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Abstract

Peptides’ hierarchical co-assembly into nanostructures enables controllable fabrication of
multicomponent biomaterials. In this work, we describe a novel computational and experimental
approach to design pairs of charge-complementary peptides that selectively co-assemble into B-sheet
nanofibers when mixed together, but remain unassembled when isolated separately. The key advance
i1s a peptide co-assembly design (PepCAD) algorithm that searches for pairs of co-assembling
peptides. Six peptide pairs are identified from a pool of ~10° candidates via the PepCAD algorithm
and then subjected to DMD/PRIME20 simulations to examine their co-/self-association kinetics. The
five pairs that spontaneously aggregate in kinetic simulations selectively co-assemble in biophysical
experiments, with four forming B-sheet nanofibers, and one forming a stable non-fibrillar aggregate.
Solid-state NMR, which is applied to characterize the co-assembling pairs, suggests that the in-silico

peptides exhibit a higher degree of structural order than the previously reported CATCH(+/-) peptides.
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Introduction

Certain peptides are known to assemble spontaneously into a variety of nanostructures---
nanofibers, nanosheets, nanotubes, nanoparticles, etc., -with applications in a wide variety of fields,
including: drug delivery, vaccines, hydrogels, 3-D cell culture, tissue engineering, and protein
scaffolds. Great structural variety can be achieved, in principle, via a “bottom-up” strategy in which
the peptide amino acid composition, length and sequence pattern are tailored to form a particular
structure'”’. The big question is, of course, — what are the design rules for programming in a
particular self-assembled structure? An even more basic question is which sequences will assemble?
Although there are some algorithms that attempt to answer the latter question by correlating the
amyloidogenic tendencies of the individual amino acids®'!, there is no efficient computational or
experimental approach to discover which sequences form which structures. Most of the existing 3-
sheet-forming peptides are derived from naturally-occurring amyloid-forming proteins'?. Others'*'?
have been designed based on a simple hydrophilic/hydrophobic (HP), repeating pattern that is known

to form a two-layer fibril with a hydrophobic core'®

. The difficulty in a priori design of B-sheet-
forming peptides comes from the challenge of effectively exploring the enormous amino acid
sequence space to discover peptide sequences that form the desired structures. For this reason,
systematic investigation of peptide aggregation behaviors in vast sequence space has only been
conducted for very short peptides, such as dipeptides'’ and tri-peptides'®, and only for single-
component systems. The challenge becomes even more interesting when one considers the possibility
of designing two or more peptides that co-assemble to form a single nanostructure.

Recently, peptide co-assembly has emerged as a novel supramolecular design strategy, allowing
construction of peptide-based nanofibers with integrated functionalities'”?>. Here we focus on
selective co-assembly: the formation of stable -sheet nanofibers by two different peptides, A and B,
only when they are both present in solution; otherwise, they remain unassembled in random coil
configurations. Researchers have used heuristics to develop pairs of charge-complementary co-
assembling peptides by generating highly charged sequence variants of established self-assembling
peptides®*?*. For instance, the CATCH(4+) (sequence: Ac-QQKFKFKFKQQ-Am) with four
positively-charged residues and the CATCH(6-) (sequence: Ac-EQEFEFEFEQE-Am) with six
negatively-charged residues’ are both derived from the QI1 peptide (sequence: Ac-

QQKFQFKQEQQ-Am)?* and have been shown to coassemble. These peptide pairs have been shown
(2)



to co-assemble into bilayer B-sheets that contain the two peptides arranged in a predominantly
alternating pattern, although like-charged neighbor mismatches and B-strand polymorphisms have
been observed’®?’. Although a heuristics-based experimental approach has led to the discovery of
several co-assembling pairs, this approach becomes intractable when exploring the vast sequence
space for two complementary 11-residue peptides. The addition of computational methodologies
capable of designing new selectively co-assembling pairs would greatly accelerate the development
of peptide nanostructures, potentially leading to architectures with more precise molecular-level order
and organization than has heretofore been possible.

In this work, we describe a computational and experimental protocol, essentially a funnel, which
screens large numbers of candidate peptide pairs to identify those that will selectively co-assemble
into B-sheet nanofibers with a pre-set structure in experiment, e.g., an automated sequence screening
process for 11-mer co-assembling peptide pairs in a pool of more than 300,000 peptides and around
10° possible peptide pairs (Fig. 1). The key advance is a Monte Carlo (MC)-type peptide co-assembly
design (PepCAD) algorithm that is used for de novo design of charge-complementary peptide pairs.
This method is a logical extension of our previously-developed peptide binding design (PepBD)
algorithm?®? that we applied to design peptide binders to biomolecular targets with exceptional

affinities®>?

. Lead compounds from the computational search are subjected to discontinuous
molecular dynamics (DMD) simulations combined with the knowledge-based PRIME20 force field**-
0 to examine the co-assembly kinetics of the in-silico discovered peptide pairs, as well as the self-
association of each peptide species when alone. The peptide pairs that can selectively co-assemble in
DMD/PRIME20 simulations are then synthesized and their co-assembly versus self-association is
examined using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy
(FTIR), and solid-state nuclear magnetic resonance (NMR) spectroscopy. Finally, the structural order
and molecular-level compositions are assessed by solid-state NMR and compared to previous co-

assembling B-sheet designs. We envision that this new paradigm for de novo peptide design will

enable rapid development of molecules that assemble into specific supramolecular architectures.

(Figure 1 should be placed here)

Results
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Predetermining the molecular architecture of the peptide scaffold. To discover peptide pairs that
can co-assemble into a peptide-based nanofiber in solution, we must first decide what fibrillar
structure to design — B-sheet nanofiber, cross-o nanofibers, a-helical coiled-coil, etc. Here we choose
to design peptides that can assemble into the co-assembled fibril structure formed by a mixture of
CATCH(4+) and CATCH(6-) peptides. Discontinuous molecular dynamics (DMD) is combined with
the coarse-grained protein force field, PRIME20, to simulate the spontaneous co-assembly of an
initially-random system of 24 CATCH(4+) peptides and 24 CATCH(6-) peptides at 330 K and 10
mM into a fibrillar structure. PRIME20 was chosen because it is among the most realistic of the
protein coarse-grained models, does not build in any predetermined secondary structure, provides a
good representation of amyloid structure in comparison to experiment, and is fast enough to get to
the fibrillar stage starting from the random-coil state (Supplementary Section 1). Our simulation
results revealed that the CATCH(4+/6-) peptides preferentially co-assemble into a highly-ordered
fibrillar structure with two layers of B-sheets (Fig. 2a). The structure of this fibril can be characterized
in terms of the orientations of the peptides relative to each other. Conformational analysis of the
CATCH fibrillar structure as described in Supplementary Section 2 indicates that for a CATCH(6-)
peptide in the fibril, its nearest and next-nearest peptides in the same B-sheet are most likely to be a
CATCH(4+) that is anti-parallel and a CATCH(6-) that is parallel, respectively; and its nearest peptide
on the neighboring B-sheet is most likely to be a CATCH(6-) that is parallel (Fig. 2b). This preferred
organization indicates that the CATCH(4+/6-) peptides prefer to co-aggregate into 2-layers with anti-
parallel orientation within each B-sheet and parallel orientation between the sheets (Fig. 2b). Based
on the structural information above, we constructed a 2-layer fibril model using the Discovery Studio
3.5 package and optimized its geometry in the AMBER 14 software (as seen in Supplementary Section
3 and Supplementary Fig. S1). This 2-layer fibril structure is used as an initial conformation in the

PepCAD algorithm to discover other potential co-assembling peptides.

(Figure 2 should be placed here)

Sequence evolution of co-assembling peptides. The PepCAD algorithm is a MC-based algorithm
for de novo design of charge-complementary peptide pairs that can co-assemble into particular

supramolecular architectures (as described in Supplementary Section 4 and Supplementary Fig. S2).
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Three different kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue
exchange, and inter-chain residue exchange, are used to perturb the peptide sequences (Fig. 2c¢),
resulting in new trial co-assembling designs, peptides A and B. The peptide backbone scaffold of the
2-layer fibril structure is fixed throughout the design process. To evaluate the merits of these peptides’
co-assembly capability, a score function I,y 1s introduced in Supplementary Section 5,
Equation 1 that takes into account the binding free energy, AGpinging, between the peptides A and

B*!, as well as the intrinsic self-aggregation propensities, P,,,, of the individual peptides****. To

99>
avoid local searches, we start with three different initial random sequences at two weighting factors A,
viz. A = 3.0 and 4.0, to vary the search pathways, leading to a total of six evolution runs (three for
A = 3.0 and three for A1 = 4.0). The designed peptides are constrained to have the same sequence
pattern “PPPHPHPHPPP” as the CATCH(+/-) peptides, where “H” and “P” refer to hydrophobic and
polar amino acids. The peptides are also constrained to have 3 hydrophobic residues, 3 hydrophilic
residues, 5 charged residues, and no cysteine, proline, or glycine. Our sequence searches did not start
with the known CATCH(4+/6-) peptides because: (1) the peptide co-assembly designs in this work
are constrained to contain (5+/5-) residues on the chains, which is different from those for the
CATCH(4+/6-) peptides; (2) the sequence searches starting with the CATCH(4+/6-) peptides as initial
conditions result in an ineffective exploration of the broad sequence space. The final peptide designs
are not sensitive to the initial conditions (sequences) chosen during the Monte Carlo algorithm.

Fig. 2d,e show profiles of score vs. number of evolution steps at A = 3.0 and 4.0, respectively.
Since the searches start from random peptide sequences, the scores are high at the initial stage. As
the evolution proceeds, the three kinds of sequence moves help the amino acids to rapidly find
appropriate sites on the chains, resulting in a sharp drop in the score. Later, the score profile fluctuates
considerably due to variations in the identities of the amino acids at the various sites. Favorable
sequence moves that decrease the score are always accepted in our procedure, while unfavorable
sequence moves that may slightly or significantly increase the score are accepted or rejected
according to the MC criterion. By examining the profile of the score over the sequence evolution, we
can identify the lowest scores in each profile which correspond to the best peptide sequences for each
search. Two pairs of designed co-assembly peptides as well as their corresponding fibril structures
are shown in Fig. 2d,e for the case of 1 = 3.0 with the lowest score -25.35 kcal/mol at the 1570

step (Fig. 2d), and for the case of 2 = 4.0 with the lowest score -25.80 kcal/mol at the 5926 step
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(Fig. 2e).

The six best-scoring pairs of peptide sequences resulting from the six evolutions, hereafter
referred to as Designs 1 through 6, are listed in Table 1 along with their associated scores, binding
free energies per peptide and intrinsic self-aggregation propensities per peptide calculated using
Supplementary Equation 1. (The latter two quantities are used in the calculation of the peptide’s
score.) The results from the DMD/PRIME?20 kinetics simulations and experiments are also listed and

will be discussed later. All of the in-silico peptide pairs A and B in Table 1 exhibit negative values for
Aébinding, the first term in the score function, implying that peptides A and B may form fibril-like

co-aggregates due to their strong mutual binding affinity. Note that these binding energies are stronger
than a typical peptide-biomolecule binding energy because the 2-layer fibril model used for peptide
designs is an ideal optimized structure. Each peptide within the fibril model can form at least six
backbone hydrogen bonds with its nearest neighboring peptides as well as broadly interact with the

other peptides on the neighbor sheet(s), leading to a large value of binding energy. In addition, peptide
pairs A and B exhibit weak intrinsic self-aggregation propensities due to their low values of ﬁag gs
indicating that they are not likely to self-assemble into well-ordered structures when dissolved
separately in solution; the lower the value of ﬁagg the weaker its self-aggregation propensity.

Without loss of generality, we henceforth assign the label A to the positively charged peptide and the
label B to the negatively charged peptide. Interestingly, the design algorithm, not the user-defined
sequence specifications, preferentially places positively-charged amino acid, lysine (K), at the N-
terminus of peptide A and negatively-charged amino acids, aspartic acid (E) and glutamic acid (D),
at the C-terminus of peptide B. Such sequence alignments for peptides A and B likely facilitate the
formation of the targeted antiparallel B-sheet structure. The frequent appearances of the amino acids
asparagine (N) and threonine (T) on peptide pairs A and B is likely due to their low intrinsic self-
aggregation propensities as well as the strong sidechain-sidechain interactions between the
carboxamide group (-CO-NH>) on asparagine (N) and the hydroxyl group (-OH) in threonine (T),
which further stabilize the amyloid fibril. These design motifs are not seen in previous co-assembling
B-sheet peptide sequences, highlighting the utility of the design algorithm in expanding the design

space.
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(Table 1 should be placed here)

Computational analysis of the co-/self-assembly properties of in-silico peptide pairs. First, we
performed explicit-solvent atomistic molecular dynamics (MD) simulations to examine the
thermodynamic stability of our designed amyloid fibrils (as described in Supplementary Section 6).
The starting structures of the six 2-layer amyloid fibrils are obtained from the output of the PepCAD
algorithm. Simulation results revealed that the six in-silico peptide pairs are able to maintain a well-
organized 2-layer fibril structure after 100-ns (Supplementary Fig. S3). We then employed the
FoldAmyloid web-server, a bioinformatics method, to estimate the amyloidogenicity (likelihood that
the peptides would self-aggregate to form amyloid) of the single peptide species within the six
designs*®. In this method, peptides are predicted to be amyloidogenic if they contain at least 7
consecutive residues that have average self-aggregation scales that are higher than an empirical
threshold value of 21.4; otherwise they are predicted to be non-amyloidogenic. The peptide pairs A
and B within Designs 1-6 are predicted to be non-amyloidogenic as their average self-aggregation
scales are lower than 21.4, implying that these single peptide species exhibit a weak propensity for
self-aggregation in solution (Supplementary Fig. S3).

In addition, the co- and self-association kinetics of these in-silico peptide pairs were examined
using DMD/PRIME20 simulations. Motivation for this is the possibility that even though the fibril
state might be stable according to the atomistic MD simulations, the kinetics might not be fast enough
to arrive at an ordered structure. DMD/PRIME20 simulations of a mixture containing 100A and 100B
peptides initially in random coil conformations at 10 mM and 330 K were conducted for 5 (or 10) ps
(as described in Supplementary Section 7). The types of structure formed for all six designs in
DMD/PRIME 20 simulations are indicated in Table 1. Fig. 3 shows the aggregation kinetics, reported
as the B-sheet content versus simulation time, and final simulation snapshots for Designs (1-6) and
CATCH peptides. Our simulation results predict that all the in-silico peptide pairs selectively co-
assemble into ordered B-sheet fibrillar structures, with the exception of Design 3 (Fig. 3). The peptide
pairs A and B of Designs (1, 2, 4, and 5) co-aggregate rapidly when mixed with each other to form
fibril structures with more than 2 B-sheet layers wherein the peptides A and B predominantly adopt
an anti-parallel orientation (Fig. 3). In contrast, Design 6 has the slowest aggregation kinetics (Fig.

3) but is the only peptide pair that tends to form a 2-layer architecture (Fig. 3), as the CATCH peptides
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do. The co-assembly of the peptides A and B within these designs is initialized by the formation of a
small B-sheet fibril nucleus. As the simulation progresses, the nucleus grows and elongates by
recruiting random-coil monomeric peptides, and sometimes by associating laterally with other small
oligomeric species, to form a single multi-layer beta sheet fibrillar structure (Supplementary Fig. S4).
The DMD/PRIME20 simulations of the associated single-component systems reveals that the
individual peptides, A or B, in the six designs do not self-associate when alone in solution
(Supplementary Fig. S5).

To study the effectiveness of PepCAD, we chose three initial random peptide pairs and three in-
silico peptide pairs with medium scores from the evolution for co-assembly to test to see if they co-
assembled in the DMD/PRIME20 simulations. Simulation results, which are shown in
Supplementary Fig. S6 revealed that all three initial peptide pairs do not co-assemble into fibril
structures. However, two of the three in-silico peptides with medium scores do form fibril-like co-
aggregates in simulations, while the other one does not. Further, the individual peptides associated
with these initial pairs and pairs with medium scores did not self-assemble in DMD simulations (not
shown for brevity). To examine the diversity of sequences, we compared the peptide pairs with
medium and best scores (Supplementary Fig. S6 and Table 1), and found that the best-scoring
peptides A (and B) exhibit a high similarity with each other but significantly differ from those with
medium scores. Sequence evolution in PepCAD achieves the de novo design of peptides that co-
assemble into B-sheet based nanofibrils. Future efforts will seek to identify threshold scores that are

reliable predictors of co-assembly propensity in simulations and experiments.

(Figure 3 should be placed here)

Experimental analyses of co- and self-assembly of designed peptide pairs. Based on the outcomes
of the DMD/PRIME20 simulations, the peptide pairs of Designs 1-6 were synthesized and their
selective co-assembly was characterized using transmission electron microscopy (TEM)
(Supplementary Section 8) and Fourier-transform infrared spectroscopy (FTIR) (Supplementary
Section 9) (Fig. 4). We observed elongated nanofibers with a high degree of lateral association in
transmission electron micrographs of equimolar mixtures of Designs 2, 4, and 5 (Fig. 4a). In contrast,

the mixture of Design 1 formed shorter nanofibers that were few in number and less laterally

®)



aggregated (Fig. 4a). Unexpectedly, the peptide pair in Design 6 did not form elongated nanofibers,
contrary to simulation predictions; instead, Design 6 exclusively formed non-fibrillar aggregates with
approximate diameters of 11 + 1.7 nm (Fig. 4a). Likewise, the peptide pair in Design 3 formed non-
fibrilllar aggregates, which persisted for 7 days (Supplementary Fig. S8). It is worth noting that these
samples were prepared at 1 mM, which is significantly lower than the simulation concentration of 10
mM, yet significantly higher than the minimum co-assembly concentration reported previously for

CATCH peptides.

(Figure 4 should be placed here)

Due to the disparity in concentration between simulations and TEM samples, we used FTIR to
determine the secondary structure of each peptide in Designs 1-6 alone and in the presence of its
complementary partner at 15 mM (Fig. 4b). When alone, the FTIR spectrum of each peptide had local
maxima at approximately 1645 and 1675 cm™ (dashed lines). The former indicates that the peptides
adopt random coil conformations, and therefore do not undergo considerable self-association. The
latter is likely due to residual trifluoroacetic acid remaining from peptide synthesis and purification
processes, and likely has no impact on the peptide secondary structure. When paired, the FTIR spectra
of Designs 4 and 5 had strong maxima between 1621-1616 cm’!, indicating formation of
intermolecular hydrogen bonds consistent with a B-sheet secondary structure. The Design 2 FTIR
spectrum had a major peak near 1620 cm™, but also had significant absorption in the range of 1630-
1690 cm™!, suggesting a lesser abundance of B-sheet hydrogen bonds relative to Designs 4 and 5. The

Design 3 FTIR spectrum had a strong peak at 1648 cm'

consistent with a random coil and a very
weak peak at 1620 cm™! when compared to the spectrum of the Design 2 pair, suggesting an even
lesser abundance of B-sheet hydrogen bonds than the other successful designs (Supplementary Fig.
S8). Taken with the TEM images, this indicates that DMD correctly identified that Design 3 would
not co-assemble into beta-sheet fibrils. The spectrum of Design 6 had a shoulder at 1620 cm™!, and a
maximum between 1647-1642 cm™' which, taken together, suggested that this peptide pair
preferentially adopted random coil conformations. The absence of a strong -sheet signal in Design

6 FTIR samples suggested that the non-fibrillar oligomers observed in TEM micrographs lacked the

considerable backbone hydrogen bonding associated with B-sheet structures (Supplementary Fig. S7).
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The FTIR spectrum of Design 1 had a predominant maximum between 1647-1642 cm™ and only a
very weak shoulder at 1620 cm™!, indicating that most of the peptides in the mixture adopted random
coil conformations. Notably, this suggested that the few nanofibers that are observed in transmission
electron micrographs of Design 1 are likely rare relative to those peptides that are unassembled or
part of non-fibrillar aggregates.

Informed by the TEM images and FTIR measurements, Designs 1, 2, 4, and 5 were further
evaluated for co-assembly behavior by solid-state NMR measurements on co-assembled samples.
Designs 3 and 6 were excluded from solid-state NMR analysis due to the lack of nanofibers in the
TEM images and a mostly random coil signature in FTIR spectra. Peptide A has a distinct chemical
shift peak around 23ppm uniquely attributed to the y-carbon (Cy) of the K sidechain. Similarly,
peptide B has an identifiable chemical shift peak near 181 ppm uniquely assigned to 6-carbon (C3)
of E sidechain. In Fig. 5, 1D 3C NMR spectra of Designs 1, 2, 4, and 5 all exhibit peaks at ~23 and
~181 ppm indicating that peptides A and B are present in appreciable amounts within nanofiber
samples. Thus, peptides A and B co-assemble into 2-component nanofibers in all four tested designs.
The upfield shift in the measured CO chemical shifts as compared to the value for the same sites in a
random coil conformation (Fig. 5, purple shaded region) indicates a B-strand conformation, as was
also observed by FTIR and predicted by DMD/PRIME20. Altogether, Designs 1, 2, 4, and 5 from the
initial six designs successfully show selective co-assembly into B-sheet-rich nanofibers as originally

designed and predicted by simulations.

(Figure 5 should be placed here)

Computationally designed co-assembling peptides show improved structural homogeneity. The
ratio (relative abundance) of cationic peptide A to anionic peptide B in the four co-assembled
structures was determined using solid-state NMR measurements. The 1D '3C NMR spectra in Fig. 5
was collected in a quantitative manner allowing comparison of chemical shift peak areas. The ratio
of Peptide A to Peptide B is reported in Table 2 for Designs 1, 2, 4, and 5 as calculated from the K C,
and the E C; peak areas as detailed in the Supplemental Section 10. Peak linewidths are also shown
in Table 2 and are discussed in the following paragraph. The positively charged peptide A is slightly

more abundant than the negatively charged peptide B in all tested pairs, consistent with our previous
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studies on similar co-assembling B-sheet peptides. Therefore, peptides A and B are likely to arrange
in a predominantly alternating (AB), pattern although some self-association may occur. Compared to
previous designs such as the CATCH(4+/4-) design, the ratio of the two peptide components is closer
to unity as shown in Table 2. This improvement in (AB), alternation may result from the contribution

of the aggregation propensity to the score function which disfavors peptide self-association.

(Table 2 should be placed here)

Measurements of the peak linewidths in 1D '3C NMR spectra of Designs 1, 2, 4, and 5 are
compared to previous designs, indicating exceptionally well-ordered nanofibers. Linewidths (full
width at half maximum) of the E Cs and K C, chemical shift peaks are reported in Table 2. Broad
linewidths can result from the presence of multiple distinct structures or a disordered structure. In
contrast, the linewidths observed in nanofibers produced from Designs 1, 2, 4, and 5 are narrow and
similar to those observed in protein crystals (0.6 ppm) indicating a very highly ordered structure.
Compared to linewidths in the family of CATCH peptides and King-Webb peptides (KW+: Ac-
KKFEWEFEKK-Am; KW-: Ac-EEFKWKFKEE-Am) (over 1 ppm)°®?’, the linewidths of the
computationally identified pairs are almost 2x smaller, suggesting that the computationally designed

peptide pairs may be better behaved and produce more structurally-homogeneous nanofibers.

Discussion and conclusion

Here, a computational and experimental protocol is reported to design pairs of charge-
complementary peptides that can selectively co-assemble into B-sheet nanofibers when mixed
together, but remain unassembled when isolated separately. A peptide co-assembly design (PepCAD)
algorithm was developed to discover potential selective co-assembling peptides in a fast and efficient
manner. The PepCAD algorithm uses a newly-built score function, ..., to measure the binding
free energy of the co-assembling peptides A and B, as well as their intrinsic self-aggregation
propensities. A lower negative value of ... during the process of sequence evolution means that
the in-silico discovered peptides A and B are more likely to form fibril-like co-aggregates, but not
fibril-like self-aggregates. As a result, six pairs of charge complimentary co-assembling peptides with

the lowest T'score, Viz. Designs 1-6, were identified from a library of ~10° candidate pairs using the
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PepCAD algorithm. DMD/PRIME20 simulations were then conducted to examine the co- and self-
association kinetics of the six in-silico peptide pairs. Designs 1, 2, 4, 5, and 6 formed amyloid-like
structures after 5 us of simulation time, whereas Design 3 did not co-assemble. Subsequently, the five
peptide pairs were synthesized and purified, and their co-assembly vs. self-association was examined
using TEM, FTIR, and solid-state NMR. Designs 2, 4, and 5 successfully co-assembled into -sheet
nanofibers and did not self-associate; Design 1 formed a combination of B-sheet nanofibers and non-
fibrillar aggregates, whereas Design 6 failed to form B-sheet-rich structures. Designs 1, 2, 4, and 5
had solid-state NMR spectra with narrower linewidths and improved ratios of cationic to anionic
peptide than the empirically-designed charge-complementary co-assembling peptide pairs,
CATCH(+/-) and KW, confirming that the designed peptides exhibit a higher degree of structural
order. This improved structural precision, coupled with the observation that none of the designed
peptides aggregated when alone, highlights the accuracy of the newly-developed [.or. as a
predictor of co- versus self-assembly propensity. Collectively, these observations demonstrate the
potential of the PepCAD algorithm for designing co-assembly peptides from an experimentally
intractable sequence space. In this design, our first effort at discovering 11-mer co-assembling peptide
pairs achieved a respectable success rate of 67%, meaning 4 of the 6 top-scoring peptides co-
assembled and did not self-assemble in our experiments. This is encouraging. In the future we plan
to further examine/improve the performance of the PepCAD algorithm in peptide co-assembly
designs, e.g. by adjusting the lengths of peptides, the combinations of (+/-) charges, and the
hydrophobic/hydrophilic sequence patterns. We will also try to determine what the success rate would
be if we just consider candidates that have emerged from the design stage or from the design plus
kinetic simulation stages.

One lesson learned here is that designing peptide sequences to co-assemble is not as
straightforward as one might think. Our early design concept--- to create charge-complementary
peptide pairs that selectively co-assemble into amyloid fibrils--- was informed by the thinking that
opposite and highly charged peptides should resist self-assembly due to electrostatic repulsion and
co-assemble through electrostatic attraction. Computational and experimental observations with co-
assembling peptide pairs derived from molecules known to self-assemble demonstrate that simply
mixing two peptides with a high degree of opposing (i.e. attractive) charges may speed up the

aggregation kinetics, but it does not guarantee exquisite molecular-level co-assembly into B-sheet
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nanofibers*’. A progressive increase in the magnitudes of the opposite charges on the peptide pairs
might decrease the binding free energy due to an overwhelming increase in the desolvation penalty*®
4 To capture polarization effects caused by the highly charged residues, we introduced a variable
internal dielectric constant model®” °! into the score function of PepCAD to calculate the electrostatic
energy and polar solvation energy. By this way, we avoided overestimation of charge-charge
interactions in this work. Although the individual peptides generally adopt a -strand architecture
when combined, like-charged neighboring strand imperfections are common and structural
polymorphisms are observed’® ?’. This occurs even when the CATCH (+/-) sequence pattern,
“PPPHPHPHPPP”, where “H” and “P” refer to hydrophobic and polar amino acids, is imposed. The
PepCAD algorithm adds a much-needed layer of biophysical sophistication to these simple-but-
appealing ideas because it accounts for the complexity in sidechain-sidechain interactions, which is
impractical through iterative experimentally-driven design processes. For example, the PepCAD
algorithm has the ability to bias the fibrillar structure to be parallel/antiparallel within and between
sheets. Toward this end, the algorithm preferentially designed peptides with cationic residues at the
N-terminus and anionic residues at the C-terminus, in stark contrast to the CATCH(+/-) and KW pairs
wherein charged residues are either distributed evenly or in a core/flank arrangement. Furthermore,
the PepCAD algorithm can consider a richer diversity of the naturally-occurring amino acids. As a
result, the algorithm preferentially designed peptides with 5 charged residues, used a combination of
glutamic acid and aspartic acid in the anionic molecule, and placed threonine or asparagine residues
at hydrophilic sites. These choices are considerable deviations from the CATCH(+/-) and KW pairs,
which included 4, 6, or 7 charged residues, only used glutamic acid, and exclusively placed charged
residues or glutamine residues in hydrophilic positions. An additional advantage of the PepCAD
algorithm is that it enables us to achieve a “structure-to-sequence” design, viz. an inverse design to
identify potential peptide sequences for a desired fibril-like supramolecular architectures. The
performance of these types of algorithms has been analyzed by Green, who described a statistical
framework for analyzing the performance of hierarchical molecular design methods>2. In future work
aimed at improving PepCAD will use this statistical framework to evaluate the efficiency of peptide
design and predict the accuracy of its score function. Our current peptide co-assembly design is based
on a fixed peptide backbone scaffold, thereby causing an inevitable bias to sequence evolution.

Introducing configurational optimization to relax the peptide scaffold in PepCAD might facilitate
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better contacts between residues and promote the stability of fibrils assembled by designed peptides.
Hopefully, a new version of PepCAD will enable the efficient design of peptides that assemble into
some of the amyloid classes predicted by Sawaya and Eisenberg'?.

The procedures presented here can be thought of as a “funnel” of computational and
experimental nominal yes/no tests that allow one to screen a large initial set of candidates to discover
pairs of selective co-assembling peptides as illustrated in Fig. 1. The funnel can also be viewed as an
inverse design strategy in that the initial set of candidates is not completely random. It has been
chosen to have the same length and HP sequence pattern as the CATCH(4+/6-) pairs and to form the
two-layer amyloid configuration. (A difference is that each member of the pair must have 5 charged
residues). The funnel/inverse design strategy can, in principle, be used to screen a larger (more-
random) sequence space, depending on the desired outcome. In Step 1, the funnel is filled with as
many candidates as possible that satisfy preconceived notions such as charge complementarity, HP
pattern along the chain, etc. The PepCAD algorithm narrows this down by finding pairs whose
packing energies and self-aggregation propensities are minimized for a specific structure (e.g. 2
stacked antiparallel beta sheets). In Step 2, DMD/PRIME20 simulations test if the pairs co-assemble
but do not self-assemble in a reasonable time frame, 5 ps. Pairs that fail this test are rejected. In Step
3, the peptides are synthesized, purified and then subjected to biophysical characterization
measurements like ThT fluorimetry, FTIR and solid-state NMR. Peptides that fail the early tests in
step 3, or are too hard to work with, are rejected. While this funnel protocol worked well, we should
point out that peptides that pass step 1 do not always pass step 2, etc. For example, DMD/PRIME20
simulations suggested that Design 6 could co-assemble into a bilayer B-sheet, albeit more slowly than
the other designs; yet, biophysical experiments demonstrated that the Design 6 peptides aggregate
but do not assemble into B-sheet nanofibers over a month at room temperature (Supplementary Fig.

S7). Nevertheless, the protocol is highly promising.

Methods and Materials

Method descriptions on discontinuous molecular dynamics (DMD) simulation and PRIME20 force
field are given in Supplementary Section 1. Analysis of the structure of the simulated co-assembled
CATCH fibril and construction of peptide scaffold of a 2-layer fibril model are described in

Supplementary Sections 2-3. Details regarding the use of peptide co-assembly design (PepCAD)
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algorithm to de novo design co-assembling peptide pairs are described in Supplementary Section 4.
The calculations of score function, binding free energy and intrinsic self-aggregation propensity are
given in Supplementary Section 5. Atomistic molecular dynamics simulations are performed to
examine the thermodynamics stability of the in-silico peptide pairs, and the amyloidogenicity of
single peptide specie is predicted using the FoldAmyloid web-sever, as detailed in Supplementary
Section 6. DMD/PRIME20 simulations are conducted to examine the co-/self-association kinetic of
the in-silico discovered peptide pairs, as detailed in Supplementary Section 7. Nanofiber formation
from peptide co-assemblies was observed on a FEI Tecnai Spirit transmission electron microscope as
described in Supplementary Section 8. Secondary structure analysis of peptide self- and co-assembly
propensity was performed using a Perkin Elmer FTIR spectrophotometer as detailed in
Supplementary Section 9. Quantitative 1D *C spectra were collected for nanofiber samples on an
11.75 T Bruker Avance III spectrometer with a 3.2 mm Bruker MAS probe. NMR sample preparation
and pulse sequence parameters are described in more detail in Supplementary Section 10. Custom
code in Wolfram Mathematica was used for chemical shift peak analysis with further discussion in

Supplementary Section 10.
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Table 1. The sequences of the six in-silico discovered peptide pairs, their associated scores (I¢ore), binding free

energies per peptide (Aébindmg), intrinsic self-aggregation propensities per peptide (ﬁagg), the DMD/PRIME20

simulation results and the TEM-observed results. (Unit: kcal/mol)

Sequences and Sites

. ~ = DMD/PRI TEM
Designs Tscore | AGpinding | Fagg
4151678 10 | 11
ME20
Peptide A M| K|V]|K |V T multilayer short
-25.40 -25.07 -0.11
Peptide B A|D|F|E|F E fibril nanofiber
Peptide A VI K|V]|K]|F N multilayer long
-25.35 -24.93 -0.14
Peptide B VI ID|F|E|Y E| D fibril nanofiber
Peptide A WIK| M|K|A N | T random Not
-26.85 -25.87 -0.33
Peptide B VI E|V]|E|L D coils performed
Peptide A VIK|V|K |V T| T multilayer long
-25.62 -25.16 -0.12
Peptide B A|E|F|E|F E fibril nanofiber
Peptide A VIK|V \4 T multilayer | aggregated
-25.80 -25.62 -0.05
Peptide B M| D|F|E|Y E| D fibril fibrils
Peptide A VIK|Y|T|F T long two | non-fibrillar
-25.93 -25.21 -0.18
Peptide B M| E|V|D|F E|D layer fibril | aggregates

e Designs 1-3 result from setting A=3.0, while Designs 4-6 result from setting A=4.0.
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Table 2. Nanofiber composition and peak linewidth analysis for the computationally identified peptides.

Ratio of Peptide A to K C, Linewidth in ppm | E Cs Linewidth in ppm
Peptide B (Peptide A) (Peptide B)
CATCH(4+/4-) 2.22 1.098 = 0.088 0.990 + 0.065
Design 1 1.73 0.682+0.110 0.430 +0.120
Design 2 1.55 0.775 + 0.064 0.687 +0.145
Design 4 1.53 0.522 +£0.065 0.526 +0.088
Design 5 1.78 0.553 = 0.063 0.553 +0.083
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Figure Legends

Fig. 1 An overview of our computational and experimental protocol for identifying new pairs of peptides A and
B that selectively co-assemble into long-ranged pB-sheet nanofibers.

Fig. 2 (a) The DMD/PRIME20 simulation result suggests that the CATCH(4+) and CATCH(6-) peptides
preferentially co-assemble into a 2-layer fibril structure that belongs to the 8™ class of steric zippers introduced by
Sawaya et al.'?) (b) Conformational analysis of the 2-layer amyloid fibril indicates that the CATCH fibril favors
having an antiparallel peptide conformation in each B-sheet and that the two neighbor B-sheets align parallel to each
other. (¢) Three kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue exchange, and inter-
chain residue exchange, are involved in PepCAD to generate new sequences for peptides A and B. Starting from
random sequences and setting (d) A=3.0 and (e) A=4.0, the algorithm searches through large numbers of possibly-
co-assembling peptides, A and B. Plots of score vs the number of evolution steps are shown on the left. Lower scores
imply better peptide designs. The best designs from the two searches are circled in the plots; their corresponding

fibril structures are shown on the right.

Fig. 3 DMD/PRIME20 simulations of peptide co-aggregation. Plots of B-sheet content versus simulation time
describe the co-aggregation kinetics for mixtures of 100A and 100B peptides in Designs 1-6 and CATCH(+/-). .

Snapshots of the final simulation structures of the seven systems are shown as well.

Fig. 4 Experimental characterization of co- and self-assembly of peptide pairs in Designs 1, 2, 4, 5, and 6. (a)
Transmission electron micrographs of mixtures of Designs 1, 2, 4, 5, and 6. (b) FTIR spectra of the peptides of

Design 1, 2, 4, 5, and 6 alone (dashed lines) and in combination (solid line).

Fig. 5 '3C NMR spectra of centrifuged and lyophilized nanofiber samples prepared from equimolar mixtures of
Designs 1, 2, 4, 5. The region highlighted in purple represents the range of carbonyl carbon chemical shift values
for the two peptides in random coil conformations. The peak highlighted in blue and red correspond to the y-carbon

of the K sidechain and the 6-carbon of the E sidechain.
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Fig. 1 An overview of our computational and experimental protocol for identifying new pairs of peptides A and
B that selectively co-assemble into long-ranged B-sheet nanofibers.
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(a) The DMD/PRIME20 simulation result suggests that the CATCH(4+) and CATCH(6-) peptides

preferentially co-assemble into a 2-layer fibril structure that belongs to the 8™ class of steric zippers introduced by

Sawaya ef al.'’) (b) Conformational analysis of the 2-layer amyloid fibril indicates that the CATCH fibril favors

having an antiparallel peptide conformation in each B-sheet and that the two neighbor B-sheets align parallel to each

other. (c) Three kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue exchange, and inter-

chain residue exchange, are involved in PepCAD to generate new sequences for peptides A and B. Starting from

random sequences and setting (d) A=3.0 and (e) A=4.0, the algorithm searches through large numbers of possibly-

co-assembling peptides, A and B. Plots of score vs the number of evolution steps are shown on the left. Lower scores

imply better peptide designs. The best designs from the two searches are circled in the plots; their corresponding

fibril structures are shown on the right.
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Fig. 3 DMD/PRIME20 simulations of peptide co-aggregation. Plots of B-sheet content versus simulation time

describe the co-aggregation kinetics for mixtures of 100A and 100B peptides in Designs 1-6 and CATCH(+/-). .

Snapshots of the final simulation structures of the seven systems are shown as well.
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Fig. 5 '3C NMR spectra of centrifuged and lyophilized nanofiber samples prepared from equimolar mixtures of
Designs 1, 2, 4, 5. The region highlighted in purple represents the range of carbonyl carbon chemical shift values
for the two peptides in random coil conformations. The peak highlighted in blue and red correspond to the y-carbon
of the K sidechain and the d-carbon of the E sidechain.
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