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A B S T R A C T   

Background: Extreme heat in light of climate change is increasingly threatening the health and comfort of urban 
residents. Understanding spatio-temporal patterns of heat exposure is a critical factor in directing mitigation 
measures. Current heat vulnerability indices provide insight into heat sensitivities within given communities but 
do not account for the dynamic nature of the human movement as people travel for different activities. Here, we 
present a new Dynamic urban Thermal Exposure index (DTEx) that captures the varying heat exposure within 
urban environments. 
Methods: We developed the DTEx to understand human heat exposure patterns in a mid-sized city. This index 
incorporates the human movement pattern and the heat hazard pattern obtained via novel and advanced 
techniques. We generated the human movement pattern from large-scale, anonymized smartphone location data. 
The heat hazard patterns were extrapolated via machine learning models from air temperature data measured 
through vehicle-mounted sensors. The exposure index was then developed by combining the two parameters 
using their standard-deviation-classified indices. 
Results: Our exposure index varied between 2 and 12, indicating low to high thermal exposures. Several high- 
temperature spots associated with a large volume of foot traffic are successfully identified through this DTEx. 
We observed the hottest spots at shopping plazas but not specifically in the urban center. During the selected 
football gameday, the exposure index surged across most places near the football stadium but was reduced 
considerably further away. 
Discussion: The proposed DTEx is novel because it provides dynamic heat monitoring capability to facilitate heat 
mitigation strategies at vulnerable locations in urban environments. Combining the mobility data and extensive 
sensor data generates rich details on the most heat-exposed areas due to human congregation. Such information 
will be critical for risk communication and urban planning for policymakers. DTEx could also help smart route 
planning in sustainable cities to avoid heat hazards risks.   

1. Introduction 

Heat is the leading weather-related killer in the U.S. It kills more 
people than hurricanes, tornadoes, and floods (Klinenberg, 1999; NWS, 
2007). Taking the example of 2019, the 2nd hottest year for the whole 
earth, historic highs across the globe exceeded all previous records 
(NOAA, 2020). Heatwaves pose increasingly severe threats to people as 
they last longer and become more intense because of climate change 

(Della-Marta et al., 2007; Russo et al., 2017). Cities are especially at 
elevated risk with denser populations and impervious surfaces, which 
increase air temperatures and enhance the urban heat island (UHI) ef
fects. Nevertheless, urban areas have highly complex land use land cover 
development that leads to diverse temperature patterns (Coseo and 
Larsen, 2014; Jenerette et al., 2016). 

To help identify at-risk communities, various heat exposure indices 
and heat vulnerability indices (HVI) have been developed (Reid et al., 
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2009; Wolf and McGregor, 2013). These indices blend the social- 
economic status (e.g., chronic disease, health insurance, income) (Dol
ney and Sheridan, 2006; Johnson and Wilson, 2009; O’Neill et al., 
2005), and in some cases, physical factors (e.g., land cover type and 
green space) (Reid et al., 2009) for assessing heat risk. The indices are 
designed to identify places that need increased mitigation measures in a 
static sense, usually at the county or census tract level. Several studies 
have demonstrated the validity of these indices by showing populations 
at higher exposure locations have greater mortality rates in response to 
hot days (Maier et al., 2014; Reid et al., 2012). However, the impact of 
such HVIs is mixed. Some governments and policymakers have adopted 
these indices to enhance urban resilience by efficient urban heat miti
gation planning (Kong et al., 2014; Oliveira et al., 2011). In contrast, 
some others found a gap between the research and real-world imple
mentations (Grundstein and Williams, 2018; Wolf et al., 2015). Some 
reasons are the lack of reliability study of HVIs, many uncertain factors 
of the input datasets, and not incorporating microclimates and other 
hyperlocal factors. 

Heat exposures are highly dynamic along spatial and temporal di
mensions due to the changing weather patterns and are affected by 
human movement and behaviors. People have different time-activity 
patterns that may lead to vastly different heat exposure degrees (Kuras 
et al., 2015). For instance, people may congregate in specific locations 
away from their residence (e.g., retail establishments, sporting events) 
at certain times that may affect their heat exposure, thus changing a 
region’s heat hazard profile (Kuras et al., 2017). Therefore, human 
movement data need to be included in identifying where people gather 
and visit the most. Another key to a dynamic heat exposure index is the 
use of hyperlocal ambient air temperature (AAT) that an individual 
experiences over a complex urban environment rather than the use of 
static land surface temperature (LST) data from satellites or coarse res
olution weather station temperature data, which may not represent the 
spatial variability in AAT (Barnett et al., 2009). Many current heat 
exposure studies use LST due to insufficient AAT data (Jenerette et al., 
2007; Liu and Zhang, 2011; Yuan and Bauer, 2007). However, satellite- 
derived LST is not strongly correlated with AAT and does not have the 
high temporal resolution to best capture variations throughout the day 
or even week (Ho et al., 2016; Kloog et al., 2012; Yin et al., 2020). 

With the development of location-based technology and the prolif
eration of smartphones, mass population movement can be tracked with 
reasonable accuracy (Lu et al., 2013). Many studies have implemented 
the crowdsourced human movement pattern data in identifying neigh
borhood isolation (Prestby et al., 2020), calibrating business analysis 
models (Liang et al., 2020), improving disaster response (Bengtsson 
et al., 2011), and studying human behavior under different circumstance 
(Gao et al., 2020). Another type of crowdsourced data comes from smart 
sensors that can gather high-resolution data on environmental param
eters to improve weather monitoring and measurements (Anjomshoaa 
et al., 2018; Eisenman et al., 2006; Honicky et al., 2008). Some studies 
blend smart sensor data with other biophysical parameters using ma
chine learning techniques, and the generated AAT products can cover a 
larger area with precise predictions (Hashemi Tonekaboni et al., 2018; 
Yin et al., 2020). Such data can help identify human movement and 
exposure risks in heat exposure studies at any point in time. Therefore, 
the exposure assessment that combines these two dynamic factors can 
effectively indicate the heat hazard variability between places and 
communities. Other factors pertaining to people’s social-economic sta
tus (SES) can also contribute to a more comprehensive index, but 
currently, due to the privacy issue, such information has not been 
included. 

Our research seeks to build upon the concept of a heat exposure 
index from a different perspective that accounts for microclimatic 
thermal conditions and sub-population exposure. To achieve that, we 
seek to develop a thermal exposure index that can couple the thermal 
variability in complex urban environments with variable human 
mobility patterns. The index should have a mechanism to account for the 

highly variable temperatures typically experienced in urban environ
ments using a novel high spatial and temporal resolution AAT dataset 
blended with smartphone extracted location data on human movement. 
Our overarching objective is to develop and test a Dynamic Thermal 
Exposure index (DTEx) that combines hyperlocal AAT with population 
exposure, which will be useful for both mitigation measures and inter
vention strategies. Our secondary objective was to demonstrate the 
index’s utility using two highly contrasting foot traffic days in ACC, a 
regular Saturday vs. an American College Football gameday, Saturday. 
The novelty of this index lies in the fact that it incorporates two highly 
granular and dynamic datasets acquired using advanced techniques that 
prevent large-scale averaging effects prevalent in traditional coarse 
resolution datasets. We present a case study of this index for a medium- 
sized county. 

2. Methods 

We used Athens-Clarke County (ACC), Georgia, U.S. as the study 
area. ACC is a midsize metropolitan area with a population of approxi
mately 120,000 and is located in a humid subtropical climate in the U. 
S’s southeastern region. Several past heat exposure studies have docu
mented that this area has high heat exposure with hot-humid summers 
and multiple socioeconomic exposure factors such as poorly planned 
neighborhoods and a high poverty rate (Johnson et al., 2012; Maier 
et al., 2014; Reid et al., 2009). Here, a poorly planned neighborhood has 
crowded houses, minimal green space, and little open space within and 
between blocks (Harlan et al., 2013). Nevertheless, ACC has diverse 
microclimates (Murdock et al., 2017) represented by highly urbanized 
locations and those with more green space, and a mobile population that 
travels for work, school, and shopping, along with extensive social ac
tivities like sporting events that bring hundreds of thousands of people 
to the area. The primary focus of our analysis was to evaluate human 
mobility as a critical element in identifying heat exposure for ACC. 
Therefore, we coupled human mobility information with hyperlocal 
AAT data to analyze heat exposure. 

2.1. Exposure data 

Foot traffic patterns are identified using data from SafeGraph for 
September 2019 (“Places Schema,” n.d.). This dataset allows us to 
identify foot traffic patterns to recognize the frequently visited places in 
a community. SafeGraph collects location data from numerous mobile 
applications, which covers millions of users to provide insights into 
businesses and human activities. These data were generated from 
smartphones with coordinates and corresponding timestamps to anno
tate the devices’ spatio-temporal placement. These data were then 
aggregated to the counts of foot traffic visits to each location at a specific 
time range to eliminate private information for increased privacy. 
Finally, these coordinates were published showing when customers 
visited a particular establishment and which community contributed the 
most customers. It worth mentioning that based on the above algorithm, 
human mobility in residential and rural areas was missed, and people 
without a smartphone were also not represented in this dataset. How
ever, according to the official document from the vendor (SafeGraph), 
the original mobility data is a comprehensive sample representing 
people from all income groups, age groups, residential zip-codes, and 
education levels (Squire, 2019). Therefore, even though people without 
cell phones were missed, the dataset is still a representative sample of 
the population. Furthermore, our study focuses on popular public 
spaces, so not including residential areas, which are typically low foot 
traffic areas, will not substantially alter our results. 

In our research, we first applied data filtering to extract the visits to 
different points of interest (POIs), which are all the commercial and 
public areas in ACC, from the original SafeGraph database. Then we 
created a 10-meter buffer around the polygons of all POIs to indicate the 
possible scopes of human movement. Specifically, we selected the 
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counts of noontime foot traffic visits (11 am–1 pm) during September, 
the third warmest September on record in ACC (NOAA and N.W.S., 
2020). The selected counts show how many people visited each location 
in ACC between 11 am and 1 pm during September 2019. We also 
compared our index on different days, where we selected the counts of 
foot traffic visits for two days: an American football home game day on 
Sep 21st, 2019, and a typical Saturday, Sep 28th, 2019. The above two 
days had close temperature range (Sep 21st: 61–84◦F/16–29 ◦C, Sep 
28th: 72–82◦F/22–28 ◦C). 

2.2. Heat hazard data 

We used high-resolution AAT data to represent community-level 
heat hazards. The AAT product was generated from a machine 
learning framework presented in Yin et al. (2020) that blends bus-borne 
temperature data, satellite LST products, and surface biophysical pa
rameters such as canopy shading, solar radiation, and weather station 
temperature. In brief, we equipped 40 city and UGA campus buses with 
Arduino microprocessors operated fast-response (every 5 s) air tem
perature sensors. Each sensor included an AdFruit M0 Feather micro
processor, a real-time clock, a GPS unit, a DS18B20 waterproof 
temperature sensor, a battery set, a micro SD card, boards and wires that 
connect the components, and the parts above are all sealed in an IP67 
waterproof box (Yin et al., 2020). Using these bus sensors, we repeatedly 
measured daytime and nighttime AAT over 2 years during summer and 
fall seasons for every bus route within Athens, GA, and collected more 
than 10 million data points. AAT is the key parameter to illustrate 
human thermal exposure, whose distribution is highly correlated with 
land cover, solar radiation, canopy shading, and other biophysical pa
rameters (Makido et al., 2016; Voelkel and Shandas, 2017). Therefore, 
we applied the Random Forest model to expand our collected AAT data 
along bus routes to create AAT maps covering the entire Athens, GA 
area. These AAT maps have a resolution of 30-meter and can capture 
variability within urban environments (Yin et al., 2020). The model 
output expands the original temperature data coverage to different land 
types across ACC yet still possesses a high accuracy with less than 1 ◦C 
mean absolute error (MAE). Because the business foot traffic counts 
were aggregated to the whole month of September for each hour of a 
day, we also averaged all the output noontime (11 am–1 pm) AAT maps 
of September 2019 (see Fig. 1). 

The map on the left is the September noontime foot traffic map for 
ACC. We can identify several known popular POIs, for example, the UGA 
campus in the center, several shopping plazas between road sections, 

State botanical garden beneath the UGA campus, the Athens Country 
Club with a light-green color right outside the northern perimeter, the 
Sandy Creek Natural Center with a blue color east to the Country Club, 
and many small POIs along the roads. The map on the right is the AAT 
temperature map, with blue color indicating colder temperatures and 
red color indicating warmer temperatures. Most red areas are located at 
the ACC downtown, the UGA campus, and along the roads because these 
are places with the most impervious surface and least greenspace. 
Coupling these two maps together, we can assume the ACC downtown, 
the UGA campus, and POIs along roads might have higher heat expo
sure. However, the only way to get the exact result is to calculate the 
index using our proposed method. 

2.3. Dynamic thermal exposure index (DTEx) 

We developed DTEx using two novel datasets, the machine learning 
model derived AAT, and the cellular phones derived population expo
sure data. In developing the index, we followed a similar procedure to 
Reid et al. (2009). Reid’s index and other traditional indices were all 
constructed with many not normally distributed data. However, these 
indices do not require an accurate discretizing of the original data but a 
clear separation between extremes and normal. Therefore, Z score, 
which is the number of standard deviations a data value lies from the 
mean in the dataset it comes from, becomes our choice (Larson et al., 
2009). First, we standardized the AAT and movement data using a z- 
score and then assigned an ordinal value from 1 to 6, where 1 corre
sponds to the smallest value and 6 to the highest value (Table 1). Z scores 
with an absolute value greater than 2, which is 1 and 6 in our index 
value, are considered unusual have been previously used in vulnera
bility and exposure index calculations (Pauline et al., 2020). This was 
done to minimize the impact of possible outliers and to foster ease of 
interpretation. We also assumed that the two variables carried the same 

Fig. 1. Noontime exposure and heat hazard map of ACC for September 2019, (a) Exposure map (places with ≤1 visit are not colored); (b) AAT Heat hazard map.  

Table 1 
. Categories created by observed distributions.  

Category Assigned Value 

≥ 2 SD below mean 1 
1–2 SD below mean 2 
< 1 SD below mean 3 
< 1 SD above mean 4 
1–2 SD above mean 5 
≥ 2 SD above mean 6  
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weight in quantifying total heat exposure for any given location. In the 
end, the heat exposure index had a scale from 2 to 12, with 12 repre
senting the worst possible heat exposure within the community. 

3. Results 

3.1. Comparison between constructed DTEx maps vs. AAT and foot traffic 
maps 

The DTEx map for September 2019 is shown in Fig. 2.c. To elaborate 
on how this index precisely considers the human foot traffic and its 
utility, we examined several different communities in the ACC area in 
zoomed-in views and circled with black outlines (Fig. 3 a-c). Area 3a, 
downtown Athens, hotter than the non-urbanized areas but had mod
erate foot traffic, leading to its slightly above average DTEx 6.5. Area 3b, 
Sandy Creek Park, is a popular destination for recreational activities but 
had lower temperatures because of the ample green space. Therefore, 
most of the parks had low DTEx. Area 3c, the UGA Health Science 
Campus, where many people walk around during noontime and is a 
typical urbanized area with higher temperatures, resulting in a high 
DTEx. 

3.2. Comparison between DTEx on a high foot traffic day vs. A regular 
day 

Existing heat vulnerability maps are static because of the nature of 
the input datasets and, therefore, do not represent the variations in heat 
hazards and heat exposure over frequent time intervals and with 
different population exposures. To demonstrate DTEx’s potential to 
capture temporal variations as frequently as every 1-hr interval, we 
present DTEx maps for two different scenarios with the same AATs but 
different foot traffic: a typical Saturday and an American college football 
game day. On this game day, it was reported that up to 150,000 visitors 
visited the town, with more than 93,000 people sitting in the stadium 
(Grady Newsource, n.d.). This is also clearly shown in the foot traffic 
maps below, where downtown and the UGA Campus received much 
more visits than a regular Saturday (Fig. 4a). Simultaneously, suburban 
and rural businesses and parks experienced significantly lower visits 
(Fig. 4b). We combined these two foot traffic maps (Fig. 4a and b) with 
the same heat hazard map to generate the game day DTEx map (Fig. 4c 
and d) because two days have a close maximum temperature (Sep 21st: 
84◦F/29 ◦C, Sep 28th: 82◦F/28 ◦C). 

The map illustrates the variations in heat exposure between the two 
scenarios, even with the same heat hazard. There were large increases in 
DTEx, ranging from 2 to 5 in standardized indices throughout the near- 
campus community and downtown businesses because of the increased 
foot traffic on game days in particular locations in the city. Fig. 4e, a 
regular Saturday, a golf course on the top left of the map, a botanical 
garden on the bottom center, several shopping plazas, and business on 

the left/west side are popular destinations with a total DTEx of 9–12 
(within the purple polygons). Simultaneously, the airport on the east 
side has few visitors, which results in a DTEx of 6–8, and most of the 
campus is between 8 and 10 in heat exposure (within the red polygons). 
On the contrary, during a home football game day such as on Sep 21st, 
only a few dozens of people went to the golf course or the botanical 
garden, which is clearly shown in Fig. 4f with a DTEx of 7 or less. The 
airport shows an increase of 2–3 in the index, and the majority of the 
campus has 11–12 DTEx because hundreds of people flew into the town, 
and the phone location data recorded more than 20,000 visits to the 
campus and the football stadium. Therefore, constructing this DTEx 
index can produce high-frequency DTEx maps for different scenarios 
throughout a year, either a regular weekday or a special day with sports 
or carnival events. Such an approach can simulate exposure under 
different circumstances for planning purposes and help planners choose 
mitigation measures between increasing green space and building 
temporal cooling stations more strategically to the targeted areas. 

4. Discussion and limitations 

While built upon concepts from previous heat vulnerability indices, 
our index is different in its focus on human thermal exposure rather than 
on adverse health outcomes. We identify the dynamic heat exposure 
patterns (both spatially and temporally) via human mobility data and 
extensive mobile sensor-network temperature data. These data are 
increasingly adopted in business analysis, contact-tracing (Gao et al., 
2020), environmental applications such as water quality analysis (Mis
hra et al., 2020), and high-resolution weather monitoring studies (Yin 
et al., 2020). Coupling these two aspects together, we identified this 
novel objective to construct an exposure index from dynamic human 
mobility and mobile-sensed temperature. Our index can provide 
knowledge about which places have constant high heat exposure and 
high exposure locations at specific days or times. Therefore, policy
makers and urban planning teams can choose different strategies for 
different scenarios. Greenspace and less impervious surfaces work better 
to alleviate permanent hot spots, while emergency/temporal cooling 
stations like a misting station will work better for occasional hot spots 
(Vanos et al., 2020). This study also features a 30-m AAT product. These 
index maps outperform the traditional maps at census block or county 
levels in identifying the at-risk places and communities within a com
plex urban environment. The contrast exposure observed between a 
regular day and a game-day illustrates high variability in these 30-meter 
maps. 

Another novelty is that most prior heat hazard studies do not account 
for human mobility; thus, AAT or LST maps solely contribute to iden
tifying the places vulnerable to high heat hazards. But now, the above 
DTEx maps, Figs. 3 and 4, allow us to identify locations with various 
heat exposures. Such information is useful for urban planners and other 
decision-makers to guide mitigation approaches. For instance, the UGA 

Fig. 2. Maps showing the construction of DTEx with (a) foot traffic standardized index, (b) AAT standardized index, and (c) the final DTEx result.  
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Health Campus’s high exposure might prioritize mitigating heat at that 
location compared with Sandy Creek Park. Also, this method can be 
easily replicated in other cities using similar crowdsourced smartphone 
data. AAT can be calculated by incorporating the required biophysical 
parameters into an easy-to-train machine learning model (Yin et al., 
2020). However, we recognize several limitations to our work. First, due 
to the limitation of the raw mobility dataset, we cannot determine if the 
visitors were indoor or outdoor. If any of these visitors were indoors, 
then the AAT may not represent their thermal environment during the 
indoor time. This is not a critical issue for our DTEx, which represents 
heat exposure variation. Firstly, for the case studies we presented in the 
manuscript, we knew that the discussed high DTEx places had many 
people congregated at outdoor spaces. Secondly, some POIs have many 
indoor visitors, for example, hotels, hospitals, and shopping malls. 
However, those people will experience outdoor heat exposure on their 
way to indoor locations, such as at the parking lot. Therefore, there will 
be a certain degree of correlation between outdoor AAT and exposure 
levels at those locations. Nevertheless, as a precaution, those high foot 
traffic indoor locations should be flagged in our DTEx maps and filtered 
as highly vulnerable locations. In this study, we presented case studies in 
which we can clearly contrast high DTEx places with highly congregated 
locations and relatively high temperature with low DTEx places with 
minimum human mobility events and relatively lower temperature. 
Overall, DTEx is responsive to the spatial–temporal dynamic of people 
and shows varying population heat exposure. If human outdoor mobility 
data become available in the future, we can easily extend and incorpo
rate such data in DTEx to explicitly describe outdoor human exposure 
variations. 

Second, our index accounts for conditions only in public spaces. 
Thus, this index would not be useful for individuals who do not travel to 
public places or businesses. Also, this index excludes people who take 
walks in their residential neighborhoods or rural areas. Another draw
back is the index is dependent on cell phone location, so areas with poor 
cell phone connectivity will be misrepresented. Although the sampled 
human mobility pattern is proven to be representative of the total 

population (Squire, 2019), there is still a small portion of people not 
included in the data and study. 

Third, we directly combine the two parameters in identifying heat 
exposure and assume equal significance between them. Previous studies 
have different formulas and algorithms to identify how much exposure 
was observed at a particular place, including multiplying the exposure 
time by exposure intensity (Int Panis et al., 2010; Morawska et al., 
2013), defining a threshold for heat hazard instead of using raw tem
perature to indicate heat hazard (Gabriel and Endlicher, 2011; Zhou and 
Shepherd, 2010). In our study, the same foot traffic visit might have 
significantly different thermal exposure, affecting thermal comfort and 
possibly health outcomes. For the exact foot traffic count, some people 
might only stay outside for a few seconds, while some workers might 
spend hours working outside. The most recent foot traffic data from 
SafeGraph now provides additional information such as dwell time for 
each POIs. In the next step, we will calculate the average dwell time for 
each POIs and then multiply the time with the visitor counts to get the 
cumulative exposure. 

Another limitation is that we have not assessed or validated our 
index via other established datasets. One possible solution is working 
with social scientists to survey people on thermal comfort in different 
areas. Another possible approach is to validate with a study of individual 
time-activity patterns to see how people behave at different places if 
more people linger or more people just directly go from cars to 
buildings. 

5. Conclusion 

We present a novel dynamic thermal exposure index (DTEx) that 
accounts for high-resolution heat hazards and heat exposure. This index 
uses crowdsourced foot traffic data and ambient air temperature data 
from a drive-by sensing and modeling framework to quantify and visu
alize spatio-temporal variations in community heat exposure. Our 
research demonstrates the capability of mobile environmental sensing 
and crowdsourced location data in heat exposure analysis at the 

Fig. 3. Specific communities that demonstrate the differences between DTEx, AAT, and Foot traffic map (a) Downtown Athens, (b) Sandy Creek Park, (c) 
Health Campus. 
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hyperlocal level under different scenarios. We shared two examples of 
how differently people experience heat hazards and how this is a scal
able and dynamic framework to be adopted in other cities. Furthermore, 
examining how neighborhood disparities of social-economic back
grounds affect mobility behavior and include social-economic infor
mation in exposure study can promote new findings. 

Once finetuned, in the future, if DTEx score can be distributed via an 
opt-in alert system such as a smartphone-based warning system, a health 
and age-related warning message or vulnerability alert can be sent to 
users with a few suggestions about “actions to take.” The users can then 
decide which suggestion they will follow based on their ages, health 
conditions, and preferences. If such location-based exposure warning 

Fig. 4. Foot traffic map and DTEx maps for UGA Campus and surrounding areas at (a) regular day foot traffic, (b) a game-day foot traffic, (c) regular day DTEx, (d) a 
game-day DTEx, (e) zoomed-in regular day DTEx, (f) a game-day DTEx, (regular Saturday: Sep 28th, 2019 the home game Saturday: Sep 21st, 2019). 
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can be issued to people’s phones, it will have a broader societal impact 
by generating critical community interests to create momentum for heat 
hazard policies at the local and state level. Including this index score in 
the alert system might also convince people to trust and follow the 
suggestions. We call on policymakers to facilitate scientific monitoring 
and research and explore possible low-cost but accurate monitoring and 
warning systems like what we have proposed in this study. 
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