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Abstract
To build a decentralized multiagent system whose
member agents are not coupled to each other’s deci-
sion making requires a flexible communication pro-
tocol. Information-based protocol languages cap-
ture a protocol in terms of causality and integrity
constraints based on the information exchanged by
the agents. Thus, they enable highly flexible enact-
ments in which the agents proceed asynchronously
and messages may be arbitrarily reordered. How-
ever, the existing semantics for such languages can
produce a large number of protocol enactments,
which makes verification of a protocol property in-
tractable. This paper formulates a protocol seman-
tics declaratively via inference rules that determine
when a message emission or reception becomes en-
abled during an enactment, and its effect on the lo-
cal state of an agent. This representation enables
heuristics for determining when alternative exten-
sions of a current enactment would be equivalent,
thereby helping produce parsimonious models and
yielding improved protocol verification methods.

1 Introduction
We consider a decentralized multiagent system in which
autonomous agents communicate through message passing.
Such multiagent systems find natural application in settings
such as commerce and the Internet of Things where multiple
parties interoperate autonomously with minimal coupling.

A crucial challenge is to specify, verify, and implement
multiagent systems in terms of high-level concepts such as
norms and other organizational constructs [Günay et al.,
2015; Jiang et al., 2015; El Menshawy et al., 2011]. However,
in a decentralized setting, the high-level concepts can become
entwined with details of message flow. In this context, a data-
driven approach [Montali et al., 2014] can unite meanings
with operations and processing [De Masellis et al., 2017].
We adopt BSPL (the Blindingly Simple Protocol Language)
[Singh, 2011], which precisely expresses the information to
be exchanged between agents. Thus, it yields enactments as
flexible as possible given causal and integrity constraints that
naturally encode meanings [Chopra et al., 2020]. However,
the current BSPL semantics [Singh, 2012] and its variants
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Figure 1: Some possible equivalent enactments of Purchase.

produce a combinatorial explosion of enactments, which ex-
acerbates the complexity of formal verification.

Let us describe the problem and solution informally. An
enactment (of a protocol) is what may happen when it is
instantiated—which messages are sent and received in what
order by what participant. Consider a Purchase protocol. A
role BUYER sends PO (a purchase order specifying item and
price) to a role SELLER, who responds to PO with ship (of
that item). BUYER sends pay of price in PO. Notice that ship
and pay are independent but each depends on PO. Figure 1
shows some enactments of Purchase for a single transaction.

To capture decentralization, each enactment is modeled as
a vector of histories, one history per role [Singh, 2012]. We
term two enactments equivalent if they reflect the “same” in-
formation and decision making at each role. Representing
multiple equivalent enactments does not enhance the protocol
properties verified but exacerbates verification complexity.

A protocol may produce multiple equivalent enactments
for three main reasons. One, flexibility. Figure 1’s enactments
differ only with respect to the ordering of pay and ship—
precisely the ordering that is irrelevant in the protocol. From
BUYER’s perspective, PO must precede ship and pay but their
order of occurrence is irrelevant. From SELLER’s perspective,
PO must precede ship but how ship and pay are ordered is ir-
relevant. Two, the infrastructure. For example, under FIFO,
SELLER would observe PO before pay, but either order is ac-
ceptable without FIFO. Three, the architecture. Specifically,
decentralization means there is no central controller that can
force an agent to observe messages in a particular order.

To verify the correctness of a protocol, one would check
properties such as liveness and safety by generating a model



from the protocol and verifying the property in the model.
Flexible protocols with many possible enactments may pro-
duce a large model that is consequently hard to verify.

We contribute Tango, an approach for a protocol seman-
tics that identifies how messages tangle with each other and
produces a “small” model for a protocol that contains all the
relevant variety exhibited by its enactments. The message en-
tanglements help us determine when two enactments are se-
mantically equivalent (satisfy or violate the same properties),
and provide a basis for reducing redundancy in a model. We
contribute an algorithm for generating small models of pro-
tocols that ensures correctness. We show empirically that our
algorithm produces smaller models and verifies correctness
of sample protocols much faster than previous work.

2 Background: Information-Based Protocols
We now introduce the core ideas of information-based proto-
cols using BSPL [Singh, 2011]. Listing 1 shows an example
protocol. Each protocol involves roles (here, B and S); these
roles are adopted by agents when the protocol is enacted. The
parameters specify the information to be computed: think of
these as forming a relational schema, each instance of which
corresponds to a complete enactment of the protocol.

1 p r o t o c o l PO Pay Cance l Ship {
2 roles B , S
3 parameters out ID key , out i tem , out p r i c e ,

out outcome
4 private pDone , gDone , r e s c i n d
5
6 B 7→ S : PO [out ID key , out i tem , out p r i c e ]
7
8 B 7→ S : c a n c e l [ in ID key , nil pDone , nil

gDone , out r e s c i n d ]
9 B 7→ S : pay [ in ID key , in p r i c e , in i tem ,

out pDone ]
10
11 S 7→ B : s h i p [ in ID key , in i tem , nil

r e s c i n d , out gDone ]
12 S 7→ B : cance lAck [ in ID key , in r e s c i n d , nil

gDone , out outcome ]
13 S 7→ B : payAck [ in ID key , in pDone , out

outcome ]
14 }

Listing 1: Protocol for purchase with cancellation.

BSPL specifies interactions in terms of causality and in-
tegrity constraints. Message emissions are causally con-
strained by dependencies between their parameters. Each
message schema lists parameters adorned ⌜in⌝, ⌜out⌝, or
⌜nil⌝, and at least one ⌜key⌝. The sender must already know
the binding for each ⌜in⌝ parameter, not know the binding for
any ⌜out⌝ or ⌜nil⌝ parameter, and create a binding for each
⌜out⌝ but not for any ⌜nil⌝ parameter.

To send PO, B introduces new bindings for ID, item and
price. These new bindings enable B to send cancel and pay.
However, sending pay disables cancel, because cancel has
pDone adorned ⌜nil⌝. Similarly, receiving ship prevents B
from sending cancel, and receiving cancel prevents S from
sending ship; it is reception that disables those messages, not
emission, because each agent acts only on local knowledge.

Thus, there is a race condition when B sends cancel : the PO
is canceled only if S receives cancel before sending ship.

Integrity requires that each parameter have at most one
binding in an enactment, as identified by the key parameters.
In PO Pay Cancel Ship, each binding of ID identifies a unique
enactment, in which there can only be one binding for item,
price, and so on. Hence, ⌜out⌝ parameters are mutually ex-
clusive; S cannot send both cancelAck and payAck in the
same enactment, because both bind outcome. If all enact-
ments of a protocol satisfy integrity, we say that the protocol
is safe. PO Pay Cancel Ship is safe because none of its pa-
rameters can be bound by more than one role in an enactment.

A protocol is live if every enactment can produce bindings
for all public parameters (assuming no message loss). PO Pay
Cancel Ship is live, because PO binds ID, item, and price.
Both cancelAck and payAck bind outcome; in every enact-
ment, at least one them is enabled, completing the enactment.

BSPL semantics [Singh, 2012] maps each protocol to a set
of history vectors comprising one sequential history for each
of its roles. A history vector H is [H1;H2; . . .], where each
Hi is a sequence of observations [oi1, o

i
2, . . .] made by role

ri. There is no ordering across histories. One history vector
progresses to another as any of the roles append an enabled
observation to its observation sequence.

Below, x!m (e.g., B!pay) means the emission of m by x;
and x?m (e.g., S?pay) means the reception of m by x. For a
message of the form x 7→ y, if y?m appears in y’s sequence
in a vector, x!m also appears in x’s sequence in a prior vector.

3 Semantic Tableaux for Protocols
A protocol configuration corresponds to a state of the world
as the protocol is enacted. A configuration comprises the lo-
cal knowledge of each role in the protocol as well as the con-
tents of every communication channel (i.e., between each pair
of roles). Given the message emissions and receptions at each
role, a message that has been sent but not (yet) received is in
the corresponding channel. In an initial configuration, no ob-
servations have occurred, thus no messages are in transit, and
each role knows exactly the ⌜in⌝ parameters of the protocol.
Each protocol enactment goes through a series of configura-
tions where the transition from each configuration to the next
respects causality and no role emits a message that would lo-
cally cause integrity violation. (Our example protocols have
no ⌜in⌝ parameters and can be enacted standalone—without
needing any other protocols to provide the ⌜in⌝ parameters.)

Semantic tableaux [D’Agostino et al., 1999; Fitting, 1999]
are a way to organize a proof as a tree where inference
rules determine how one node leads to another node. Here,
tableaux capture the notion of transition for generating a
model of a protocol, as needed for our protocol semantics.

Each branch or sequence of nodes beginning from the root
of a tableau has a natural semantic interpretation as a possi-
ble protocol enactment. A tableau is thus a model of a pro-
tocol, i.e., the set of its enactments. The tableaux we define
lend themselves to natural reasoning to eliminate redundant
branches, thereby compressing the model of a protocol.

We adopt propositional logic with its usual rules. Be-
low, m is a message schema x 7→ y : m[p⃗I , p⃗O, p⃗N ], where



Lxm Message m has been observed by x
Kxp Binding for parameter p is known to x
Uxp Binding for parameter p is still unknown to x
x 7→ y : m Message m, x to y; detailed with p⃗I , p⃗O, p⃗N
mi ||– mj mi is a possible enabler of mj

mi –||mj mi disables mj

Table 1: Notation summarized.

p⃗I , p⃗O, p⃗N are sets of its parameters respectively adorned
⌜in⌝, ⌜out⌝, and ⌜nil⌝. The modalities Kx and Ux capture
that role x knows or does not know parameter bindings, and
Lx that x observes the emission or reception of a message.

3.1 Knowledge and Observations
Initially, each role knows bindings for exactly the set of ⌜in⌝
parameters of the protocol (the empty set for self-contained
protocols). What is known to each role grows monotonically
because parameter bindings are immutable, and the emission
and reception of each message adds to a role’s knowledge.

Lxm means role x has observed message m. In BSPL,
the only observations are local, i.e., emissions or receptions.
Chaining back a role’s observations to the root gives us its
history in reverse. This is crucial in relating nodes to history
vectors and tableaux to sets of history vectors [Singh, 2012].

The Kxp assertions in a tableau node together characterize
a protocol configuration. Ux expresses which bindings are (so
far) unknown to x. Each transition involves an observation
and the associated increase in the knowledge of the observ-
ing role. The BSPL treatment of ⌜out⌝ and ⌜nil⌝ parameters
at emission relies upon their bindings being unknown. To
capture this increase in knowledge, we delete Uxp assertions
simultaneously with when we infer Kxp assertions. Repeated
deletion of a Uxp assertion has no additional effect.

An instance of x 7→ y : m[p⃗I , p⃗O, p⃗N ] is enabled for emis-
sion by x if and only if x knows p⃗I but does not know p⃗O or
p⃗N . Concomitantly with the emission, the sender produces
and comes to know the bindings for p⃗O.

Kxp⃗I Uxp⃗O Uxp⃗N

Lx(x 7→ y : m[p⃗I , p⃗O, p⃗N ]) Kxp⃗O ✘✘✘Uxp⃗O

Upon the sender observing a message, the message enters
the communication channel from its sender to its receiver. A
message from x to y is enabled for reception by y if and only
if x has observed sending that message. Concomitantly, y
comes to know the bindings for p⃗I and p⃗O.

Lx(r = x 7→ y : m[p⃗I , p⃗O, p⃗N ])

Lyr Kyp⃗I Kyp⃗O ✟✟✟Uyp⃗I ✟✟✟Uyp⃗O

3.2 Generating Branches
Whether a message is enabled for emission may depend upon
its sender not knowing bindings of some parameters. Hence,
enablement is transient; it is computed within this inference
rule but not stored as an assertion in the tableau. For com-
pleteness, we must ensure that each enabled message is ob-
served on some tableau branch growing from a configuration.

Our desired tableaux would have a branch for each enact-
ment. To this end, there is a choice between all allowed ob-
servations by any of the roles. For completeness, we must
consider all choices. Let C be a configuration comprising all
assertions of the form (for each role, parameter, and message)
Kxp, Uxp, and Lxm, and define the following.

• Ex = {⟨x, e⟩|e = x 7→ y : m[p⃗I , p⃗O, p⃗N ] and Kxp⃗I
and Uxp⃗O and Uxp⃗N}.

• Ry = {⟨y, r⟩|r = x 7→ y : m[. . .] and Lxr}.

• L =
⋃

x Ex ∪
⋃

y Ry , the enabled observations in C.

Then, this metarule captures all branches in the tableau:
C

Lzm| . . . |, where each ⟨z,m⟩ ∈ L

3.3 Generating Enactments from Tableaux
Each branch of a tableau, as generated from the inference
rules above, respects the causal structure of BSPL as well as
local consistency for the emissions made by a role.

Each branch leading to a configuration corresponds to a
unique history vector in the BSPL semantics. Specifically,
for each role x, we identify the observation sequence of x as
the list of all the Lx statements in the order in which they
occur from the root to a given configuration. The history (of
some role) changes any time there is an Lxm assertion. The
rest of the tableau, i.e., between consecutive Lxm and Lym

′

assertions, is for reasoning about the same state.

3.4 Verifying Correctness Properties
Properties of interest, e.g., liveness and safety, are concerned
with the reachability or otherwise of a configuration through
an enactment. They are expressed via propositional combina-
tions of local knowledge states of the roles and the observa-
tions made by the roles.

We assert a property at the root. A branch ends when no
more observations are enabled. A consistent branch that ends
provides an example for the property at the root. A branch
that hits a contradiction is closed; a tableau closes if all its
branches close, which indicates the property is inconsistent
and its negation is proved. The situation is more nuanced here
because the Lxm assertions indicate the passage of time.

For liveness, we require each public parameter of the pro-
tocol to be known to at least one role. A liveness viola-
tion occurs precisely when at least one of the parameters
remains unknown to each role that emits a message with
an ⌜out⌝ on that parameter. For example, in Listing 1,
¬KB ID ∨ ¬KB item ∨ ¬KB price ∨ ¬KS outcome. A con-
sistent ended branch is a counterexample: some parameter is
unknown. But if every branch closes, liveness is established.

For safety, let m1 and m2 be two messages that conflict
by having the same ⌜out⌝ parameter. If both messages were
to be emitted, we would have conflicting bindings for the pa-
rameter, reflecting an integrity violation. A safety violation
occurs for any such pair of messages—a disjunction of con-
junctions of expressions Lxm1 and Lym2, where x ̸= y, x
sends m1, and y sends m2. Listing 1 has no such case since
both cancelAck and payAck, which conflict on outcome, are
sent by S. For illustration, let’s augment Listing 1 with



S 7→ B : g e t L o s t [ in ID key , out r e s c i n d ]

Then, the safety violation of the resulting protocol would oc-
cur if and only if LB cancel ∧LS getLost can hold. The nega-
tion of this property means that safety is preserved. We place
the negated property, ¬LB cancel ∨ ¬LS getLost , at the root
of the tableau. If any branch of the tableau closes, i.e., runs
into a contradiction, we determine that safety is violated.

4 Reducing the Tableau
Recall that in BSPL, each role executes serially (i.e., is sin-
gle threaded) but the various roles can proceed concurrently.
Our interleaved expansion of a tableau is adequate for repre-
senting concurrent enactments because BSPL decouples ob-
servations by different roles. Therefore, any set of concurrent
observations can be realized by interleaving them without any
intervening observations from outside of that set.

Theorem 1. Each history vector corresponds to at least one
possible branch in a tableau for that protocol.

Proof Sketch. Each step on a tableau branch involves one in-
ference rule being applied. A history vector is built induc-
tively starting from a vector of empty histories. When the in-
ductive step involves exactly one role sending or receiving a
message, the corresponding inference rule generates the node
that corresponds to the new vector.

When roles act concurrently, the effect equals that of in-
terleavings of individual steps, which are captured by our
tableau construction. Consider a history vector [Hx;Hy]
for a protocol with two roles, x and y. Suppose x
emits m1 and y emits m2. Then, under true concurrency,
first both emit: [Hx, x!m1;Hy, y!m2]. And next both re-
ceive: [Hx, x!m1, x?m2;Hy, y!m2, y?m1]. We can show
that interleavings would produce configurations equivalent
to those produced by concurrency, e.g., [Hx, x!m1;Hy] and
[Hx, x!m1;Hy, x?m1], which are legitimate BSPL history
vectors. That is, a tableau produced without concurrency cap-
tures all history vectors in the BSPL semantics.

4.1 How Messages Relate in a Protocol
The following intuitions underlie our approach for reducing
the set of interleavings of messages to be considered in a
tableau. We begin from identifying relationships between
messages to construct a graph of potential incompatibilities.

Unrelated messages may occur in any order and any arbi-
trary ordering of them is equivalent to all orderings, so
we can discard all but one of the branches in the tableau.

Necessary enabler If one message must occur before an-
other, we need consider them only in that order. How-
ever, the tableau would unfold in the correct order and
we need do nothing special to accommodate it.

Order matters If one message may disable another, we
must include both possibilities in the tableau. We need
to recognize such orders even if one of the messages is
not presently enabled and make sure we do not prema-
turely eliminate viable branches from the tableau.

We consider message transmissions realized as separate
observations by the sender and recipient, respectively.

Observation a directly endows observation b, a |÷ b, if and
only if a is a necessary precursor to b. In BSPL, b has a pa-
rameter adorned ⌜in⌝ and a is an observation of the unique
message that has the same parameter adorned ⌜out⌝. Emis-
sions directly endow their reception. For example, B!pay di-
rectly endows S?pay, and S?pay directly endows S!payAck
because it is the only observation for S that binds pDone.

Observation a endows c, a ||÷ c, if and only if there is a
chain of one or more direct endowments from a to c.

Observation a directly disables observation b, a ⊣ b, if and
only if the occurrence of a disables b. In BSPL, b must have
an ⌜out⌝ or ⌜nil⌝ parameter that a has ⌜in⌝ or ⌜out⌝. For
example, S?cancel directly disables S!ship. An emission can
be disabled by other observations by the sender, but a recep-
tion cannot be disabled [Chopra et al., 2020]. Additionally,
a must not endow b; otherwise, B!pay would be considered
to disable B!PO since pay has ID ⌜in⌝ and PO has ID ⌜out⌝;
but clearly pay depends on PO and cannot disable it.

Observation a directly enables observation b, a ⊢ b, if and
only if a is a potential precursor to b. In BSPL, b is the recep-
tion for an emission a, or is an emission that has a parameter
adorned ⌜in⌝ and a is observed by the sender and has the
same parameter adorned ⌜out⌝ or ⌜in⌝. Emissions directly
enable the corresponding reception observation at the recipi-
ent, and both emissions and receptions can enable emissions
at the sender. For example, B!pay directly enables S?pay,
S?pay directly enables S!payAck, and B!PO enables B!pay.

Table 2 summarizes direct enablement and disablement re-
lationships between observations based on what parameters
occur in them. It is possible syntactically to have a protocol
with two messages that both enable and disable each other.

⌜in⌝ p ∈ b ⌜out⌝ p ∈ b ⌜nil⌝ p ∈ b

⌜in⌝ p ∈ a x?a ⊢ y!b x?a ⊣ y!b x?a ⊣ y!b
⌜out⌝ p ∈ a x?!a ⊢ y!b x?!a ⊣ y!b x?!a ⊣ y!b
⌜nil⌝ p ∈ a – – –

Table 2: Direct enablement or disablement by a of b. The inter-
robang, as in x ?! a, indicates that x may either emit or receive a; b
is always an emission. Here, p ∈ m indicates parameter p occurs in
message schema m; x and y may be the same or different roles.

Observation a enables observation c, a ||– c, if and only
if there is a chain of one or more direct enablements from a
to c. Thus, enablement is an upper bound in that not all the
enabling messages for c would be needed as precursors of c,
and some of which may be mutually disabling.

Observation a tangles with observation c, a –||c, if and only
if (1) a does not endow c; and (2) a directly disables c or a
directly disables a message b where b enables c. That is, a
tangles with the causal precursors of any message it disables.
Considering causal precursors helps us identify entanglement
even when a message does not directly disable another.

Two observations are incompatible if and only if at least
one is an emission and one of them tangles with the other.

We consider observations to be sensitive if they can di-
rectly disable or be directly disabled by a potential observa-
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Figure 2: Incompatible observations placed in a graph.

tion. Such observations must be handled carefully to ensure
that all enactments are covered.

4.2 Compatible Sets of Observations
We now compute compatible sets of observations that are en-
abled in a particular configuration. As explained above, the
reception of a message that has been sent is always enabled.
Emissions are enabled based on the knowledge state of the
emitting role.

Given the set of messages enabled in a configuration, iden-
tify incompatible pairs of observations. Then, partition the
messages into compatible sets such that (1) no observation
is incompatible with another within the same compatible set
and (2) each compatible set contains an observation that is
incompatible with an observation in another compatible set.

For correctness, we consider both orders for any pair of in-
compatible observations. We can arbitrarily reorder observa-
tions within a compatible set with no effect on correctness—
desirable for reducing the number of generated orders.

We capture the incompatibilities as an undirected graph,
i.e., with observations as vertices and edges as incompatibili-
ties. We reduce the problem of identifying a suitable partition
to graph coloring. Since minimal graph coloring is NP-Hard,
we apply a greedy approach that ensures the observations as-
signed the same color are compatible though the different
colors may not necessarily reflect true incompatibilities. We
slightly enhance Brélaz’s [1979] approach below.

• Sort vertices in order of decreasing degree.

• Assign a color to each vertex that is not assigned to its
neighbors, generating a new color only if necessary.

• In variation from Brélaz, choose a color that (1) has the
highest cardinality; (2) within such, the color whose ver-
tex of highest degree has the smallest degree; (3) within
such, the color whose vertex of highest degree in the full
protocol incompatibility graph has the smallest degree.
We posit that this choice pushes the coloring toward an
imbalanced distribution of vertices, which would tend to
lower the number of branches to be added to a tableau.

Within a compatible set, observations do not conflict so
we consider them in an arbitrary order. Across compatible
sets, observations may conflict so we generate branches in the
tableau to capture each order of incompatible observations.

Suppose the observation incompatibilities are as Figure 2
shows. A possible partition is {{b, f}, {a, d}, {c, e}}.

4.3 Reduction of Proof Orders
In a configuration C, compute L as defined above; the set of
pairs of roles and their enabled observations in C.

From any nonsensitive observations in L, select one by an
arbitrary ordering such as alphabetically by name, or maxi-
mum degree in the incompatibility graph; order does not mat-
ter for correctness, but may influence the number of branches.

If only sensitive observations are enabled at C, generate
a subgraph of the protocol’s incompatibility graph limited to
observations in L. Identify compatible sets of the subgraph
as described above. Create one branch of the tableau for each
compatible set, each branch to begin from the an arbitrarily
selected observation of that compatible set.

Preferentially handling nonsensitive observations first is
not essential to correctness, but can sometimes reduce the
number of branches that are introduced by a conflict and
makes the branching occur closer to the actual conflict so the
tree is easier to understand.

4.4 Correctness of the Method
Since we showed in Theorem 1 that all history vectors (en-
actments) have a corresponding tableau, we need only to
show that a reduced tableau covers all the branches of the
full tableau up to equivalence.
Definition 1. Two tableau branches are equivalent if they
contain the same observations, regardless of order. Such
branches must induce the same knowledge for each role.

Theorem 2. If TP is a full tableau for protocol P and
RP is a reduced tableau constructed according to the above
rules, then every maximal branch in TP is equivalent to some
branch in RP .

Proof Sketch. Suppose BT is a maximal branch in TP , i.e., a
valid sequence of observations that does not enable any ad-
ditional observations. Suppose also that BT is not equivalent
to any branch BR in RP . Then, there must be some point, D
where BT diverges from RP ; that is, observations on BT up
to D form subsequences of the observations on some branch
in RP . This point may be the empty branch. Let Q be the set
of maximal branches in RP such that each branch in BT is
equivalent to some branch in Q.

Case 1. BT ends prematurely, so that all branches in Q are
strict supersequences and thus not equivalent. But this is im-
possible because BT is maximal, so the configuration induced
by its observations cannot enable any additional observations.

Case 2. BT is extended by some observation not in any
branch in Q. After divergence, BT is extended by some
observation o that is not in any branch in Q. Thus, since
the branches in Q are maximal, and contain every observa-
tion in BT prior to o (thus everything necessary to enable
o), every branch in Q must contain some observation o′ that
directly disables o. According to the rules of construction,
sensitive observations are delayed until some sensitive event
must be chosen, and then partitioned into incompatible sets
which each form a new branch. Thus, at the point that o′ is
selected, since o is enabled, it must be placed in an incompat-
ible set, and thus end up on some other branch, contradicting
the premise that no branch in Q contains o. Thus, every max-
imal branch in TP is equivalent to some branch in RP .



No Branch Reductions Tango
Protocol Nodes Branches Time Nodes Branches Time
PO Pay Cancel Ship (Listing 1) 1,495 490 655 ms 22 4 8 ms
Block Contra (in online supplement) 1,802 612 636 ms 14 2 8 ms
Independent (in online supplement) 453 90 157 ms 11 1 3 ms
NetBill [Sirbu, 1998], Bliss version [Singh, 2014] 4,097 1,246 2,688 ms 62 8 38 ms
HL7 Create Lab Order [Christie et al., 2018] 59,259 17,814 70,953 ms 69 14 76 ms

Table 3: Performance comparison between full paths [Christie et al., 2020] and reduced (Tango) approaches on a well-known payment
protocol (NetBill) and a healthcare standard (HL7) protocol as well as on conceptually challenging protocols such as Block Contra.

5 Performance Evaluation
Figure 3 shows a graphical representation of the entire tableau
computed for Listing 1, with the observations as transitions.
Partitions are shown at nodes where only sensitive observa-
tions are enabled. When checking a property, the construction
process would stop as soon as a counterexample is found.

{{B!cancel, B!ship},{B!pay}}

{{S!ship, S!payAck},{S?cancel}}

{{S!cancelAck},{S!payAck}}

B?cancelAck

S!cancelAck

B?payAck

S!payAck

S?cancel

{{S!payAck}}

B?payAck

S!payAck

B?ship

S?cancel

S!ship

S?pay

B!pay

B!cancel

{{S!ship, S!payAck}}

{{B?ship, S!payAck}}

{{S!payAck}}

{{B?payAck}}

B?payAck

S!payAck

B?ship

S!ship

S?pay

B!pay

S?PO

B!PO

Figure 3: Entire tableau structure for PO Pay Cancel Ship.

We have implemented Tango in Python, and compared it
with existing BSPL verification tools. All experiments were
performed on the same Linux laptop, a Thinkpad T460 with
an Intel i7-6600U CPU and 16GB of DDR3 RAM. In our ex-
periments, observations are sorted alphabetically by message
name and nonsensitive observations are handled first.

Table 3 shows the total number of nodes (representing con-
figurations or states), branches, and elapsed time for several
sample protocols, including the examples in this paper. The
columns labeled No Branch Reductions describe the prior ap-
proach for BSPL [Christie et al., 2020]. The columns labeled
Tango result from our method.

In addition to the PO Order Cancel Ship protocol, we show
the results for two protocols (listings in the online supple-
ment; link in Section 7) that illustrate important cases for our
evaluation. Block+Contra exhibits subtle race conditions that
confound a naı̈ve method. Independent shows an ideal case
for tableau reduction where there is a direct causal chain that
can lead to a combinatorial explosion for a naı̈ve method.

6 Discussion
The engineering of interacting agents is an evergreen theme
in multiagent systems [Mazouzi et al., 2002; Damiani et al.,
2012]. The connection of interactions with high-level repre-
sentations, both cognitive [Boissier et al., 2019] and social
[Baldoni et al., 2015], from the standpoint of engineering
multiagent systems remains crucial. A well-designed proto-
col would decouple its agents, helping cope with the com-
plexity of verifying or testing them separately [Winikoff and
Cranefield, 2014] and composing the results. BSPL makes it
possible to specify flexible protocols that decouple the agents
as much as possible given causality and integrity constraints.

BSPL is unique in its support for asynchrony and flexibil-
ity, and thus in its need for reduced models. Christie et al.
[2020] introduce protocol refinement to support re-verifying
a BSPL protocol after substituting a component protocol in a
large composition. But their models simulate each interleav-
ing of observations as a distinct enactment, thereby explod-
ing combinatorially. Protocol languages such as trace expres-
sions [Ferrando et al., 2019] that do not express the informa-
tion exchanged (and associated causality and integrity con-
straints) do not enable the optimizations we described, since
they do not make clear which message emissions and recep-
tions can be reordered without affecting the meaning.

Tango’s contribution includes fast (polynomial time)
heuristics that help avoid generating a too-large tableau. A
valuable enhancement of Tango would be to identify op-
timizations for protocols that are generated from meaning
specifications as in Clouseau [Singh and Chopra, 2020].

7 Reproducibility
Our source code, examples, and instructions are available
publicly in an online supplement at https://gitlab.com/masr/.
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