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SARS-CoV-2, MERS-CoV and SARS-CoV dynamics
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Abstract

The scientific community is focused on developing antiviral therapies to mitigate
the impacts of the ongoing novel coronavirus disease (COVID-19) outbreak. This will
be facilitated by improved understanding of viral dynamics within infected hosts. Here,
using a mathematical model in combination with published viral load data, we compare
within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV
and SARS-CoV. Our quantitative analyses using a mathematical model revealed that
the within-host reproduction number at symptom onset of SARS-CoV-2 was
statistically significantly larger than that of MERS-CoV and similar to that of SARS-
CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2
infection was shorter than those of MERS-CoV and SARS-CoV. These findings
suggest difficulty of controlling SARS-CoV-2 infection by antivirals. We further used
the viral dynamics model to predict the efficacy of potential antiviral drugs that have
different modes of action. The efficacy was measured by the reduction in the area
under the viral load curve (AUC). Our results indicated that therapies that block de
novo infection or virus production are likely to be effective if and only if initiated before
the viral load peak (which appears 2-3 days after symptom onset), but therapies that
promote cytotoxicity of infected cells are likely to have effects with less sensitivity to
the timing of treatment initiation. Furthermore, combining a therapy that promotes
cytotoxicity and one that blocks de novo infection or virus production synergistically
reduces the AUC with early treatment. Our unique modelling approach provides
insights into the pathogenesis of SARS-CoV-2 and may be useful for development of

antiviral therapies.
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Introduction

The ongoing coronavirus disease 2019 (COVID-19) outbreak was first reported
in Wuhan, China in late December 2019 [1, 2]. Since then, the causative agent (severe
acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been transmitted
elsewhere in China and to most other countries and territories around the world. The
number of global confirmed cases currently stands at more than 63 million (as of 30
November 2020). Given that 40-45% of patients are asymptomatic [3], and even
symptomatic infections are underreported [4], the true number of cases is most likely
much higher than this.

Antiviral drugs and vaccines are currently under development to counter this
outbreak. The efficacy of these drugs can be evaluated in vitro using a cell culture
system supporting SARS-CoV-2 infection [5, 6] and in various animal models [7-10].

To aid the development process, characterization of the viral dynamics of
SARS-CoV-2 is crucial. Several studies have reported longitudinal viral load data from
symptomatic patients collected for over 20 days after symptom onset [8, 11-16].
Mathematical models describing viral dynamics have been used to analyze such data
[17-20]. In a recent paper [9], the pathogeneses of SARS-CoV-2, MERS-CoV and
SARS-CoV infections were compared in a nonhuman primate model. Here, we
analyze and compare longitudinal viral load data of SARS-CoV-2, SARS-CoV, and
MERS-CoV in humans. Further, we fit a mathematical model to the viral load data and
then use the model with best-fit parameters to predict the effect of potential antiviral
treatments on viral dynamics. We do not consider treatments, such as dexamethasone,
aimed at reducing the inflammatory response or other downstream events that can
lead to the generation of symptoms. The results of our antiviral treatment simulations

provide information useful for the development of antiviral agents and treatment
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strategies for SARS-CoV-2, specifically addressing questions such as the best time to
a initiate a therapy given its mode of action. Interestingly, we find that the timing varies

depending on the viral-host process targeted by the antiviral drug.
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Results and Discussion

Characterizing SARS-CoV-2, MERS-CoV, and SARS-CoV infections by analyzing
viral load measurements

We analyzed longitudinal SARS-CoV-2 viral load data reported in [11-14],
MERS-CoV viral load data reported in [21, 22] and SARS-CoV viral load data reported
in [23] using a viral dynamic model (see Methods). Further details about the data
sources are described in the Supplemental Information and summarized in Table
S1. A nonlinear mixed-effect modeling approach was employed in which we fit the
model to all of the patient data simultaneously to estimate parameters (see Methods).
The estimated population parameters are listed in Table 1, and estimated individual
parameters for each patient are listed in Table S2. Comparing population parameters
between SARS-CoV-2 and the other two coronaviruses, the maximum rate constant
for viral replication (y) of SARS-CoV-2 was significantly larger than that of MERS-CoV
(p < 2.2 x 10716 ) but similar to that of SARS-CoV. The rate constant for virus infection
(B) of SARS-CoV-2 was significantly larger than that of both MERS-CoV and SARS-
CoV (p=1.0x10"8and p = 1.3 x 10712, respectively). Moreover, the viral load at
symptom onset (VV(0)) of SARS-CoV-2 was similar to that of SARS-CoV, but less than
that of MERS-CoV (p < 2.2 X 10716, respectively). Based on the individual parameters,
the best-fit viral load curves for each subject are plotted along with the observed data
in Fig $1 for SARS-CoV-2, MERS-CoV, and SARS-CoV. We further calculated and
compared the following quantities, which are derived from the estimated parameters
or available by running the model (Table 1); the mean duration of virus production
from an infected cell (L = 1/6), the within-host reproductive number at symptom onset
(Rgo = y/98), which is the average number of newly infected cells produced by a single
infected cell at symptom onset (c.f.[24]), the time from symptom onset to the viral load

7
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peak (T,), and the critical inhibition level (C* = 1 — 1/Rg,) that needs to be reached by

antivirals or vaccines to ensure that the viral infection is driven to extinction [25-27].

R, of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV
(p<22x1071%) and no different from that of SARS-CoV (Table 1). Further,
according to our model, SARS-CoV-2 hit its viral load peak 2.0 days after symptom
onset (i.e., T,), which is earlier than that of MERS-CoV and SARS-CoV, which peaked
at 12.2 days and 7.2 days after symptom onset, respectively, however the difference
was statistically significant only between that of SARS-CoV-2 and SARS-CoV (p =
2.24 x 107°, Fig 1 and Table 1).

Both the larger Ry, value of SARS-CoV-2 than that of MERS-CoV and the
earlier peak in viral load for SARS-CoV-2 than the other coronaviruses suggests that
the virus more effectively replicates and spreads within-host than MERS-CoV and
SARS-CoV. In other words, treating SARS-CoV-2 infection may require more potent
therapies and therapies given earlier than for the other coronaviruses. Further, the
shorter T, of SARS-CoV-2 suggests that treating SARS-CoV-2 infection following
symptom onset is more challenging because effective antiviral treatment should be
initiated before the viral peak, as we demonstrate in the next section. Given that the
mean time from symptom onset to hospitalization observed in China was 4.6 days [28],
symptom-based diagnosis combined with antiviral treatment might not be an effective
treatment strategy if treatment needs to be given in a hospital setting. In the next
section, we provide a detailed analysis of anti-SARS-CoV-2 therapy varying the drug

efficacy and timing of treatment initiation.

Evaluation of anti-SARS-CoV-2 therapies
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Based on our mathematical model and estimated parameter values (Table 1),
we conducted in silico experiments of possible anti-SARS-CoV-2 therapies to
investigate the expected outcome under hypothetical drug therapies (or vaccine use)
possessing different antiviral mechanisms of action (Fig 2). Specifically, drug efficacy
(10% to 100%, i.e., 0.1 < ¢g,n,0 < 1) and timing of therapy initiation after symptom
onset (i.e., 0 <t* <4 days) were varied and their influence on outcomes was
investigated (see Methods) (Fig 2). We used reduction in the area under the viral load
curve (AUC) and the fraction of target cells that remain uninfected 4 weeks after
symptom onset as outcome measures. Without treatment, the AUC was 8.2 x 10°
copies-day/mL and almost no target cells remained after the course of infection (e.g.,

Fig 2 and Fig 3).

(i) Blocking de novo infection

One of the major mechanisms of action for antivirals is blocking de novo
infection. This can be induced by drugs including human neutralizing antibodies either
in convalescent plasma or given as monoclonal antibodies, viral entry-inhibitors and/or
antibodies raised by vaccination [5, 29]. For example, a SARS-CoV-specific human
monoclonal antibody bamlanivimab has received emergency use authorization by the
US FDA for the treatment of SARS-CoV-2 [30].

Higher drug efficacy and earlier treatment initiation is associated with better
outcomes: according to our model the AUC was reduced by 73% and 74% of target
cells remained uninfected after the course of infection when treatment was initiated 1
day after symptom onset and the antiviral effectiveness was 90% (Fig. 2). Very early

treatment initiation is the key for better outcomes when using antiviral therapies.
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According to our model, using a drug that blocks infection with 95% efficacy
initiated 4 days after symptom onset, the AUC was reduced by only 14%, and only 2%
of uninfected cells remain (Fig 2AD). This occurs because only a very small fraction
of target cells remains uninfected after the viral load peak. After infection abates target
cells will replenish but here we ignore this as are evaluating the potential effects of
therapy in preserving them. Note that viral shedding may last longer with treatment
than without treatment if the antiviral efficacy is below 100% and initiated early. This
is because substantial numbers of uninfected target cells remain at the time of
treatment initiation and the infection is driven by those uninfected cells but at a slower
rate than without treatment.

We observed the same trends for MERS-CoV and SARS-CoV (see Fig S2AD
and S3AD), except that treatment initiated a few days after symptom onset may be
efficacious. As we observed in Fig 1, the viral load peak comes later for MERS-CoV
and SARS-CoV than for SARS-CoV-2. Thus, even if treatment is initiated at 4 days
after symptom onset (which is before viral load peak for those two viruses),

improvement in the outcomes can be expected.

(ii) Blocking virus production

Most antiviral drugs inhibit intracellular virus replication. Lopinavir/ritonavir (HIV
protease inhibitors), remdesivir (anti-Ebola virus disease candidate), and other
nucleoside analogues as well as interferon have the potential to suppress SARS-CoV-
2 replication [31, 32]. Similar to the findings for drugs blocking de novo infection, higher
efficacy and earlier treatment is associated with better outcomes. According to our

model the AUC was reduced by 76% and 36% of the target cells remained uninfected

10
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after the course of infection when treatment initiated at 1 day after symptom onset and
the antiviral effectiveness was 90% (Fig 2BE).

In contrast, if treatment was started after the viral load peak, improvement in
the outcomes cannot be expected even with 100% inhibition rate. Similar trends were
observed for MERS-CoV and SARS-CoV (Fig S2BE and S3BE). However, as 4 days
after symptom onset is still before the viral load peak for these two viruses, substantial
improvement in the outcomes are expected with treatment initiated 4 days after

symptom onset for these two viruses (Fig S2BE and S3BE).

(iiif) Promoting cytotoxicity

Another possible antiviral mechanism is to promote cytotoxic effects. This could
be done by stimulating adaptive immunity including responses mediated by cytotoxic
T lymphocytes and NK cells by immunotherapy or vaccination, but the effect would not
be immediate. To be consistent with the other modes of drug action discussed above
in which we assume the drug takes effect immediately after administration, we
envision a drug such as a viral-specific monoclonal antibody conjugated to a toxin as
used in cancer therapy [33] or a non-neutralizing viral specific monoclonal antibody
that could induce infected cell death by complement-mediated lysis or antibody-
dependent cellular cytotoxicity. A neutralizing antibody with these effector functions
could be considered the equivalent of combination therapy which is discussed below.
Compared with the other two therapeutic mechanisms of action (blocking de novo
infection and virus production), the induction of cytotoxicity directly removes infected
cells which produce viruses, and therefore it enhances the rate of viral load decay.
After the viral peak, target cells are depleted and cytotoxicity inducing therapy leads

to noticeably more rapid declines in viral load (Fig 2C).

11
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Thus, with a 50% effective cytotoxicity promoting antiviral, which by our
definition (see Methods) causes the death rate of infected cells to double, initiated at
day 1 results in an only slightly slower viral growth rate and an only slightly delayed
time of the viral load peak, but more rapid decay in viral load than other two therapeutic
modes of action (blocking de novo infection & virus production) (Fig 2, yellow curves).
Moreover, cytotoxicity induction initiated after the viral load peak can still reduce the
AUC. A 95% effective cytotoxicity promoting antiviral initiated at 4 days after symptom
onset reduces the AUC by 13%, however, only 2% of target cells remain uninfected
because the most of the target cells were already infected by the viral load peak (Fig
2CF, blue curves). We confirmed much later treatment initiation (13 days after
symptom onset) with this type of antiviral still increases the rate of viral load decay
(Fig S4A).

Overall, compared with the effects of the other two types of antivirals, the effect
of promoting cytotoxicity on the AUC is less dependent on the magnitude of the
antiviral effect and the timing of treatment initiation, although earlier treatment and
more efficacy is positively associated with an increased reduction in the AUC.

We confirmed a similar trend in the treatment effect on MERS-CoV and SARS-
CoV infection (Fig S2CF and S3CF). Given that their viral load peak comes later than
that of SARS-CoV-2, treatment initiated at 4 days after symptom onset is predicted to
still reduce the AUC and save uninfected target cells (see below).

To evaluate the effect of promoting cytotoxicity initiated long after the viral load
peak, we compared the effect of a 50% effective treatment initiated at 1 day and 13
days after symptom onset on all three coronaviruses (Fig S4). The therapy initiated at
1 day delayed the time of the viral load peak particularly for MERS-CoV and SARS-

CoV. When the treatment was initiated at 13 days, which is after the viral load peak,

12
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the viral load declined rapidly compared with treatment initiated at 1 day, because few
target cells remain and thus new infection is limited.

The analysis of the treatment effect of drugs with three different modes of action
revealed that the treatment strategy should be different for each type of drug. For
example, using drugs that block de novo infection or virus production can avoid
substantial target cell reduction if initiated before the viral load peak. Using a drug that
promotes cytotoxicity is less time sensitive and treatment initiated after the viral peak
still can reduce the AUC. These findings suggest the possibility of a synergistic effect

of combining drugs with different modes of action.

(iv) Combination therapy

In this section, we describe the effect of combining two different drugs among
the three described in the section above. In general, combinations of antiviral therapies
are considered preferable when it synergistically enhances the antiviral effects,
reduces the needed individual drug dose, and reduces the side effects compared with
the cases of monotherapy [6, 27, 34-36]. Here, we focus on the synergistic antiviral
effect on the model outcomes (i.e., reduction in the AUC and saving target cells from
infection).

The three possible two drug combination therapies (i.e., blocking de novo
infection & virus production, blocking de novo infection & promoting cytotoxicity,
blocking virus production & promoting cytotoxicity in Fig 3AD, BE and CF,
respectively) were simulated using the same assumptions as for the single drug
therapies. All three combination therapies improved the antiviral effects when
compared to the corresponding monotherapies. As we expected, combining the drugs

with distinct modes of action, especially with a drug promoting cytotoxicity being one

13
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of them, more effectively reduced the AUC and saved target cells from infection. With
monotherapy, the AUC was reduced by 13%, 44%, and 54% with the drugs blocking
de novo infection, blocking virus production, and promoting cytotoxicity with a 50%
antiviral effect initiated at 1 day after symptom onset (Fig 2DEF), whereas it was
reduced by 58% or greater under combination therapy (Fig 3DEF). Notably, combining
a drug promoting cytotoxicity with one of the other two types of drugs compensated
the “weakness” of each treatment: no clear effect is expected from the drugs blocking
de novo infection or virus production if initiated after the viral load peak.

From a biological point of view, promoting cytotoxicity is distinct from the other
two mechanisms. Both blocking de novo infection and virus production limit ongoing
de novo infection, whereas promoting cytotoxicity enhances virus and infected cell
removal independent of target cell availability. A broadly neutralizing antibody with
potent effector functions that induced infected cell death would be a good therapeutic
option as it induces two modes of action in one molecule. Antibodies of this type are
being explored for HIV [37, 38]. SARS-CoV-2 neutralizing antibodies are also in clinical
development, and the role of their effector functions in providing protective activity are
being examined [39]. Our analysis also implies that, if antiviral drugs induce
immunomodulation as a bystander effect, even if the treatment is initiated after the
viral load peak, they might be able to reduce viral load. We confirmed the same trends

for MERS-CoV and SARS-CoV (Fig S5BE and S6BE, respectively).
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Conclusions

To aid the development of antiviral drugs and treatment strategies for SARS-
CoV-2 infection, we characterized the viral dynamics of SARS-CoV-2 and the related
viruses, SARS-CoV and MERS-CoV, using a mathematical model. We further
introduced the effect of antivirals with different modes of action in the model and
explored the influence of the drug efficacy and timing of treatment initiation on the
outcomes (viral load AUC and the fraction of target cells that remain uninfected). We
found that Ry, is larger for SARS-CoV-2 compared with MERS-CoV, and the
difference in viral load peak timing was significantly different between SARS-CoV-2
and SARS-CoV. Some studies suggested that viral load peaks occur before the onset
of symptoms [40, 41], while other studies suggest that the viral load peaks occur within
the first week of symptom onset [14, 42-44]. Although it is difficult to accurately
determine whether the peak is before or after symptom onset since there is little viral
load data available before the onset of symptoms, an earlier viral peak for SARS-CoV-
2 is consistent with recent findings [14, 40-44]. The larger Rg, and earlier viral peak
suggest it may be more difficult to treat SARS-CoV-2 infection than SARS-CoV and
MERS with drug therapy that blocks viral production or de novo infection, because for
these types of drugs, treatment initiation before the viral load peak is important to
reduce viral load and save target cells from infection. The variations in parameter
estimates among the individuals studied do not change our results on the importance
of initiating antiviral therapy before the viral load peak (Fig S7). The modelling of
antivirals with different drug efficacies highlighted the importance of early initiation of
treatments blocking de novo infection and virus production. In contrast, a treatment
promoting cytotoxicity reduces AUC even when treatment is initiated after the viral

load peak. Due to the uniqueness of the drugs promoting cytotoxicity compared with
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the other two types of drugs, combination therapy promoting cytotoxicity and one of
the two other drugs more effectively reduced the AUC and saved target cells from
infection because the combination compensated for the weakness of each drug.

We used the area under the viral load curve and the fraction of target cells
remaining uninfected as outcomes rather than the length of hospital stays, clinical
improvement, severity, and mortality, which have been more commonly used as
primary outcomes in clinical studies [45-52]. However, the outcomes should be
determined case-by-case basis. For example, if the objective is to find or assess the
effectiveness of a lifesaving treatment, then mortality should be used as a primary
outcome. However, if the objective is to assess the effectiveness of antiviral treatment,
the degree of viral load reduction might be a primary outcome. Indeed, viral load
related outcomes have been used in multiple clinical studies for antivirals [15, 46, 53-
57]. Further, viral load outcomes are particularly important for SARS-CoV-2 because
many patients experience mild or no symptoms (i.e., asymptomatic cases) and yet are
still isolated. To determine ending isolation, it is frequently necessary to have a
negative PCR test as well as disappearance of symptoms [14]. This is sensible as a
strong association between viral load and infectiousness has been suggested [19].

Drug repurposing — reusing drugs already approved for specific purposes for
other (new) purposes — is currently the major approach for rapidly deploying antiviral
drugs for SARS-CoV-2. A number of drugs such as lopinavir and ritonavir [47, 55],
chloroquine [48], favipiravir [46], interferon beta-1b, lopinavir-ritonavir and ribavirin [58],
a nebulized form of interferon beta-1a [59] and remdesivir [49, 50] have been tested
in clinical studies. However, the findings from such trials are not consistent: some
claim a significant effect but the others do not for the same drug. One of the major

issues is that of poor study design [60]. Beyond that, we suspect the treatment was
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not initiated early enough and may have yielded null findings even though the drug is
effective as we demonstrated in silico in this study for drugs blocking de novo infection
and virus production. Indeed, the mean interval between symptom onset and
hospitalization was 4.6 days during the COVID-19 epidemic in Shenzhen, China [28],
which is longer than the interval between symptom onset and viral load peak for SARS-
CoV-2 (2.9 days), suggesting that therapy is commonly started well after the viral load
peak in hospitalized patients.

A limitation of our analysis is the simplicity of our mathematical model. However,
this model is flexible and extendable. For example, we did not consider heterogeneity
of target cells and we assumed the death rate of infected cell, §, is constant. However,
models with multiple types of target cells could be developed and § can be made time-
dependent as was done in the case of HIV where there was extensive viral load data
[61, 62]. Alternatively, equations can be introduced to explicitly model effector cell
responses [63, 64]. These approaches could be reflected in extended versions of our
model if relevant data and supporting evidence becomes available. Indeed, several
more complex models have been proposed to describe SARS-CoV-2 viral dynamics
[17, 18]. However, these complex mathematical models yielded similar conclusions
about the need to initiate therapy with a typical antiviral that blocks viral production
early as the simple model we employed.

Development or identification of effective antiviral drugs is urgently needed. We
believe our theoretical framework can at least partially explain why such drugs have
not been identified (late treatment initiation) and could help design clinical studies and

treatment strategies by assessing their potential effect on viral load related outcomes.

17



352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

Methods

Study data

The longitudinal viral load data were extracted from clinical studies of SARS-
CoV-2 [11-14], MERS-CoV [21, 22] and SARS-CoV [23]. Only the data from
individuals with more than three data points above the detection limit were included in
the analysis. The data from patients who received antiviral treatment during infection
were excluded. We confirmed that ethics approval was obtained from the ethics
committee at each institution, and that written informed consent was obtained from the
patients or their next of kin in the original studies. The data were extracted from images
in those publications using the program datathief Il (version 1.5, Bas Tummers,
www.datathief.org). We converted cycle threshold (Ct) values reported in the above
papers to viral RNA copies number values (copies/mL), where these quantities are
inversely proportional to each other [65]. The following formula was used to convert
Ct values (y) to viral RNA copies (x in copies/mL): log;o(x) = ay + b with a = —0.32
and b = 14.11 [23]. Table S1 summarized the data. The likelihood function accounted

for censored data (i.e., data points under the detection limits) [66].

Mathematical model

We used a simple target cell limited model to describe SARS-CoV-2, SARS-
CoV and MERS viral dynamics [20, 24, 67]. Target cell limited models have proved
very valuable in understanding infection dynamics and therapy for chronic viral
infections such as HIV [61, 68], HCV [69], and HBV [70] and for acute infections such
as influenza [71], West Nile virus [72] Zika virus [73] and SARS-CoV-2 [17, 74, 75].
Although the model does not explicitly describe immune responses the effects of

immune responses are implicitly included in model parameters such as the infection
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rate, which can be influenced by innate responses and the death rate of infected cells,
which can be influenced by adaptive immune responses. Because of the simplicity of
the model these parameters can be estimated and compared among the three
different coronaviruses. The form of the model that we use was first introduced to

model influenza infection [71] and is given by

dr(t)

— = —BT()V(0), (D

di(t)

— =BTV () - 81(®), (2)

ave) v 3
== pl(©) = eV (D), (3

where the variables T(t), I(t), and V(t) are the numbers of uninfected target cells,
infected target cells, and the amount of virus at time t (note; we used time after
symptom onset as the time-scale), respectively. Symptom onset is defined slightly
differently between papers, but it essentially means when any coronavirus related
symptoms (fever, cough, and shortness of breath) appear [76]. The parameters g, 6,
p, and c represent the rate constant for virus infection, the death rate of infected cells,
the per cell viral production rate, and the per capita clearance rate of the virus,
respectively. Since the clearance rate of the virus is typically much larger than the
death rate of the infected cells in vivo [27, 67, 77], we made a quasi-steady state (QSS)
assumption, dV(t)/dt = 0, and replaced Eq.(3) with V(t) = pI(t)/c. Because data on
the numbers of coronavirus RNA copies, V(t), rather than the number of infected cells,

1(t), were available, I(t) = cV(t)/p was substituted into Eq.(2) to obtain

WO _PErove —sve. @
dt c
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Furthermore, we replaced T(t) by the fraction of target cells remaining at time t , that
is, f(t) =T(t)/T(0), where T(0) is the initial number of uninfected target cells. Note
f(0) = 1. Accordingly, we obtained the following simplified mathematical model, which

we employed to analyze the viral load data in this study:

afe _
— — POV, (5)
d

O yrove -, ®

where y = pBT(0)/c corresponds to the maximum viral replication rate under the
assumption that target cells are continuously depleted during the course of infection.
Thus, f(t) is equal or less than 1 and continuously declines.

In our analyses, the variable V (t) corresponds to the viral load for SARS-CoV-
2, MERS-CoV, and SARS-CoV (copies/mL). Because all of them cause acute infection,
loss of target cells by physiological turnover can be ignored, considering long lifespan

of the target cells.

The nonlinear mixed effect model

The nonlinear mixed effect modeling was used to fit the model to the
longitudinal viral load data. The model includes both fixed effects (i.e., population
parameters) and random effects. The random effects represent the difference among
patients. The parameter values for patient k is 9, (= 9 X e™k), which is a product of a
fixed effect, 9, and a random effect, e™ . m; is assumed to follow the normal
distribution: N(0, Q). This approach allows us to estimate the parameters for patients
with limited time point data, because the population parameters are estimated from
not only his/her data, but all the patients’ data. We used the viral type as a categorical
covariate in estimating the parameters y, § and VV(0) which provide the lowest BICc.
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Fixed effects and random effects were estimated using the stochastic approximation
expectation-maximization algorithm and the empirical Bayes’ method, respectively.
The statistical differences of covariate for y, g and V(0) were tested by the Wald test.

Fitting was implemented using MONOLIX 2019R2 (www.lixoft.com) [78]. The

estimated (fixed and individual) parameters and the initial values are listed in Table 1
and Table S2. The viral load curve using the best fit parameter estimates for each
individual patient is shown with the data in Fig S1. Note that the mixed model approach

has been used elsewhere in longitudinal viral load data analysis [17, 73].

In silico experiments for antiviral therapies

Based on the parameterized model for each virus, we investigated the antiviral
effects of drugs with the following different mechanisms of action: (i) blocking de novo
infection; (ii) blocking virus production; and (iii) promoting cytotoxicity on two
outcomes: the reduction in the area under the viral load curve (AUC) (i.e., f028 V(s)ds)

and the remaining fraction of target cells after the course of infection (i.e., f(28)). Note
that we used 28 days after symptom onset as the upper bound for observation,
because most of viral load is below the detection limit by this time and some previous
clinical studies used health conditions (e.g., mortality) at 28 days (4 weeks) as a
primary outcome [79]. In the simulation, the best fit population parameters estimated
by fitting the model to the data were used. We varied the time of treatment initiation
after symptom onset, t*, and the antiviral efficacy, ¢ n, and 6 to assess the
dependency of them on the outcomes. Note that t* = 0 corresponds to therapy
initiated immediately after symptom onset.

We modeled viral load dynamics under antiviral treatment with the three

different mechanisms of action as follows:
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(i) Blocking de novo infection. The viral dynamics under antiviral treatment

for blocking de novo infection is modeled as follows:

d
];(tt) =—(1-eH®))BFOV (D), (7
d
Zit) =(1-eH®)yfOV () — 6V (0), (8)

where H(t) is the Heaviside step function defined as H(t) =0 if t < t*: otherwise
H(t) = 1. t" is the time of treatment initiation and ¢ is the treatment efficacy: 0 < ¢ <
1. ¢ = 1 implies de novo infection is 100% inhibited.

(ii) Blocking virus production. The virus dynamics under treatment for

blocking virus production is modeled as follows:

av(t)
dt

(1=nH®)yf©OV() — 8§V (D), 9)

where 7 is the treatment efficacy: 0 < n < 1. n = 1 indicates that virus production from
infected cells is fully inhibited. Note that the difference between blocking de novo
infection and virus production is that the drugs in the former model reduce g, whereas
the drugs in this model reduce p in the full model, that is, Egs. (1-3).

(iii) Promoting cytotoxicity. The virus dynamics under the antiviral treatment
of promoting cytotoxicity (or increasing the death rate of infected cells) is modeled as

follows:

dv (t)
dt

! )4 10
o) VO a0

=y Ve - (
where 6 is the treatment efficacy: 0 < 8 < 1. 8 = 1 indicates that the drug is 100%
effective and causes the immediate death of an infected cell. No drug is expected to

be 100% effective. A 50% effective drug would cause a 2-fold increase in the death

rate and a 90% effective drug would cause a 10-fold increase.
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(iv) Combination therapy. The virus dynamics under therapies combining all

the three types of drugs is modeled as follows:

d
PO (- enw)preve, (11)
av 1

d(tt) = (1— eH®)(1 - nHO)FOV (D) — (m) SV (D). (12)

In the simulation, we assumed any of two therapies are combined (thus one of the

three parameters is set as zero).

Computation of L, Ry, C*, and T,, and statistical test for the difference between
viruses

Based on the estimated parameters, we calculated several quantities for each
virus: the duration of virus production (L = 1/8), the reproduction number (Rg, = v/9)
at symptom onset and the critical inhibition level (C* = 1 — 1/Ry,). Further, the time
from symptom onset to the viral load peak (T;,) was calculated by running the model
using estimated (fixed and individual) parameters and the initial values. The difference
in T, was tested by the Jackknife test [80, 81]. To evaluate statistical differences for

R, and C* we applied the Wald test as well.
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Figure legends

Figure 1. Comparison of SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics.
Expected viral load trajectories for SARS-CoV-2, MERS-CoV and SARS-CoV infection
are shown. The solid curves give the solution of Egs. (5-6) using estimated parameters
(the best fit population parameters) and the shaded regions correspond to 95%
predictive intervals using the estimated parameters for each patient. The data

underlying this Figure is given in S1 Data.

Figure 2. Predicted outcomes under anti-SARS-CoV-2 monotherapies. (A-C)
Expected viral load and uninfected target cell proportion trajectories with and without
treatment for the three different treatments. The black curves are without treatment.
The blue curves are with treatment (efficacy is 95%) initiated at 4 days since symptom
onset. Both red, green and orange curves are with treatment initiated at 1 day since
symptom onset, but with different efficacy (95%, 90% and 50%, respectively). The
dotted vertical lines correspond to the timing of treatment initiation. (D-F) The heatmap
shows the reduction in the viral load AUC with treatment compared to without
treatment. The timing of treatment initiation and treatment efficacy was varied. Darker
colors indicate a larger reduction in the viral load AUC. The parameter setting used for
the simulation in Panels (A-C) is indicated by the same colored squares in Panels (D-

F). The data underlying this Figure is given in S2 Data.

Figure 3. Predicted outcomes under anti-SARS-CoV-2 combination therapies.
(A-C) Expected viral load and uninfected target cell proportion trajectories with and
without treatment for the three combination therapies. We assumed the same
efficacies and timing of treatment initiation for the two combined treatments. The black
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curves are without treatment. The blue curves are with treatment (efficacy is 95%)
initiated at 4 days after symptom onset. Both red and green curves are with treatment
initiated at 1 day after symptom onset, but with different efficacy (95% and 90%,
respectively). The dotted vertical lines correspond to the time of treatment initiation.
(D-F) The heatmap shows the reduction in the viral load AUC with treatment compared
to without treatment. The time of treatment initiation and the treatment efficacy was
varied. Darker colors indicate a larger reduction in the viral load AUC. The parameter
setting used for the simulation in Panels (A-C) is indicated by the same colored

squares in Panels (D-F). The data underlying this Figure is given in S3 Data.
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Table 1. Estimated parameters (fixed effect) for SARS-CoV-2, MERS-CoV, and SARS-CoV infection

Parameter Name Symbol (Unit) SARS-CoV-2 MERS-CoV SARS-CoV
Parameters in the model

Maximum rate constant for viral replication y (day™) 4 1.46" 4.13
Rate constant for virus infection B ((copies/ml)'day') 52x107® 1.4x107% 49x107%
Death rate of infected cells 5 (day™")& 0.93 0.93 0.93
Viral load at symptom onset V(0) (copies/ml) 6.5 x 103 6.6 x 10* 3.3 x 10~%*
Quantities derived from the parameters

Mean duration of virus production L (days) 1.08 1.08 1.08
Within-host reproduction number at symptom onset Rgo 4.30 1.57# 4.44
Critical inhibition level c* 0.77 0.38% 0.75
Time from symptom onset to viral load peak T, (days)® 2.0 12.2 7.2%

# Statistically different from SARS-CoV-2 (the Wald test). $T,, was computed from simulation, and the difference from SARS-CoV-2 was tested by the Jack-knife test. & the
death rate of infected cells was assumed to be the same between the viruses in the process of model selection.

35



