different CIZ;'m
coefficients, so constraints on Lorentz violation in multiple different forms of matter could be combined
to separately constrain violations in electrons, protons, and neutrons.

Writing the c{jm in terms of the relativistic coefficients,

T _ d—3—k—2g+21)/2\ (k+2q+j+ D) (k+29—)!! Pw o [d—4-2q
him = L. (( 4+21) ) i DIYLIEY)

o] I (2q+1)! (k+j+1) ! (k—f)!! ? w
2 (d) (d)
x (1Pl (Cw(k+2q721)]’m ~ 8 (20 21)jm) 7 (14)

we note that both aw]({% and cwl({?r)n coefficients for all dimensions d contribute at each k, so the

effects of CPT-even and CPT-odd Lorentz violation cannot be disentangled using only normal
matter. We therefore define a single set of effective C]zjm coefficients for matter. These will, however,
differ from the macroscopic coefficients for antimatter due to CPT violation. Additionally note that
for fixed d, the Clzjm combinations depend on the internal velocity v}, = p!,/ M, through (|v},[*7)_.
Under normal circumstances, the electron internal energy is less than a keV. The internal energies
of protons and neutrons are typically on the order of 10 MeV. So, while the non-relativistic internal
motions contribute to the macroscopic hamiltonian, their effects for fixed d are highly suppressed
relative to the p/ -independent terms with g = 0. The suppressed terms could, however, be used to
access different combinations of coefficients. Ignoring the contributions for the internal velocities gives
the simplifying approximation

T d—3—k+21)/2 Pw 5 rd—4 (. (d) (d)
i ™ ?%C 2] )?Mw (Cto(at)jm — H21)ju) (15)

Combined with (12), this connects the underlying coefficients for Lorentz violation to the dynamics

of macroscopic matter. In ordinary neutral matter made of atoms with atomic number Z and atomic
mass M,, the composite coefficients simplify to

Z
T d—3—k+21)/2 d-3 (d) (d)
Ciejm ™ ;(( 42 ) [MaMn (Cnpe i at)m = Tnpe 1) jm)

d—4 /. (d) (d)
+ My (en oy — a”(kZI)jm)} / (16)
where we define coefficient combinations
d-3 d-3
@ _  Mp+Me @ (M @ , (M (d)
Cnpeijm = = pp Cnkim T\ g ) CPm T\ 3g, ) Cekjm (17)

for even d, with a similar expression for odd-d ap, ,((]dy)n coefficients. These coefficient combinations
lead to different effects in different types of matter and can be tested in experiments comparing test
bodies made of different elements. These include the equivalence-principle experiments discussed
in Section 3.1. In contrast, the remaining parts of cijm involving the neutron coefficients for Lorentz
violation produce identical affects in all matter and are not testable through matter-comparison
experiments. Note that the above combinations mirror ones arising in studies of matter-gravity
coupling in the SME [34]. A partial match to this work is given in the next section.

Lorentz violation introduces signatures other than composition-dependent dynamics. Searches for
these signatures in ordinary matter are less dependent on the precise makeup of the mass. In this case,
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it may suffice to assume roughly equal numbers of neutrons, protons, and electrons, which leads to
the approximation

T d—3—k+21)/2\ 1 rqd—4 (1 (d) 1 (d)
Ckjm =~ ; <( ;2 ) 2 My (CﬂPE(k—zz)]’m - ”nm(k—zz)jm) ’ (18)
where s
@ _ (@ (d) M\ 7 @)
C/npek]-m = C”kjm + Cpkjm + (M,) Cekjm , (19)

with a similar expression for a,,p. ,(jy)n Note that this approximation also neglects the difference in the
proton and neutron masses.

A cartesian version of the macroscopic coefficients for Lorentz violation may be convenient in
some applications. Defining

k1) (k=) ko)At
]Z")m a _ Z %Czjm (yjm)al ay , (20)

the Lorentz-violating hamiltonian becomes

OH = — Y MK () Mpm p. (21)
k

Inverting the relation gives
T _ A7tk! fex\ A1---0, T\471...4
Ckjim = ) T D=y Vim) (o) 22)

The (c )™ tensors are real and totally symmetric. The k index on composite coefficients is
restricted to nonnegative integers, and the angular-momentum indices obey j =k, k —2,k—4,... >0
and |m| <.

2.2. Equations of Motion

The Lorentz-violating hamiltonian dH depends on the center-of-mass momentum p, but is
independent of the center-of-mass position x. This implies that the net force, defined as the rate
of change in the canonical momentum, is unchanged by Lorentz violation: F = d;p = —V,JdH.
The Lorentz violation enters through the altered relationship between the momentum p and the
center-of-mass velocity: ¥ = V,H = p/M + V,H. Combining the two Hamilton’s equations,
we arrive at a modified Newton’s second law,

Mi=(1-C)-F, (23)
where Lorentz violation is governed by the symmetric dimensionless tensor

., 9%H
apropt

= Yk(k—1)(c])™ k20 pfka (24)
k

Cuh —

We write this in terms of the conventional velocity v = p/M for convenience. Note that v
can be taken as x in leading-order calculations. We then find a Lorentz-violating force 6F ~ —C -
F that depends on the velocity v and the conventional force F. Alternatively, we can write the
equations of motion as M(1 + C) - ¥ = F, where the effects of Lorentz violation can be viewed as a
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velocity-dependent anisotropic mass matrix M(1 + C). This generalizes the modifications from d = 4
violations found in Refs. [69,70].

The velocity-dependent C tensor can be expanded in spin-weighted spherical harmonics. This is
done by expanding the tensor in the helicity basis [13]:

r

o
<

|
LY

=0 =sinfcos¢eéyx +sinfsinge, + cosbe,
¥ = %(égiiétp). (25)

(o)
H
|
[

The velocity direction # = v/ |v| defines the “radial” direction, and &y and &, are the usual unit
vectors associated with spherical-coordinate angles 6 and ¢. The components C;;, = &, - C - &, in the
helicity basis are spin-weighted functions and can be expanded in spin-weighted spherical harmonics
sYjm- The result is

Cr = Zk(k_1)|v|k_2()yjm(f))cT

kjm 7
kjm
Coo = Y (k=G +1) [0 20Ym()
kjm
G = L@yl 24, (2)
kjm
Coo = LAV DiG+ DG+ DNl 2eaYin(0) o 29)
kjm

All of the objects appearing in these expressions are dimensionless.

We note that only composite coefficients with k > 2 affect the macroscopic dynamics at the leading
order. For these coefficients, the effects are proportional to |v|~2. Since v is the velocity relative to
the speed of light, the Lorentz violation from k > 2 will be highly suppressed in most applications.
Consequently, the dominant effects are likely those from the k = 2 macroscopic coefficients c. In the
k = 2 restriction, the tensor C% = 2 (CZT ) ab is constant, and its cartesian components are linear
combinations of the spherical coefficients CZij:

o _ [1.T 5 T 15 po T
¢t o= \/;Czoo —\axC20 /27 Reca,
_ i [5 T /15 e T
e = \/; €200 — \/ 37220 — \/ 27 ReCam
zz 1.T 5.T
¢ = \/;Czoo + \/;szo /

X _ 15 T
CY = —\/52Imcyy,,
Xz 15 T
C = —\/=Recy,
_ 15 T

The resulting velocity-independent effects are then limited to j = 0 isotropic violations and j = 2
quadrupole anisotropies.

The k = 2 case can be partially mapped onto previous analyses of composite matter in the
SME. In particular, Ref. [34] derives the effects of d = 3 and d = 4 violations in matter and gravity,
including the matter—gravity coupling. Dropping the violations involving gravity and those that are
cubic in velocity, the coefficients in that work correspond to C? = —2¢T% — ¢Tt 5% This provides a
map for d = 4 coefficients in the two approaches, which can be extended to higher-d violations through
their contributions to (c] )ab coefficients. This connection could, in principle, be used to convert bounds
on ¢! to bounds on d > 4 violations. Note, however, that this may be problematic in analyses involving
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boosts of the apparatus, since the contributions from different d transform differently. Rotations and
boosts of the coefficients are described in the next section.

2.3. Lorentz Transformations

Many tests of Lorentz invariance search for changes in a signal with changes in the orientation or
velocity of the apparatus. The changes in orientation are typically due to the daily rotation of the Earth,
but can be achieved through the use of turntables. The changes in velocity are usually those resulting
from the orbital motion of the Earth. Assuming constant coefficients for Lorentz violation in inertial
frames, the above motions produce variations in the coefficients in non-inertial apparatus-fixed frames.
These variations lead to variations in experimental observables, producing potential signals of Lorentz
violation. In this section, we review rotations of spherical coefficients and discuss common frames
used in tests of Lorentz invariance. We also derive the boosts of spherical coefficients for Lorentz
violation to first order in boost velocity.

Rotations of spherical-harmonic expansion coefficients are given by Wigner matrices. Consider the
expansion of a spin-weighted function f(#) = Y, fim sYjm(it), where i1 is a direction unit vector.
We then consider two frames whose coordinates {x, y,z} and {x’,1/,z'} are related through

dx’ cosa —sina 0 cosfp 0 sinf cosy —siny 0 dx
dy | = | sina  cosa 0 0 1 0 siny cosy 0 dy | . (28)
dz' 0 0 1) \—sinf 0 cosp 0 0 1) \dz

The connection between spherical-harmonic components of f in these two frames is given as
o ()
fjm - 2 Dmm’ (“’ ﬁ’ 7)fjm’
m/

_ Zefimaefim"y d%?ﬂ/(lg)’f]m/ , (29)

where Dfr]”)n/ (a, B,7v) and d%ﬂ/(ﬁ) = D%Zn/(o, B,0) are Wigner matrices.

By convention, tests involving the SME report results in a Sun-centered celestial equatorial inertial
reference frame with spacetime coordinates {T, X, Y, Z}. The Z axis points along the Earth’s rotation
axis, X points towards the vernal equinox, and Y completes the system. The standard time T is defined
so that T = 0 at the vernal equinox in the year 2000. A standard non-inertial laboratory frame {t,x,y,z}
is defined with x and y horizontal and z pointing vertically up. The x axis points at an angle ¢ east of
south. In order to incorporate boosts, we define an intermediate Earth-centered frame with coordinates
{T',X’,Y',Z"} that is boosted but not rotated relative to the Sun frame. The rotation relating the lab

frame and the Earth frame is

ax’ cosa —sina 0 cosy 0 siny cosg —sing 0\ [dx
dY' | = |sina  cosa 0 0 1 0 sing cose O] |dy]|, (30)
az’ 0 0 1 —siny 0 cosy 0 0 1 dz

where y is the colatitude of the laboratory, and « is the right ascension of the laboratory zenith.
The transformation of spherical coefficients leads to

fiab =YDV (—g, —x, —a) fEarth (31)

The right ascension increases at Earth’s sidereal rate & ~ wg = 271/23 h 56 min, producing a
sidereal variation in laboratory-frame coefficients. Horizontal turntables would give variations in ¢
as well.
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Ignoring boosts, the Earth-frame and Sun-frame coefficients are the same up to a time-dependent
translation. We next determine the relationship between these frames to first order in the boost
velocity B. The transformation depends on the tensor structure of the underlying coefficients for
,((731 and Cw,(;; coefficients in (5).
The derivation is the same for both of these sets of coefficients, so we show the calculation for
Ay ,(cjlr)n only.

Inverting relationship (5) between the spherical and cartesian representations of the coefficients
for Lorentz violation, we can write

Lorentz violation. Here, we focus on the relativistic spherical ay

awgfif)al...ako...o _ (_1);{(?;:)1?! y k!(k-»—j-»—i?)T!!(k—j)I!aw](;r)n (y;{m)m..ﬂk _ (32)

jm
Consider a “primed” frame that is moving with small boost velocity B relative to a second
“unprimed” frame. The difference between the cartesian coefficients 5aw( ff) = awgf) — awgf) in the
two frames is then given by

5aw£?f)ﬂ1...ﬂk0...0 — _ (k_]l)!awi?f)o...o(lll.‘.ﬂk,lﬁak) _ (d —2_ k)awggf)o...oul...ﬂkbﬁh . (33)

Using (32), we can expand the right-hand side of the above expression in terms of spherical

coefficients. Expanding the boost velocity in spherical-harmonic tensors, * = \/% BYm Yim(B)(V5,)",
and using the product identity derived in Appendix A, we can expand (33) in spherical-harmonic tensors.
Combining the result with (5) gives the change in the spherical coefficients for Lorentz violation. The result
is the first-order boost of the spherical coefficients

T /)

d )k ~
5awl(€jr)n == Z 1—‘]({]721 jaen %T ,Bylm”(ﬁ) awk/]/m/ s (34)

where g = |B|, B = B/B, and

(D)™ @ =1 =RVEAE g K =k=1,

(DK jm'm" (=) +f D)1

T =\ puarn | VK Al F=krl, 9
0, otherwise,

in terms of the Aglln(z jymp7u CONStants in (A2).
The velocity of the Earth in the Sun frame is approximately given by (Bx,By,Bz) =~
B(sin Qe T, — cos 17 cos Qe T, — sin 77 cos Qs T), where the orbital speed is B &~ 9.9 x 1075, 57 ~ 23.4°

is the inclination of the orbit, and (0q, = 277/year is the orbital frequency. With this, we can write

A faq!
%” BY1m(B) = Ly Bpumre™ 2T, where the nonzero B,y constants are

i i .
Bii1)(+1) = \fi cos? g + By = _\% sin? g By(+1) = —g siny . (36)

Combining the boost between the Sun and Earth frame with the rotation between the Earth and
laboratory frame, we find that the coefficients transform according to

(d)lab imeo+imsa 1(7) (d)Sun
Wkim, — — Ze T dmrms(_X)awkfms
mg
cg-Himsatima Qo T 5(7) ()i’ m"m” (d)Sun
I Z i Fimsa-timaQq dmrms(_X) rkjms B,y maBps (37)

Mgy k/]‘/m/m//
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The indices m,, mg, and m, are the harmonic numbers for variations at the turntable rotation rate
¢, the sidereal rate &, and the annual rate (), respectively. The ¢y, ,E’]ir)n coefficients in the laboratory and
Sun frames obey the same relationship.

3. Applications

3.1. Tests of the Equivalence Principle

The modified equations of motion (23) imply that the acceleration of a mass under the influence
of gravity depends on its particle content, giving an apparent violation of the weak equivalence
principle (WEP). Consequently, tests of the WEP may be adapted for searches for non-minimal Lorentz
violations in particle sectors of the SME. Most WEP tests involving macroscopic masses fall into two
main categories, free-fall experiments and torsion-pendulum experiments. We consider each of these
in turn.

In the first class of experiment, the vertical free-fall accelerations of two test masses made of
different materials are compared. In the experiments performed to date, each mass is released from
rest in a vacuum chamber. Accelerations are measured using lasers and corner-cube reflectors attached
to the masses [71-76].

We work in the standard laboratory frame described in Section 2.3 and assume that the
gravitational field g = —g@, is approximately uniform. The leading-order change in the acceleration is
given by éx = g C - &,, where the C tensor is a function of the unperturbed velocity v = —gté,. For fixed
k > 2, we can integrate twice to get the change in position after time ¢, dx' = g~1(—gt)k (ck L lab)lz"'z,
in terms of the laboratory-frame cartesian composite coefficients for Lorentz violation. In principle,
free-fall experiments could search for ~ t* displacements from the velocity-dependent k > 2 violations.
These effects, however, are highly suppressed by the small velocities. For the velocity-independent
k = 2 cases, the vertical acceleration is constant and given by

52/g = 2(cJ'0)E = (fLclaP 4\ 5 Tisb (38)

This includes the isotropic czTél(;"b and the quadrupole c,;, T4ab The quadrupole violations lead to
sidereal variations, which could be sought in future analyses. However, in order to understand
the reach of these experiments, we will ignore boosts and focus on isotropic violations czTéloab ~ cloo-

In this particular limit, the acceleration is proportional to the gravitational field, ¥ = (1 — \/; 300)8-

So, isotropic Lorentz violation mimics a difference in the inertial mass M; and gravitational mass
M. This type of behavior is traditionally characterized using the E6tvds parameter, defined as the
difference in free-fall acceleration Aa divided by the average 4 for the two test masses. In terms of
the masses, this gives y = Aa/a = Ar/7, where r = Mg /M. In the present context, we find get an
effective Lorentz-violating E6tvos parameter

(d) a3, (d)

Z —c c d = even
1 AT M3 npexo0 — 2 Cnpepoo ’
\/; M, ! “npf%z) + d23 ”Pf(()OEJ ’ d = odd,

for fixed dimension d. The differences in the test bodies enter through the difference A(Z/M,) in the
ratio of the atomic number and atomic mass. Note that the simple correspondence (39) breaks down in
more general cases where there are accelerations perpendicular to g and velocity-dependent accelerations.

Using the above, we can translate published constraints on 7 to measurements on the
dimensionless isotropic-coefficient combinations —MZ_4 (cnpe%z) + %Cnpe((folz)) for even d and
M,‘i_‘} (anpe%z) + %anpeég%) for odd d. A number of different ground-based experiments have compared
the free-fall of different materials in the Earth’s gravitational field at the level of 7 ~ 10~?. Translating these
to constraints on the above combinations of SME coefficients, we find (3 & 13) x 10~ using copper
and uranium [72], (21 & 60) x 10~Y using aluminum and beryllium [74], (—10 £ 58) x 107 using
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aluminum and copper [74], (17 £131) x 1077 using aluminum and carbon [74], (21 453 4+ 74) x 107°
using aluminum and copper [76], and (23 & 30 + 33) x 10~ copper and tungsten [76]. We combine
these to produce a “best-fit” ground-based measurement and then translate this to constraints on the
isotropic-coefficient combinations. The results up to d = 8 are given in the second column of Table 1.

Table 1. Limits on isotropic Standard-Model Extension (SME) coefficients from tests of the equivalence
principle. The first column gives the coefficient combinations. The second column contains the
combined constraints from ground-based free-fall experiments. The third column lists constraints from
the space-based MICROSCOPE experiment. The last column gives the combined constraints from
torsion-pendulum experiments.

Coefficients Free Fall MICROSCOPE Torsion Pendulum
Cnpespy + henpesn (-5+12) x107° (3+£27+£27) x 1071 (3+7) x 10712 GeV

000
ey + u,weg;% (54+13) x 1072 GeV™!  (=3+294+29) x 10" ¥ GeV™!  (3+8) x 10712 GeV~!
cnpggégﬁ) + gcm;g (—64+13) x10°°GeV™2  (3+30430) x10°14GeV2  (3+8) x 1012 GeV 2
Bupebion + 2ampernd (6+£14) x 1070 GeV™3  (—44£32432) x 1074 GeV 3 (4+9) x 10712 GeV 2
Cupesey + Sonpeoy (—6£15) x 1070 GeV~*  (4+34+34) x 1074 GeV 4 (4+10) x 10712 Gev 4

Similar tests of WEP in space [77-79] could also be used to search for Lorentz violation.
For example, the T-SAGE instrument aboard the MICROSCOPE satellite has placed a constraint
of = (=14£949) x 10712 on the difference between the free-fall accelerations of titanium and
platinum [79]. The resulting constraints on isotropic Lorentz violations are included in the third
column of Table 1, demonstrating that sensitivities to Lorentz violation on the order of 10713 GeV*~
are possible.

The classic Eotvos experiment [80] and its descendants represent another class of WEP tests based
on torsion pendulums. In the prototypical experiment, two test masses of different compositions are
attached to the ends of a rod hanging from a horizontal fiber. A difference in the gravitational and
inertial masses would lead to an imbalance in the horizontal components of the gravitational and
centrifugal forces, leading to a net torque about the fiber. Modern versions achieve high sensitivity by
seeking modulated signals due to the changing field from the Sun over the day [81,82] or by rotating
the apparatus in the laboratory [83-85].

The modified Newton’s law for a suspended test mass can be written as M(1+C) - ¥ = Mg + f,
where f is the net constraint force. While the general modification acts as an effective anisotropic
and velocity-dependent inertial-mass matrix M(1 + C), the k = 2 isotropic limit gives the same
Lorentz-violating E6tvds parameter as above. We again use this limit to estimate potential sensitivities
in these experiments. As in the free-fall experiments, we convert measurements of 7 to constraints
on isotropic coefficient combinations, giving (—16 + 13) x 107! using gold and aluminum [81],
(0.7 & 1.0) x 10! using platinum and aluminum [82], (—15 4 77) x 10~!! using beryllium and
copper [83], (15 £ 19) x 10~ !! using beryllium and copper [84], (0.5 + 7.6) x 10~!! using beryllium
and aluminum [84], and (—0.2 + 1.2) x 107! using beryllium and titanium [85]. The resulting
combined constraints on the dimension d isotropic coefficients are given in the last column of Table 1.

Anisotropic violations could also be tested in these experiments. The daily rotation of the
laboratory in ground-based experiments will lead to variations at multiples of the sidereal frequency.
Signals in space-based experiments will arise at harmonics of the satellite rotation rate. Boosts will
introduce additional frequencies in the variations of the signal, including the annual frequency due to
the motion of the Earth around the Sun. A search for these types of variations in MICROSCOPE data
was recently carried out [86], where d = 3 and d = 4 violations in the matter—gravity couplings of the
SME are constrained down to the expected 10~ '3 GeV*~? range. A similar analysis could be used to
constrain higher-order Lorentz violation.

Future space-based tests include STEP [77] and GG [78], which could reach sensitivities two or
three orders of magnitude better than MICROSCOPE. Other promising opportunities for future studies
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include experiments utilizing drop towers [87], balloons [88], bouncing masses [89], and sounding
rockets [90].

3.2. Orbits

In this section, we consider the effects of Lorentz violation on a satellite in a gravitational orbit
around a larger body. For simplicity, we will restrict attention to approximately circular orbits and
neglect effects depending on both eccentricity and coefficients for Lorentz violation. We work in a
fixed orbit-centered frame with the z axis along the orbital axis and z = 0 in the orbital plane of the
Lorentz-invariant limit. We also use an orbit time ¢ defined so that the satellite velocity is along the x
direction at t = 0. The position of the satellite can be described using cylindrical coordinates {p, ¢,z}
in the orbit frame. We denote the corresponding basis unit vectors as {ép, [ e}

At the leading order, the acceleration of the satellite is given by ¥ = g — C - g, where g =
—R3w?|x|~3x is the gravitational field in terms of the usual semi-major axis R and the orbit angular
frequency w. This leads to the change in position dx of the satellite due to Lorentz violation that
satisfies 0% = —w?0x + 3w? (8, - 6x)8, + Rw?C - &, neglecting terms involving the small eccentricity.
The above implies that the cylindrical-basis components obey the coupled differential equations

0Xp —2wdxy — 3w25xp = szCpp ,
0ip+2wot, = Rw?Cyp,
8%+ w?dx; = Rw’Cy. (40)

The components C,, = &, - C - &, can be taken as functions of the conventional velocity v &~ Rwe,.
Since the velocity v is periodic with period 27t/ w, the C;;, components in (40) drive changes in

the motion at harmonics of w. We characterize this driving force using the form C,, =}, Cg:] eimwt,

where CL[I;m] = CEZ]*. The C%] driving amplitudes arise naturally out of the spherical-harmonic
expansion of the C,;;, components. Recall that the spherical-harmonic expansion of C uses the helicity
vectors (25) defined with respect to the velocity v. Matching to the cylindrical basis gives &, = &,
and &+ = —(&; % i¢,)/+/2 in the orbital plane. The velocity vector points at polar angle 6 = 71/2 and
azimuthal angle ¢ = wt. This leads to the driving amplitudes

G = L[~ 3+ D)o¥inen) = 1y/( - DG+ DG+ 0+ (D7) 2]
]
X (Rw)k’zclfj’;rb ,
Con = L= D= D\JG + D1+ (1) 42 (Reo)* 20
]
cly = ;&M (= DjG+1)G+2) (1= (=1)7") 2V () (Rw)* 20, (41)
]

in terms of the orbit-frame coefficients for Lorentz violation clz;f;rb.
harmonics for the &, direction, which lies at = 77/2 and ¢ = 0.

The orbit-specific CEZ] coefficient combinations determine the leading-order effects of Lorentz

These depend on spherical

violation for a particular satellite. However, they must be connected to the standard Sun-frame

coefficients to be useful. Ignoring boosts, the Sun-frame coefficients Clzjm and the orbit-frame coefficients

C,Q;rb are related through the rotation

Torb _ (1) s my.T
Ckjim ZDmm/(_W_ T =M =0+ )
m

mm

=y gimrtin'a 40) ()i (42)
ml
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where «, 7, and 7 are a convenient set of Euler angles and are illustrated in Figure 1. The angle « is
between the Sun-frame X axis and the line of nodes, 7 is the inclination of the orbit relative to the X-Y
plane and + is the angle between the orbit-frame x axis and the line of nodes. For our analysis, -y is
somewhat arbitrary. It can be chosen, for example, so that the pericenter lies on the &, axis. The « and
1 angles for the eight planets are given in Table 2.

Figure 1. Euler angles relating the Sun frame {X, Y, Z} and the orbit frame {x,y,z}.

Table 2. Euler angles of the planets [91].

Merc. Ven. Earth Mars Jup. Sat. Ur.  Nept.

a 11.1°  8.0° 0° 3.4° 3.3° 6.0° 1.8° 3.5°
n  285° 244° 234° 247° 232° 226° 23.7° 223°

To solve (40), we first seek force-free homogeneous solutions. Several homogeneous solutions
exist that can be connected to conventional perturbations to circular orbits. The general homogeneous
solution is

5x20m = J0R—Recosw(t—t)
(5xf(;0m = Rép— %(Sth—i—ZResinw(t—h),

The constant J¢ represents a small translation along the orbit. The constant R gives a transition
to a circular orbit that is larger or smaller by JR. To see this, note that while R and w may
change, the combination R3w? is constant for Kepler orbits, so 6(R*w?) = 3R%2w?6R + 2R3wdw = 0.
Using this, we find that the change in position due to a change in radius is éx = §R ¢, + Réw te, =
SR @&, — 3wtdR é,, matching the above result. This variation is only valid for sufficiently small times.
The constant £ adds small eccentricity with a pericenter at time ¢;. It can be characterized using an
eccentricity vector ¢ = Re (iee "' (2, + ié,)), which has magnitude ¢ and points to the pericenter.
The perturbations in the position can be written as 6x, = —Re -y, dx, = —2Re - &,. Setting t; to
one quarter of the orbit period places the pericenter on the x axis. The angle 1’ corresponds to a
small inclination from the orbit-frame x-y plane with the ascending node at time t,. Using these
results, we can distinguish between conventional perturbations of the orbit and those caused by
Lorentz violation.

For the Lorentz-violating inhomogeneous problem, we first consider the m = 0 and m = 1 special
cases separately, since these harmonics also appear in the homogeneous solutions. For m = 0, we find
that C(EEA = Cg;] = 0. The solution in this case is dx, = f%RC,[)%]. This gives a change in the size of the
orbit without the corresponding change in the frequency required by Kepler’s third law. The effect
mimics a small change in either Newton’s constant G or the source mass. While it may be difficult
to detect, this form of Lorentz violation could be sought, in principle, by comparing the third-law
constant R3w? of different satellites orbiting the same source.
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For the m = +1 case, two distinct effects arise. We first note that Cf[,lp] =iC [l], and neither C},‘lo] or
(1]

C([’}A contain velocity-independent k = 2 contributions. So, only C;, gives effects that are unsuppressed
by small orbital velocities. Nonetheless, the Cgp] = iC([Plf]] matrix element drives a speed-dependent
change in the eccentricity. The inhomogeneous solution can be taken as

dxp = —RwtIm (C,[ylp]ei“’t)
= —th|Cf[,1p] | cosw(t — t3)
5xy = —2RwtRe (Chlei)
— 2Rwt|CH]| sincw(t - t3) (44)
where we parameterize the phase as Cpp = z‘C | e~ The above is only valid for small ¢, but the

result is an eccentricity that increases at a rate of ¢ = w’CF[,lp] | with the pericenter at time f3. The rate of
change in the eccentricity vector is

&= wRe (Chyl (&5 +i2y)) . (45)

Note that this will add to the conventional eccentricity vector, which may point in a different direction.
The small eccentricities of the planets lead to crude limits on the above effect. As an example,

consider the Earth. The eccentricity added per orbit is Zﬂ’C’[Olp] ,
N =~ 4.5 x 10° orbits over the age of the Solar System. Taking the Earth’s eccentricity ¢ ~ 0.017 as an
upper bound on the eccentricity due to Lorentz violation, we find the constraint ‘CEP] | Se/2nN ~
6 x 10713, Since k = 2 Lorentz violations do not contribute, the dominant effects would likely be from
k = 3, which are linear in speed. Earth’s speed is about v & 1074, implying potential sensitivity on
the order of 1077 to ngm coefficients. Venus, with its smaller eccentricity and shorter year, is the only
planet yielding a slightly better sensitivity.
The CZ[})] coefficient combination gives the modification

6x, = —RwtIm (C[lp]ei“’t)
= Rcut|C |smw(t— ty), (46)
where we parameterize CQ)] =—| CQ)] ‘e_i“’t‘i. This implies a rotation of the orbital plane at an instantaneous

rate of ) = w| CE,] | about an in-plane axis pointing towards the satellite at time 4. We can account for
both the rate and the direction by defining a rotation vector

Q = wim (CW (e, +ie,)) . 47)

The orbit axes will gradually rotate according to &; = Q X &,. The resulting secular variations in
the Euler angles are

) sinyImC£]+cosyReCm
b = w ,
siny

o= (cosyImCH sm’yReCm),
= —cosyi. (48)

Note that the ng coefficient combination also depends on the Euler angles. A demonstration of
the above rotation is provided in Ref. [70], where the effects of d = 4 violations on binary systems
are simulated.
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Assuming a small net effect, we can approximate the total rotation of the orbital plane after N
orbits as 27N | Cz[y |. Given that the orbital planes of the eight planets and the Sun’s equator all differ
by no more than about 10°, we take this as an upper bound on the change in inclination for each planet
over the age of the Solar System. Mercury, with its short year, then produces the tightest constraint,
‘CEP] | S15x 10712, Unlike the change in eccentricity, velocity-independent k = 2 violations contribute
to the change in inclination. So ,planetary orbits could constrain cJ,, quadrupole coefficients at the
level of 10712, The different orientations of the different orbits could, in principle, be used to access
different combinations of coefficients. However, the small inclinations imply that the effects of Lorentz
violation on all planets depend on similar combinations, reducing the sensitivity to the additional
coefficient space accessible through a combined analysis.

Planetary ephemerides could be used to place more rigorous bounds at levels comparable to the
simple estimate given above. For example, limits on the evolution of planetary orbits have been shown
to constrain the dimensionless 5#" coefficients in the pure-gravity sector of the SME down to parts in
102 [92,93]. Lunar laser ranging has also been used to test Lorentz symmetry in gravity [94,95] and
in matter—gravity couplings [96] down to parts in 10'2. The 5#" coefficients produce effects similar to
those found above [12], and we expect similar constraints on cJ,,, coefficients. This implies sensitivities

at the level of ~ 10712 GeV*~ to Tyype ](j; and cj, 5, I(;y)n SME coefficient combinations.

Binary pulsars provide another test of Lorentz invariance in orbital dynamics [12,97]. These systems
have been used to test Lorentz invariance to parts in 10!! in gravity [98,99] and matter-gravity
couplings [40]. They have also been used to search for velocity-dependent effects from dimension
d = 5 terms [100] and from d = 8 cubic terms in the gravity sector of the SME [101]. We also note that
Lorentz violation can be constrained with non-binary pulsars [41,102]. Binary pulsars are unique among
orbital tests in that they provide clean access to neutron coefficients for Lorentz violation, and are therefore
complementary to tests involving ordinary matter.

The perturbations driven at higher frequencies with m > 1 are

2R 200m o Sy i
(S.XP = —m Re ((m CPP — ZIqu,p )elmwt) ,
2R ) . ‘
oxy = “EE 1) Re (((3 +m )C([p";] + szcgg])e’m“’t) ,
2R [m] imewt
ox, = ] Re (CZP el ) . (49)

Unlike the m = 1 case, which gave a secular evolution of the orbit, violations with m > 2 produce
periodic deviations from the conventional orbit. For example, dx, produces periodic oscillations about
the average orbital plane. Among the effects from dx, and éx, displacements is a time-dependent
change in the areal velocity A = Rwdx, + 3Réx, = R®*wm™'Im (C%}eimw), violating Kepler’s
second law. Again, these periodic variations are similar to ones arising in the gravity sector of the
SME [12] and could be sought in planetary motion or in lunar laser ranging. Note that since k > j > |m|,
the effects of Lorentz violation at frequencies greater than 2w necessarily involve the orbital speed of
the satellite. Consequently, unsuppressed speed-independent periodic variations only arise at twice
the orbital frequency.

3.3. Acoustic Resonators

This section considers the effects of Lorentz violation in continuous media with particular focus on
acoustic resonances in piezoelectric materials. For continuous media, the Lorentz-violating hamiltonian
density can be taken as

1-k k Y T
H ==Y o' PV (P) Ckjm » (50)
kjm
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where p is the mass density of the material, P is the momentum density, and P = P/|P|. Using the
above, we can find modifications to the Hamilton equations of motion. Alternatively, we could instead
employ a Lagrangian approach, where the leading-order change to the Lagrange density can be
taken as

5L =Y plo] Y (0) iy, » (51)

kjm
where v = v(x,t) is the local velocity of the medium, and & = v/|v|. Denoting the mechanical
displacement of the medium at equilibrium position x in a body-fixed frame as # = u(x, t), the velocity
is then given by v = #@. Note that v ~ P/p, but differs slightly from the usual result due to
Lorentz violation.
The conventional Lagrange density for a piezoelectric material is given by

L =i — 38U uy + 3¢ pady — Pl (52)

where 1 = ou"/ 0x? are spatial derivatives of the displacements u?, ¢, = d¢/9x" is the gradient
of the electric potential ¢, S*? is the stiffness tensor, €’ is the permittivity tensor, and ¢* is the
piezoelectric tensor. The stiffness tensor S*“? is taken to be symmetric in the first pair of indices and
the last pair of indices and symmetric under interchange of the pairs, giving twenty-one independent
components. The permittivity tensor e’ abe js symmetric in
the last two indices. The equations of motion for the system including Lorentz violation are given by

is symmetric, and the piezoelectric tensor e

piia +pcab b T,ab . 0= D,{iz , (53)

where T = S ”deu + ¢ . is the stress tensor, D* = —e™’¢;, + e"°u? is the electric displacement
field, and C* is the Lorentz—v1olat1ng tensor from (24) evaluated at velocity v = .

Periodic solutions to (53) can be found using methods similar to those used for orbits.
Solutions with period 27t /w will, in general, include various harmonics of the fundamental frequency

. To find them, first expand each variable in Fourier modes: u =}, ulmleimet ¢ — v~ plmlgimet,

and Cc =y, Clmabeimwt The equations of motion (53) lead to a set of coupled equations relating the
various Fourier components, which can be solved perturbatively. However, we are primarily interested
in changes to the frequency w, which can be found using a simpler method.

We begin by assuming that the solution with Lorentz violation u# has frequency and amplitudes
that are close to those for a conventional solution #y. Manipulating the equations of motion for # and
up, one can show the relation

p/‘/d3x(ﬁ~u0+ﬁ'c-uo—u-ﬁ0) :/avdcr.(T~uo—T0-u—Do¢+D¢o), (54)

where the left-hand side is integrated over the volume V of the resonator, and the right-hand side is
integrated over the surface dV. The conventional stress tensor Ty depends on uy, the conventional
potential ¢y, and the conventional displacement field Dy. We then assume that the surface terms
vanish, giving

/d3 ih-uy—u- uo /deu C-up. (55)

Assuming simple harmonic conventional solutions, this expression oscillates at frequencies
mw £+ wy = (m % 1)wy + méw, where dw = w — wy is the shift in the fundamental frequency from the
usual frequency wp. Writing the amplitudes as u"] = u([)m] + 6ul™l, where 6ul™ is the change due to
Lorentz violation, we can expand the frequency components of (55) in small parameters depending on



Symmetry 2020, 12, 2026 17 of 25

coefficients for Lorentz violation. The zeroth-order equations are identically satisfied. The first-order
equations give

/Vd3x (1- m?)sul™ ~u([)il] —2m? f;;) u, ] [ﬂ] / d3x Zm’zu([)m . Clm=n] -u([]ﬂ] : (56)

Note that u([]m] = 0 for m # +1, since we assume that # is simple harmonic. The shift in frequency
éw can be isolated by taking m = F1, which gives

fo Ul O )
wo 2 [, dx ugl] -u([)_l]
_lfvd3x (o C - o)
2 [, dBx (ug - ug)s

/ (57)

where brackets (); indicate the time average. The C tensor in this expression is calculated using the
conventional velocity vy = #p. The leading-order frequency shift is then completely determined by the
coefficients for Lorentz violation and the usual solution u.

The time averages in (57) may be difficult to calculate in general, but are relatively simple in the
case of standing waves with local linear polarization, where we can take ug(x,t) — uo(x) sin(wot).
The velocity is replaced with vy(x,t) — wou(x) cos(wpt) and is parallel to the displacement ug(x).
The time average in the denominator of (57) becomes (ug - ug)r — %u%. The numerator can be shown
to vanish for odd values of k. For fixed even values of k, the time average in the numerator becomes

(uo-C-up)y —  (sin®(wot) cos* 2 (wot) s 1o - Cwong) - uo
(k — 3)1!
= Tuo - C(woug) - ug (58)

The frequency shift is then given by

k D [y @3 [ug [FYj (o) T lab
Zwo €

’ 59
—U [y dxfup &%

kjm

T lab

where £ is restricted to even values k > 2, and Chfm L€ laboratory-frame coefficients. The dimensionless

factors multiplying the ¢/, im coefficients determme the sensitivity of an acoustic-resonator experiment.
Assuming oscillation amplitudes on the order of 100 angstrom and frequencies on the order of a MHz,
these factors scale as ~ 10719%=2), This drastically reduces the sensitivity to violations with k # 2.
We therefore focus on the k = 2 case. The problem simplifies even further for cases in which the vibration
direction ilp(x) is relatively constant over the volume of the resonator:

8

ow _ZY o) clab
wp jm\# 2]m

%

: 2 M ( (d+zzl—5)/2> Y (i) (a;pegﬁj’)jm - c;peg”j;*;)jm) ) (60)
dljm
assuming in the last line that the medium is comprised of roughly equal numbers of neutrons, protons,
and electrons. The frequency shift is then limited to quadrupole j = 2 and isotropic j = 0 violations.
The rotational and orbital motion of the Earth implies that the laboratory frame is non-inertial.
As aresult, the laboratory-frame coefficients will change as the orientation and velocity of the laboratory
change, producing periodic variations in the frequency shift. We account for these changes using
the transformation between the laboratory frame and Sun-centered frame discussed in Section 2.3.
The rotations introduce sidereal variations in the laboratory-frame coefficients. The coefficients also
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vary with the angle of the resonator in the laboratory. In experiments involving rotating turntables,
this produces variations at the turn rate. Annual changes in the velocity of Earth lead to annual
variations in the signal. These, however, enter through boosts and are suppressed by the boost velocity
B ~ 10~* relative to the other variations.

The fluctuations in the frequency shift take the form

sw

- _ Z Amrmsmaeimrq)+imsw$T@+imaQ$TI (61)
0

myMsiiiy

where wg = 271/23 h 56min and Qg = 277/ 1yr are respectively the sidereal and annual frequencies.
The time Tg, is defined so that the laboratory zenith points at right ascension & = 0 when Tg, = 0,
and time T = 0 at the vernal equinox. The angle ¢ is between the laboratory-frame x axis and south.
The laboratory frame is fixed to the resonator, which may be affixed to a turntable. In this case,
@ changes at the turntable rotation rate w;. The indices m;, ms, and m, are the harmonic numbers
for variations at, respectively, the turntable rotation frequency wy, sidereal frequency wg, and annual
frequency Q). The amplitudes obey the relation Ay, ;. = A, ( , ensuring that the
frequency shift is real.

Applying the Lorentz transformations outlined in Section 2.3 to the laboratory-frame coefficients
in (60), we find that the modulation amplitudes due to rotations only are

—1his)(—ma)

_ _ ~ i d d
Amema(mamt) = %; Mi— ((d+zzl 5)/2) Y, (110) A5 (—X) (“;Pfézlzl)jms - C;Pffgz)le)jms) ,(62)
]

in terms of the Sun-frame a;pe](;r)n and ¢, pel((;'ir)n coefficients. The isotropic j = 0 violations produce a
constant shift. The quadrupole j = 2 violations give variations at frequencies mw; + mswg up to the
second harmonic in both the turntable and sidereal rates: |m;|, |ms| < 2. Note, however, that |m,| = 1
variations will be absent in oscillators with horizontal or vertical vibrations.

Including leading-order boost effects due to the orbital motion of the Earth gives variations at

frequencies mywy + mswgq + Mg with m, = 1. The amplitudes for these are given by

Amrms(ma:il) = % ZMZ% (<d+21;5)/2) ijr(ﬁO) d%zms (_X>
dlj
(d)K'j'm'm" 1 (d) 1 ()
X Z F(Z—Zl)jms Bm”ma (anpek/j/m/ - C”Pek/j’m’) ’ (63)

K'j'm'm"

where the numerical l“g)_k;]l/;;;w constants are given in (35), and the B,,»,, boost factors are in (36).

This gives sensitivity to other coefficients for Lorentz violation, but at levels suppressed by the small
boost velocity B ~ 10~% of the Earth.

Searches for Lorentz violation in quartz resonators have demonstrated sensitivities on the

order of parts in 10! to d = 4 violations [63], and are expected to improve by two orders of

magnitude [103]. We therefore expect sensitivities near 1016 GeV* to the dimension-d combinations
1 (d) 1 (d)

Biper g A0 Chpeyi,-

4. Summary

A violation of Lorentz invariance would necessarily indicate new physics with potential origins in
quantum gravity. High-precision experiments have limited violations in a large variety of systems [9].
In this paper, we derive the effects of Lorentz violation on dynamics of ordinary matter. We include all
linear dimension-d violations in the electrons, protons, and neutrons, excluding violations involving
electromagnetic and gravitational interactions.
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The effective hamiltonian for a macroscopic test body is derived in Section 2.1. The Lorentz-violating
contributions are given in (12) in terms of macroscopic coefficients for Lorentz violation clz;.m.
Equation (14) relates these coefficients to underlying SME coefficients for electrons, protons, and neutrons.
Ignoring internal kinetic energy, the result reduces to (15). Equation (16) gives clfjm for matter with
equal numbers of electrons and protons, and (18) is for matter with equal numbers of electrons, protons,
and neutrons. The equations of motion are discussed in Section 2.2. A modified Newton's second law is
givenin (23). Section 2.3 discusses observer Lorentz transformations of the coefficients, relating coefficients
in the Sun-centered equatorial frame to a standard laboratory frame. The boosts are calculated to the first
order in velocity, resulting in (37).

Section 3 contains several applications. Tests of the the weak equivalence principle are discussed
in Section 3.1, including tests involving free-fall experiments [72-76], the space-based MICROSCOPE
experiment [79], and torsion-balance experiments [81-85]. Implied bounds on isotropic Lorentz violation
from these experiments are given in Table 1, demonstrating sensitivities down to ~10713 GeV*~ to
dimension 4 violations.

Planetary orbits are discussed in Section 3.2. The effects of Lorentz violation include a drift in
eccentricity, a rotation of the orbital plane, and periodic variations about conventional orbits. The small
eccentricities of Earth and Venus limit Lorentz violation at the ~ 10~2 GeV*~ level. The approximate
alignment of the planets’ orbital planes leads to bounds of ~ 10~'2 GeV*~“. Improvements on these
rough constraints are expected in detailed studies of planetary ephemerides [92,93] and through lunar
laser ranging [94-96]. Binary pulsars offer another promising area of study that is particularly sensitive
to Lorentz violations in neutrons [12,40,97-101].

Section 3.3 gives the Lorentz-violating Lagrange density for continuous media (51). The shift in
resonant frequency in piezoelectric acoustic resonators is calculated, including boost effects. The shifts
vary periodically at frequencies involving the the turntable rotation rate, the Earth’s sidereal rotation
rate, and the Earth’s orbital frequency. Experiments have demonstrated sensitivities at parts in 10'4
to dimension d = 4 Lorentz violations [63], and are expected to reach 10716 GeV*~ to arbitrary
dimension d violations [103].

These results show that extreme precision can be achieved in studies of spacetime symmetries
in macroscopic matter. While not as sensitive as the best of the microscopic tests [58-62],
experiments involving ordinary matter rely on different assumptions, and may provide access to
different combinations of SME coefficients and, therefore, represent a powerful tool in our search for
new physics.

Funding: This research was funded by the United States National Science Foundation grant number PHY-1819412.
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Appendix A

This Appendix A derives the symmetric product identity for spherical-harmonic tensors. See Ref. [68]
for a detailed discussion of the ﬁn tensors and the notation used here.

Expanding the symmetric product of two spherical-harmonic tensors on the basis of
spherical-harmonic tensors, we can write

+
NN N W (L My](lg\’/lf ) (A1)

m m j1mq jama ]
Jimy J2ma ™ Jimy j2ma

The A]Qf,ﬁi oM coefficients are nonzero for the usual angular-momentum-addition relations

M=my+myand j; +j» > ] > |j1 — j2| and for j; + j» — ] = even. The nonzero values are real and
given by
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(A2)

where the sum is limited to # values that give nonnegative arguments in all factorials, and we define

i +j+ 1)1 (0—j)!!
5}, = (1)]/2\/<2J'S—Q1>]e!(f)+n(5!(]]')—m)g , (A3)

for convenience.
Our derivation starts by considering the vector

¢ = eL + e, (A4)

for an arbitrary complex number {. The unit vectors &, = (&x +i&y)/V/2, &, = (&x —i¢y)/V/2, and é.
form a spin-eigenbasis for quantization along the z axis. A short calculation reveals that the j-fold
symmetric product of ¢ is

T =Y Cinl" Vim (A5)

where y]-m = yi

m Are the traceless spherical-harmonic tensors, and

12j—1)1

GG (A6)

for |m| < j. The symmetric product in (A5) serves as a generating function for the traceless
spherical-harmonic tensors. Note that ¢ - § = 0, which confirms that it is traceless.
Next, consider the inner product

g/)] ( j1m ®y]2m2) = (g@jl 'y]?:nq)(g@jz 'y]Zmz) ’ (A7)

where | = j; + j». The two sides of this equation evaluate to
ZCIMéMyIM ’ (y]'ﬁim © y]'*zmz) = C]'lmlC]'zngml-'_m2 ’ (A8)
M

which implies
C] 1M C]z my

Yim- (yhm] © y]émz) = OMmy-+my Cim (49)
The complex conjugate of this gives the Aﬁ]rfh i M coefficients for traceless tensors.
To find the inner product for tensors of nonzero trace, we consider traces of the product
C1 "o 6o k= Z Chimy Cjymy & gzmzyh"ﬁ © Viymy - (A10)

mymy

Using &, - & = —({1 — {2)?/20102, one can show that taking N traces gives
N .N

(—010)Ng™N (@Uh ® ';"OJZ) = 7(].1]1;;&(@1 - Cz)ZNC?(h_N) ® C;DUZ_N) , (A11)
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where g is the euclidean metric, and x* indicates the falling factorial. Matching terms by their powers
in ¢1 and &, we find

ENI(=DNRAE A

ON _
8§ jm ©Vma) - = 7V5C,s Com H;On!@an)!C(jl—N>(ml+N—n)C(jz—N><mz—N+n>

XYy N) (my+N-m) © V(i N)(my—~N-+n) - (A12)
Finally, the identities
o _ 0 ol(o—j
Vi = DjVm0Og 2le=7)
0 ON 0  _ 0—2N ~,0—2N
D™ Vi = D "V (A13)

where

0!(2j+1)!

G 7)1 * (Ald)

can be used to show that

D§1+92y](]QV1I+Q2)* . (le oY2

Jimy J2m2

1+ 1472 5 )% Sl
) = Dﬁlp},!;zD? 12D1]1+]2y]M. (g22+=D) (Vs © Vimy)) - (A15)
Combining (A15) with identities (A12) and (A9) yields the final result in (A1) and (A2).
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