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Abstract

Modern viral kinetic modeling and its application to therapeutics is a field that attracted the attention
of the medical, pharmaceutical and modeling communities during the early days of the AIDS
epidemic. Its successes lead to applications of modeling methods not only to HIV but a plethora of
other viruses, such as hepatitis C virus (HCV), hepatitis B virus (HBV) and cytomegalovirus (CMV),
which along with HIV cause chronic diseases, and viruses such as influenza, respiratory syncytial
virus (RSV), West Nile virus (WNV), Zika virus, and SARS-CoV-2, which generally cause acute
infections. Here we first review the historical development of mathematical models to understand
HIV and HCV infections and the effects of treatment by fitting the models to clinical data. We then
focus on recent efforts and contributions of applying these models towards understanding SARS-
CoV-2 infection and highlight outstanding questions where modeling can provide crucial insights and
help to optimize non-pharmaceutical and pharmaceutical interventions of the COVID-19 pandemic.
The review is written from our personal perspective emphasizing the power of simple target cell
limited models that provided important insights and then their evolution into more complex models
that captured more of the virology and immunology. To quote Albert Einstein “Everything should be

made as simple as possible, but not simpler”, and this idea underlies the modeling we describe below.

Modeling HIV infection and treatment

Simple models! 2 3 of viral dynamics provided surprising insights into HIV infection. One critical
element in modeling viral infections is keeping track of the change in viral load over time. For both
HIV and HCV, which generate chronic infections, one usually finds that after the acute phase of
infection, the virus and host come into accommodation, such that the viral load when measured over
periods of days, weeks or months stays relatively constant. This constant level is called the viral set-
point and to modelers, this means the viral-host system is at steady-state. To gain information about
the underlying processes that generate and clear the virus, one can perturb the system from this steady
state, for example by drug therapy. To understand the subsequent dynamics, what we now call the

standard model of viral dynamics was introduced*. This model, as shown in Fig. 1, keeps track of
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cells susceptible to viral infection, which virologists call target cells, T, infected cells, I, and virus, V

and their dynamics are given by the following system of ordinary differential equations (ODEs):

dT

EZS—dTT—ﬁVT (1a)
dl
L =BVT =3l (1b)
av
E=p[—CV (IC)

where target cells are generated at rate s, die at rate dr per cell and become infected with rate constant
B when virus, V, interacts with a target cell. Infected cells are generated at rate BVT and die at per
capita rate 9. Lastly, virus, V, is produced by infected cells at rate p per cell and is cleared at rate c per
virion. This system of equations (1) has been successfully used to model acute HIV infection if one
assumes that initially all cells are uninfected and at time /=0 a small amount of virus is introduced into
the body>. The model predicts that virus initially grows exponentially, reaches a peak, and then

settles at a constant level, called the set-point (Fig. 2A).

The model has also been used to analyze the effects of antiretroviral therapy (ART) by incorporating
into the model the effects of antiretroviral drugs. For example, reverse transcriptase (RT) inhibitors
block the ability of HIV to productively infect a cell. HIV protease inhibitors (PI) cause infected cells
to produce immature non-infectious viral particles, Vy;. Thus, in the presence of these drugs, the

model equations become?> ¢

dar
—_— =S — dTT — (1 — ERT)ﬁVIT
dt
dl
i (1 —err)BV T — 81 (2)
dv,
P (1 —ep)pl — cV,

T epipl — cVyy
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where err and ep; taken on values between 0 and 1, and represent the efficacies of RT and PI
inhibitors (e=1 being a 100% effective drug). Further, V| and Vy; are the concentrations of
“infectious” and noninfectious virus, respectively, and V= V| + Vy; is the total virus concentration.

An HIV entry inhibitor can be modeled in the same way as an RT inhibitor.

Equations (2) can be solved analytically if one assumes that during short-term therapy the number of
target cells, 7, remains at its baseline pre-therapy steady state value, T)=cd/ffp, and that therapy is

with a 100% effective protease inhibitor (epi=1, eg1=0). The solution is>©

CV()
-0

V(t) = Voexp (—ct) + -—5(-—lexp (—6t) —exp (— )] — texp (—ct)),  (3)

c

where V| is the set-point viral load before initiation of therapy. This solution only depends on three

parameters, V), ¢ and 8. Allowing the target cell concentration, 7, to vary necessitates using numerical

methods to predict V(?) but does not substantially alter the outcome of the analysis.

Fitting either the analytical solution (3) or the numerical solution of V(?) to patient derived viral
decline data allowed the first estimates of the rate of viral clearance, ¢, and the death rate of infected
cells, 3, in vivo to be obtained3. These estimates were minimal because in reality protease inhibitors
are not 100% effective (see Ref. 3 for details). Later analysis using the same method but fitting to
data obtained from patients treated with a four drug combination that is closer to being 100% effective
yielded an estimate of & = 1.0/day’. This implies that productively infected cells have an average
lifespan, 1/9, of about 1 day while producing virus and decay with a half-life t;, = In 2/ 8 = 0.7 days.
The first estimate of ¢ was 3/day, which corresponds to a half -life of virus in the circulation of t;, = 6
hrs. This estimate was not very accurate because drug does not act instantaneously after
administration and later work showed the half-life to be closer to 45 min, i.e., ¢ ~ 23/day®. Further,
because ¢ >> 9 (i.e. ,23/day vs 1/day) one would expect from Eq (3) that the terms involving exp(-ct)

would rapidly decay leaving the dominant decay to be proportional to exp(-6t).

One very important finding from this model was an estimate of how much virus was produced daily
throughout the entire body. At the pre-therapy steady state, the total body wide rate of production of

virus must equal the total viral clearance rate. The term cV,, gives the rate of clearance from 1 mL of
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blood plasma before therapy starts. The total extracellular body water in a 70 kg adult is
approximately 15 liters. Thus, for an individual with an initial viral load of 103 HIV RNA copies/ml
and c= 23/day, we can estimate that 3.5 x 10! HIV RNAs are produced and cleared per day. This is a
minimal estimate because some HIV is also in attached to cells in tissue. Because HIV mutates when
it replicates one can compute that every possible single mutation and most double mutations are made
every day® 10, This observation suggested that combinations of three drugs should be used to treat
HIV infections. When such combination therapy was given to chronically infected HIV individuals,
the virus was observed to decline in two exponential phases, a fast first-phase followed by a slower
second-phase (Fig. 2B). The second phase was attributed to the existence of a population of “long-

lived infected cells”, with the slope of the second phase reflecting the death rate of these cells'!.

One can analytically solve Egs. (2) for any combination of protease inhibitor and reverse transcriptase
inhibitor of any efficacy as long as one assumed that target cell level remained constant, as this made
the system of equations (2) linear®. However, for HIV in vivo, drug efficacies were not known and
analysis of the solutions to these linear equations showed that models still predicted exponential
decays but now with eigenvalues that included the drug efficacy. Thus, simply fitting these models to
data that exhibited exponential decays did not allow one to estimate the drug efficacy. Experiments
done with combination therapy showed that the first-phase viral decay slope increased and when
comparing different drug regimes, the ratio of such slopes was used as a measure of the relative
efficacy of one regime versus another'?. Also, later elaborations of the basic model used to describe
the effects of therapy for HIV and HCV (discussed below) replaced the constant drug efficacies in this
simple model by models in which the drug efficacy was allowed to change in time to mimic

pharmacokinetic (PK) effects!'® or by using full PK/pharmacodynamic models!4 13- 16,17 18,

After a cell is first infected by a virus it does not instantly start producing new progeny virions. Rather
there is a period time called the eclipse phase during which no virus is produced by the cell. More
biologically accurate models have been developed that include the eclipse phase. In the case of HIV
this was first modeled by Herz et al.!° by a fixed time delay of length t. Thus, in their model Eq. (1b)

for productively infected cells was replaced by

&= BE=DV(E—DT(—De ™ 81, (4)
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where m is the mortality or death rate of a cell in the eclipse phase and the term exp(-mt) represents
the fraction of initially infected cells that remain alive at time t. A more realistic model introduced by

Mittler et al.?® assumed a distributed delay and replaced Eq. (4) by

= [ @B —DV(E—DT(E—De ™ dt =61, (5)

where f(7) is the probability distribution for the delay. If f(7) is chosen as a Dirac delta function then
Eq. (5) reduces to Eq. (4), so Eq. (5) is a rather general formulation. They then went on to study the
case in which the delay distribution was given by a gamma function with an integer shape parameter,
i.e. an Erlang distribution. They also showed that Eq. (5) could be converted to a set of n ordinary
differential equation, where n is the integer shape parameter of the gamma distribution, which is
sometimes convenient when fitting the model to data. Using such a model to fit patient viral decline
data leads to slightly changed estimates of the basic parameters ¢ and 6'% 2!, Similar analyses were
done for influenza and also showed that the choice of the delay distribution affects parameter
estimates*?. For in vivo modeling, there is generally not frequent enough sampling to accurately
predict the additional parameters introduced by this approach. However, it has been useful to more
precisely fit models to data from in vitro HIV/SHIV infection experiments?. In modeling other
infections, such as influenza?* and Zika?> 2, cells in the eclipse phase were explicitly modeled as a

separate population of infected cells. Thus, Eq. (1b) and (1c) were replaced by the equations

dlq
P BVT — ki (6a)
dl,
E:k11—612 (6b)
dv
it =pl, —cV (6¢)

where [; represents cells in the eclipse phase and I, represents productively infected cells, i.e. cells
that produce virus. For these acute infections, one advantage of including the eclipse phase is that the
models then generated more realistic estimates for the lifespan of an infected cell as it now includes

the time spent in the eclipse phase plus the time in the productive phase of infection, i.e. 1/k + 1/ 24
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Another modeling approach that has been used to account for the delay between the time of infection
and the start of viral production is to use and age-structured model where age, a, represents the time a

cell has been infected. In this approach, Egs. (1b) and (1¢) of the basic model are replaced by
a1 al
32t 7= —0(a)l(at) (7a)

= ITp@I(at)da—cV, (7b)

where the death rate of infected cells and the rate of viral production are now functions of how long a
cell has been infected. Initially the viral production rate would be zero, i.e. p(0)=0 and then it could
increase as a step-function, which would mimic having a fixed delay, or more realistically the viral

production rate, after a delay, could increase gradually to a maximum level®’.

Before HIV modeling was done there was no quantitative information about how HIV acted in vivo
and it was mistakenly thought that the kinetics must be slow because it took on average 10 years for
AIDS to develop into a full-blown disease. Thus, the major impact of this work was to show that at
set-point the virus was not turning over slowly, but rather there was rapid production and clearance of
both virus and infected cells. This led to the introduction of combination therapy and the hope that
with potent enough drugs HIV could be cured. However, this was not to be. A population of latently
infected cells that harbor the HIV genome, but which do not produce virus unless activated, were
found to decay under potent therapy with a half-life of 44 months*®. Based on estimates of the
number of these cells in the body, it was calculated that it would take about 60 years of completely
effective therapy to eliminate HIV?3. Current efforts are being made to accelerate the elimination of

the latent reservoir using pharmacological and immunological methods?°.

Modeling HCYV infection and treatment

HCV is a positive strand RNA virus that primarily infects human hepatocytes and like HIV can lead
to chronic infection. About 180 million people are infected world-wide and there is no vaccine for it

yet. The standard therapy for HCV for over a decade had been a combination of interferon-a (IFN), or
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pegylated interferon-a (PEG-IFN), and the nucleoside analog ribavirin (RBV). When given for 48
weeks, this combination was able to cure slightly less than 50% of patients with HCV genotype 1
infection, the most common form of infection in the US and Europe. In May 2011, the first direct
acting antiviral (DAA) for the treatment of HCV, the HCV protease inhibitor telaprevir, was
approved. Subsequently, many other DAAs have been approved. Unlike HIV, HCV does not have a
DNA form and its RNA genome replicates in the cytoplasm of a cell. The replication can be stopped
by drug therapy, and the HCV RNA within a cell can degrade. Probably because of this biology,
combination therapy with two or three DAAs with different mechanisms of action has led to cure in

almost all treated individuals.

Mathematical modeling played an important role in characterizing HCV Kkinetics, determining basic
quantities such as the lifespan of infected cells and the clearance rate of HCV from the circulation as
well as providing insight into the mechanism of action of DAAs. Work in this area began with the
basic model, Egs. (1a)-(1¢), which when used to analyze the plasma viral declines in patients treated
with IFN led to the realization that IFN acted to reduce the rate of viral production from infected cells,
p. Interferon is a cytokine that binds IFN receptors and signals through these receptors, turning on
hundreds of interferon-stimulated genes, whose gene products ultimately reduce viral production

within an infected cell.

The viral declines were biphasic, like for HIV, but the first phase was considerably faster and only
lasted 1-2 days and then was followed by a slower second phase decline (Fig. 3). Because IFN at
doses of 10-15 MIU daily could reduce p by 95%, the first phase slope largely reflected the rate of
viral clearance whereas the second phase slope largely reflected the rate of death of productively
infected cells 3°. The following simple mathematical analysis led to a way to rapidly evaluate the in
vivo effectiveness of IFN and later DAAs used to treat HCV. For a drug that affects viral production,

the basic model equation (1c), should be modified such that the viral equation becomes

av

=@ —=epl—cV, (8)
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where 0 < ¢ < 1 is the effectiveness of therapy in blocking viral production. Note that, at the pre-
therapy set-point, ply=cV,, where the subscript 0 denotes the baseline value before therapy. If one
assumes that over the first day of therapy the number of infected cells stays at Iy, then Equation (7),
with the initial condition V(0)=V,, can be solved to yield

V=V, fort <ty
V() =Vo[l—e+ee 9], fort>t,, (9)

where 7, is the pharmacological delay before IFN becomes effective. As c turns out to be about as
large for HCV as for HIV3!, V rapidly approaches ¥V, (1-g). Note that this implies that, if a drug is
90% effective, i.e. if €=0.9, then the viral load will rapidly decline by one log, whereas if it is 99%
effective the decline will be two logs. Thus, from the magnitude of the first phase viral load decline
one can get an estimate of the effectiveness of an HCV antiviral agent. This led to the estimation that
the active tissue concentration of the HCV NS5A inhibitor, daclatasvir, is much lower than its plasma
concentrations 32. Moreover, this estimate can be made in a one- or two-day clinical trial. For this
reason, the first HCV protease inhibitor to go into human trials, BILN-2061, was given for only two
days3? and, using a viral kinetic model, the effectiveness, € ,was estimated to be above 99.5% in

patients with mild disease.

As the first phase is over after one or two days, data collected over the subsequent week or two
allowed one to estimate the death rate of productively infected cells, 5. For IFN therapy, on average
&= 0.14/day?* 3. The same methodology was used to analyze the effects of DAA therapy.
Interestingly, although two-phase viral declines were always seen, the estimates of ¢ and d varied with
the drug under study. As these parameters should depend on the host’s ability to clear virus and
infected cells, the application of the basic model was called into question and a multiscale model that
tracked intracellular steps in the viral life cycle was developed. In particular, an equation was added
to the basic model that followed the amount of intracellular positive strand HCV RNA, R, that was in

a cell infected for time a. This generated the following age-structured model:
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dT
S =s—dT—pvT
a1 0l
a9 —61(at)
" (10)

dv
Fr (1- ss)pr(a,t)I(a,t)da —cV
0
JR OR
P (1—el)a—xpR— (1 —&5)pR
with boundary conditions 1(0,t)=pVT, I(a,0)=Iy(a), R(0,t) =1, R(a,0)=Ry(a), where [y(a) and Ry(a) are
the pre-therapy steady state distributions and a is the rate of viral RNA (VRNA) synthesis, p is the
rate of VRNA degradation and p is the rate of VRNA loss due to incorporation into secreted virions. It
was assumed that treatment begins at time =0 and that cells when initially infected contain one

VRNA. The treatment effects of an antiviral drug were assumed to be blocking VRNA synthesis with

effectiveness ¢&,, blocking viral assembly/secretion with effectiveness ¢; and increasing the rate of

vRNA degradation by the factor x. By integrating over the age-structure, Kitagawa et al.>® showed
that these equations could be converted into a system of ordinary differential equations. Fitting this
model to data from therapy with the HCV NSS5A inhibitor daclatasvir and to data with the HCV
protease inhibitor telaprevir, Guedj et al.3! predicted that both of these drugs had two modes of action,
blocking VRNA synthesis and blocking viral assembly secretion, with efficacies of 99% or greater for
daclatasvir. These predicted modes of action were then verified by in vitro experiments3!> 37> 38,
Multiscale model of hepatitis B virus (HBV) infection and treatment are now also being developed?®
and should prove useful in analyzing the effects of new classes of HBV therapeutics currently in

clinical development.

Modeling SARS-CoV-2 infection and treatment

Viral dynamic models for chronic infections above can be adapted to quantify dynamics of acute
infections, such as influenza?* 40, West Nile virus*!, RSV#2, Zika?6 and SARS-CoV-243. 44,45, 46,47, 48, 49,
30,51,32,33 " In particular, extensive modeling efforts have been made towards understanding influenza

infection and the immune response against it. These studies often serve as the basis for modeling
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other acute infections. See Refs. > 35 for recent reviews of within-host influenza models. Because of
the current interest in COVID-19, below we will focus on the models for SARS-CoV-2 infection,
summarize key recent findings from these models and highlight outstanding questions relevant for

non-pharmaceutical interventions as well as the development of therapeutics and vaccines.

SARS-CoV-2 is a single-stranded RNA virus that causes acute infection of the respiratory system.
Viral loads are often measured in hospitalized patients (see Fig. 4 for a schematic) to understand the
course of infection and clinical outcomes’®>’, and in non-human primate (NHP) infections to evaluate
the efficacy of therapeutics, e.g. the antiviral remdesivir’®. With the availability of clinical and
experimental data, many mathematical models have been developed and calibrated with data®3- 44,45, 46,
47, 48, 49,50, 51, 32, 33 Qverall, these studies greatly advanced our quantitative understanding of SARS-

CoV-2 infection in both humans and NHPs, the immune responses and the impact of therapeutics.

Target cell limited model

The simplest form of acute infection model, that is often used as a starting point to understand SARS-
CoV-2 infection dynamics in many studies* 4+ 47. 51 is derived from the basic viral dynamic model
given by Egs. (1). This model incorporates target cell replenishment and therefore allows the viral
load to reach a steady state in which virus and infected cell production balances their clearance. In
order to model acute infections where natural death and replenishment of target cells are negligible

during the short period of infection, Eq. (1a) can be simplified to
dT

2 =—BVT. (11)
This model is termed the target cell limited model, because the dynamics of this model are driven by
the availability of target cells. During early infection, target cells are abundant, and thus the virus
population grows exponentially until a viral peak is reached and most target cells are infected. Then,
the viral load declines exponentially towards extinction because there are few target cells left in the

system. The dynamics of the model are very similar to the often-used Susceptible-Infected-Recovered
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(SIR) model in epidemiology where epidemics spread through a population until the population runs

out of susceptible individuals.

A simplification that one can make is to assume the time scales of virus production and clearance are

much quicker than the dynamics of infected cells, and thus the dynamics of viruses are in quasi-
av
equilibrium with infected cells: ; = 0, and thus V = gl . This assumption simplifies the 3-ODE system

to a 2-ODE system. A variation of this simplification has been used compare infection dynamics of

SARS-CoV-1, SARS-CoV-2 and MERS>°.

An extension of the basic model above is to add an eclipse phase for infected cells, because it usually
take hours for infected cells to start to produce viral particles. The simplest form of an eclipse phase
model given by Eqgs, (6a-6¢) has been used in SARS-CoV-2 modeling. This allows for more accurate
estimation of parameter values in the model as well as composite parameters of interest, such as the

within-host reproductive number R,

Estimating key parameter values

One key challenge in modeling a novel viral infection, such as SARS-CoV-2 infection, is that key
parameter values such as the number of target cells in the model are unknown. Efforts have been
made to estimate these parameter values from data* 484950, For example, single cell gene expression
data suggests that approximately 1% of cells in the respiratory tracts express the receptor and the
coreceptor for SARS-CoV-2 entry, i.e., angiotensin-converting enzyme 2 (ACE2) and the type II
transmembrane serine protease TMPRSS2 %% 0. Based on this finding, we estimated that there are
approximately 4x10° and 4.8x10® target cells for SARS-CoV-2 in the URT and LRT respectively #°.
This represents a rough estimate, because whether a cell is a target of infection may also depend on
other factors in addition to gene expression®!. Another parameter that can be calculated directly from
experimental data is the duration of the eclipse period, 1/k. In vitro experiments have shown that it

usually takes 4-8 hours before an infected cell starts to produce SARS-CoV-2 particles®!- ©2. It is not
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known how quickly virus particles are cleared from the resiporatory tract. Initial guesses of this

parameter are based on estimates from influenza infection?* 40,

Fitting the TCL model to viral load data, we and others have estimated that the death rate of infected
cells ranges between 0.5 and 4 per day 44484950 The value of Ry is estimated to be between 5 and 30
4. 49 The parameter p usually cannot be identified but only the product p7), °. In a SARS-CoV-2
model fit to data where 7} was fixed and the viral load was measured per swab, only the product of p

and the fraction of viruses sampled could be estimated .

Overall, there still exists considerable levels of variation in estimated parameter values across studies.
This partially reflects heterogeneities in the viral dynamics among individual patients and in different
physiological compartments. They also likely arise from uncertainties in the dataset itself as we will

discuss in the Outstanding questions section.

Innate immune model

The innate immune response represents the first line of defense against viral infections and thus may
impact on the dynamics of SARS-CoV-2 infection kinetics. One important arm of the innate immune
response is the antiviral response triggered by type I interferon (IFN)®. The production of IFN by
infected cells and the subsequent autocrine and paracrine signaling can lead to an antiviral state in
both infected cells and target cells. This in turn can lead to a reduction in virus production in infected
cells and protection of target cells from infection. IFN also induces the recruitment of immune cells
such as macrophages and natural killer cells to the site of infection®®. This recruitment may lead to

increased killing of infected cells.
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To model the protection of target cells by IFN signaling in influenza infection, Pawelek et al. added a
refractory cell compartment*. Similar formulations were used for SARS-CoV-2 infection** 46- 49, The
ODEs for the target cell population (T), the refractory cell population (R) and interferon (F) from Eqgs.
(1) are then modified to

dT
i —BVT — ¢FT + pR
dR
EZ(PFT—pR (12)
dF
q nl — wF

where ¢ is the rate at which IFN causes a target cell to become refractory to infection, p is the rate at
which the refractory state is lost,  is the rate of IFN production from an infected cell and w is the rate
of IFN loss. Using this formulation, we recently found that adding the IFN response to the model does
not significantly improve the fits to a set of data collected from 8 patients compared to the target cell
limited model®. This could indicate that the IFN response is inhibited and does not play an important
role in reducing viral load in these patients, consistent with experimental studies showing that the IFN
signaling pathway is suppressed during SARS-CoV-2 infection®; or it is possible that the role of

interferon cannot be statistically distinguished with this set of viral load data.

To model the recruitment of innate immune cells and thus increased killing of infected cells, Goyal et
al.® used a term —&I" (instead of — &) in the infected cell equation to model the dependence of
infected cell killing on the innate response. This formulation was originally developed to model the
immune dependent killing of infected cells during HIV infection®, and also later used in influenza
modeling®. The underlying assumption is that the immune cell mediated killing is determined by the
size of the immune cell population, which in turn is dependent on the infected cell population. Goyal
et al. found that this model was able to describe the rapid decrease in viral load observed immediately
after the initial viral peak (Fig. 4) and predicts that the viral load decline rate decreases as viral load

declines to a low level*s.
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Despite the majority of modeling work focusing on well-mixed models, an important aspect of acute
respiratory infections is the spatial nature of the infection process in respiratory tract epithelium®’. As
discussed above, well-mixed models in general predict that the IFN response affects peak viral load
and viral dynamics afterwards?* 4. In contrast, recent works of ours pointed out when target cells are
spatially segregated, e.g., in epithelium, the combined impact of autocrine and paracrine signaling can
strongly suppress viral spread during early infection before the viral peak® . These types of models
may be important in understanding how early IFN response or treatment determines long-term
infection outcome as suggested recently by experimental studies of SARS-CoV-2 and MERS

coronavirus® 70, 71,

The quantitative impact of the IFN response on SARS-CoV-2 dynamics and which aspect of the
response plays a more important role still need to be resolved. Also, the responses may vary from
individual to individual. Simultaneously measuring the viral load and levels of interferon over time
may help to resolve the question. In a study of Zika virus infection in nonhuman primates, IFN levels
were measured along with viral load and including these IFN level in an immune response model did
not improve the fit of the model to data over that using a target cell-limited model?>. However, Zika
like many other viruses including HCV and SARS-CoV-2 antagonizes the IFN response. Including
the effect of antagonism in a modified innate immune response model to Zika virus then improved the
model fit over that of the target cell-limited model’”>. To further elucidate the phenomenon of
antagonism, Padmanabham et al.”? introduced a more detailed model of the intracellular IFN signaling
network. They showed that HCV induces bistability in the network, causing the emergence of a new
steady state where HCV persists’3. Whether this is also the case for SARS-CoV-2 remains to be

determined

Adaptive immune model
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Adaptive immune responses to SARS-CoV-2 infection develop one to two weeks after infection® 74,
The most simplistic approach to model the impact of adaptive immune responses is to assume that the
killing rate of infected cells increases after some time post-infection*?. This increase in infected cell
killing rate may arise from the development of antigen-specific effector cells, such as cytotoxic T cell
responses’# 73, This approach involves adding only one or two extra parameters to an existing model,
and thus is particularly well-suited for model calibration with data. Several studies have adopted this
approach to understand SARS-CoV-2 infection dynamics beyond 2 weeks after infection*> 4% 31, In
general, the increased killing explains the rapid viral load decreases that accompany viral clearance
(see the solid blue line in Fig. 4). A more complex model that keeps track of the maturation of
precursor cells into immune effector cells has been proposed®. This model effectively introduces a
delay, as was done in modeling the eclipse phase with an Erlang distribution discussed earlier in the
section on HIV infection models*’. However, the parameters governing the immune effector response
need to be calibrated and validated with experimental/clinical data measuring the kinetics of the T cell
response and the expansion of the relevant immune cell populations. Another important consideration
for models explicitly including T cell populations is individual heterogeneity in initial T cell
populations, because some individuals due to prior infection with seasonal coronaviruses may have
some pre-existing cross-reactive T cell immunity to SARS-CoV-27. Simple models of both the CD4*
and CD8* T cell response to lymphocytic choriomeningitis virus (LCMV) infection in mice have been
developed and model parameters estimated’s. Also, a model of a dynamic motif underlying the
interactions of antigens and CD8* T cells was introduced in a rather general setting and then applied

to LCMV and HCV infections’”. Models of this type should be tried for SARS-CoV-2 infection.

In contrast to the approaches above, where the models focused only on key aspects of the immune
response and their impact on viral dynamics, another approach is to incorporate much more detailed
information about the innate and adaptive immune responses as well as comorbidities induced by the
virus. This is being done using multiscale simulation-based models’® 7% 8, These models keep track
of the complex molecular interactions involved in viral infection and virus replication within cells as

well as spatial spread of the virus, the production of cytokines and chemokines, and the population
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dynamics of various types of immune cells, such as macrophages, neutrophils, CD4* T cells, CD8" T
cells, etc. This modeling approach offers a unique opportunity to integrate existing knowledge about
viral infection and the induced response of various immune molecules and cells. However, one
important challenge of this approach is validating the plethora of details included in these models
against data to make reliable predictions, because of the large number of parameters in these models

and the high levels of uncertainty about their values in the context of SARS-CoV-2 infection.

URT/LRT model

SARS-CoV-2 causes distinct infection dynamics in different tissue compartments®’ (Fig. 4). Infection
in the upper respiratory tract (URT) exhibits typical acute infection dynamics’’. After an initial viral
peak, the viral load decreases rapidly to low or undetectable levels. In contrast, sputum samples,
likely representing dynamics in the lower respiratory tract (LRT), taken from hospitalized patients
with mild disease’’, showed sustained intermediate-to-high viral loads for 3-4 weeks (Fig. 4). In some
individuals, multiple viral load peaks were observed late in the infection. Motivated by these
observations, we developed a two-compartment model to keep track of these distinct dynamics®.
Models including a URT and an LRT have also been used to understand viral dynamics in non-human
primates where viral load measurements were taken from both nasal swabs and BAL#6- 433, This type
of model allows one to investigate the relationship between virus replication in different tissue
compartments. For example, we have found that the rate of virus replication is positively correlated in
the URT and the LRT # in the patients studied in Wolfel et al.>’. The rate of transport of virus from
the URT to the LRT is probably low as mucocilliary clearance acts to bring particles out of the LRT.
When virus does get into the LRT disease typically becomes more severe. Both the viral dynamics
and some genetic sequencing information’’ suggest there may be compartmentalization of virus

populations.

Viral spread in the LRT and cell proliferation
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Viral loads in the lower respiratory tract (LRT) are positively associated with disease outcomes®!> 82,
As mentioned above, viral loads in the LRT are maintained at intermediate-to-high levels for a
prolonged period®”> 32 (Fig. 4). Several mechanisms have been proposed to explain this pattern,
including spatial spread of the virus and target cell proliferation*® 47> 4. We recently explored these
hypotheses, and showed that spatial spread into new areas of the lungs could explain sustained viral
shedding as well as multiple viral load peaks 4°. Type II alveolar cells, a major target cell population,

proliferate in response to epithelial cell death and tissue damage®3. Cell proliferation can be modeled

T
by adding the term pT(l —L) to Eqn. (1) for the target cell population, where Ty is the total

I
Ty
number of target cells in the absence of infection®. This type of logistic term has been used for target
cell proliferation in models of HIV, HCV and HBV infections® 8- 8, We found that a proliferation
model of this type can explain the long-term persistence of viral load better than the target cell limited

model or models incorporating the IFN response®.

Overall, these model results suggest that new target cells for virus infection are needed to maintain the
observed viral load. These can come from target cell proliferation or spatial spread of the virus to a
new physiological compartment in the lungs. These insights may have important implications for
therapeutic development to reduce disease severity. Other models were also proposed. For example, a
model assumes that SARS-CoV-2 infects lymphocytes and predicts that the recruitment of
lymphocytes to the infection site leads to sustained high viral loads’'. However, the experimental
evidence for lymphocytes being a major target for SARS-CoV-2 infection is not clear and the article

cited in ref [51] as support for this hypothesis has been retracted.

Modeling therapy

As discussed earlier, mathematical models are widely used to estimate the efficacy of therapeutics in
suppressing virus replication or infection!> 34 11, 24,25, 30,31 Stydies have used terms of the form (1-¢),

where ¢ varies between 0 and 1 to represent the drug efficacy, to understand the impact of potential
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therapeutics on SARS-CoV-2 infection dynamics® 44 43,49, 30, 51~ A converging conclusion emerges
that therapeutics that block virus replication and spread have to be administered before or at the time
of peak viral load; otherwise, the therapeutics will not be effective at reducing overall host exposure
to viruses* (Fig. 4). This is because most target cells are predicted to be infected by the time the peak
viral load is reached and thus most viruses are produced during this period. Administration of
therapeutics after peak viral load would only prevent a small fraction of total cell infections. For
SARS-CoV-2, it has been estimated that peak viral load occurs at the time of or a couple of days after
symptom onset** 4% 87 and many infected individuals never show symptoms®. Thus, it is most
effective to administer antivirals or other therapeutics that block virus infection as soon as one tests
positive or shows symptoms rather than later in the infection when severe symptoms develop (Fig. 4).
This may partially explain the conflicting results from remdesivir trials where the antiviral was
administered several days after symptom onset®® 0. This also implies that we need antivirals that can
be administered orally at home in addition to drugs such as remdesivir or the monoclonal antibodies

now in clinical trials that need to be infused.

C
T ECw where C represents

Drug efficacy can be modeled as a function of drug concentration by € =
drug concentration and ECs is the concentration of the drug that gives half-maximal response. More
detailed approaches to model PK/PD of SARS-CoV-2 antivirals were done for lopinavir/ritonavir,
hydroxychloroquine, interferon-f-1a* and remdesivir and antibodies*’. However, parameter values in
these PK/PD models are in general estimated from in vitro studies, non-human primates, or plasma of
humans. A challenge is to estimate/validate parameter values at the relevant tissue compartments in
vivo. As estimated previously for HCV antivirals, the active concentration at relevant tissue can be

very different from that in plasma3?. With appropriate data, this type of model framework can be used

to design and optimize therapeutics used singly or in combinations to better block virus infection.

Another way to use antiviral is to give them prophylactically, especially to individuals at high risk of

exposure. To better understand the early events in the acute stage of HIV infection stochastic models
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were developed that follow the fate of individual infectious virions and infected cells®"> °2. A similar
approach has been adopted for SARS-CoV-2 by Czuppon et al.”3 and used the model to predict what
might occur when an individual taking antivirals prophylactically is exposed to different doses of
infectious SARS-CoV-2. They studied the effects of four classes of antiviral: those that block viral
entry or infection, those that block viral production from infected cells, e.g. remdesivir, those that
enhance viral clearance such as a non-neutralizing antibody, and those such as an immunotoxin that
can enhance infected cell death. Not surprisingly, they found that there is a critical drug efficacy
needed to block establishment of infection that can depend on the drug’s mechanism of action. Below
this crucial efficacy, prophylaxis can still sometimes prevent establishment of infection especially
with drugs that block viral entry or enhance viral clearance and can also flatten the viral kinetic curve

possibly leading to less severe symptoms.

Overall, current modeling studies estimated that the critical drug efficacy to suppress viral infection in
the setting of prophylaxis or treatment is roughly in the range between 85% and 95%%* 4993,
Repurposing antivirals such as lopinavir/ritonavir, hydroxychloroquine and remdesivir is unlikely to

achieve such high efficacy in vivo**. Studies of human monoclonal antibodies, such as REGN-COV?2
and bamlanivimab (LY-CoV555), showed that they are highly effective in suppressing viral

replication, blocking infection and reducing viral load in both non-human primates and humans®* %>,
They are likely to be highly efficacious in vivo, although formal model fitting to clinical data is
needed for precise estimation of their antiviral efficacy. There are also mAbs in development that
have Fc-effector functions and potentially could be used for treatment as these mAbs could in
principle kill infected cells and mediate a vaccinal effect whereby presenting viral antigens to

dendritic cells enhance T cell responses again the virus, e.g., Schafer et al.%.

Linking viral load Kinetics to infectiousness
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Viral load in the URT is often used as a surrogate measure of infectiousness of a person. However,
how these two quantities relate to each other is not clear. For example, both viral load and the
logarithm of viral load are used as a measure of infectiousness for influenza infection®’. A quantitative
framework to predict infectiousness of an individual from viral load measurements would be
particular useful for optimizing non-pharmaceutical interventions, such as test and trace strategies, as
well determining isolation duration after diagnosis. In a recent work, we addressed this question by
comparing predictions from these two measures with epidemiological evidence. We found that the
logarithm of the viral load better explains the observation that a large fraction of transmission occurs
presymptomatically and that the serial interval is between 7-8 days without active intervention or self-
isolation®® %°. We then constructed a physiological model keeping track of each step of virus
transmission process. A key aspect of this model is the assumption that the number of infectious viral
particles reaching the recipient host given a contact is a saturating function of the viral load in the
donor. A similar relationship was previously used for influenza and HIV transmission!? 191 and was
used by Goyal et al.'2. This saturation effect explains why the logarithm of viral load is a better

measure of infectiousness than the viral load*°.

Superspreading events were often reported for SARS-CoV-2 transmission!?®. To understand these
events, Goyal et al. generated an in silico population of infected individuals where their viral
dynamics were simulated using parameters estimated from viral load data from hospitalized SARS-
CoV-2 infected patients!??. The transmission profiles for the individuals in the synthetic population
were determined from their viral loads. Using their simulation, the authors show that variations in
individual contact pattern (in addition to variations in individual viral load) play an important role in
driving superspreading events!??. It remains to be determined if other factors, such as heterogeneities
in the level of infectious viruses’’, and mode of transmission, i.e. aerosol vs. droplet'%, also play

important roles in driving these events.
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Overall, these models serve as first steps towards predicting infectiousness from viral load data.
Hopefully, as they develop, these models will prove useful in assessing the infectiousness of groups
of infected individuals where viral load measurements are available and where epidemiological data
are difficult to obtain or ascertain, such as asymptomatic individuals or children. Further improvement
of the models, for example explicitly incorporating biological, physical and environmental factors

during transmission %4105 will be needed to make more accurate and individual-level predictions.

Outstanding questions

Within less than a year, we have obtained extensive understanding of SARS-CoV-2 infection kinetics.
As we summarized above, many viral dynamic models have been developed to estimate key
parameters governing viral kinetics and determine how infectiousness depends on viral load. Models
have also considered the effects of the immune responses and the impact of therapeutics. However,
even though knowledge about SARS-CoV-2 is rapidly evolving, there are still many unknowns and
questions that need to be addressed to help design both pharmaceutical and non-pharmaceutical

intervention strategies.

Rate of exponential growth and the within host reproductive number, R,

Despite many modeling efforts, there are still uncertainties in the rate of exponential expansion of the
virus population during the early period of infection and thus in the within-host reproductive number
Ry. This prevents precise predictions of the drug efficacy needed to suppress the virus. The
uncertainty arises from limitations in the data used for parameter estimation. First, for most of the
datasets, the dates of initial infection are unknown. This makes estimation of the rate of exponential
expansion unreliable. To address this issue, we recently used data from a study where infection dates
were known through contact tracing®. This greatly reduces uncertainty in the parameter estimation,
and we found that the viral growth rate is negatively correlated with the incubation period*. Second,

in all datasets used for model inference so far, viral loads were measured after symptom onset, and the
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viral load during the presymptomatic period, i.e. the phase of viral exponential growth, is unknown. In
a recent study, frequent testing of both uninfected and infected individuals was performed, and this
enabled viral load measurements during the presymptomatic phase of infection®’. This type of data
will help to estimate the rate of exponential growth and the within-host reproductive number Ry more

accurately.

The relationship between SARS-CoV-2 viral load kinetics and disease severity

An important question is how differences in viral load may lead to different disease outcomes. Several
clinical studies found that a high viral load at diagnosis or during later stages of infection is associated
with more severe disease outcomes®> 82 106 This association is suggested to be a result of
dysregulation of the immune responses® 7% 107 In severe cases, the antiviral response mediated by
IFN 1is suppressed, resulting in a higher viral load, which in turn can lead to an exacerbated
inflammatory response!®®. Two recent studies highlighted the importance of the IFN response in
preventing severe disease outcomes. One study shows that in 10% of severe COVID-19 cases, [FN
was largely absent due to the presence of auto-antibodies targeting IFN'%°, whereas another study!'”
showed that 3.5% of patients with life-threatening COVID-19 had inborn errors in genes associated
with the IFN response. Therefore, modeling that aims to better understand the role of IFN
responses® % and the responses to proinflammatory cytokines will be useful for designing and

understanding the impact of therapeutics to mitigate severe disease .

Other outstanding questions include how the size of the infection inoculum affects the interaction of
the virus population with the immune system and disease outcome. Because of the nonlinear
interactions among the virus, the innate and the adaptive immune system, modeling approaches are

particularly well suited for addressing these questions”’.

Drug resistance
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Mathematical models have been very successful and widely used to predict the risk of drug resistance
in treating HIV, HCV and influenza infections® !> 112, Many of these predictions have led to a
profound impact on clinical practice. Currently, the antiviral remdesivir®® is approved by the FDA,
and many other antivirals and monoclonal antibodies® 13- 114 may soon be approved for general use.
Therefore, understanding and predicting drug resistance of SARS-CoV-2 will become important as

we strive to identify the best strategies for treating patients.

One challenge to assessing the risk of resistance is to calculate the number of viruses produced during
the course of infection!!? as mutation occurs during the replication of the viral RNA. Nonetheless,
given the high viral load in many patients and the duration of viremia particularly in the LRT it is
likely that all one-point mutations and some two-point mutations can be generated in an infected
person!!?, This suggests that resistant mutants can appear and rise to a high frequency quickly when
an antiviral or an antibody with low genetic barrier to resistance (e.g. see ref. !13) is administered
alone. Combinations therapies are preferred treatment strategy® '3, However, recent work suggests
that a single amino-acid mutation can render the virus resistant to both antibodies in the REGN-
COV2 cocktail'', Further clinical studies on drug resistant mutants and the cost of resistance are
needed to precisely predict the risk of resistance and the genetic barriers needed to avoid selection of
resistant mutants. These predictions can be further integrated into transmission models to evaluate

how likely and how quickly drug resistance may spread in the population.

Conclusions

The interactions between viral and immune dynamics are highly complex and non-linear. The utility
of mathematical models is to describe these non-linear interactions and allow for rigorous analysis
and quantitative predictions. In this review we have strived to illustrate how this has worked for
many viral infections and given us insights into viral pathogenesis and the effects of treatment. We
believe these methods will also be beneficial in our attempts to tame the pandemic caused by SARS-

CoV-2.
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Figure Legends.

Fig. 1. The basic model of viral infection. Target cells, T, which are cells susceptible to infection,
are infected by virus, V, with rate constant 3. Target cells are assumed to be made by a source at rate s
and to die at per capita rate dr. Infected cells, I, produce virus as rate p per cell and die at rate 5 per

cell. Free virus particles, V, are cleared at per capita rate c.

Fig. 2. Modeling HIV infection and treatment. (A) The basic model can fit data (open circles) taken
from individuals newly infected with HIV-1. The model solution (solid line) illustrates that virus
initially grows exponentially, reaches a peak then falls and ultimately approaches a steady-state called
the viral set-point. See Ref > for details. (B) Biphasic decline of HIV-1 RNA after potent antiretroviral
therapy is initiated. The basic model augmented with a population of long-lived infected cells (solid
line) fits data taken from chronically infected HIV patients placed on combination antiretroviral
therapy. The slopes of the first phase and second phase declines are mainly determined by the loss

rate of short-lived and long-lived infected cells, respectively. See Ref !! for details.

Fig. 3. Dynamics of HCV RNA decline after therapy initiation. (A) Fit of Eq. (9) (solid line) to
data from an HCV chronically infected patient treated with IFN given daily. After a very brief delay
the viral load falls rapidly by about 1.5 log;o and appears to be approaching a steady state. (B) On a
longer-time scale the viral load continues to fall. The solid line shows the best-fit solution of Egs,
(1a), (1b) and (8) to the data. As discussed in Ref 3°, the slope of the first phase decline mainly
reflects the rate of viral clearance, c, whereas the slope of the second phase decline mainly reflects the
rate of loss of infected cells, 8. The magnitude of the first phase decline determines the efficacy of the
drug. When a more potent DAA, such as the NS5A inhibitor daclatasvir is used the first phase decline

can be 3 logs, implying a drug effectiveness of 99.9%. See ref 3! for details.

Fig. 4. Illustration of the dynamics of SARS-CoV-2 infection in the upper respiratory tract
(URT; solid red line) and the lower respiratory tract (LRT; solid blue line). The incubation
period lasts for approximately 4-6 days (5 day is shown in the figure). The virus population reaches
peak viral load at or a couple of days post symptom onset. Individuals become infectious at or a few

days before symptom onset. The viral load declines rapidly after peak viremia in the URT, whereas
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the viral load in the LRT is maintained at intermediate-to-high levels for several weeks. Dotted and
dashed lines denote predicted viral load dynamics when individuals are treated with an effective
antiviral (e.g. with 95% efficacy) at symptom onset (dotted lines), or 8 days post symptom onset
(dashed lines). Viral load curves are drawn based on the data in Refs. 37> 82 and parameter estimates in
Ref. 4.
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