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Abstract 

Peptides’ hierarchical co-assembly into nanostructures enables controllable fabrication of 

multicomponent biomaterials. In this work, we describe a novel computational and experimental 

approach to design pairs of charge-complementary peptides that selectively co-assemble into β-sheet 

nanofibers when mixed together, but remain unassembled when isolated separately. The key advance 

is a peptide co-assembly design (PepCAD) algorithm that searches for pairs of co-assembling 

peptides. Six peptide pairs are identified from a pool of ~106 candidates via the PepCAD algorithm 

and then subjected to DMD/PRIME20 simulations to examine their co-/self-association kinetics. The 

five pairs that spontaneously aggregate in kinetic simulations selectively co-assemble in biophysical 

experiments, with four forming β-sheet nanofibers, and one forming a stable non-fibrillar aggregate. 

Solid-state NMR, which is applied to characterize the co-assembling pairs, suggests that the in-silico 

peptides exhibit a higher degree of structural order than the previously reported CATCH(+/-) peptides.  
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Introduction 

Certain peptides are known to assemble spontaneously into a variety of nanostructures---

nanofibers, nanosheets, nanotubes, nanoparticles, etc., -with applications in a wide variety of fields, 

including: drug delivery, vaccines, hydrogels, 3-D cell culture, tissue engineering, and protein 

scaffolds. Great structural variety can be achieved, in principle, via a “bottom-up” strategy in which 

the peptide amino acid composition, length and sequence pattern are tailored to form a particular 

structure1-7. The big question is, of course, — what are the design rules for programming in a 

particular self-assembled structure? An even more basic question is which sequences will assemble? 

Although there are some algorithms that attempt to answer the latter question by correlating the 

amyloidogenic tendencies of the individual amino acids8-11, there is no efficient computational or 

experimental approach to discover which sequences form which structures. Most of the existing β-

sheet-forming peptides are derived from naturally-occurring amyloid-forming proteins12. Others13-15 

have been designed based on a simple hydrophilic/hydrophobic (HP)n repeating pattern that is known 

to form a two-layer fibril with a hydrophobic core16. The difficulty in a priori design of β-sheet-

forming peptides comes from the challenge of effectively exploring the enormous amino acid 

sequence space to discover peptide sequences that form the desired structures. For this reason, 

systematic investigation of peptide aggregation behaviors in vast sequence space has only been 

conducted for very short peptides, such as dipeptides17 and tri-peptides18, and only for single-

component systems. The challenge becomes even more interesting when one considers the possibility 

of designing two or more peptides that co-assemble to form a single nanostructure. 

Recently, peptide co-assembly has emerged as a novel supramolecular design strategy, allowing 

construction of peptide-based nanofibers with integrated functionalities19-22. Here we focus on 

selective co-assembly: the formation of stable β-sheet nanofibers by two different peptides, A and B, 

only when they are both present in solution; otherwise, they remain unassembled in random coil 

configurations. Researchers have used heuristics to develop pairs of charge-complementary co-

assembling peptides by generating highly charged sequence variants of established self-assembling 

peptides23,24. For instance, the CATCH(4+) (sequence: Ac-QQKFKFKFKQQ-Am) with four 

positively-charged residues and the CATCH(6-) (sequence: Ac-EQEFEFEFEQE-Am) with six 

negatively-charged residues24 are both derived from the Q11 peptide (sequence: Ac-

QQKFQFKQEQQ-Am)25 and have been shown to coassemble. These peptide pairs have been shown 



(3) 
 

to co-assemble into bilayer β-sheets that contain the two peptides arranged in a predominantly 

alternating pattern, although like-charged neighbor mismatches and β-strand polymorphisms have 

been observed26,27. Although a heuristics-based experimental approach has led to the discovery of 

several co-assembling pairs, this approach becomes intractable when exploring the vast sequence 

space for two complementary 11-residue peptides. The addition of computational methodologies 

capable of designing new selectively co-assembling pairs would greatly accelerate the development 

of peptide nanostructures, potentially leading to architectures with more precise molecular-level order 

and organization than has heretofore been possible. 

In this work, we describe a computational and experimental protocol, essentially a funnel, which 

screens large numbers of candidate peptide pairs to identify those that will selectively co-assemble 

into β-sheet nanofibers with a pre-set structure in experiment, e.g., an automated sequence screening 

process for 11-mer co-assembling peptide pairs in a pool of more than 300,000 peptides and around 

106 possible peptide pairs (Fig. 1). The key advance is a Monte Carlo (MC)-type peptide co-assembly 

design (PepCAD) algorithm that is used for de novo design of charge-complementary peptide pairs. 

This method is a logical extension of our previously-developed peptide binding design (PepBD) 

algorithm28-32 that we applied to design peptide binders to biomolecular targets with exceptional 

affinities33-35. Lead compounds from the computational search are subjected to discontinuous 

molecular dynamics (DMD) simulations combined with the knowledge-based PRIME20 force field36-

40 to examine the co-assembly kinetics of the in-silico discovered peptide pairs, as well as the self-

association of each peptide species when alone. The peptide pairs that can selectively co-assemble in 

DMD/PRIME20 simulations are then synthesized and their co-assembly versus self-association is 

examined using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy 

(FTIR), and solid-state nuclear magnetic resonance (NMR) spectroscopy. Finally, the structural order 

and molecular-level compositions are assessed by solid-state NMR and compared to previous co-

assembling β-sheet designs. We envision that this new paradigm for de novo peptide design will 

enable rapid development of molecules that assemble into specific supramolecular architectures.  

 

(Figure 1 should be placed here) 
 

Results 
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Predetermining the molecular architecture of the peptide scaffold. To discover peptide pairs that 

can co-assemble into a peptide-based nanofiber in solution, we must first decide what fibrillar 

structure to design — β-sheet nanofiber, cross-α nanofibers, α-helical coiled-coil, etc. Here we choose 

to design peptides that can assemble into the co-assembled fibril structure formed by a mixture of 

CATCH(4+) and CATCH(6-) peptides. Discontinuous molecular dynamics (DMD) is combined with 

the coarse-grained protein force field, PRIME20, to simulate the spontaneous co-assembly of an 

initially-random system of 24 CATCH(4+) peptides and 24 CATCH(6-) peptides at 330 K and 10 

mM into a fibrillar structure. PRIME20 was chosen because it is among the most realistic of the 

protein coarse-grained models, does not build in any predetermined secondary structure, provides a 

good representation of amyloid structure in comparison to experiment, and is fast enough to get to 

the fibrillar stage starting from the random-coil state (Supplementary Section 1). Our simulation 

results revealed that the CATCH(4+/6-) peptides preferentially co-assemble into a highly-ordered 

fibrillar structure with two layers of β-sheets (Fig. 2a). The structure of this fibril can be characterized 

in terms of the orientations of the peptides relative to each other. Conformational analysis of the 

CATCH fibrillar structure as described in Supplementary Section 2 indicates that for a CATCH(6-) 

peptide in the fibril, its nearest and next-nearest peptides in the same β-sheet are most likely to be a 

CATCH(4+) that is anti-parallel and a CATCH(6-) that is parallel, respectively; and its nearest peptide 

on the neighboring β-sheet is most likely to be a CATCH(6-) that is parallel (Fig. 2b). This preferred 

organization indicates that the CATCH(4+/6-) peptides prefer to co-aggregate into 2-layers with anti-

parallel orientation within each β-sheet and parallel orientation between the sheets (Fig. 2b). Based 

on the structural information above, we constructed a 2-layer fibril model using the Discovery Studio 

3.5 package and optimized its geometry in the AMBER14 software (as seen in Supplementary Section 

3 and Supplementary Fig. S1). This 2-layer fibril structure is used as an initial conformation in the 

PepCAD algorithm to discover other potential co-assembling peptides. 

 

(Figure 2 should be placed here) 

 

Sequence evolution of co-assembling peptides. The PepCAD algorithm is a MC-based algorithm 

for de novo design of charge-complementary peptide pairs that can co-assemble into particular 

supramolecular architectures (as described in Supplementary Section 4 and Supplementary Fig. S2). 
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Three different kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue 

exchange, and inter-chain residue exchange, are used to perturb the peptide sequences (Fig. 2c), 

resulting in new trial co-assembling designs, peptides A and B. The peptide backbone scaffold of the 

2-layer fibril structure is fixed throughout the design process. To evaluate the merits of these peptides’ 

co-assembly capability, a score function Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is introduced in Supplementary Section 5,  

Equation 1 that takes into account the binding free energy, Δ𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, between the peptides A and 

B41, as well as the intrinsic self-aggregation propensities, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, of the individual peptides42-45. To 

avoid local searches, we start with three different initial random sequences at two weighting factors 𝜆𝜆, 

viz. 𝜆𝜆 = 3.0 and 4.0, to vary the search pathways, leading to a total of six evolution runs (three for 

𝜆𝜆 = 3.0 and three for 𝜆𝜆 = 4.0). The designed peptides are constrained to have the same sequence 

pattern “PPPHPHPHPPP” as the CATCH(+/-) peptides, where “H” and “P” refer to hydrophobic and 

polar amino acids. The peptides are also constrained to have 3 hydrophobic residues, 3 hydrophilic 

residues, 5 charged residues, and no cysteine, proline, or glycine. Our sequence searches did not start 

with the known CATCH(4+/6-) peptides because: (1) the peptide co-assembly designs in this work 

are constrained to contain (5+/5-) residues on the chains, which is different from those for the 

CATCH(4+/6-) peptides; (2) the sequence searches starting with the CATCH(4+/6-) peptides as initial 

conditions result in an ineffective exploration of the broad sequence space. The final peptide designs 

are not sensitive to the initial conditions (sequences) chosen during the Monte Carlo algorithm. 

 Fig. 2d,e show profiles of score vs. number of evolution steps at 𝜆𝜆 = 3.0 and 4.0, respectively. 

Since the searches start from random peptide sequences, the scores are high at the initial stage. As 

the evolution proceeds, the three kinds of sequence moves help the amino acids to rapidly find 

appropriate sites on the chains, resulting in a sharp drop in the score. Later, the score profile fluctuates 

considerably due to variations in the identities of the amino acids at the various sites. Favorable 

sequence moves that decrease the score are always accepted in our procedure, while unfavorable 

sequence moves that may slightly or significantly increase the score are accepted or rejected 

according to the MC criterion. By examining the profile of the score over the sequence evolution, we 

can identify the lowest scores in each profile which correspond to the best peptide sequences for each 

search. Two pairs of designed co-assembly peptides as well as their corresponding fibril structures 

are shown in Fig. 2d,e for the case of 𝜆𝜆 = 3.0 with the lowest score -25.35 kcal/mol at the 1570th 

step (Fig. 2d), and for the case of 𝜆𝜆 = 4.0 with the lowest score -25.80 kcal/mol at the 5926th step 
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(Fig. 2e). 

The six best-scoring pairs of peptide sequences resulting from the six evolutions, hereafter 

referred to as Designs 1 through 6, are listed in Table 1 along with their associated scores, binding 

free energies per peptide and intrinsic self-aggregation propensities per peptide calculated using 

Supplementary Equation 1. (The latter two quantities are used in the calculation of the peptide’s 

score.) The results from the DMD/PRIME20 kinetics simulations and experiments are also listed and 

will be discussed later. All of the in-silico peptide pairs A and B in Table 1 exhibit negative values for 

Δ𝐺𝐺�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the first term in the score function, implying that peptides A and B may form fibril-like 

co-aggregates due to their strong mutual binding affinity. Note that these binding energies are stronger 

than a typical peptide-biomolecule binding energy because the 2-layer fibril model used for peptide 

designs is an ideal optimized structure. Each peptide within the fibril model can form at least six 

backbone hydrogen bonds with its nearest neighboring peptides as well as broadly interact with the 

other peptides on the neighbor sheet(s), leading to a large value of binding energy. In addition, peptide 

pairs A and B exhibit weak intrinsic self-aggregation propensities due to their low values of 𝑃𝑃�𝑎𝑎𝑎𝑎𝑎𝑎, 

indicating that they are not likely to self-assemble into well-ordered structures when dissolved 

separately in solution; the lower the value of 𝑃𝑃�𝑎𝑎𝑎𝑎𝑎𝑎  the weaker its self-aggregation propensity. 

Without loss of generality, we henceforth assign the label A to the positively charged peptide and the 

label B to the negatively charged peptide. Interestingly, the design algorithm, not the user-defined 

sequence specifications, preferentially places positively-charged amino acid, lysine (K), at the N-

terminus of peptide A and negatively-charged amino acids, aspartic acid (E) and glutamic acid (D), 

at the C-terminus of peptide B. Such sequence alignments for peptides A and B likely facilitate the 

formation of the targeted antiparallel β-sheet structure. The frequent appearances of the amino acids 

asparagine (N) and threonine (T) on peptide pairs A and B is likely due to their low intrinsic self-

aggregation propensities as well as the strong sidechain-sidechain interactions between the 

carboxamide group (-CO-NH2) on asparagine (N) and the hydroxyl group (-OH) in threonine (T), 

which further stabilize the amyloid fibril. These design motifs are not seen in previous co-assembling 

β-sheet peptide sequences, highlighting the utility of the design algorithm in expanding the design 

space. 
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(Table 1 should be placed here) 

 

Computational analysis of the co-/self-assembly properties of in-silico peptide pairs. First, we 

performed explicit-solvent atomistic molecular dynamics (MD) simulations to examine the 

thermodynamic stability of our designed amyloid fibrils (as described in Supplementary Section 6). 

The starting structures of the six 2-layer amyloid fibrils are obtained from the output of the PepCAD 

algorithm. Simulation results revealed that the six in-silico peptide pairs are able to maintain a well-

organized 2-layer fibril structure after 100-ns (Supplementary Fig. S3). We then employed the 

FoldAmyloid web-server, a bioinformatics method, to estimate the amyloidogenicity (likelihood that 

the peptides would self-aggregate to form amyloid) of the single peptide species within the six 

designs46. In this method, peptides are predicted to be amyloidogenic if they contain at least 7 

consecutive residues that have average self-aggregation scales that are higher than an empirical 

threshold value of 21.4; otherwise they are predicted to be non-amyloidogenic. The peptide pairs A 

and B within Designs 1-6 are predicted to be non-amyloidogenic as their average self-aggregation 

scales are lower than 21.4, implying that these single peptide species exhibit a weak propensity for 

self-aggregation in solution (Supplementary Fig. S3). 

In addition, the co- and self-association kinetics of these in-silico peptide pairs were examined 

using DMD/PRIME20 simulations. Motivation for this is the possibility that even though the fibril 

state might be stable according to the atomistic MD simulations, the kinetics might not be fast enough 

to arrive at an ordered structure. DMD/PRIME20 simulations of a mixture containing 100A and 100B 

peptides initially in random coil conformations at 10 mM and 330 K were conducted for 5 (or 10) μs 

(as described in Supplementary Section 7). The types of structure formed for all six designs in 

DMD/PRIME 20 simulations are indicated in Table 1. Fig. 3 shows the aggregation kinetics, reported 

as the β-sheet content versus simulation time, and final simulation snapshots for Designs (1-6) and 

CATCH peptides. Our simulation results predict that all the in-silico peptide pairs selectively co-

assemble into ordered β-sheet fibrillar structures, with the exception of Design 3 (Fig. 3). The peptide 

pairs A and B of Designs (1, 2, 4, and 5) co-aggregate rapidly when mixed with each other to form  

fibril structures with more than 2 β-sheet layers wherein the peptides A and B predominantly adopt 

an anti-parallel orientation (Fig. 3). In contrast, Design 6 has the slowest aggregation kinetics (Fig. 

3) but is the only peptide pair that tends to form a 2-layer architecture (Fig. 3), as the CATCH peptides 
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do. The co-assembly of the peptides A and B within these designs is initialized by the formation of a 

small β-sheet fibril nucleus. As the simulation progresses, the nucleus grows and elongates by 

recruiting random-coil monomeric peptides, and sometimes by associating laterally with other small 

oligomeric species, to form a single multi-layer beta sheet fibrillar structure (Supplementary Fig. S4). 

The DMD/PRIME20 simulations of the associated single-component systems reveals that the 

individual peptides, A or B, in the six designs do not self-associate when alone in solution 

(Supplementary Fig. S5). 

To study the effectiveness of PepCAD, we chose three initial random peptide pairs and three in-

silico peptide pairs with medium scores from the evolution for co-assembly to test to see if they co-

assembled in the DMD/PRIME20 simulations. Simulation results, which are shown in 

Supplementary Fig. S6 revealed that all three initial peptide pairs do not co-assemble into fibril 

structures. However, two of the three in-silico peptides with medium scores do form fibril-like co-

aggregates in simulations, while the other one does not. Further, the individual peptides associated 

with these initial pairs and pairs with medium scores did not self-assemble in DMD simulations (not 

shown for brevity). To examine the diversity of sequences, we compared the peptide pairs with 

medium and best scores (Supplementary Fig. S6 and Table 1), and found that the best-scoring 

peptides A (and B) exhibit a high similarity with each other but significantly differ from those with 

medium scores. Sequence evolution in PepCAD achieves the de novo design of peptides that co-

assemble into β-sheet based nanofibrils. Future efforts will seek to identify threshold scores that are 

reliable predictors of co-assembly propensity in simulations and experiments. 

 

(Figure 3 should be placed here) 

 

Experimental analyses of co- and self-assembly of designed peptide pairs. Based on the outcomes 

of the DMD/PRIME20 simulations, the peptide pairs of Designs 1-6 were synthesized and their 

selective co-assembly was characterized using transmission electron microscopy (TEM) 

(Supplementary Section 8) and Fourier-transform infrared spectroscopy (FTIR) (Supplementary 

Section 9) (Fig. 4). We observed elongated nanofibers with a high degree of lateral association in 

transmission electron micrographs of equimolar mixtures of Designs 2, 4, and 5 (Fig. 4a). In contrast, 

the mixture of Design 1 formed shorter nanofibers that were few in number and less laterally 
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aggregated (Fig. 4a). Unexpectedly, the peptide pair in Design 6 did not form elongated nanofibers, 

contrary to simulation predictions; instead, Design 6 exclusively formed non-fibrillar aggregates with 

approximate diameters of 11 ± 1.7 nm (Fig. 4a). Likewise, the peptide pair in Design 3 formed non-

fibrilllar aggregates, which persisted for 7 days (Supplementary Fig. S8). It is worth noting that these 

samples were prepared at 1 mM, which is significantly lower than the simulation concentration of 10 

mM, yet significantly higher than the minimum co-assembly concentration reported previously for 

CATCH peptides. 

 

(Figure 4 should be placed here) 

 

Due to the disparity in concentration between simulations and TEM samples, we used FTIR to 

determine the secondary structure of each peptide in Designs 1-6 alone and in the presence of its 

complementary partner at 15 mM (Fig. 4b). When alone, the FTIR spectrum of each peptide had local 

maxima at approximately 1645 and 1675 cm-1 (dashed lines). The former indicates that the peptides 

adopt random coil conformations, and therefore do not undergo considerable self-association. The 

latter is likely due to residual trifluoroacetic acid remaining from peptide synthesis and purification 

processes, and likely has no impact on the peptide secondary structure. When paired, the FTIR spectra 

of Designs 4 and 5 had strong maxima between 1621-1616 cm-1, indicating formation of 

intermolecular hydrogen bonds consistent with a β-sheet secondary structure. The Design 2 FTIR 

spectrum had a major peak near 1620 cm-1, but also had significant absorption in the range of 1630-

1690 cm-1, suggesting a lesser abundance of β-sheet hydrogen bonds relative to Designs 4 and 5. The 

Design 3 FTIR spectrum had a strong peak at 1648 cm-1 consistent with a random coil and a very 

weak peak at 1620 cm-1 when compared to the spectrum of the Design 2 pair, suggesting an even 

lesser abundance of β-sheet hydrogen bonds than the other successful designs (Supplementary Fig. 

S8). Taken with the TEM images, this indicates that DMD correctly identified that Design 3 would 

not co-assemble into beta-sheet fibrils. The spectrum of Design 6 had a shoulder at 1620 cm-1, and a 

maximum between 1647-1642 cm-1 which, taken together, suggested that this peptide pair 

preferentially adopted random coil conformations. The absence of a strong β-sheet signal in Design 

6 FTIR samples suggested that the non-fibrillar oligomers observed in TEM micrographs lacked the 

considerable backbone hydrogen bonding associated with β-sheet structures (Supplementary Fig. S7). 
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The FTIR spectrum of Design 1 had a predominant maximum between 1647-1642 cm-1 and only a 

very weak shoulder at 1620 cm-1, indicating that most of the peptides in the mixture adopted random 

coil conformations. Notably, this suggested that the few nanofibers that are observed in transmission 

electron micrographs of Design 1 are likely rare relative to those peptides that are unassembled or 

part of non-fibrillar aggregates. 

Informed by the TEM images and FTIR measurements, Designs 1, 2, 4, and 5 were further 

evaluated for co-assembly behavior by solid-state NMR measurements on co-assembled samples. 

Designs 3 and 6 were excluded from solid-state NMR analysis due to the lack of nanofibers in the 

TEM images and a mostly random coil signature in FTIR spectra. Peptide A has a distinct chemical 

shift peak around 23ppm uniquely attributed to the γ-carbon (Cγ) of the K sidechain. Similarly, 

peptide B has an identifiable chemical shift peak near 181 ppm uniquely assigned to δ-carbon (Cδ) 

of E sidechain. In Fig. 5, 1D 13C NMR spectra of Designs 1, 2, 4, and 5 all exhibit peaks at ~23 and 

~181 ppm indicating that peptides A and B are present in appreciable amounts within nanofiber 

samples. Thus, peptides A and B co-assemble into 2-component nanofibers in all four tested designs. 

The upfield shift in the measured CO chemical shifts as compared to the value for the same sites in a 

random coil conformation (Fig. 5, purple shaded region) indicates a β-strand conformation, as was 

also observed by FTIR and predicted by DMD/PRIME20. Altogether, Designs 1, 2, 4, and 5 from the 

initial six designs successfully show selective co-assembly into β-sheet-rich nanofibers as originally 

designed and predicted by simulations. 

 

(Figure 5 should be placed here) 

 

Computationally designed co-assembling peptides show improved structural homogeneity. The 

ratio (relative abundance) of cationic peptide A to anionic peptide B in the four co-assembled 

structures was determined using solid-state NMR measurements. The 1D 13C NMR spectra in Fig. 5 

was collected in a quantitative manner allowing comparison of chemical shift peak areas. The ratio 

of Peptide A to Peptide B is reported in Table 2 for Designs 1, 2, 4, and 5 as calculated from the K Cγ 

and the E Cδ peak areas as detailed in the Supplemental Section 10. Peak linewidths are also shown 

in Table 2 and are discussed in the following paragraph. The positively charged peptide A is slightly 

more abundant than the negatively charged peptide B in all tested pairs, consistent with our previous 
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studies on similar co-assembling β-sheet peptides. Therefore, peptides A and B are likely to arrange 

in a predominantly alternating (AB)n pattern although some self-association may occur. Compared to 

previous designs such as the CATCH(4+/4-) design, the ratio of the two peptide components is closer 

to unity as shown in Table 2. This improvement in (AB)n alternation may result from the contribution 

of the aggregation propensity to the score function which disfavors peptide self-association. 

 

(Table 2 should be placed here) 

 

Measurements of the peak linewidths in 1D 13C NMR spectra of Designs 1, 2, 4, and 5 are 

compared to previous designs, indicating exceptionally well-ordered nanofibers. Linewidths (full 

width at half maximum) of the E Cδ and K Cγ chemical shift peaks are reported in Table 2. Broad 

linewidths can result from the presence of multiple distinct structures or a disordered structure. In 

contrast, the linewidths observed in nanofibers produced from Designs 1, 2, 4, and 5 are narrow and 

similar to those observed in protein crystals (0.6 ppm) indicating a very highly ordered structure. 

Compared to linewidths in the family of CATCH peptides and King-Webb peptides (KW+: Ac-

KKFEWEFEKK-Am; KW-: Ac-EEFKWKFKEE-Am) (over 1 ppm)26,27, the linewidths of the 

computationally identified pairs are almost 2× smaller, suggesting that the computationally designed 

peptide pairs may be better behaved and produce more structurally-homogeneous nanofibers.  

 

Discussion and conclusion 

Here, a computational and experimental protocol is reported to design pairs of charge-

complementary peptides that can selectively co-assemble into β-sheet nanofibers when mixed 

together, but remain unassembled when isolated separately. A peptide co-assembly design (PepCAD) 

algorithm was developed to discover potential selective co-assembling peptides in a fast and efficient 

manner. The PepCAD algorithm uses a newly-built score function, Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, to measure the binding 

free energy of the co-assembling peptides A and B, as well as their intrinsic self-aggregation 

propensities. A lower negative value of Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 during the process of sequence evolution means that 

the in-silico discovered peptides A and B are more likely to form fibril-like co-aggregates, but not 

fibril-like self-aggregates. As a result, six pairs of charge complimentary co-assembling peptides with 

the lowest Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, viz. Designs 1-6, were identified from a library of ~106 candidate pairs using the 
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PepCAD algorithm. DMD/PRIME20 simulations were then conducted to examine the co- and self-

association kinetics of the six in-silico peptide pairs. Designs 1, 2, 4, 5, and 6 formed amyloid-like 

structures after 5 µs of simulation time, whereas Design 3 did not co-assemble. Subsequently, the five 

peptide pairs were synthesized and purified, and their co-assembly vs. self-association was examined 

using TEM, FTIR, and solid-state NMR. Designs 2, 4, and 5 successfully co-assembled into β-sheet 

nanofibers and did not self-associate; Design 1 formed a combination of β-sheet nanofibers and non-

fibrillar aggregates, whereas Design 6 failed to form β-sheet-rich structures. Designs 1, 2, 4, and 5 

had solid-state NMR spectra with narrower linewidths and improved ratios of cationic to anionic 

peptide than the empirically-designed charge-complementary co-assembling peptide pairs, 

CATCH(+/-) and KW, confirming that the designed peptides exhibit a higher degree of structural 

order. This improved structural precision, coupled with the observation that none of the designed 

peptides aggregated when alone, highlights the accuracy of the newly-developed Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  as a 

predictor of co- versus self-assembly propensity. Collectively, these observations demonstrate the 

potential of the PepCAD algorithm for designing co-assembly peptides from an experimentally 

intractable sequence space. In this design, our first effort at discovering 11-mer co-assembling peptide 

pairs achieved a respectable success rate of 67%, meaning 4 of the 6 top-scoring peptides co-

assembled and did not self-assemble in our experiments. This is encouraging. In the future we plan 

to further examine/improve the performance of the PepCAD algorithm in peptide co-assembly 

designs, e.g. by adjusting the lengths of peptides, the combinations of (+/-) charges, and the 

hydrophobic/hydrophilic sequence patterns. We will also try to determine what the success rate would 

be if we just consider candidates that have emerged from the design stage or from the design plus 

kinetic simulation stages. 

One lesson learned here is that designing peptide sequences to co-assemble is not as 

straightforward as one might think. Our early design concept--- to create charge-complementary 

peptide pairs that selectively co-assemble into amyloid fibrils--- was informed by the thinking that 

opposite and highly charged peptides should resist self-assembly due to electrostatic repulsion and 

co-assemble through electrostatic attraction. Computational and experimental observations with co-

assembling peptide pairs derived from molecules known to self-assemble demonstrate that simply 

mixing two peptides with a high degree of opposing (i.e. attractive) charges may speed up the 

aggregation kinetics, but it does not guarantee exquisite molecular-level co-assembly into β-sheet 
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nanofibers47. A progressive increase in the magnitudes of the opposite charges on the peptide pairs 

might decrease the binding free energy due to an overwhelming increase in the desolvation penalty48, 

49. To capture polarization effects caused by the highly charged residues, we introduced a variable 

internal dielectric constant model50, 51 into the score function of PepCAD to calculate the electrostatic 

energy and polar solvation energy. By this way, we avoided overestimation of charge-charge 

interactions in this work. Although the individual peptides generally adopt a β-strand architecture 

when combined, like-charged neighboring strand imperfections are common and structural 

polymorphisms are observed26, 27. This occurs even when the CATCH (+/-) sequence pattern, 

“PPPHPHPHPPP”, where “H” and “P” refer to hydrophobic and polar amino acids, is imposed. The 

PepCAD algorithm adds a much-needed layer of biophysical sophistication to these simple-but-

appealing ideas because it accounts for the complexity in sidechain-sidechain interactions, which is 

impractical through iterative experimentally-driven design processes. For example, the PepCAD 

algorithm has the ability to bias the fibrillar structure to be parallel/antiparallel within and between 

sheets. Toward this end, the algorithm preferentially designed peptides with cationic residues at the 

N-terminus and anionic residues at the C-terminus, in stark contrast to the CATCH(+/-) and KW pairs 

wherein charged residues are either distributed evenly or in a core/flank arrangement. Furthermore, 

the PepCAD algorithm can consider a richer diversity of the naturally-occurring amino acids. As a 

result, the algorithm preferentially designed peptides with 5 charged residues, used a combination of 

glutamic acid and aspartic acid in the anionic molecule, and placed threonine or asparagine residues 

at hydrophilic sites. These choices are considerable deviations from the CATCH(+/-) and KW pairs, 

which included 4, 6, or 7 charged residues, only used glutamic acid, and exclusively placed charged 

residues or glutamine residues in hydrophilic positions. An additional advantage of the PepCAD 

algorithm is that it enables us to achieve a “structure-to-sequence” design, viz. an inverse design to 

identify potential peptide sequences for a desired fibril-like supramolecular architectures. The 

performance of these types of algorithms has been analyzed by Green, who described a statistical 

framework for analyzing the performance of hierarchical molecular design methods52. In future work 

aimed at improving PepCAD will use this statistical framework to evaluate the efficiency of peptide 

design and predict the accuracy of its score function. Our current peptide co-assembly design is based 

on a fixed peptide backbone scaffold, thereby causing an inevitable bias to sequence evolution. 

Introducing configurational optimization to relax the peptide scaffold in PepCAD might facilitate 
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better contacts between residues and promote the stability of fibrils assembled by designed peptides. 

Hopefully, a new version of PepCAD will enable the efficient design of peptides that assemble into 

some of the amyloid classes predicted by Sawaya and Eisenberg12. 

 The procedures presented here can be thought of as a “funnel” of computational and 

experimental nominal yes/no tests that allow one to screen a large initial set of candidates to discover 

pairs of selective co-assembling peptides as illustrated in Fig. 1. The funnel can also be viewed as an 

inverse design strategy in that the initial set of candidates is not completely random. It has been 

chosen to have the same length and HP sequence pattern as the CATCH(4+/6-) pairs and to form the 

two-layer amyloid configuration. (A difference is that each member of the pair must have 5 charged 

residues). The funnel/inverse design strategy can, in principle, be used to screen a larger (more-

random) sequence space, depending on the desired outcome. In Step 1, the funnel is filled with as 

many candidates as possible that satisfy preconceived notions such as charge complementarity, HP 

pattern along the chain, etc. The PepCAD algorithm narrows this down by finding pairs whose 

packing energies and self-aggregation propensities are minimized for a specific structure (e.g. 2 

stacked antiparallel beta sheets). In Step 2, DMD/PRIME20 simulations test if the pairs co-assemble 

but do not self-assemble in a reasonable time frame, 5 μs. Pairs that fail this test are rejected. In Step 

3, the peptides are synthesized, purified and then subjected to biophysical characterization 

measurements like ThT fluorimetry, FTIR and solid-state NMR. Peptides that fail the early tests in 

step 3, or are too hard to work with, are rejected. While this funnel protocol worked well, we should 

point out that peptides that pass step 1 do not always pass step 2, etc. For example, DMD/PRIME20 

simulations suggested that Design 6 could co-assemble into a bilayer β-sheet, albeit more slowly than 

the other designs; yet, biophysical experiments demonstrated that the Design 6 peptides aggregate 

but do not assemble into β-sheet nanofibers over a month at room temperature (Supplementary Fig. 

S7). Nevertheless, the protocol is highly promising. 

 

Methods and Materials 

Method descriptions on discontinuous molecular dynamics (DMD) simulation and PRIME20 force 

field are given in Supplementary Section 1. Analysis of the structure of the simulated co-assembled 

CATCH fibril and construction of peptide scaffold of a 2-layer fibril model are described in 

Supplementary Sections 2-3. Details regarding the use of peptide co-assembly design (PepCAD) 
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algorithm to de novo design co-assembling peptide pairs are described in Supplementary Section 4. 

The calculations of score function, binding free energy and intrinsic self-aggregation propensity are 

given in Supplementary Section 5. Atomistic molecular dynamics simulations are performed to 

examine the thermodynamics stability of the in-silico peptide pairs, and the amyloidogenicity of 

single peptide specie is predicted using the FoldAmyloid web-sever, as detailed in Supplementary 

Section 6. DMD/PRIME20 simulations are conducted to examine the co-/self-association kinetic of 

the in-silico discovered peptide pairs, as detailed in Supplementary Section 7. Nanofiber formation 

from peptide co-assemblies was observed on a FEI Tecnai Spirit transmission electron microscope as 

described in Supplementary Section 8. Secondary structure analysis of peptide self- and co-assembly 

propensity was performed using a Perkin Elmer FTIR spectrophotometer as detailed in 

Supplementary Section 9. Quantitative 1D 13C spectra were collected for nanofiber samples on an 

11.75 T Bruker Avance III spectrometer with a 3.2 mm Bruker MAS probe. NMR sample preparation 

and pulse sequence parameters are described in more detail in Supplementary Section 10. Custom 

code in Wolfram Mathematica was used for chemical shift peak analysis with further discussion in 

Supplementary Section 10. 
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Table 1. The sequences of the six in-silico discovered peptide pairs, their associated scores (Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), binding free 

energies per peptide (Δ𝐺𝐺�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), intrinsic self-aggregation propensities per peptide (𝑃𝑃�𝑎𝑎𝑎𝑎𝑎𝑎), the DMD/PRIME20 

simulation results and the TEM-observed results. (Unit: kcal/mol) 

Designs 

Sequences and Sites 

Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Δ𝐺𝐺�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑃𝑃�𝑎𝑎𝑎𝑎𝑎𝑎 DMD/PRI

ME20 

TEM 

1 2 3 4 5 6 7 8 9 10 11 

1 
Peptide A K K K M K V K V N T T 

-25.40 -25.07 -0.11 
multilayer 

fibril 

short 

nanofiber Peptide B T N T A D F E F E E D 

 

2 
Peptide A K K K V K V K F T T N 

-25.35 -24.93 -0.14 
multilayer 

fibril 

long 

nanofiber Peptide B T N T V D F E Y E E D 

 

3 
Peptide A K K K W K M K A T N T 

-26.85 -25.87 -0.33 
random 

coils 

Not 

performed  Peptide B T N T V E V E L D D D 

 

4 
Peptide A K K K V K V K V N T T 

-25.62 -25.16 -0.12 
multilayer 

fibril 

long 

nanofiber Peptide B T N T A E F E F E E D 

 

5 
Peptide A K K K V K V K V N T T 

-25.80 -25.62 -0.05 
multilayer 

fibril 

aggregated 

fibrils Peptide B T N T M D F E Y E E D 

 

6 
Peptide A K K K V K Y T F K N T 

-25.93 -25.21 -0.18 
long two 

layer fibril 

non-fibrillar 

aggregates Peptide B T N T M E V D F D E D 

• Designs 1-3 result from setting λ=3.0, while Designs 4-6 result from setting λ=4.0. 
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Table 2. Nanofiber composition and peak linewidth analysis for the computationally identified peptides. 

 Ratio of Peptide A to 
Peptide B 

K Cγ Linewidth in ppm 
(Peptide A) 

E Cδ Linewidth in ppm 
(Peptide B) 

CATCH(4+/4-) 2.22 1.098 ± 0.088 0.990 ± 0.065 
Design 1 1.73 0.682 ± 0.110 0.430 ± 0.120 
Design 2 1.55 0.775 ± 0.064 0.687 ± 0.145 
Design 4 1.53 0.522 ± 0.065 0.526 ± 0.088 
Design 5 1.78 0.553 ± 0.063 0.553 ± 0.083 

 

  



(23) 
 

Figure Legends 

Fig. 1  An overview of our computational and experimental protocol for identifying new pairs of peptides A and 
B that selectively co-assemble into long-ranged β-sheet nanofibers. 
 

Fig. 2  (a) The DMD/PRIME20 simulation result suggests that the CATCH(4+) and CATCH(6-) peptides 

preferentially co-assemble into a 2-layer fibril structure that belongs to the 8th class of steric zippers introduced by 

Sawaya et al.12) (b) Conformational analysis of the 2-layer amyloid fibril indicates that the CATCH fibril favors 

having an antiparallel peptide conformation in each β-sheet and that the two neighbor β-sheets align parallel to each 

other. (c) Three kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue exchange, and inter-

chain residue exchange, are involved in PepCAD to generate new sequences for peptides A and B. Starting from 

random sequences and setting (d) λ=3.0 and (e) λ=4.0, the algorithm searches through large numbers of possibly-

co-assembling peptides, A and B. Plots of score vs the number of evolution steps are shown on the left. Lower scores 

imply better peptide designs. The best designs from the two searches are circled in the plots; their corresponding 

fibril structures are shown on the right. 

 

Fig. 3  DMD/PRIME20 simulations of peptide co-aggregation. Plots of β-sheet content versus simulation time 

describe the co-aggregation kinetics for mixtures of 100A and 100B peptides in Designs 1-6 and CATCH(+/-). . 

Snapshots of the final simulation structures of the seven systems are shown as well. 

 

Fig. 4  Experimental characterization of co- and self-assembly of peptide pairs in Designs 1, 2, 4, 5, and 6. (a) 

Transmission electron micrographs of mixtures of Designs 1, 2, 4, 5, and 6. (b) FTIR spectra of the peptides of 

Design 1, 2, 4, 5, and 6 alone (dashed lines) and in combination (solid line). 

 

Fig. 5  13C NMR spectra of centrifuged and lyophilized nanofiber samples prepared from equimolar mixtures of 

Designs 1, 2, 4, 5. The region highlighted in purple represents the range of carbonyl carbon chemical shift values 

for the two peptides in random coil conformations. The peak highlighted in blue and red correspond to the γ-carbon 

of the K sidechain and the δ-carbon of the E sidechain. 

 
  



(24) 
 

 

Fig. 1  An overview of our computational and experimental protocol for identifying new pairs of peptides A and 
B that selectively co-assemble into long-ranged β-sheet nanofibers. 
  



(25) 
 

 
Fig. 2  (a) The DMD/PRIME20 simulation result suggests that the CATCH(4+) and CATCH(6-) peptides 

preferentially co-assemble into a 2-layer fibril structure that belongs to the 8th class of steric zippers introduced by 

Sawaya et al.12) (b) Conformational analysis of the 2-layer amyloid fibril indicates that the CATCH fibril favors 

having an antiparallel peptide conformation in each β-sheet and that the two neighbor β-sheets align parallel to each 

other. (c) Three kinds of sequence moves, viz. intra-chain residue mutation, intra-chain residue exchange, and inter-

chain residue exchange, are involved in PepCAD to generate new sequences for peptides A and B. Starting from 

random sequences and setting (d) λ=3.0 and (e) λ=4.0, the algorithm searches through large numbers of possibly-

co-assembling peptides, A and B. Plots of score vs the number of evolution steps are shown on the left. Lower scores 

imply better peptide designs. The best designs from the two searches are circled in the plots; their corresponding 

fibril structures are shown on the right. 
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Fig. 3  DMD/PRIME20 simulations of peptide co-aggregation. Plots of β-sheet content versus simulation time 

describe the co-aggregation kinetics for mixtures of 100A and 100B peptides in Designs 1-6 and CATCH(+/-). . 

Snapshots of the final simulation structures of the seven systems are shown as well. 
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Fig. 4  Experimental characterization of co- and self-assembly of peptide pairs in Designs 1, 2, 4, 5, and 6. (a) 

Transmission electron micrographs of mixtures of Designs 1, 2, 4, 5, and 6. (b) FTIR spectra of the peptides of 

Design 1, 2, 4, 5, and 6 alone (dashed lines) and in combination (solid line). 
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Fig. 5  13C NMR spectra of centrifuged and lyophilized nanofiber samples prepared from equimolar mixtures of 
Designs 1, 2, 4, 5. The region highlighted in purple represents the range of carbonyl carbon chemical shift values 
for the two peptides in random coil conformations. The peak highlighted in blue and red correspond to the γ-carbon 
of the K sidechain and the δ-carbon of the E sidechain. 
 


