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Abstract

Repurposed drugs that are safe and immediately available constitute a first line of
defense against new viral infections. Despite limited antiviral activity against
SARS-CoV-2, several drugs are being tested as medication or as prophylaxis to prevent
infection. Using a stochastic model of early phase infection, we evaluate the success of
prophylactic treatment with different drug types to prevent viral infection. We find that
there exists a critical efficacy that a treatment must reach in order to block viral
establishment. Treatment by a combination of drugs reduces the critical efficacy, most
effectively by the combination of a drug blocking viral entry into cells and a drug
increasing viral clearance. Below the critical efficacy, the risk of infection can

nonetheless be reduced. Drugs blocking viral entry into cells or enhancing viral
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clearance reduce the risk of infection more than drugs that reduce viral production in
infected cells. The larger the initial inoculum of infectious virus, the less likely is
prevention of an infection. In our model, we find that as long as the viral inoculum is
smaller than 10 infectious virus particles, viral infection can be prevented almost
certainly with drugs of 90% efficacy (or more). Even when a viral infection cannot be
prevented, antivirals delay the time to detectable viral loads. The largest delay of viral
infection is achieved by drugs reducing viral production in infected cells. A delay of
virus infection flattens the within-host viral dynamic curve, possibly reducing
transmission and symptom severity. Thus, antiviral prophylaxis, even with reduced

efficacy, could be efficiently used to prevent or alleviate infection in people at high risk.

Author summary

Antiviral therapy taken prophylactically can prevent a viral infection. Administering
antiviral drugs in prophylaxis to health care workers or other people at risk could be
especially important in the SARS-CoV-2 pandemic. Monoclonal antibodies against the
SARS-CoV-2 spike protein and small molecule antiviral drugs could be used for pre- or
post-exposure prophylaxis. We predict that combination therapy with two drugs with
different modes of action and enough efficacy have the potential to fully prevent
SARS-CoV-2 infection. We provide a prediction for the critical combination of drug
efficacies above which viral establishment is suppressed entirely. Prophylactic antiviral

therapy could be feasible, efficient, and alleviate the burden on healthcare systems.

Introduction

The novel coronavirus SARS-CoV-2 rapidly spread around the globe in early 2020 [1-4].
As of January 12" 2021, more than 91 million cases and 1.9 million associated deaths
have been detected worldwide [5]. SARS-CoV-2 causes substantial morbidity and

mortality with about 4% of cases being hospitalized overall, but up to 47% in the oldest
age group [6-8], and a case fatality ratio of the order of 1% overall, which is again much
higher in the elderly [6,9,10]. With a short epidemic doubling time of 2 to 7 days when

uncontrolled [1,7,11], this epidemic can rapidly overburden healthcare systems [12].
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Many countries have imposed social distancing measures to reduce incidence. Lifting
these measures while keeping the epidemic in check may require a combination of
intensive testing, social isolation of positive cases, efficient contact tracing and isolation
of contacts [13,14]. Even if these measures are locally successful in keeping the disease
at low prevalence, the presence of SARS-CoV-2 in many countries and substantial
pre-symptomatic transmission [14, 15] suggest that the virus may continue to circulate
for years to come.

Existing antiviral therapies can be repurposed to treat COVID-19 in infected
individuals [16-18]. Clinical trials to test several agents are underway, but existing
antivirals have limited efficacy against SARS-CoV-2 and are most efficient in reducing
viral load when taken early in infection [19-21]. Prophylactic therapy using
(repurposed) antivirals has been proposed [22-24], is currently being tested [25] (e.g.
study NCT04497987), and is successfully used in the prevention of HIV infection and
malaria [26,27]. Monoclonal antibodies, such as REGN-COV?2 and Eli Lilly’s
bamlanivimab, both authorized for emergency use in the United States as of January
7th 2021 [28], could also be used for prophylaxis. These agents could be an essential tool
to reduce the probability of SARS-CoV-2 infection in individuals at high risk, e.g. the
elderly (especially those in nursing homes), individuals with co-morbidities, and health
care workers, thus substantially reducing the burden on health care systems. Depending
on the safety profile of the antiviral drug, it could be taken pre-exposure or just after
contact with an infected individual (post-exposure). In this study, we integrate recent
knowledge on SARS-CoV-2 host-pathogen interactions and the mechanisms of action of
the antivirals currently tested in clinical trials to evaluate the efficacy of prophylactic
antiviral therapy. We calculate the probability of establishment of an infection for a

given viral inoculum in an individual under prophylactic antiviral therapy.

Results

Within-host model of viral dynamics

We consider a stochastic analog of a standard target-cell-limited model for viral kinetics.

In this model, infectious virus particles, V7, infect target cells, T', i.e. cells susceptible to
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infection, in the upper respiratory tract at rate 5. Initially, the resulting infected cells,
I, do not produce virus and are said to be in the eclipse phase of infection. After an
average duration 1/k, these cells exit the eclipse phase and become productively infected
cells, Iy, which continuously produce virus at rate p per cell. A fraction 7 of these
virions is infectious (V) and can potentially infect new target cells (7'); the remainder
of the produced virions, (1 — ), is non-infectious, denoted Vi;. Non-infectious virions
may be the result of deleterious mutations, or misassembly of the virus particle. Free
virions (of both types) and infected cells are lost with rate ¢ and ¢, respectively. A
potential early humoral immune response could contribute to the clearance parameter ¢
or reduce the infection rate 5. In other models, the innate immune response was
assumed to increase the infected cell death rate ¢ [21] or to reduce the number of
available target cells by putting them into a refractory state [19,29]. It is currently not
possible to decide on the best model structure to describe innate immunity given the
limited available data during early infection. For large numbers of target cells, infected

cells and virions, the following set of differential equations describes the dynamics:

drT
o -pTVr,
dl;
dt
dl>
dt
dVy
dt
dVnr
dt

= pTVr — kI,
=kl — 615, (1)

=nply —cV; — BTV,

= (1—=n)ply — cVny.

To generate parameter estimates for system (1), we followed the methodology of a
previous study (Section S7 in the Supplementary Information (SI)) [19]. We show
examples of our predictions in four out of 13 analyzed patients (Fig. 1a). An important
quantity in determining the dynamics of this model is the within-host basic
reproductive number Ry. It reflects the mean number of secondary cell infections
caused by a single infected cell at the beginning of the infection when target cells are

not limiting. Using next-generation tools for invasion analysis [30], the within-host basic
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reproductive number for model (1) is given by 60

BTy np
Ry = -, 2
= 16T 0 (2)
where Tj is the initial number of target cells. Ry is the product of two terms: 61

BT,/ (c+ BTo), which corresponds to the probability that the virus infects a cell before o
it is cleared, and np/d, which is the mean number of infectious virus particles produced 3
by an infected cell during its lifespan of average duration 1/§. The mean number of 64
overall virions produced, both infectious and non-infectious, is called the “burst size” 6

(N =p/d). We study the within-host dynamics of SARS-CoV-2 in the early stage of an
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Fig 1. Deterministic within-host dynamics of SARS-CoV-2. (A) Model
predictions using the target cell-limited model in four typical patients of ref. [31]. The
estimated mean for the within-host Ry of all patients from ref. [31] is 7.69. Parameter
values are given in Table S2 in the Supplementary Information. The dotted line depicts
the detection threshold. (B) We plot the contour lines of the viral peak time (blue lines)
and the number of virus particles at the viral peak per mL (orange lines) as a function
of Ry and the number of susceptible target cells Ty. The lines are obtained by
evaluating the set of differential equations in Eq. (1) with different values of Tj (x-axis)
and Ry (y-axis). The initial amount of virus particles per mL, V7(0) = 1/30,
corresponds to 1 infectious virus particle in absolute numbers in the total upper
respiratory tract, which we assume has a volume of 30 mL. The contour lines for viral
loads (orange) stop if the viral peak is reached later than 20 days after infection, which
can happen for low values of the within-host Ry. The parameters of the model are set
to: k=5day ', ¢ =10 day ', § = 0.595 day !, p = 11,200 day ', n = 0.001 and
B = cdRy/(To(np — 6Ry)) day™*. Dots depict averages of some data sets from Table 1.

66

infection, when the number of infected cells is small and stochastic effects are important. e

To do so, we define a set of reactions corresponding to the differential equations in 68
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(1) [32,33):

Vi+T i) I, infection of target cells,
I LN I, end of eclipse phase,
I LN , infected cell death,
N (3)
I BN I, +Vrp, infectious virus production,
(1—-n)p . . . .
I — I + Vnr, non-infectious virus production,
Vi,Vnr  — @, virus clearance.

Because we are interested in early events, we subsequently assume in the analysis that
the number of target cells remains equal to Ty (see Section S1 in the SI). This is a
reasonable assumption as long as the number of infectious virions is much smaller than

the number of target cells (V;(¢) < T'(¢)).

Parameterization of the model

The exact values of the within-host basic reproductive number Ry and the burst size NV
are critical to our predictions. Based on data from 13 patients [31] with an observed
peak viral load of order 10¢ virions per mL, we estimate the within-host basic
reproductive number to be Ry = 7.69 with the 90% confidence interval being

(1.43,13.95), cf. Section S7 in the SI for more details. In ref. [19] a sensitivity analysis of

the same model without distinction of infectious and non-infectious virus was conducted.

This sensitivity analysis revealed that the 95% confidence interval of the within-host Rg
is (1.9,17.6), in line with other estimates of Ry for SARS-CoV-2 in the upper respiratory
tract [34]. To further explore the range of Ry values compatible with other available
data sets, we systematically solved the system of equations (1) and examined the peak
viral load and the time when the peak is reached, as a function of the number of
susceptible target cells Ty and Ry, with all other parameters held constant at values
given in Fig. 1B. For peak viral loads between 10° and 10® copies per mL and peak
timing between 3 and 9 days, encompassing the range of average outcomes observed in
multiple studies (Table 1), Ry may vary between 3 and 13 (Fig. 1B). We note that there

is substantial inter-individual variability in viral loads, and some patients present an
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Table 1. Literature review of SARS-CoV-2 viral load trajectories within

hosts.
Mean Mean time of
Countr observed peak observed viral
Settin}é / ifd. viral loEd peak [days after Reference
[copies.mL~1] infection]
Singapore /
hospital / 13 106 5-10 (a few days (31]
nasopharyngeal (max. 3 x 108) after symptoms)
swabs
Germany / hospital 7 % 10° < 7 (already
/ nasopharyngeal 9 (max. 2 x 109) declining at [37]
swabs admission)
mainland China / 67 10° Safie(rns 201;?;;6 (38]
throat swabs (max. 3 x 107) on}s,,etl))
mainland China 10°
throat swabs / 04 (max. 7 x 108) > [39
Hong Kong / 106
hospl‘csilla/]D ;chroat 23 (max. 3 x 107) 4 [40]
France / hospital / 6 x 108 9
nasopharyngeal 25 (max. 2 x 1011) (inferred in [41]
swabs prospective study)
USA / NBA
layers and staff 4 x10° .
Igsgpharyngeal anfi 68 (max. 107) 3 [36]
throat swabs

Alongside the mean observed peak viral loads, we also state the maximal peak viral

loads from the cited studies (minimal values are not always provided in the references).

These maximal values inform about the plausible upper bound for the within-host
reproductive number Ry. *Cycle threshold (Ct) values are reported. Conversion to viral
loads is according to personal communication with David Ho (Columbia University).

observed peak viral load at 10° copies/mL or higher [35,36], compatible with a Ry of 15

or more. The mean observed peak viral load across the studies surveyed was 10°

copies/mL (Table 1).

The burst size for SARS-CoV-2 is unknown. Estimates of the burst size for other

coronaviruses range from 10 — 100 [42] to 600 — 700 [43,44] infectious virions. We

assume that the proportion of infectious virions produced by an infected cell is

n = 1073, This value is motivated by the fraction of infectious virus in an inoculum

injected into rhesus macaques, n = 1.33 x 1073 [45]. The total viral burst size is then

between 10,000 and 100,000 virions. Such large total burst size is suggested by electron
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Table 2. Model parameters used in the stochastic simulations.
Parameter set H np [day '] ‘ Ty [cells] ‘ nN [virions] ‘ Ry [cells]

LowN 11.2 4 x 10% 18.8 7.69
HighN 112 4 x 10° 188 7.69

Parameters not shown in the table are not changed between the simulations and are set
to: k=5day ', § =0.595 day ', ¢ =10 day ', n = 1073,
B = cdRo/(To(np — 0Ro)) day ™.

microscopy showing the emergence of huge numbers of virions from cells infected by
SARS-CoV-1 [46,47] (see also [48], a webpage dedicated to SARS-CoV-2: e.g.
https://www.flickr. com/PhotoS/niaid/49557785797/in/a1bum—72157712914621487/).
Given the uncertainty in this parameter, we ran simulations with a small (parameter set
‘LowN’) and a large burst size (parameter set ‘HighN’). The exact values of the LowN

and HighN parameter sets are given in Table 2.

Survival and establishment of the virus within the host

As shown previously [32,33], with the model dynamics defined in (3) the probability

that a viral inoculum of size Vj establishes an infection within the host is given by:

vi(0)
1= (1= B ) T iR 2,

(4)
0, if Ro < 1.

When Ry > 1, the establishment probability increases with the size of the inoculum
V1(0). Indeed, for infection to succeed, only a single infectious virus particle among
V1(0) needs to establish, so the more virus particles there are initially, the more likely it
is that at least one establishes. Importantly, for a given Ry, the virus establishes more
easily when it has a low burst size N. Keeping the mean number of secondary cell
infections Ry constant, a virus with a smaller burst size will have a larger infectivity 3
or smaller clearance ¢, which increases the first factor of Ry (Eq. (2)). For the same
number of virions to be produced at lower burst sizes, more cells need to be involved in
viral production than for large burst sizes. This mitigates two risks incurred by the
virus: the risk that it does not find a cell to infect before it is cleared, and the risk that
the infected cell dies early by chance. Since more cells are involved in viral production

for lower burst sizes, these risks are shared over all these virus-producing cells. This
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https://www.flickr.com/photos/niaid/49557785797/in/album-72157712914621487/

reduces the stochastic variance in viral production, which in turn results in a higher

establishment probability.

Prophylactic antiviral therapy blocks establishment of the virus

Next, we investigate the effect of prophylactic antiviral drug therapy on the
establishment probability of the virus during the early phase of an infection. In
particular, we examine drugs with four distinct modes of action.

(i) Reducing the ability of the virus to infect cells 5. This corresponds, for instance,
to treatments that block viral entry, e.g. a neutralizing antibody (given as a drug) that
binds to the spike glycoprotein [49].

(ii) Increasing the clearance of the virus c¢. This mode of action models drugs such as
monoclonal antibodies that may be non-neutralizing or neutralizing and bind to
circulating virus particles and facilitate their clearance by phagocytic cells [50].

(iii) Reducing viral production p. This mechanism corresponds, for example, to
nucleoside analogues that prevent viral RNA replication (favipiravir, remdesivir), or to
protease inhibitors (lopinavir/ ritonavir) [17].

(iv) Increasing infected cell death . This would describe the effect of SARS-CoV-2
specific antibodies that bind to infected cells and induce antibody-dependent cellular
cytoxicity or antibody-dependent cellular phagocytosis. It would also model
immunomodulatory drugs that stimulate cell-mediated immune responses, or
immunotoxins such as antibody toxin conjugates that can directly kill cells [51].

We denote by eg, €., €, and €5 the efficacies of the antiviral drugs in targeting the
viral infectivity, viral clearance, viral production and infected cell death, respectively.
Their values range from 0 (no efficacy) to 1 (full suppression). We neglect variations in
drug concentrations over time within the host and, to be conservative, assume a
constant drug efficacy corresponding to the drug efficacy at the drug’s minimal

concentration between doses.

Antiviral reducing viral infectivity

Antiviral drugs reducing viral infectivity 8 by the factor (1 — €3) leave the burst size N

unchanged, but reduce the basic reproductive number, Ry, by a factor

January 12, 2021

9/31

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149



LowN parameter set HighN parameter set

T~
S’"1oﬁ~‘~w 1.0
? 0w il =l = .._,_.N.\\ A . ) ,n...q.........._._..". B
= N ‘
S 08 » 0.8 -
Vi :
o : ‘ <
\ . =
%0& \; 0.6 : V7(0) = 100
= \ : -- Vi(0)=10
T 0.4 ; 0.4-| : — Vi(0)=1
: ; -tteee, b
G 02 [ 0.2 e it
5 i e g Wi
- J\—’\M ~
S 0.0+ g - 0.0-{ o
3 T T T T T T T T T T T T
0.0 02 04 06 08 1.0 00 02 04 06 0.8 1.0
_ antiviral drug efficacy ¢
s
2 y ,
5 1.0 ——l—————— 1.0 — -
2 ” 4
o 0.8+ / 0.8 ’ g
o 4 g
= 4 Py
S 0.6 & 06 o __g-—"
o L4 — £ =05
5]
0.4-| 0.4-| L
£ --€;=075
172}
% 0.2+ 0.2
@2 C D
& 0.0 0.0
i) 10° 10! 102 103 10° 10! 102 103
-

inoculum size V;(0)

—— reducing viral production p reducing infectivity 8
Fig 2. Establishment probability of a viral infection under prophylactic
treatment with different antiviral drugs, efficacies ¢ and various inoculum
sizes V). The lines in panels A and B correspond to the theoretical establishment
probability under the assumption that target cell numbers are constant, for the two
modes of action (reducing viral infectivity equivalent to increasing clearance, Eq. (5), in
orange and reducing viral production equivalent to increasing cell death, Eq. (6), in
blue). The lines in the bottom panels represent the relative probability of establishment
normalized by the establishment probability in the absence of treatment from Eq. (4),
i.e. /. Dots are averages from 100,000 individual-based simulations of the
within-host model described in system (3), in which target cell numbers are allowed to
vary. Parameter values are given in Table 2.

1—f(ep)=1- H_(fﬁ. If (1 — f(eg)) x Ry > 1, the establishment probability

changes to:

_ (1— fleg) Ro —1)""©
@ﬁ_1<1 N > '

(5)
If (1 — f(eg)) x Rp is less than 1, the virus will almost surely go extinct and we have
wg =0.

With a plausible inoculum size of 10 infectious virions [52, 53], we find that an
efficacy (eg) of 81% (LowN parameter set) is necessary to reduce the establishment
probability of a viral infection by 50% compared to no treatment (see Fig. 2 panels A

and C). Subsequently, when we mention the efficacy of an antiviral drug reducing viral

infectivity, we always refer to €5 and not f(eg).
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Antiviral increasing viral clearance

Antiviral drugs that increase the clearance rate ¢ of extracellular virus particles reduce
the average lifespan of a virus by a factor (1 — ¢.). This changes the clearance
parameter ¢ by a factor 1/(1 — e.).

With this definition of efficacy, we find that the reproductive number Ry is reduced
by the same factor as obtained for a drug reducing infectivity:
(I—f(e))=1- ﬁ Therefore, the establishment probabilities take the same
form, so that ¢, = ¢g. Consequently, we will reduce our analysis to antiviral drugs that

reduce viral infectivity, keeping in mind that results for the establishment probability

are equally valid for drugs increasing viral clearance.

Antiviral reducing viral production

Antiviral drugs reducing the viral production (parameter p) reduce the burst size N by
a factor (1 —¢,). The basic reproductive number Ry is reduced by the same factor. If

(1 —ep) x Ry > 1, such drugs alter the establishment probability to:

B (1—ep)Ro— 1\
e () ®

A reduction of 50% of the establishment probability compared to no treatment can be
achieved with an efficacy of 85% (LowN parameter set, V7(0) = 10). The efficacy
needed is greater than that for antivirals targeting infectivity or viral clearance (81%)
(see Fig. 2 panels A and C). Thus, for imperfect drugs that do not totally prevent
establishment, drugs targeting infectivity (or clearance) are more efficient than those
targeting viral production. This effect emerges from the stochastic dynamics and the
reduction in viral production variance mentioned above: in the early phase, it is more
important for the virus to infect many host cells than to ensure the production of a
large number of virions. This insight might also affect the choice of antiviral drugs,
depending on whether prophylaxis is taken pre- or post-exposure. In the case of
pre-exposure, the scenario we mainly focus on and for which Eq. (4) was derived, we
would recommend to prioritize drugs that increase extracellular viral clearance or
reduce viral infectivity. A neutralizing monoclonal antibody such as LY-CoV555 could

do both. On the other hand, if prophylactic treatment is started post-exposure, e.g. a
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couple of hours after a potential between-host transmission event, the likelihood is high
that cells are already infected. If cells are infected, the initial condition of our analysis
is changed and drugs reducing viral production such as a SARS-CoV-2 polymerase
inhibitor or protease inhibitor are more efficient in preventing the establishment of the
virus than drugs targeting extracellular viral processes (clearance and target cell

infection) in the LowN parameter set, cf. Section S4 in the SI.

Antiviral increasing infected cell death

Increasing the rate of death of infected cells § by the factor 1/(1 — e5) reduces the
average lifespan of an infected cell by a factor (1 — &5). This has the same effect on the
burst size (and consequently on Ry) as an antiviral drug reducing viral production,
again due to our definition of efficacy. Therefore, the establishment probabilities are the
same, ¢, = 5. In our analysis of establishment probabilities, we thus exclusively study

antivirals affecting viral production.

Critical efficacy

Above a critical treatment efficacy, the establishment of a viral infection is not possible.

This is true for all modes of action and for high and low burst sizes (Fig. 2). The
critical efficacy does not depend on the initial inoculum size. It is given by the
condition that the drug-modified Ry equals 1, e.g. (1 —¢e,)Ro =1 for drugs reducing
viral production p. This corresponds to the deterministic threshold value for the viral
population to grow. Computing the critical efficacies for both modes of action with

Eq. (5) and Eq. (6), we find:

_ 1 1 nN _
=1-—= 1-—— = £3. 7
51) R(] < ( R()) UN— 1 86 ( )

They differ for the two modes of action because reducing infectivity does not
proportionally reduce Ry (Eq. (2)). Thus, drugs that reduce viral production result in a
slightly lower critical efficacy, an effect that is small for a low burst size of infectious
virions and not discernible with a high burst size of infectious virions (see intersections
of the establishment probabilities with the x-axes in Fig. 2A and B). For example, in

the HighN parameter set, we find a critical efficacy of 87% for both types of drugs.
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In summary, in the range where drugs cannot totally prevent infection, drugs that
target viral infectivity reduce the probability of establishment more strongly; drugs that
reduce viral production can totally prevent infection at slightly lower efficacy, but this

difference is extremely small when burst sizes (of infectious virions) are large.

Combination therapy

We analyze how the combination of two antiviral therapies could further impede
establishment of the virus. We assume that two drugs that target different mechanisms
of action lead to multiplicative effects on Ry (Bliss independence [54]). The
establishment probability and critical efficacies for the two drugs can be computed in
the same way as for single drug treatments.

For example, a combination of two drugs reducing viral production p and infectivity

8 changes the establishment probability to

o =1 - (1 (= f(e5))(1 ) Ro — 1)““’)
& (I —¢p)nN ’
if (1—f(ep))(1 —&p)Ro = 1.
The corresponding critical pair of efficacies that prevent viral infection entirely can

be computed as before by solving

(1= f(Ep))(1 —&p)Ro =1, (9)

By the arguments from above, we can replace g by €. and ¢, by €5 without changing
the results. Similar calculations allow us to derive the analogous quantities if we
combine drugs targeting the same mechanism of action, e.g. altering p and § or ¢ and 8
at the same time. Our analysis would also carry over to combination of drugs which
target the same parameter if they interact multiplicatively. For example, two drugs
reducing viral infectivity 8 with efficacies 5,1 and €3 2, respectively, would reduce Ry
by the factor (1 — f(eg1))(1 — f(eg,2)), if they act independently.

Using two drugs of limited efficacy in combination lead to large reductions in the
establishment probability compared to the single drug or no treatment scenarios. For

instance, two drugs with efficacies of 65% each may completely eliminate the risk of
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Fig 3. The effect of prophylactic combination therapy on the establishment
probability. We compare different combination therapies (black lines) with the two
single effect therapies (colored lines). The theoretical predictions for the combination
therapies are variations of Eq. (8), adapted to the specific pair of modes of action
considered. We assume that both modes of action are suppressed with the same efficacy,
shown on the x-axis as €;. Dots are averages from 100, 000 stochastic simulations using
the LowN parameter set and V7(0) = 1. In Section S5 in the SI, we study the effect of
combination therapy in the HighN parameter set which overall leads to very similar
results.

viral infection, depending on the combination used (LowN parameter set, V7(0) = 1,
Fig. 3). For comparison, a single drug with 65% efficacy can maximally reduce the
establishment probability to ~ 40% of the no-treatment establishment probability (see
Fig. 2A). We also find that, compared to the single drug cases, the critical efficacy is
significantly reduced in all combinations studied.

In our analysis, we assumed that the drugs act independently (Bliss independence).
This assumption may lead to an over- or underestimation of the establishment
probability in case of antagonistic or synergistic drug interactions, respectively. These

interactions are difficult to anticipate but were observed for HIV treatments [55].

Time to detectable viral load and extinction time

Lastly, we quantify the timescales of viral establishment and extinction of infectious
virus particles. If the virus establishes, we ask whether therapy slows down its spread
within the host and investigate how long it takes for the infection to reach the

polymerase chain reaction (PCR) test detection threshold. Conversely, if the viral
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infection does not establish, we examine how long it takes for antiviral therapy to clear
all infectious virus and infected cells, which we define as the extinction time. We study
all four modes of action: drugs that increase either the infected cell death rate § or viral

clearance ¢, and drugs reducing either viral production p or the infectivity 5.

Time to detectable viral load

Even if antivirals are not efficacious enough to prevent establishment of the infection,
could they still mitigate the infection? We study the effect of antiviral therapy on the
time to reach a detectable viral load within the host. For example, the detection
threshold in Young et al. [31] is at 1084 copies per mL. Assuming that the upper
respiratory tract has a volume of about 30 mL [56], this corresponds to approximately
2,000 virus particles.

In our model without treatment, the viral population size reaches 2,000 within one
day (see the leftmost data point in Fig. 4). If establishment is likely, it is best to take
antiviral drugs reducing the viral production p to delay the establishment of a viral
infection as long as possible. This would reduce the peak viral load [19,21], which is
presumably correlated with the severity of SARS-CoV-2 infection [57]. The time to
reach a detectable viral load depends on the growth rate of the viral population, which
is to the leading order (Rg — 1)/(% + 1 4 $) (see Section S5 in the SI for a
derivation). The denominator is the average duration of a virus life cycle given by the
sum of the phase when virions are in the medium, the eclipse phase of infected cells,
and the phase during which infected cells produce virions until their death.

Importantly, the time to reach a detectable viral load is the earliest time when a
patient can be tested to determine if therapy succeeded or failed to prevent infection.
That time can be increased up to 4 days for drugs inhibiting viral production p (blue
line in Fig. 4), but there is significant variation with values ranging from smaller than
one day to more than 10 days. Drugs reducing the infectivity £ or increasing the
infected cell death rate § do not delay the establishment time. Drugs promoting viral
clearance c increase the establishment time less than drugs decreasing the viral
production rate p. As a brief explanation, when drugs target the infectivity or cell death,
establishment occurs rapidly by full bursts of just two infected cells, which is enough to

reach the detection threshold; when drugs target viral clearance or viral production,
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Fig 4. The mean time to reach a detectable viral load at the infection site.
Panel A: Solid lines represent the theoretical prediction of the average time for the viral
infection to reach 2,000 virions (see Section S6 in the SI for details). We used the LowN
parameter set to simulate 10,000 stochastic simulations that reached a viral load of
2,000 total virus particles when starting with an inoculum of V;(0) = 1. Dots are the
average times calculated from these simulations, bars represent 90% of the simulated

establishment times. We only consider efficacies below the critical efficacy (¢; < 0.87, cf.

Fig. 2A) because above the critical efficacy infection is never established. Panel B: We
plot 10 example trajectories that reach the detectable viral load for each of the four
types of treatment (efficacy ; = 0.75). Under treatment that increases the infected cell
death § or reduces infectivity 3, establishing trajectories reach the detectable viral load
almost immediately. In contrast, drugs that directly affect the number of virus particles,
i.e. clearance c or production p, allow for trajectories that fluctuate much more,
explaining the larger average detection times and the larger variation of detection times
for these scenarios.

establishment may involve many more infected cells and occur slowly (SI Section S6.2).

Extinction time of infectious virus particles

Given that the infection does not establish, extinction of the within-host population of
infectious virus particles typically happens within a day (in the HighN parameter set) to
up to a week (in the LowN parameter set) depending on the drug’s mode of action
(Table 3). We find that antiviral drugs that either reduce viral infectivity 5 or increase
the infected cell death rate § show comparably small extinction times (Table 3). The
extinction time is useful to determine the number of days a potentially infected person

should take antiviral medication post-exposure.
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Table 3. Establishment probabilities (), times to detection (Tgetect) and extinction
time (7Text) statistics for various sets of antiviral treatment.

LowN parameter set HighIN parameter set

< Therapy Vo=1 | W=10 Vo=1 | V=10
%) 36% 99% 4% 30%

0 no treatment || Tyetect || 1 (0.5,1.5) | 0.5 (0,0.5) 0.5 (0,1) 0 (0,0.5)

T 0 (0,0) 1(0,1.5) 0(0,0) | 0.5 (0,0.5)
o 20% 89% 2% 18%

reducing p || Thetees | 4 (2,9) | 2(0.5,65) | 05(0,1) | 0.5 (0,1)

T 0 (0,2) 2.5 (1,6) 00,00 | 0.5(0,2)
0 20% 89% 2% 18%

increasing § || Taetect 1(0.5,2) 0.5 (0,1) 0.5 (0,1) 0 (0,0.5)

075 Tow || 0(0,15) | 1.5(1,3) 0(0,0) | 0.5 (0,1.5)
® 9% 63% 1% 5%

reducing [ Taetect || 1 (0.5,2.5) | 0.5 (0.5,2) 0.5 (0,1) 0.5 (0,1)
T || 0(0,05) | 05(0,25) || 0(0,0) | 0.5(0,0.5)

© 9% 63% 1% 5%
increasing ¢ || Tqetect || 2.5 (1.5,5.5) 2 (1,5) 0 (0,0.5) 0 (0,0.5)
Toet 0 (0,0) 0 (0,2) 0 (0,0) 0 (0,0)
7 0% 0% 0% 0%
redUCing p Tdetect = = — =
e 0(0,5) | 7(2519 | 0(0,05) | 05(0,5)
® 0% 0% 0% 0%
increasing § Taetoct - - - -
0 Tt 0 (0,2) 2.5 (1,5) || 0.5(0,1) | 0.5(0,2)
® 1% 11% 0% 0%
reducing 3 Tdetect || 1.5 (0.5,3.5) | 1 (0.5,3) - -
T || 0(0,0.5) | 0.5(0,6) 0(0,0) | 0.5(0,0.5)
© 1% 11% 0% 0%
increasing ¢ || Tqetect || 12 (5.5,29) 12 (5,28) - -
Tt 0 (0,0) 0 (0, 30) 0 (0,0) 0 (0,0)

The first value in each cell gives the establishment probability, the second value denotes the median
time to detection (days), the numbers in brackets are the 10 and 90-percentiles of the time to
detection distribution (days), and the last line gives the median time to extinction (days),
conditioned on non-establishment of the infection, with the 10 and 90-percentiles in brackets. The
detection threshold is set to 2,000 virus particles. All times are rounded to half-day values if below 5
days, and to days if above. Missing values, denoted by dashes, are explained by the viral population
not establishing; values above 30 days are set to 30. All results are estimated from 100, 000 stochastic
simulations for the establishment probability and 10,000 stochastic trajectories for the extinction and
establishment times.

Discussion

We have investigated the effect of prophylaxis with antiviral treatments including
monoclonal antibodies on the viral dynamics of SARS-CoV-2. Using a stochastic model

of within-host SARS-CoV-2 dynamics whose structure and parameters are informed by
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clinical data [19,20], we showed that in principle a combination of two drugs each with
efficacy between 60% and 70% will almost certainly prevent infection (Fig. 3). For
single drug treatment, we find that even intermediate efficacies can block infection,
most efficiently with drugs reducing infectivity 3, or otherwise delay the within-host
establishment of the viral infection for drugs reducing viral production p or increasing
viral clearance ¢ (Fig. 4). More generally, our stochastic model for the early phase of
virus establishment within a host could be used to study the impact of prophylactic
treatment on viral infections whose dynamics can be captured by the deterministic
model in Eq. (1).

This model makes several important assumptions. First, it encompasses a simplified
version of the innate immune response. Effects of this type of immune reaction are
embedded in the parameter values of the model. For example, an early innate response,
if not effectively subverted by the virus, might put some target cells into an antiviral
state where they are refractory to infection, thus effectively reducing g [29], or it could
reduce the viral production rate p [58]. We neglect a potential adaptive immune
response against the virus because we are interested in the early stages of the infection,
before the immune system develops a specific response to the viral infection. A specific
immune response may in later stages enhance the ability of the body to eliminate the
virus. Models that explicitly include both types of immune responses have been shown
to better fit the patient data from ref. [31] when compared to models without any
immune response (based on the Akaike information criterion) [21]. Our estimates of the
drug efficacies needed to prevent establishment of infection are therefore conservative
and in reality may be overestimates. Even if the drugs being used do not have efficacies
high enough to prevent infection on their own, they can lengthen the time needed to
establish infection and hence allow time for the immune response to develop and assist
in the clearance of the virus. Our model also includes the removal of virus particles due
to cell infections (term —BV;T in Eq. (1)), a process typically neglected in deterministic
models of virus dynamics, e.g. [20,21,59,60]. In our mechanistic approach to model
virus dynamics, this term is necessary to correctly describe the early dynamics of a viral
infection while the number of infectious virus particles is still low. If we were to neglect
loss of infectious virus particles due to cell infections, a single virus particle could

potentially infect multiple target cells. This is problematic not only in the stochastic
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simulations, but also in the computation of the establishment probability of a viral
infection. Lastly, we focus on the early phase of the infection in the upper respiratory
tract, and neglect other compartments that may be more favorable to viral
multiplication. For example, the number of virions in the sputum is (on average) 10 to
100 fold higher than in throat swabs [38]. The upper respiratory tract may allow a small
amount of virus to enter the lower respiratory tract. It has also been observed in
hamsters that the type of contact (airborne vs. fomite) affects the establishment
probability and disease severity [61]. In future work, it would be interesting to explore
the impact of this spatial structure and type of contact on viral dynamics and
establishment probability.

Our results on critical efficacy, shown in Figs. 2 and 3, do not depend on the viral

inoculum size and are very similar for low and high burst sizes. However, they strongly

depend on the within-host basic reproductive number which we estimated at Ry = 7.69.

This basic reproductive number was estimated from time series of viral load in
nasopharyngeal swabs in 13 infected patients [19,31] and is consistent with the mean
peak viral load observed in multiple studies (Table 1). Still, there is substantial
inter-individual heterogeneity in incubation time, observed peak viral timing and

load [39]. A shorter time to the viral load peak or a higher viral load peak would result
in higher estimates of Ry, see for instance Fig. 1B. Yet, our qualitative findings on the
effectiveness of prophylactic therapy remain valid under these variations of Ry. Of
course, the quantitative predictions, which depend on Ry, change. Considering the
current uncertainty in the basic reproductive number and burst size, we developed an
interactive application to compute and visualize the establishment probability and
deterministic dynamics as a function of parameters. This application can be used to
update our results as our knowledge of within-host dynamics and treatment efficacies
progresses (it can be accessed by following the instructions on
github.com/pczuppon/virus_establishment/tree/master/shiny).

The critical efficacy above which infection is entirely prevented is the efficacy at
which the within-host basic reproductive number, adjusted for the antiviral drug under
consideration, passes below 1. The value of this critical efficacy could readily be
obtained in a deterministic model. This theoretical value can probably be translated

directly to in-vitro experiments. Yet, a translation from measured in-vitro efficacies to
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github.com/pczuppon/virus_establishment/tree/master/shiny

in-vivo application is more challenging as studies in the context of HIV have shown:
drug efficacies obtained from in-vitro experiments typically overestimate the actual
in-vivo efficacy [62,63]. Still, our stochastic framework gives several new additional
insights into the probability of establishment. Importantly, below the critical efficacy,
viral establishment is not certain. The establishment probability increases with the size
of the initial inoculum (Fig. 2). The number of infectious virions of seasonal coronavirus
in droplets and aerosol particles exhaled during 30 minutes could be in the range of 1 to
10 [52]. For SARS-CoV-2, inoculum sizes ranging from less than 10 [53] to the order of
1,000 infectious virus particles [64] have been estimated. Assuming the inoculum of
infectious virus particles to be of the order of 10, in most cases the establishment of a
viral infection is not ensured even with low-efficacy drugs. For efficacies below the
critical efficacy, drugs reducing infectivity or increasing viral clearance reduce the
establishment probability the most. Examples for this type of drug include monoclonal
neutralizing antibodies that recently have shown promising results for treatment and
prophylaxis of SARS-CoV-2 [65]. In contrast, drugs reducing viral production need to
be close to critical efficacy to cause a marked reduction on the probability of
establishment (Figs. 2 and 3). Several studies are underway to assess the prophylactic
potential of repurposed drugs blocking viral production, such as lopinavir, favipiraivr or
remdesivir, but there is no clear demonstration that these drugs can achieve clinically
relevant antiviral efficacy [66-68].

Similar theoretical results have been obtained for HIV antiviral prophylactic
treatments [69]. If initially there is one infectious HIV particle, drugs that target viral
production within cells are less successful in inhibiting infection than drugs that reduce
viral infection of target cells, cf. Fig. 2A in [69]. However, if the virus has already
infected a cell, the difference between the two drug types vanishes, i.e., both modes of
action equally reduce the establishment of an infection (Figs. 2B, 2C in [69]). In
contrast, with our model we find that if there is initially one infected cell, establishment
of a viral infection is suppressed more strongly by drugs that reduce viral production
than by those reducing infection of target cells (Section S4 in the SI). This difference
most likely arises due to the different burst sizes of infectious virus particles assumed in
the two models. Here, we assume that the burst size is around 20 infectious virus

particles, computed by n x N. In contrast, the HIV model studied in [69] assumes a
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burst size of 670. Indeed, increasing the burst size in our model, the HighN parameter
set, recovers the result found in [69], i.e., the two different drug types affect the
establishment probability equally.

Lastly, we observe that given that extinction occurs the time to extinction is largely
independent of the drug’s mode of action and typically occurs within a day (see
Table 3). In contrast, we find a relatively strong dependence of the time to detection of
an infection on the mode of action of the antiviral drug. The time to detection also
strongly depends on the burst size which varies substantially depending on the assumed
fraction of infectious virus particles produced, n. For example, a lower fraction than
considered here in the main text will result in a higher burst size for a fixed value of Ry
(Section S7.2 in the SI) and consequently in a lower time to detection. If the delay
between exposure and therapy, as well as the efficacy of the available drugs, are such
that establishment of the viral infection is almost certain, antiviral drugs that reduce
viral production (parameter p) will slow down the exponential growth and flatten the
within-host epidemic curve the most (Fig. 4). Repurposed antiviral drugs reducing viral
production were recently proposed as good drug candidates against SARS-CoV-2 [18].
This prolonged period at low viral loads could give the immune system the necessary
time to activate a specific response to the virus and develop temporary host-immunity
against SARS-CoV-2. This might be especially important in groups that are frequently
exposed to the virus, e.g. health care workers. Still, since reducing the infection
probability itself is the primary goal, drugs reducing the infectivity of virus (parameters
B and c¢) should be favored over drugs reducing viral production (parameters p and ¢)

because of their stronger effect on the establishment probability (Fig. 2).

Conclusion

Clinical trials are underway to test the efficacy of several antiviral

drugs [16,17,66,70,71], either as a curative treatment or as a prevention. The efficacy
of repurposed drugs is in a 20-70% range [19], but better antiviral drugs might be
available soon. With our model, the individual values of R for the 13 untreated
patients from ref. [31] range from 1.58 to 15.47 (Table S2) which approximately

translates to critical efficacies between 37% and 94% in the case of drugs reducing viral
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production, &, (Eq. (7)). An interactive tool has been made available to update the
prediction of critical efficacies with refined parameter estimates that may come from
large dataset obtained in the different target populations where prophylaxis may be
relevant (such as health care workers or high-risk individuals). Given the current
knowledge of SARS-CoV-2 viral dynamics, our model predicts that prophylactic
antiviral therapy can block (or at least delay) a viral infection, could be administered to
people at risk such as health care workers, and alleviate the burden on the healthcare

systems caused by the SARS-CoV-2 pandemic.

Methods

Simulations

The individual based simulations are coded in C++ using the standard stochastic
simulation algorithm for the reactions described in system (3).

Estimates for the establishment probabilities, depicted by dots in the subsequent
figures, are averages of 100,000 independent runs. Establishment was considered
successful when the population size of infectious virions was at least 500. Estimates for
the time to reach a detectable viral load are obtained from 10,000 simulations where
the sum of infectious and non-infectious virus particles exceeded 2,000 copies.

The code and the data to generate the figures are available at:

github.com/pczuppon/virus_establishment.

Supporting information

S1 Appendix. Theoretical derivations and additional analysis.
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S1 Continuous virus production model

We recall the model from the main text. Infectious and non-infectious virus particles are
denoted by V; and Vi, respectively, target cells by T, infected cells in the eclipse phase by I;
and infected cells producing the virus by I. We use a previously studied within-host model of
virus production (Pearson et al., 2011; Conway et al., 2013). The underlying individual based
reactions are the following:

Vi+T P, L, infection of target cells,

I LN I, end of eclipse phase,

I 2, a, infected cell death, S1)
I ap, L+, infectious virus production,

I (=mp L+ Vg, non-infectious virus production,

Vi, Vnr Ny , virus clearance.

Since we model the early state within-host dynamics of a viral infection, we can assume that
the number of infectious virus particles, V7, is low so that the number of target cells is not
strongly affected by transformation to infected cells, i.e. T(¢) = T(0) = Tp. Then, the first
reaction can be rewritten as
v, (52)
Using standard techniques to derive a set of ordinary differential equations from this set
of reactions (e.g. Anderson and Kurtz, 2011), we find the system given in eq. (1) in the main
text. Note, that in the main text we use capital letters to denote densities while here the capital
letters refer to the actual numbers of cells and virus particles.

S14 Connection to a burst model

Since the individual based model is built on stochastic interactions of cells and virions, the
number of virions produced by an infected cell is a random variable. Assuming that all
virions are released at a single time, typically at cell death, the number of released virions,
the burst size, follows a geometric distribution (Hataye et al., 2019). This can be seen by the
following reasoning: the life-time of an infected cell is exponentially distributed with mean
1/6 and during this time there is a continuous production of virions at rate p. This production,
assuming that it is a Markovian process, is described by a Poisson process (see Anderson and
Kurtz (2011) for the general theory of modeling chemical reactions). The probability of the



2« burst size, denoted by N, to be of size j is then given by the following calculation:

oo l’j
[p(N:j):f ﬂe*pt Se 0t dt
0 ]' ——

cell still alive at time ¢
j virions produced until time ¢

— ﬁ 00 [je_(p+6)tdl'
7t Jo
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“\p+6) p+d’
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This is the distribution of a geometrically distributed random variable with success probability
s pl(p+9). Intuitively, the infected cell has undergone j + 1 steps, where the initial j steps
resulted in the production of a virus (term (p/(p +§))/) and the (j + 1)-th step was its death
;8 (term §/(p + 6)). The mean of this geometric distribution is p/3. The continuous-production
model can therefore be seen as equivalent to a burst size model with a burst size N having a

50 geometric distribution with mean p/9.
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S2 Burst model

The continuous-production model is more likely to be relevant for SARS-CoV-2 (Park et al.,
2020), and was therefore chosen in the main text. Here we examine how a burst model would
affect our findings. In a burst model, we assume that virus is produced in an infected cell but
is only released to the environment upon cell death. The number of virus particles released is
therefore a random number which we again denote by N.

In the corresponding reactions in Eq. (S1), we need to replace the virus production and cell
death lines by

9
I, —nNVi+(1-n)NVnjy. (54)

In order to be consistent with the continuous-production model, we set the mean of the burst
size to p/§6.

In the following we assume that the overall burst size N is Poisson-distributed. There are two
reasons for this choice: (i) it is analytically relatively easy to handle, and (ii) it represents the
other end of the spectrum of negative-binomially distributed burst sizes when compared to
the continuous-production model which is equivalent to a geometrically-distributed burst size
and thus providing an upper bound for the establishment probability of a viral infection under
different forms of virus release from infected cells. A negative binomial distribution is defined
by a success probability g and a dispersion parameter r. The mean is given by gr/(1 — q).
It relates to the geometric distribution by setting r = 1 and to the Poisson distribution by
letting r — oco. The probabilities of establishment for the continuous-production model and
the Poisson-distributed burst size model represent the two extremes of negative-binomially
distributed burst size models with dispersion parameter r € (1,00). This holds because the
establishment probability can be computed by the probability generating function (Haccou
et al., 2005) which is continuous and monotone in the dispersion parameter r. It is given by

1_ r
g(Z)=( q) , (S5)

1-qgz

where z is an auxiliary variable.

S2.a Establishment probability

We compute the establishment probability of the virus in the burst size model. A key ingredient
is the offspring distribution of a single virus particle. The offspring distribution is given by a
zero-inflated Poisson distribution:

c T
[P(0 infectious virus offspring) = + h e M ,
c+pT c+pT
no cell infected infected cell with 0 virions produced (S6)
T @nN)/
P(j infectious virus offspring) = h Me_”N, forje{1,2,3,...}.

c+pBT j!

Note, that we are only considering infectious virus particles here because non-infectious
virus particles do not affect the future virus dynamics.
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The life cycle of a virus (conditioned on infecting a cell) is given by a three step process: cell
infection, eclipse phase and virus production within an infected cell. Ignoring this time delay
which is irrelevant if we just consider the establishment probability, the virus population can
be modeled by a discrete time branching process. At each time, all infectious virions alive
at the time step before produce a random number of (infectious) virions according to the
offspring distribution given in eq. (S6).

The extinction probability of a time-discrete branching process, when starting with one
infectious virus particle, is given by the non-trivial fixed point of the probability generating
function of the offspring distribution, i.e. the fixed point in the interval (0,1) (Haccou et al.,
2005). The probability generating function is given by

c_ . BT INGE=1)

= 17N=
§(2) =El] c+pBT c+pT

) (§7)

where z is an auxiliary variable and E denotes the expectation of the random burst size of
infectious virions nN. The fixed point of this function is given as

e WlnNew( V)
- c+pT - nN

*

) (S8)

where W(x) is the Lambert-function (sometimes also called the product logarithm). It is
defined for x = —exp(—1). For values below this threshold, we need to solve eq. (§7) numeri-
cally. In fact, when plotting the establishment probability in Fig. S1 below, we solve eq. (S7)
numerically because the approximation of the Lambert-W function W (x) is inaccurate for
negative x, especially when close to —exp(-1).

The establishment probability, denoted ¢, is then given by

P(virus survives) = ¢ = 1 —min(l, zH)1o (S9)

where V;(0) is the initial number of infectious virions. For alternative derivations of this result
see also Pearson et al. (2011) and Conway et al. (2013).



82

84

86

88

90

92

S3 Comparison of the continuous-production and burst model

We compare the establishment probability from the burst model described above with that
obtained in the continuous-production model. Redrawing the first row of Fig. 1 from the
main text and comparing it with the corresponding graphs obtained from the burst model,
we do not see any qualitative difference between the two models, cf. Fig. S1. As outlined in
Section S2, the two studied models can be seen as the extreme values of a model continuum.
By varying the dispersal parameter r of the negative binomial distribution, one can explore
the entire continuum between the geometrically distributed burst size (which is equivalent to
the continuous-production model) and the Poisson-distributed burst size model. Therefore,
it seems safe to say that the exact mechanism by which we implement virus production
in the model will only result in (minor) quantitative differences on the probability of virus
establishment.

Parameter set H np [d1 ‘ To [cells] ‘ 1N [virions] ‘ Ry [cells]
Low burst size (LowN) 11.2 4x10* 18.8 7.69
High burst size (HighN) 112 4x103 188 7.69

Table S1: Model parameters used in the main text and for the simulations in Fig. S1. The
remaining parameters are not changed between the simulations and are set to:
k=5d7',6=0595d"',c=10d7', B=cSRy/(To(np—SRy)) d~', n=0.001.
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Figure S1: Comparison of establishment probabilities in the continuous-production and
burst model. The first row is the same as the first row in Fig. 2 in the main text. The
second row corresponds to the burst model. Theoretical approximations of the
establishment probability for the burst model are obtained from Eq. (S9) adapted
to the different scenarios.
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S4 Establishment probability when starting with a single
infected cell

In this section, we investigate how the establishment probability changes if treatment is started
when there is already an infected cell within the host. This situation might be more realistic to
post-exposure treatment where infectious virus from the initial inoculum might have already
infected a target cell (if the virus was not cleared). Instead of starting with a viral inoculum, we
thus need to consider the situation where an infectious cell is already producing virus (but has
not yet produced an infectious virus particle). The reasoning for computing the establishment
probability is then as follows: we combine the establishment probability with initially j
infectious virus particles with the probability for this infected cell to produce j infectious virus
particles. As we have seen in Section S1.1 the number of infectious virus particles produced by
an infectious cell is geometrically distributed with success parameter 8/ (6 +np). Therefore,
the establishment probability when starting with an infected cell, denoted by ¢y, is given by

= —(1-¢)
v jzﬂﬁnp+5 np+6 ( ¢ )

-

. : f . est. prob. for j inf. virions
Jj infectious virus particles p 1

5 5 ) ()
- 1-[1-
(np+5 ]; np+o nN (510)

_ pRo—1)
" SN+pRo-1)
1

=1-—.
Ry

This result has also been derived in Pearson et al. (2011), where this analysis was done for
the continuous-output and the burst model, and in Duwal et al. (2019) for a similar model in
the context of HIV prophylaxis.

In our high burst size parameter set, there is no visible difference between treatment with a
drug reducing productivity p and a drug reducing viral infectivity g (Fig. S2b). However, for the
low burst size parameter set, in contrast to what we found in the main text when initializing
the system with a viral inoculum, now drugs reducing the infectivity p (blue) stronger reduce
the establishment probability than drugs reducing the infectivity § (orange), cf. Fig. S2a. This
is explained by the order in which the drugs act: while a drug reducing viral production can
immediately lower the chances for a further virus propagation, drugs reducing infectivity need
to ‘wait’ for their targets, the extra-cellular virus, to arrive.
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Figure S2: Establishment probability when starting with a single infected cell. We compare
the theoretical prediction (solid lines) of Eq. (S10), adjusted for an antiviral drug
affecting either virus productivity or virus infectivity, with stochastic simulations
in the (a) LowN and (b) HighN parameter set. In the theoretical derivation of the
results, target cells are fixed to their initial values. In the stochastic simulations, this
number is allowed to decrease after cell infection. Averages of 10,000 realizations are
depicted as dots. In contrast to the finding in the main text, in the LowN parameter
set drugs reducing viral production p reduce the establishment probability stronger
than antivirals reducing infectivity . This difference becomes negligible in the
HighN parameter set.
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S5 Combination therapy in the HighN parameter set

We investigate the effect of combination therapy in the high burst size parameter set (Table S1).
We find that the overall shape of the curves do not change compared to the LowN parameter
set. A higher burst size decreases the establishment probability of the virus. If we compare
Fig. S3(b) with Fig. 3 in the main text, we see that a ten-fold increase of the initial inoculum in
the HighN parameter set (V; = 10) gives similar quantitative results as the LowN parameter set
with Vj = 1. This can be attributed to our ten-fold increase of the burst size when deriving the
HighN parameter set from the LowN parameter set.
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Figure S3: Combination therapy in the HighN parameter set. We plot the establishment
probability of different combination therapies as was done in Fig. 3 in the main text.
Dots are averages from 100,000 stochastic simulations obtained using the HighN
parameter set with (a) Vo =1 or (b) V = 10.
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S6 Time to detectable viral load

In this section, we study the mean time to reach a certain amount of viral load at the infection
site within the host. We approximate this time using a mixture of deterministic and stochastic
arguments. Classical branching processes typically have two possible outcomes: either the
process goes extinct or grows indefinitely (Haccou et al., 2005). The deterministic model is
captured by the mean of such a branching process, i.e. it takes into account both possible
outcomes. Therefore, if we condition the branching process on survival, the deterministic
model will typically underestimate the actual size of the corresponding branching process
(Desai and Fisher, 2007). One can correct this error by rescaling the deterministic process by
the probability of survival. In our specific setting this means that the total number of virus
particles at any time ¢, V(£) = V;(f) + Vy;(f), can be estimated as follows:

E[V ()] = @OE[V(D); V() > 0]+ (1 - () E[V(2); V() = 0]

=0 11
E[V(D)] (511

@(1)

= E[V(); V() >0]= )
where V(¢) denotes the random variable for the number of virus particles at time t, ¢(f) the
survival probability of the branching process until time ¢ and E[V (£); V (£) > 0] the expectation
of V(t) for a surviving trajectory until time ¢.

To compute the time for the viral load to reach a certain threshold we set ¢(f) = ¢. In
other words, we approximate the survival of the branching process until time ¢ by the total
establishment probability expressed in eq. (4) in the main text. This is a good approximation if
the ‘typical’ time ¢ to reach the threshold is large enough, so that ¢(t) is already close to the
limit survival probability ¢. The other term on the right-hand side in eq. (S11), the mean of the
stochastic process E[V (#)], can be approximated by the deterministic model of the within-host
model defined in eq. (1) in the main text.

As explained in the main text, we set the threshold viral load 2,000 virions (Fig. 4 in the main
text). The mean time to reach this threshold value is then approximated by the time when the
size 2,000 x ¢ is reached in the deterministic model.

S$6.1 Growth rate of the viral population to leading order

The exponential growth rate of the deterministic model described in eq. (1) in the main text is
given by the leading eigenvalue of the system when evaluated at the origin, i.e. at zero virions
Bonhoeffer et al. (1997). For efficacies close to the critical efficacy, the eigenvalue is small
and can therefore be approximated by the root of a linear equation instead of a higher order

polynomial. This approximation yields % as the leading eigenvalue. A Mathematica
c+pTy kTS

notebook showing this calculation is deposited at: gitlab.com/pczuppon/virus_establishment.

$6.2 Explaining the shape of the curves in Fig. 4 of the main text

In this section, we provide more detailed explanations about the shapes of the establishment
time curves depending on the mode of action of the drug. Throughout this discussion, it is
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Figure S4: The mean time to reach a detectable viral load at the infection site. (This is Fig. 4
from the main text.) Panel A: Solid lines represent the theoretical prediction of
the average time for the viral infection to reach 2,000 virions. We used the LowN
parameter set to simulate 10,000 stochastic simulations that reached a viral load of
2,000 total virus particles when starting with an inoculum of V;(0) = 1. Dots are the
average times calculated from these simulations, error bars represent 90% of the
simulated establishment times. Panel B: We plot 10 example trajectories that reach
the detectable viral load for each of the four types of treatment (efficacy £; = 0.75).
Under treatment that increases the infected cell death §, establishing trajectories
reach the detectable viral load almost immediately. In contrast, drugs that directly
affect the number of virus, i.e. clearance c or production p, allow for trajectories
that fluctuate much more, explaining the larger average detection times and the
larger variation of detection times for these scenarios.

important to keep in mind that for the average establishment times, only trajectories that
result in establishment are taken into account. To ease the discussion, Fig. S4 shows Fig. 4
from the main text.

Treatment that targets the virus infectivity f does not increase the establishment time be-
cause these drugs do not affect the virus dynamics itself. Conditioned on virus establishment,
the initially present virus particle will infect a target cell relatively quickly, i.e., on a similar
time scale than without treatment, and then follow the same dynamics as without treatment.
Since the burst size largely exceeds the detection threshold, in our model just two infected
cells are sufficient to reach this threshold. Therefore, the establishment time remains largely
unaffected by drugs targeting the infectivity g.

For drugs increasing the infected cell death rate 9, the trajectories that contribute to the
results in Fig. S4 are the ones that produced a large number of virus particles from a single
cell in a short time. This is because of the strongly increased cell death rate for large values
of efficacy 5. Therefore, a surviving virus trajectory needs to reach large numbers of virus
particles in a short time to avoid extinction. This is different for a reduced viral production p
where the infected cell death rate is unaffected. Therefore, it is not necessary for a surviving
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virus trajectory to reach high viral loads very quickly, even though this is of course possible
which is reflected by the large 90% confidence interval. This is visualized in Fig. S4, panel
B: green trajectories correspond to drugs affecting the cell death rate and blue trajectories
correspond to drugs reducing viral production.

Lastly, increasing the viral clearance rate c by prophylactic treatment increases the estab-
lishment time with increasing efficacy, but not as much as treatment with drugs that reduce
viral production p. The reason here is that clearance acts just after the viral production, i.e.,
there is time passing between the production of a virus particle and its clearance. Hence,
reducing virus production has a stronger effect on the establishment time than an increase of
viral clearance ¢ which acts later in the viral life cycle.
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S7 Parameter estimation

Patient data from Young et al. (2020) were fitted using the set of differential equations presented
in eq. (1) in the main text. To ensure identifiability of critical parameters of the viral dynamics,
i.e. the basic reproductive number Ry, the loss rate of infected cells 6 and the viral production
p, the remaining parameters c, k and V were fixed. Viral clearance c was fixed to 10 day . For
the eclipse phase k we chose 5 day™! and the initial inoculum V; was set to 1/30 copies.mL™!
(see Gongalves et al. (2020) for further details). Parameters were estimated in a non-linear
mixed effect model using the SAEM algorithm implemented in Monolix (www.lixoft.com). The
best fit using all available patient data resulted in the parameter values Ry = 7.69, § = 0.595
and p = 11,200, the principal data set used in the main text (LowN parameter set).

S71 Parameter estimates for individuals plotted in Fig. 1 in the main text

Applying this method to data from the 13 untreated patients in Young et al. (2020), we obtain
the best parameter set for each individual. The individual parameter sets from four patients
(patients 2,4,11,18) were used to plot the deterministic curves in Fig. 1A in the main text. In
Fig. S5, the best fits for all 13 untreated patients are shown in separate panels with the exact
parameter values given in Table S2.

PatientID | Ry [cells] & [day™!] p[day™]

2 (blue) 9.77 0.71 11,016
3 4.06 0.57 11,369
4 (orange) || 8.73 0.66 11,104
6 6.72 0.58 11,281
7 1.58 0.53 11,185
8 12.11 0.48 10,817
9 15.47 0.39 10,493
11 (red) 9.2 0.86 11,060
12 8.81 0.73 11,096
14 4.45 0.78 11,396
16 7.81 0.56 11,174
17 13.43 0.73 10,679
18 (green) || 7.12 0.5 11,031

Table S2: Model parameters used for the deterministic fits in Fig. S5. The other parameters
do not vary between the individuals and are set to: k =5day !, c = 10day!,n=1073,
To = 4x10* cellsand = c6Ro/ (To(np—05 Ry)) day L. The colors (if given) correspond
to the line colors of Fig. 1A in the main text.
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Figure S5: Individual fits of our model to the patients from Young et al. (2020). Model pre-
dictions using the target cell-limited model in all patients of Young et al. (2020). The
estimated mean for within-host Ry of all patients is 7.69. Individual parameter val-
ues are given in Table S2. The initial amount of virus particles per mL, V;(0) = 1/30,
corresponds to 1 infectious virus particle in absolute numbers in the total upper
respiratory tract, which we assume has a volume of 30 mL. The dotted line depicts
the detection threshold set to 10!:34,

S7.2 Sensitivity analysis with respect to variations in the fraction of
infectious virus particles n

We evaluate how different choices of 1, the fraction of infectious virus among all produced
virus particles, affect the estimates of the within-host reproductive number Ry and the burst
size 7). In the main text, we have used the parameter estimate with n = 103 which resulted in
Ry =7.69 and N = 18,823. For a larger fraction of infectious virus particles, n = 1072, we find
Ro=5.3 and N = 3,303; for a smaller fraction of infectious virus particles, n = 10~*, we obtain
Ry =9.2 and N = 349,367. While the within-host reproductive number Ry does not vary too
much between the different choices of , the burst size N shows large variation. This has no
effect on our results on the establishment of a SARS-CoV-2 infection because the burst size
always enters in the form of a product with 7. In all the different scenarios above, the product
n x N varies between 18 for n = 10~3 and 35 forn = 1074

Overall, the differences in estimates for Ry will affect the precise estimate of the critical
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efficacy and differences in the estimate for N translate to differences in the quantitative values
of the establishment probability curves below the critical efficacy. The predictions on the
detection and extinction time strongly depend on the overall burst size N so that these will
vary considerably depending on the choice of 7.
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