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ABSTRACT

The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined.
Trajectories of test particles in an analytic field model demonstrate that irreversibility is associated with separatrix crossings and passages
through regions of weaker magnetic field. Inclusion of a guide field enhances the magnetization of particles and the extent to which forward
and reverse trajectories overlap. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-
reversed simulations at first “un-reconnect,” they eventually evolve into a reconnecting state.
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I. INTRODUCTION

The mean free path associated with classical collisions signifi-
cantly exceeds the typical system size in many heliospheric and astro-
physical plasmas. This simple observation raises interesting questions
related to the dissipation of energy, particularly for phenomena such
as magnetic reconnection,1–3 turbulence,4 and shocks5 in which kinetic
scales play an important role. In the complete absence of collisions,
Boltzmann’s equation, describing the evolution of the distribution
function f, reduces to the Vlasov equation, which is formally reversible
in time. This reversibility implies, among other things, that in a closed
system the entropy—and in fact the integral of any function of f—
remains constant during the system’s evolution. Despite this restrictive
mathematical constraint, Landau6 demonstrated that one-dimensional
electrostatic plasma waves in the nominally collisionless limit are
accompanied by a cascade to finer and finer structures in phase space
which, in actual plasmas, leads to dissipation, irreversibility, and an
increase in entropy. Landau damping has been experimentally con-
firmed,7 and subsequent work has shown that the same basic mecha-
nism occurs in association with many other plasma oscillations.8,9

While clever manipulation can resurrect temporary echoes of the orig-
inal oscillation,10 in the long-time limit the existence of any non-zero
amplitude phase-space scattering inevitably produces dissipation.

The example of Landau damping demonstrates that mathemati-
cally reversible processes, when coupled with any finite level of dissipa-
tion, can lead to irreversibility in real systems. An interesting question
is whether that conclusion extends to the phenomenon of magnetic
reconnection. During reconnection, a change in magnetic topology
triggers a transfer of energy from the magnetic field as slowly inflow-
ing plasma crosses magnetic separatrices and is accelerated into

Alfv�enic jets flowing away from an X-point.11 In a strictly collisionless
Vlasov-governed system, the transfer of energy from field to particles
is completely reversible, implying that it should be possible for recon-
nection to run backwards, with narrow Alfv�enic plasma jets converg-
ing at an X-point to produce broad sub-Alfv�enic outflows and the
entire system eventually evolving into a quiescent and structured cur-
rent sheet. To our knowledge, such a sequence of events has not been
reported in a real system, suggesting that, in practice if not in theory,
collisionless magnetic reconnection is irreversible.

Data from the Magnetospheric Multiscale (MMS) Mission have
demonstrated close agreement between in situ observations of recon-
nection and the results of particle-in-cell (PIC) simulations.12–14 Such
simulations follow macroparticles as they move through their collec-
tive self-consistent electromagnetic fields interpolated to a numerical
grid and, in principle, capture all of the important dynamics in recon-
necting plasmas. Since, as with the (assumed to be collisionless) physi-
cal system, the equations evolved in PIC codes are time-reversible,
such simulations serve as useful proxies. The implementation of
PIC codes typically includes features that can inject irreversibility
such as numerical (round-off) errors and truncation errors arising
from the discretization in space and time. If these errors were to be
made infinitesimally small, time-reversibility would be preserved.
However, we will show below that reconnection behaves irrevers-
ibly in typical PIC simulations, a result consistent with earlier work
on time reversibility in simulations of molecular dynamics,15 and
discuss key questions about what factors affect the reversal process.
In Sec. II, we discuss test-particle trajectories in a simple analytical
model of reconnection. Section III describes self-consistent
particle-in-cell simulations of reconnection run forward and
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backward in time, while Sec. IV discusses the results and their
broader implications.

II. TEST PARTICLE TRAJECTORIES

Particle trajectories in self-consistent PIC simulations will be dis-
cussed below, but we first consider a simpler model that captures the
key features of fields near a reconnection X-point. Observations and
simulations have demonstrated that reconnection in a fully three-
dimensional domain is often accompanied by turbulence and compli-
cated field line trajectories.13,16 Despite the complexity, however, many
important features of reconnection, including the large-scale topology
and the reconnection rate, remain similar to what is observed in simu-
lations with reduced domains—sometimes called 2.5D—in which var-
iations perpendicular to the reconnection plane are suppressed.17

Since, as we will show, reconnection is irreversible in such restricted
domains it seems clear that it will also be irreversible in fully three-
dimensional systems.

A. Model

With that motivation, we seek a simple model of a reconnection
X-point in a system with an invariant direction, here parallel to ŷ .
Two cases are of interest: Anti-parallel reconnection, in which the
reconnecting fields, which lie parallel to x̂ , have a shear angle of 180�;
and guide-field reconnection in which a spatially constant out-of-plane
component of the magnetic field reduces the shear angle.

We consider a dimensionless model, i.e., one in which every vari-
able is associated with a suppressed scaling factor that carries informa-
tion about the proper units. Let the only non-zero component of the
vector potential have the form

Ay ¼ � 1
2

z2 � aBx
2

� �
� aEt; (1)

where aB and aE are positive constants and the electrostatic potential
/ ¼ 0. The magnetic and electric fields are then

B ¼ zx̂þaBxẑ; E ¼ aEŷ : (2)

Since Ey, which is equivalent to the reconnection rate, is constant in
space, Faraday’s Law and the invariance with respect to y imply B is
stationary in time. No guide field is present so the un-reconnected
fields on either side of the current layer are anti-parallel and Ek
¼ ðE � BÞ=B trivially vanishes everywhere. Ellipses centered at the
origin mark contours of constant magnetic field strength. Magnetic
separatrices along the lines z ¼ 6

ffiffiffiffiffi
aB

p
x divide space into upstream

(jzj > ffiffiffiffiffi
aB

p jxj) and downstream (jzj < ffiffiffiffiffi
aB

p jxj) regions. Similar
configurations have previously been investigated as models of
reconnection.18,19

Generally speaking, the two instances of a in Eq. (1) can take dif-
ferent values with aB related to the angle of the separatrices and aE to
the reconnection rate. (If, for example, aB ¼ 1 and aE ¼ 0, then the
field lines meet at right angles at the X-point, the associated current
density vanishes, and reconnection does not occur.) However,20 it has
been argued that constraints at magnetohydrodynamic scales impose
the condition aE � aB when aB � 1. In this work, we choose
aB ¼ aE ¼ a ¼ 0:1.

The symmetry inherent in the reconnection of anti-parallel fields
is broken by an out-of-plane (guide) component, which can in practice
have significant effects even when relatively small in magnitude.21

Including a constant By 6¼ 0 while maintaining the condition Ek ¼ 0
implies the existence of non-zero in-plane electric fields. An electro-
static potential /, with E? ¼ �r?/, generating these components
satisfies

�z
@/
@x

� ax
@/
@z

þ aBy ¼ 0; (3)

the solution to which can be found from the method of characteristics
to be

/ ¼
ffiffiffi
a

p
By log jz þ

ffiffiffi
a

p
xj þ gðz2 � ax2Þ; (4)

with g an arbitrary function that can, in general, be chosen to satisfy
boundary conditions but will be neglected here. The resulting in-plane
components of E are

Ex ¼ �a
By

z þ
ffiffiffi
a

p
x
; Ez ¼ �

ffiffiffi
a

p By

z þ
ffiffiffi
a

p
x
: (5)

In-plane contours of the E� B flow and magnetic field lines for the
case By ¼ 1 are shown in Fig. 1. Interestingly, despite the simplicity of
the model, there are striking similarities to particle-in-cell simulations
of guide-field reconnection,22 including strong flows across the
z ¼

ffiffiffi
a

p
x separatrix and weak sheared flows straddling z ¼ �

ffiffiffi
a

p
x.

The existence of singularities in /, Ex, and Ez along the
z ¼ �

ffiffiffi
a

p
x separatrix has deeper roots than the specific choices of

functional forms assumed in this model. First note that it is not possi-
ble to choose a g in Eq. (4) that eliminates the singularities. Since g is
only a function of z2 � ax2, it has the same magnitude on both
z ¼

ffiffiffi
a

p
x and z ¼ �

ffiffiffi
a

p
x so that any cancelation along the latter will

create a new singularity on the former. More generally, any 2.5D
model with a time-stationary magnetic field that includes a spatially
constant out-of-plane component and satisfies E � B ¼ 0 must have
singularities associated with the vanishing of the in-plane field. In such
a model, Bx ¼ Bz ¼ 0 at the X-point, making it impossible to satisfy
the other requirements there while simultaneously maintaining
Ek ¼ 0. When the model includes a guide field in this work, we only

FIG. 1. Magnetic field lines (dashed) and in-plane E� B flow vectors (solid blue)
for the analytical model with a ¼ 0:1 and By ¼ 1.
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consider particle trajectories that do not cross the z ¼ �
ffiffiffi
a

p
x

separatrix.

B. Numerical results

In order to explore the reversibility of individual trajectories, we
introduce test particles into the model’s magnetic and electric fields.
The field configuration remains fixed as the positions and velocities of
the particles are integrated forward in time using the non-relativistic
Newton–Lorentz equations: dx=dt ¼ v and dv=dt ¼ qðEþ v � BÞ.
These equations are reversible, and so particles followed forward
and backward in time should return to their initial locations. (As in
Sec. IIA, the variables are assumed to include a suppressed factor rep-
resenting the dimensional information. For instance, q ¼ 61 for pro-
tons or electrons, respectively, although in what follows we choose
q¼ 1 for simplicity.)

In practice, however, the accumulation of small integration errors
has the potential to alter trajectories. These alterations will be of partic-
ular significance when particles pass near locations such as X-points or
separatrices where the j2 parameter, introduced in Ref. 23 and given
by the ratio of the radius of curvature of the magnetic field to the parti-
cle Larmor radius, most closely approaches values associated with cha-
otic motion.24 Because X-points and separatrices do not fill the
domain, the trajectory of every particle that passes near one effectively
threads a needle such that any small change can lead to significant
deviations when the orbit is tracked backwards in time. Here, the devi-
ations arise from numerical errors in solving the governing equations,
but in real plasmas, analogous behavior can arise from, for instance,
small-amplitude electric field fluctuations. To emphasize the analogy
with Landau damping: during reconnection in either an actual plasma
or a numerical simulation, there will always be random fluctuations
that sufficiently perturb particle trajectories enough to destroy phase-
space structures at some scale. When such fluctuations coincide with
regions associated with chaotic particle motions, irreversible particle
trajectories result.

We follow trajectories via a trapezoidal-leapfrog method with the
velocity integration employing a version of the Boris algorithm,25–27

specifically the Boris-B solver described in Ref. 28. Exact numerical
convergence is impossible (achieving it would effectively imply infinite
phase-space resolution), since for any time step, Dt there will always
exist particles whose trajectories cannot be exactly reversed. In this
work, we have chosen Dt ¼ 10�3 so that trajectories that do not pass
close to the separatrices and X-point are reversible, but emphasize that
tests with different values of Dt yield qualitatively similar results. In
general, reducing Dt will increase the length of time and number of
particles for which trajectories are reversible but will not eliminate irre-
versibility altogether. Here, we show trajectories evolved forward in
time for 2:5� 105 steps and then reversed for an equal period.

Figure 2 shows two particle trajectories in the anti-parallel case of
the model described in Sec. IIA. At t¼ 0, both have representative
thermal velocities, with the perpendicular velocity augmented with the
local E� B drift. The particles have the same guiding centers but dif-
ferent phases (offset by p=2) so that they initially occupy different
locations on the same Larmor orbit centered at x¼ 1 and z¼ 4.5. Both
particles begin upstream and are tracked forward in time (blue lines)
as they pass near the X-point and head downstream until, at t¼ 250,
the particles have the locations given by the colored circles [top:
ðx; zÞ � ð20;�3Þ; bottom: ðx; zÞ � ð27; 6Þ]. At the beginning of their

trajectories, the particles exhibit the expected helical motions about the
field with a pitch given by vk=v?. Conservation of the adiabatically
invariant magnetic moment implies that v? varies in proportion toffiffiffi
B

p
so that the pitch decreases (i.e., the helix winds more tightly) at

the mirror points and then increases as the particle moves back toward
the origin. Magnetic moment conservation begins to break down near
the current layer at z¼ 0 due to the decrease in B. Despite having ini-
tial conditions on the same Larmor orbit, the blue trajectories in the
two panels clearly differ near the X-point. Once the particles move
away from the current layer they re-magnetize, mirror in the increas-
ing field, and again pass through the region of small field. The overall
behavior is quite similar to that seen in particle trajectories taken from
full PIC simulations of reconnection.29,30

At t¼ 250, the particle positions are marked by circles, and their
trajectories are then integrated backwards in time (red lines) by replac-
ing Dt with �Dt in the discretization of the Newton–Lorentz equa-
tions. (Mathematically, identical results are found by keeping Dt
unchanged but mapping v ! �v and either B ! �B or both
q ! �q and E ! �E.) While both particles at first closely re-trace
their inbound trajectories—the red lines at first completely overlap the
blue ones—each eventually acquires a significant deviation after which
the incoming and outgoing trajectories are more or less independent.

Figure 3 shows l, the first adiabatic invariant, for each particle as
a function of time. As in Fig. 2, l during the forward trajectory is
shown in blue, while that for the reverse is plotted in red. The large
spikes correspond to times when the particles approach the X-point

FIG. 2. Magnetic field lines (solid black) and two particle trajectories in the analyti-
cal model with a ¼ 0:1 and By ¼ Ex ¼ Ez ¼ 0. Blue lines represent the particle
trajectories taken forward in time, red when reversed. Each particle begins on a
gyro-orbit centered at x¼ 1, z¼ 4.5 but separated in phase by p=2. The locations
where the reversals occur are marked by circles. The diamonds indicate the loca-
tions discussed in Fig. 3. [Associated dataset available at https://doi.org/10.5281/
zenodo.4608531].31
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and B approaches zero. The inset in each panel displays the times
where the forward and backward values notably begin to deviate and
the diamonds correspond to those plotted in Fig. 2. In the first case,
the diamonds are shown slightly after the deviation becomes notice-
able at t¼ 110 when the particles are oscillating across the current
sheet at ðx; zÞ � ð7;�1Þ.

Figure 4 shows a similar plot for a configuration that includes a
uniform guide field By ¼ 1 and the associated in-plane electric fields
given in Eq. (5). As in the anti-parallel case, the two particles begin
with the same velocities and guiding centers (centered at x¼ 1 and
z¼ 4.4) but gyrophases separated in phase by p=2. The Larmor orbits
again exhibit variations in pitch as the particles encounter regions
where B changes. Notably, however, the presence of the guide field
means that the particles’ magnetic moment is mostly conserved, the
j2 parameter of Ref. 23 remains in the non-chaotic regime, and the
particles never fully de-magnetize. As a consequence, passing through
the central current sheet does not lead to significant differences in the
trajectories as it did in the anti-parallel case. Furthermore, as expected,
the reversed-in-time trajectories more closely track the forward-in-
time motion. In the bottom panel, the reversal is nearly exact, with the
red reversed trajectory essentially covering the forward blue trajectory.

The dependence on guide field can be considered in light of the
j2 parameter defined by Ref. 23. For this configuration, j2 � Rc=qL
where Rc and qL represent the radius of curvature and the Larmor

radius, respectively, can be evaluated analytically. The limit j2 	 1
corresponds to adiabatic motion, and as j2 approaches unity, particle
trajectories are expected to display signs of deterministic chaos. In the
anti-parallel case, see Fig. 2, j2 ¼ 0 at the X-point, but for any finite
By the minimum value occurs downstream of the X-point, on the line
z¼ 0, with j2min / B2

y . The Larmor radius component of j2 brings in
a dependence on v?, but for the parameters shown in Fig. 4 j2min � 1.
As discussed in Ref. 23, the onset of deterministic chaos, which is
closely related to the reversibility of the trajectories, arises due to the
overlap of resonances between the Larmor motion and the bounce
motion across the current layer at z¼ 0. Such behavior is clear even
in a qualitative comparison of the current sheet crossings shown in
Figs. 2 and 4.

It should be emphasized that while the plotted trajectories are
intended to be representative, changes in multiple factors—numerical
method, length of integration, time step, initial position, or velocity—
will produce different trajectories, although even numerical experi-
ments with solvers employing much smaller error tolerances (not
shown) exhibit deviations in the forward and reversed trajectories. A
more comprehensive approach comes from examining self-consistent
simulations of reconnection.

III. PARTICLE-IN-CELL SIMULATIONS

Particle-in-cell simulations follow the motions of many particles
in their self-consistent electric and magnetic fields. A key question is
whether the results found in Sec. II for individual trajectories con-
tinue to apply. We perform such simulations with the code p3d.27

In its normalization, a reference magnetic field strength B0 and density

FIG. 3. The first adiabatic invariant l as a function of time for the particle trajecto-
ries shown in Fig. 2. The forward trajectory is shown in blue and the reverse in red.
The inset of each panel shows a blow-up of the critical region where the forward
and backward phases begin to differ significantly. The red and blue diamonds label
the points shown marked similarly in Fig. 2. [Associated dataset available at https://
doi.org/10.5281/zenodo.4608541].32

FIG. 4. Magnetic field lines (solid black) and two particle trajectories in the analyti-
cal model with a ¼ 0:1, By ¼ 1, and Ex and Ez given by Eq. (5) in the same format
as Fig. 2. The particles begin on a gyro-orbit centered at x¼ 1 and z¼ 4.4. In the
bottom panel, the red reversed trajectory covers the blue forward trajectory.
[Associated dataset available at https://doi.org/10.5281/zenodo.4608551].33
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n0 define the velocity unit vA0 ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmin0

p
where mi is the ion

mass. Times are normalized to the inverse ion cyclotron frequency
X�1

i0 ¼ mic=eB0, lengths to the ion inertial length di0 ¼ c=xpi0 (where
xpi0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=mi

p
is the ion plasma frequency), electric fields to

vA0B0=c, and temperatures tomiv2A0.
The system parameters follow those of the Geospace

Environmental Modeling (GEM) reconnection challenge.34 The com-
putational domain measures Lx � Lz ¼ 25:6 �12:8di. The ion-to-
electron mass ratio is taken to be 25, which is sufficient to separate
the electron and ion scales (the electron inertial length de0 ¼ 0:2di0).
The electron thermal speed vth;e � 2 is much less than the normal-
ized speed of light, c¼ 20; the latter further implies that
xpe=Xce ¼ 4. The spatial grid has resolution D ¼ 0:05 in normalized
units while the Debye length, �0:04, is the smallest physical scale.
The time step is Dt ¼ 0:001. Each grid cell in the asymptotic plasma
contains �1500 macroparticles. The boundaries are periodic in the
horizontal direction and perfectly reflective conducting walls at
the top and bottom of the domain. A small perturbation is made to
the center of the current sheet at t¼ 0 to begin reconnection. As
with many PIC codes, p3d’s basic algorithm does not naturally
ensure the satisfaction of Gauss’s law and so usually employs diver-
gence cleaning to match $ � E and q. However, since this correction
breaks the invariance with respect to time of the Boris algorithm, it
is not used in this work. Nevertheless, the observed violation of
Gauss’s law is small, and companion runs that included divergence
cleaning (not shown) suggest that the effect is insignificant.

Figure 5 displays the out-of-plane electron current density Jey at
four times during the run. Panels (a) and (b) display the system at
t ¼ 20X�1

ci and t ¼ 24X�1
ci during the forward time integration. The

expected features are present: slowly inflowing plasma, growing islands

of reconnected flux, and Alfv�enic outflow jets (not shown). At
t ¼ 24X�1

ci , panel (b), the run is stopped and the backwards integra-
tion begun. Depending on the details of the numerical implementa-
tion, small errors can be introduced when starting the backwards
integration. However, tests with multiple schemes taking more or less
care to ensure exact reversibility during the first few time steps yielded
essentially indistinguishable results. In the following, we simply set
Dt ! �Dt. Panel (c) shows the system after it has been integrated
back to t ¼ 20X�1

ci and should be compared to panel (a). While some
reversal has occurred—in particular, the island widths are similar in
panels (a) and (c)—the structure of the central current layer is clearly
different. Panel (d) shows the system after it has been evolved further
backwards in time to t ¼ 12X�1

ci . If the system were fully reversible,
the islands would continue to shrink as flux un-reconnects and the
system would eventually contain a nearly uniform current layer.
Instead, reconnection has begun again, as demonstrated by the
increase in the island size. The overall morphology closely resembles
the state shown in panel (b) when the time reversal began.

Figure 6 displays the out-of-plane current density at four times
for a system that includes an initial uniform guide field, By ¼ 1, but is
otherwise identical to that shown in Fig. 5. As before, panels (a) and
(b) show t ¼ 20X�1

ci and t ¼ 24X�1
ci from the forward time integra-

tion. In this case, a plasmoid forms in the slightly narrower current
layer near the X-point and moves downstream, nearly fully reconnect-
ing with the flux in the island by the time of panel (b). As is typical in
guide-field reconnection, one of the separatrices, in this case the one
stretching from lower-left to upper-right, is stronger than the other.
After the time shown in panel (b), the backwards integration begins.
In panel (c) [which should be compared to panel (a)], the plasmoid
has emerged from the downstream island and propagated back toward

FIG. 5. The out-of-plane electron current density Jey at four times for anti-parallel reconnection. Panel (a) shows t ¼ 20X�1
ci . Panel (b) shows t ¼ 24X�1

ci when the forward
evolution is stopped. Panel (c) shows t ¼ 20X�1

ci in the backwards evolution and panel (d) t ¼ 12X�1
ci . [Associated dataset available at https://doi.org/10.5281/

zenodo.4608554].35
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the X-point. The two panels are nearly identical although small differ-
ences can be seen, e.g., at x � 11 and z � 6:4. However, as the
reversed integration continues, reconnection eventually begins again
as can be seen in panel (d).

A curious feature of the new phase of reconnection is that the
strong and weak separatrices switch [compare panels (b) and (d)]. The
morphology of the separatrices before the reversal is a well-
understood by-product of guide-field reconnection and arises from
the interaction of streaming electrons and Ek along the separatrices.

37

As noted above, mapping t ! �t in the equations governing the sys-
tem’s evolution is mathematically equivalent to keeping t unchanged
while mapping B ! �B and v ! �v. In other words, reversing the
flow of time in the system is synonymous with the instantaneous
reversal of the velocity of every particle and the direction of the mag-
netic field. When the system again begins to reconnect [panel (d)], this
change effectively changes the sign of Ek and hence the structure of
the separatrices.

Figure 7 shows the reconnected flux, as measured by the differ-
ence in Ay between the X-point and O-point, vs time for three simula-
tions: The two already discussed and an additional one with By ¼ 2.
The slope of the curve gives the reconnection rate, which is �0:1 for
all three simulations at the time of the reversal. The left panel shows
the forward integration, with the vertical offset at t¼ 0 due to the small
initial perturbation. Each simulation is run until t¼ 24, the time
shown in panel (b) of Figs. 5 and 6. The right panel displays the result
of the backward integration. In each case, the system retraces its trajec-
tory (un-reconnects) immediately after the reversal, but eventually
stops and then begins to reconnect new flux. As was the case with the
test particles discussed in Sec. II B, the systems with guide fields show
better reversibility. A quantitative measure of reversibility is the ratio
r ¼ ðw24 � wminÞ=ðw24 � w0Þ where w is the reconnected flux, w0

and w24 are the values at t¼ 0 and t¼ 24, and wmin is the minimal
value reached during the backward integration. When r¼ 0, the sys-
tem exhibits no reversal, while for r¼ 1, it returns to its initial state.
For the runs of Fig. 7, rðBy ¼ 0Þ ¼ 0:27; rðBy ¼ 1Þ ¼ 0:59, and
rðBy ¼ 2Þ ¼ 0:68. As expected from the particle trajectories discussed
in Sec. II, increasing the guide field increases the magnetization (i.e.,
j2) and the degree to which the system is able to reverse.

The number of macroparticles—invariably small compared to
the number of particles in a real plasma—is a potential source of noise
in PIC simulations that could plausibly make an anomalously large
contribution to the reversibility of a system. However, Fig. 8 shows
results from additional runs of the By ¼ 1 case where the number of
macroparticles per cell (ppc) varied from 25 to 12800 (compared to
�1500 in Fig. 7). In those cases, r ¼ f0:32; 0:41; 0:55; 0:59;
0:59; 0:59g for ppc ¼ f25; 100; 400; 1600; 6400; 12 800g, respectively.
For the smallest values of ppc, PIC noise appears to play a significant
role, but above ppc � 400 the effect is minimal. For all of the runs, the
rates at which flux un-reconnects (the slopes of the curves in the right
panel of Fig. 7) maintain the same nominal dimensionless value of
�0:1 observed in the forwards integration and typically observed in
PIC simulations.

As a first approximation, if the reversed reconnection rate does
not strongly vary from �0:1, the time at which minimum flux occurs
in the right panels of Figs. 7 and 8 should be proportional to r—a
larger r implies a longer time-to-minimum and vice versa.
Interestingly however, the observed time-to-minimum exhibits less
variation than might be expected for increases in both the guide field
and ppc. [For example, in Fig. 7 the difference between rðBy ¼ 0Þ
¼ 0:27 and rðBy ¼ 1Þ ¼ 0:59 might suggest a time-to-minimum that
differed by �2, in contrast to the observed �1:3.] However, correc-
tions in the time-to-minimum arise due to the shape of the flux

FIG. 6. The out-of-plane electron current density Jey at four times for guide field reconnection with By ¼ 1 in the same format as Fig. 5. [Associated dataset available at https://
doi.org/10.5281/zenodo.4608560].36
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minima. The source of these corrections is not clear, although the gen-
eration of plasmoids, such as in the one seen in Fig. 6 for the By ¼ 1
case may play a role.

Unlike the test particles discussed in Sec. II B, particles in PIC
simulations move on trajectories that evolve based on self-consistently
determined electromagnetic fields. In a perfectly reversible simulation,
the trajectories from the forward and backward integration would
completely overlap but, as might be expected from the irreversibility
shown in Fig. 7, they do not here. Figure 9 shows the average total dis-
placement between the forward and backward integration of fifty elec-
trons [panel (a)] and ions [panel (b)] as a function of time for
reconnection with By ¼ 0 (black curves), By ¼ 1 (red) and By ¼ 2
(blue). The particles initially occupied a small region just upstream of
the reconnection current sheet. Most passed the separatrices during

the simulation and were located in the reconnection outflow when the
backwards integration began (this point in time denotes t¼ 0 on the
horizontal axis). Because the system is periodic in the horizontal direc-
tion and the particles cannot move too far upstream in the y direction
due to canonical momentum conservation, the displacement between
particles cannot grow without bound. Instead, in all cases the particles
initially track their doppelgangers closely before exponentially diverg-
ing and then eventually reaching an asymptotic steady-state. As
expected, the deviations occur substantially earlier when By ¼ 0 due to
passages through the demagnetized current sheet. As the guide field
increases the correlation between the forwards and backwards particles
is maintained for longer periods, although eventually divergence
occurs for all three cases. While the larger mass of ions [panel (b)]
means larger Larmor radii (and hence less magnetization than

FIG. 7. Reconnected flux vs time for simulations with guide field 0 (black), 1 (blue), and 2 (red). The left panel shows forward integration in time. The right panel, the backward
integration. [Associated dataset available at https://doi.org/10.5281/zenodo.4608562].38

FIG. 8. Reconnection rate as a function of time in the same format as Fig. 7 for By ¼ 1. Black, dark blue, light blue, green, yellow, and red lines correspond to 25, 100, 400,
1600, 6400, and 12800 particles per cell, respectively.
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electrons), it also increases the gyroperiod; the net result is that the
timescale for ion deviation is longer than that for electrons.

IV. DISCUSSION

Previous work40 has demonstrated fully reversible magnetic
reconnection in a gyrokinetic simulation of a collisionless plasma. The
gyrokinetic equations effectively consider the case of very strong guide
field, i.e., a fully magnetized plasma, and hence can be considered a
limiting case of the work discussed here. The observed reversibility is
consistent with the trend discussed above that increasing the strength
of the guide field increases the system’s reversibility. In addition, the
continuum nature of the gyrokinetic model caused the noise levels in
the simulations to be quite small (near machine precision), although
artificially adding noise led to poorer reversibility. Observations of
reconnection have shown it to be accompanied by small-scale electric-
field fluctuations that have some similarities to this type of noise.41,42

It would be of interest for future work to compare the characteristics
(amplitude, spectrum, etc.) of this noise to that in different simulation
models in order to assess its possible impact on reversibility.

Irreversibility is closely tied to the question of dissipation of
energy. Circumstantial evidence for dissipation during reconnection
comes in the form of the observed increase in the downstream plasma
temperature.43,44 However, definitively proving the existence of irre-
versible dissipation is not straightforward. A frequently used measure,
the identification of regions where J � E > 0 (where E is measured in
the frame of the electrons45) can be misleading since reversible pro-
cesses can generate such signals. On the other hand, such signals can
be tied to the development of complex structures in phase space. As
the complexity increases, weaker and weaker non-ideal processes are
sufficient to trigger irreversible heating.46

Determining whether a process is reversible is equivalent to ask-
ing whether the entropy remains constant. The generation of entropy
in PIC simulations has been a subject of a recent study.47 The kinetic
entropy was calculated for collisionless 2.5D anti-parallel reconnection

in a closed system. For a simulation with excellent conservation of the
total energy, the authors found a monotonic increase in the total
entropy of the system, albeit at a low level (�3% for the entire run).
Since the system lacked physical collisions, the entropy increase was
attributed to numerical effects. Later work48 modeled the entropy
increase as an effective numerical collisionality, with the collision fre-
quency dependent on such numerical factors as the resolution, time
step, and number of particles. When considered in the context of this
work, these results suggest that reversibility in magnetic reconnection
behaves in a manner analogous to Landau damping. In principle,
every particle in the system follows a trajectory given by the collision-
less, reversible equations of motion while the system itself follows a
narrow trajectory through a high-dimensional phase space. However,
during reconnection the orbits of particles passing near magnetic sepa-
ratrices and magnetic nulls are sensitive to small perturbations.
Deviations from collisionless trajectories (e.g., arising from numerical
errors in a simulation or a non-zero effective collisionality in a real sys-
tem) push the plasma off its narrow path in phase space onto an irre-
versible state. The size of the perturbation needed to effect this change
varies, although we have shown that a larger guide field is linked to
higher reversibility (and hence smaller entropy increase and energy
dissipations).

Several open questions remain. To what degree does reversibility
depend on other plasma parameters (e.g., three-dimensionality, b, the
magnetization parameter r that parameterizes relativistic reconnec-
tion,49 or asymmetry across the reconnecting current sheet)? Is it pos-
sible for PIC simulations to run in the truly collisionless regime for
general reconnection configurations and hence exhibit true reversible
behavior? If not, does this have implications for the widely accepted
notion that PIC simulations provide a nearly complete picture of mag-
netic reconnection? Finally, is there a definitive measure of irreversibil-
ity and entropy generation that can be evaluated with data obtainable
by either spacecraft or laboratory experiments?
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