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Abstract

The emergence of radio frequency (RF) dependent device-

free indoor occupancy detection has seen slow acceptance

due to its high fragility. Experimentation shows that an RF-

dependent occupancy detector initially performs well in the

room to be sensed. However, once the physical arrangement

of objects changes in the room, the performance of the classi-

fier degrades significantly. To address this issue, we propose

BLECS, a Bluetooth-dependent indoor occupancy detection

system which can adapt itself in the dynamic environment.

BLECS uses a reinforcement learning approach to predict the

occupancy of an indoor environment and updates its decision

policy by interacting with existing IoT devices and sensors

in the room. We tested this system in five different rooms for

520 hours in total, involving four occupants. Results show

that, BLECS achieves 21.4% performance improvement in

a dynamic environment compared to the state-of-the-art

supervised learning algorithm with an average F1 score of

86.52%. This system can also predict occupancy with a maxi-

mum 89.23% F1 score in a completely unknown environment

with no initial trained model.
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1 Introduction

Indoor occupancy detection is a difficult problem, yet a

reliable solution can yield a wide range of applications includ-

ing home automation, energy savings, optimized ventilation,

and pet monitoring. Until now, several approaches have been

proposed to solve the device-free indoor occupancy detec-

tion challenge. The most common and intuitive solution is

to use motion sensors. However, motion sensor-dependent

systems often exhibit poor performance as they provide false

predictions when the occupant is not moving. Another popu-

lar approach proposes installing radar at the zone transition

point (i.e. doors) where the system counts the number of

people entering or exiting the room [13, 14, 16ś18, 22]. This

scheme often cannot differentiate between a near-door event

and a real crossing, also confuses the count when a group of

people walks through the door in conjunction. Other alter-

native solutions use environmental data of a room such as

𝐶𝑂2, humidity, or temperature to infer occupancy [2, 3, 34].

However, environmental data changes slowly with respect

to human presence and as such this system fails to make

correct prediction instantaneously.

Recent advances in wireless sensing techniques provide

a new solution to infer occupancy from the radio signal

distortion caused by human presence [5, 12, 23, 27, 29, 31, 32,

36ś38]. The intuition behind this technique is that human

presence impacts the wireless signal through body reflection

which reduces the similarity of the signal pattern between

occupied room and unoccupied room. A signal processing

algorithm or a machine learning model trained to identify

the pattern of an empty room and the occupied room could

detect human presence instantaneously.

A common limitation of this approach is that, to iden-

tify human presence in all kinds of indoor environment it

requires a large database of every occupied scenario in differ-

ent indoor environments. In practice, this is not possible as

human behavior and movements are very random. As such,

existing RF-based schemes suffer from high false positive
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of the time, the agent receives the actual feedback and 5% of

the time the feedback is reversed by the reward generator.

Combining feedback from both IoT devices and environ-

mental sensors is essential for successful reinforcement learn-

ing in BLECS. We empirically observed that using feedback

only from devices occupants interact with, causes BLECS to

achieve a high precision score but a very low recall score

over time. This occurs because these devices only provide

feedback when the room is occupied, and the RL agent gets

positive reward for correctly classifying the room as occu-

pied, but no negative reward for misclassifying the room as

occupied. Hence, with time the agent is inclined to predict

the room as occupied more frequently, rather than predicting

the room as unoccupied. Involving environmental sensors

solves this problem as they can provide feedback when the

room is unoccupied and the RL agent can get negative reward

for misclassification. Involving environmental sensors also

increases the feedback generation frequency since, unlike IoT

devices, environmental sensors do not depend on the human

interaction. However, using only environmental sensors for

feedback generation has its own problem. The feedback from

environmental sensors are often erroneous and we observe

that the agent fails to achieve a good performance with the

absence of user-focused devices.

4 Learning Algorithm

In this section, we describe the learning methodology of

BLECS. We start by explaining the underlying DQN algo-

rithm. We then describe the enhancement of the basic DQN

algorithmwhich enables BLECS to train an agent using radio-

frequency parameters. Table 1 represents the notation used

in our study.

4.1 The DQN Algorithm

Reinforcement learning is a framework where at each time

step 𝑡 an agent observes a state 𝑠𝑡 in an environment, takes

an action 𝑎𝑡 based on the observation, and receives positive

or negative reward 𝑟𝑡 for the action taken. The objective of

the RL agent is to find an action policy 𝜋 that would maxi-

mize the expected cumulative reward [
∑∞

𝑡=0 𝛾
𝑡𝑟𝑡 ], where 𝛾

is the discounted rate. 𝛾 −→ 0 means immediate reward maxi-

mization is preferred, and 𝛾 −→ 1 means far-sighted reward

maximization is preferred.

Deep Q-network (DQN) is one of the approaches to find

the optimal action policy. In this approach, a deep neural

network (policy network) is used, which for a given envi-

ronment, accepts a state 𝑠𝑡 as input and gives 𝑄 (𝑠𝑡 , 𝑎𝑡 ) as

output (Figure 4). The agent takes the action 𝑎𝑡 that satisfies

max
𝑎𝑡

𝑄 (𝑠𝑡 , 𝑎𝑡 ) and receives a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ). The objective of

the policy network is to find a policy 𝜋 that will approximate

the optimal Q-function 𝑄∗ (𝑠𝑡 , 𝑎𝑡 ). This optimal Q-function

Table 1: Notation

Symbol Description

𝜋 Policy

S, 𝑠 State space and state

A, 𝑎 Action space and action

F, 𝑓 Feedback space, feedback

𝛾 Discounted rate

𝑟 Reward

𝑡 Time

𝑄 Q-function; output of the network

𝜏 Temporal difference error

𝐷 Replay memory

𝑀 Replay memory size

𝑒 Replay memory tuple

𝑛 Number of states concatenated
−→
𝑡 𝑓𝑡 ,

−→𝑟𝑠𝑡 ,
−−→
𝑝𝑑𝑡 State parameters ToF, RSSI, PDE

𝜖 Exploration probability

L Loss function

𝜃𝑝 , 𝜃𝑡 Network parameters

𝑁 Total steps required to sync. 𝜃𝑝 and 𝜃𝑡
𝐵 Batch size

𝛼 Learning rate

𝐸 Total epochs

𝑘 Number of transmitters

𝑇 Model update interval

𝑈 Samples collected during 𝑇

maximizes the expected cumulative reward for each possible

(𝑠, 𝑎) tuple. In other words,

𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = max
𝜋

𝑄𝜋 (𝑠, 𝑎); for all 𝑠 ∈ S and 𝑎 ∈ A(𝑠) (1)

where, S represents set of all states and A(𝑠) represents

set of all possible actions for state 𝑠 .

A key property of 𝑄∗(𝑠𝑡 , 𝑎𝑡 ) is that it always satisfies Bell-

man’s optimality equation. That is,

𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 ·max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) (2)

where,𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) is the next-step’s optimal Q value. In

order to calculate 𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) we do a second pass to the

policy network using the next state 𝑠𝑡+1 as input. From the

output of the second pass max
𝑎𝑡+1

𝑄 (𝑠𝑡+1, 𝑎𝑡+1) is calculated.

Once we know the optimal Q-value,𝑄∗, we subtract the in-

ferred Q value from𝑄∗ and calculate the temporal difference

error (𝜏) incurred for the state-action pair (𝑠𝑡 , 𝑎𝑡 ).

𝜏 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 ·max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 ) (3)

After the error is calculated, the weights within the pol-

icy network are optimized using gradient descent and back-

propagation.

Target network: At each iteration over the dataset we

first pass state 𝑠𝑡 to the policy network in order to retrieve

𝑄 (𝑠𝑡 , 𝑎𝑡 ). Then we do a second pass to the network using 𝑠𝑡+1
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Table 4: Exploring related research

Theme Reference General Idea Limitations

Fingerpr-inting [7, 29, 30, 33, 35, 40,

41]

Recognize dissimilarities between

RF measurements

applicable in stationary environ-

ment only

Threshold [23, 27, 28, 31] Compare RF measurements with a

predefined threshold

Low performance when occupant is

still

Respiratory [15, 25, 31] Development of RF profile from

chest motion

Requires a dense link of networks

Environ-mental

Sensors

[2, 3, 6, 10, 34] Measure 𝐶𝑂2, temperature of hu-

midity

Not instantaneous

Ultrasound, RFID,

Infrared, Camera

[4, 8, 20, 21, 24, 26,

39]

Monitor a space to detect change in

sensor data

Privacy violation or need a con-

trolled environment

Door sensor [9, 13, 14, 16ś18, 22] Monitor entrance of a space Low accuracy in near door event

Impact of number of occupants: To identify the im-

pact of number of occupants we monitored BLECS over a

seven-day period in the bedroom. Figure 17 shows the aver-

age accuracy BLECS achieves with respect to the number of

occupants present in the room. As can be seen, with increas-

ing number of occupants performance of BLECS increases

to some degree. This is due to the fact that an increasing

number of occupants creates more disruption over the noise

profile and as a result the RL agent can differentiate between

the silent profile and noise profile with higher accuracy.

Execution time: Figure 18a shows the time required for

BLECS to make one prediction. On average BLECS requires

1.29 seconds to collect data from three transmitter BLE de-

vices, aggregate four consecutive signals, preprocess the

sample and make a prediction with the sample. Figure 18b

illustrates the required time to update the model. Initially,

when the replay memory is not full it requires less time to

update the model. Once the memory is full BLECS requires

on average 6.74 minutes to update the learning model.

Energy consumption: Using the nRF52 power-profiler

test kit, we monitored how much energy the transceiver

BLE and transmitter BLE consumes. From our analysis, the

transceiver BLE node draws only 20.5mJ power on average to

collect data from six transmitter BLE devices, process the data

to infer RF features and forward the features to the gateway

application. Each transmitter BLE draws less power (3.0 mJ

on average) over one cycle of data collection since its only

task is to communicate with the transceiver BLE device. Our

system design facilitates 𝐵𝐿𝐸𝐶𝑆 to predict occupancy in a

continuous fashion. We believe, by controlling the prediction

frequency, the average energy cost could be further reduced.

We intend to incorporate such control mechanism in our

future work.

7 Related Work

Recent years have seen many efforts to device-free hu-

man sensing using wireless signals. Unobtrusive, wireless

occupancy detection systems works via analyzing the hu-

man impact on propagated signals, with no device attached

to human body. These techniques can be broadly grouped

into two categories: RF-based techniques and Non RF-based

techniques. In Table 4 we summarize the existing occupancy

detection techniques.

7.1 RF-Based Techniques

This approach can be bundled into three groups: a finger-

printing based approach, a threshold-based approach, and a

respiration detection approach. The fingerprinting-based ap-

proach attempts to recognize dissimilarities between the CSI

measurements caused by human presence in the occupied

room and unoccupied room. Soltanaghaei et.al. proposed

PeriFi which can detect people with no movement by ana-

lyzing multipath reflections of WiFi signals [29]. Rapid[7],

proposed by Chen et.al. is another framework that analyzes

CSI and acoustic information for robust person identifica-

tion. FreeSense[33] captures the human influence over CSI

measurement by performing a series of operations including

principal component analysis, dynamic time wrapping, and

discrete wavelet transform. WiWho[35] is another device-

free sensing scheme that analyzesWiFi signals to find charac-

teristics which can distinguish a person from a group of peo-

ple. Other alternate approaches [30, 40, 41] use commodity

WiFi routers and analyze the variations in RF measurements

to predict human presence.

Threshold-based wireless sensing approaches compare

RF features such as RSSI measurement with a predefined

threshold [23, 27, 28, 31]. This approach is able to provide

prediction with high accuracy when the occupant is moving,

however, often fails when then occupant is stationary.

A common limitation of fingerprinting-based and threshold-

based approaches is that they can only operate in a stationary

environment where they are initially trained [28, 33, 35, 40].

We notice that when the system is stationary these systems

achieve up to 91% accuracy, but if the environment is dy-

namic accuracy falls to 70%. Moreover, the energy cost and
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deployment complexity of these schemes are very high due

to involvement of WiFi routers. Our work, on the other hand,

can profile the dynamic nature of environment through pe-

riodic updates to the the learning model, is easily to deploy,

and draws minimal current.Respiration detection is another

popular approach for human sensing, where, a particular RF

profile is developed caused by chest motion during breathing

[15, 25, 31]. Using commodity WiFi devices this approach de-

tects a certain breathing pattern and detects human presence.

Although this scheme performs well in certain scenarios, it

requires a dense network created by many transceivers.

7.2 Non RF-based Techniques

There exists various approaches which use environmental

sensors for human sensing. By measuring 𝐶𝑂2, temperature,

and humidity [2, 3, 6, 10, 34] variation in the room these

schemes determine indoor occupancy. Although these ap-

proaches are fairly accurate when the room is occupied or

unoccupied for long period, they are incapable to provide

instant prediction since the alteration of𝐶𝑂2 or temperature

is slow with respect to human presence. Moreover, this ap-

proach requires complex tuning for different window/door

opening setting.

Other approaches involve door sensors [9, 13, 14, 16ś

18, 22] to detect human entrance or exit. This approach often

fails to decide the occupancy situation of the room as it con-

fuses its count if there is a near door event or if multiple

people walk through the door simultaneously. Some pioneer-

ing solutions use ultrasonic sound [20, 24], infrared [4, 8],

Camera [26], RFID [39], and electric field sensor [21] for

occupancy detection. Deployment of camera or the infrared

sensor increases the localization and occupancy detection

capability however with a cost of increased privacy violation.

Ultrasound sensors, RFID and electric field sensors on the

other hand involves complex signal processing steps operate

in an extremely controlled environment.

8 Limitations and Future Directions

Edge cases limitation: In this paper, we primarily fo-

cused on enabling RF-based sensing to work in changing

spaces. We have not evaluated BLECS in a few corner cases

such as multiple people entering or exiting the room, and

people walking through the doorway. In future work, we

intend to test and facilitate BLECS to work in these scenarios.

Robust feedback system: We have used a straightfor-

ward approach to provide feedback using𝐶𝑂2 concentration

level. We would like to incorporate advanced 𝐶𝑂2 based

occupancy detection techniques that can work in different

ventilation system to make the feedback system more robust.

An interesting alternative would be to see how a motion

sensor-based feedback system would work in lieu of 𝐶𝑂2-

based feedback system.

Counting occupants: We have designed BLECS to pre-

dict whether the room is occupied or not. We believe, by

modifying our existing 𝐶𝑂2 based feedback mechanism we

could extend BLECS to count the number of people inside a

room.

Incorporating AoA and AoD: A major feature added in

new commodity BLE devices is the capability of direction

finding. Our future endeavour would be to find angle of ar-

rival (AoA) and angle of departure (AoD) using existing BLE

beacons which we believe could offer improved performance.

Multi-agent reinforcement learning: The BLECS RL

agent works in a single-agent environment. An exciting ex-

tension of this platform would be in a smart-building where

multiple agents deployed in various rooms could collaborate

for better prediction.

9 Conclusion

Accurately detecting when a room is occupied has proven

to be a thorny challenge, with a system that is inexpensive,

accurate, and privacy-preserving remaining elusive. How-

ever, BLECS revisits this challenge in light of several trends:

i) promising wireless sensing techniques, ii) a wealth of ma-

chine learning approaches, and iii) an explosion of IoT de-

vices. By sacrificing some capability yet reducing the power

requirements of wireless sensing, BLECS can accurately de-

tect occupancy without privacy-invasive sensors (e.g. cam-

eras), is easily deployable, and adapts over time to changes in

the environment. Central to extracting the necessary signal

from the wireless channel measurements is a new reinforce-

ment learning-based technique that learns from existing IoT

devices. Importantly, this is not a black-box approach and

our algorithm is stable with changes to its hyperparameters.

After implementing and deploying BLECS, we demon-

strate the accuracy of this approach with a maximum 89.23%

F1 score for occupancy detection in an unknown environ-

ment after six hours. Requiring only four BLE-based devices,

BLECS can be retrofitted in existing buildings to enable the

responsive, occupant-driven applications smart buildings re-

quire. Further, BLECS provides an example for howmatching

the correct machine learning approach to a new data stream

(in this case wireless sensing with BLE) can produce new

solutions to long-standing sensing challenges.
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