
AI Communications 0 (2021) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The 10th IJCAR
Automated Theorem Proving
System Competition – CASC-J10
Geoff Sutcliffe
Department of Computer Science
University of Miami, USA
geoff@cs.miami.edu

Abstract. The CADE ATP System Competition (CASC) is the annual evaluation of fully automatic, classical logic Automated
Theorem Proving (ATP) systems. CASC-J10 was the twenty-fifth competition in the CASC series. Twenty-four ATP systems
and system variants competed in the various competition divisions. This paper presents an outline of the competition design, and
a commentated summary of the results.

Keywords: automated theorem proving, competition

1. Introduction

The CADE ATP System Competition (CASC) [26]
is the annual evaluation of fully automatic, classical
logic Automated Theorem Proving (ATP) systems –
the world championship for such systems. One purpose
of CASC is to provide a public evaluation of the rela-
tive capabilities of ATP systems. Additionally, CASC
aims to stimulate ATP research, motivate develop-
ment and implementation of robust ATP systems that
are easily and usefully deployed in applications, pro-
vide an inspiring environment for personal interaction
between ATP researchers, and expose ATP systems
within and beyond the ATP community. CASC-J10
was held on 2nd July 2020, as part of the 10th Interna-
tional Joint Conference on Automated Reasoning1, on-
line due to the COVID-19 pandemic. CASC-J10 was
the twenty-fifth competition in the CASC series; see
[29] and citations therein for information about previ-
ous competitions. The CASC-J10 web site provides ac-
cess to all the competition resources: http://www.tptp.
org/CASC/J10.

CASC is divided into divisions according to prob-
lem and system characteristics. There are competition

1CADE was a constituent of the 10th International Joint Confer-
ence on Automated Reasoning, hence “J10” for the “10th Joint” con-
ference.

divisions in which the systems are explicitly ranked,
and a demonstration division in which systems demon-
strate their abilities without being ranked (for systems
that cannot be entered into the competition divisions
for any reason, e.g., the system is experimental, or the
entrant is a competition organizer). Each competition
division uses problems that have certain logical, lan-
guage, and syntactic characteristics, so that the systems
that compete in a division are, in principle, able to at-
tempt all the problems in the division. Some divisions
are further divided into problem categories that make it
possible to analyze, at a more fine-grained level, which
systems work well for what types of problems. The
demonstration division uses the same problems as the
competition divisions, and the entry specifies which
competition divisions’ problems are to be used. Ta-
ble 1 catalogs the divisions and problem categories of
CASC-J10.

Twenty-four ATP systems and system variants com-
peted in the various divisions. The division winners
of CASC-27 (the previous CASC) were automatically
entered into the demonstration division, to provide
benchmarks against which progress can be judged. Ad-
ditionally, Prover9 1109a is entered into the FOF divi-
sion each year, as a fixed point against which progress
can be judged. The systems, the divisions in which they
were entered, and their entrants, are listed in Table 2.
System descriptions are in [28] and on the CASC-J10
web site.

0921-7126/21/$35.00 © 2021 – IOS Press and the authors. All rights reserved

http://www.tptp.org/CASC/J10
http://www.tptp.org/CASC/J10

2 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Divisions and Problem categories

Division Problems Problem categories. The example problems can be viewed online
at http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems.

THF Monomorphic Typed Higher-order Form theorems (axioms
with a provable conjecture).

TNE – THF with No Equality, e.g., NUM738^1.
TEQ – THF with EQuality, e.g., SET171^3.

TFA Monomorphic Typed First-order form theorems with
Arithmetic (axioms with a provable conjecture).

TFI – TFA with only Integer arithmetic, e.g., DAT016=1.
TFE – TFA with only rEal arithmetic, e.g., MSC022=2.

FOF First-Order Form theorems (axioms with a provable conjec-
ture).

FNE – FOF with No Equality, e.g., COM003+1.
FEQ – FOF with EQuality, e.g., SEU147+3.

FNT FOF Non-Theorems (axioms with a countersatisfiable con-
jecture, and satisfiable axioms sets without a conjecture).

FNN – FNT with No equality, e.g., KRS173+1.
FNQ – FNT with eQuality, e.g., MGT033+2.

UEQ Unit EQuality theorems in clause normal form (unsatisfiable
clause sets).

E.g., RNG026-7.

LTB Theorems (axioms with a provable conjecture) from Large
Theories, presented in Batches. A large theory typically has
many functions and predicates, and large theory problems
typically have many axioms of which only a few are required
for a proof of the conjecture. The problems in a batch are
given to an ATP system all at once, and typically have a com-
mon core set of axioms. The batch presentation allows the
ATP systems to load and preprocess the common core set of
axioms just once, and to share logical and control results be-
tween proof searches. Each problem category might be ac-
companied by a set of training problems and their solutions
that can be used for ATP system tuning during (typically at
the start of) the competition.

HL4 – Problems exported from HOL4 [22]. This category was ac-
companied by training data.

Eight versions of each problem were provided - two first-order
(FOF) versions, two monomorphic typed first-order (TF0) versions,
one polymorphic typed first-order (TF1) version, two monomor-
phic typed higher-order (TH0) versions, and one polymorphic
typed higher-order (TH1) version. A solution to any version
counted as a solution to the problem. The systems could attempt the
problems and problem versions in any order, could attempt them
concurrently, and could attempt each one multiple times. See Sec-
tion 2.2 for details of the problems.

CASC-J10 was organized by Geoff Sutcliffe, and
overseen by a panel consisting of Pascal Fontaine, An-
dre Platzer, and Christoph Weidenbach. The competi-
tion was run on computers provided by the StarExec
project [23] at the University of Miami.

This paper is organized as follows: Section 2 out-
lines the design and organization of the competition.
Section 3 provides a commentated summary of the re-
sults. Section 4 contains short descriptions of three of
the ATP systems. Section 5 concludes and discusses
plans for future CASCs.

2. Outline of Design and Organization

The design and organization of CASC has evolved
over the years to a sophisticated state. An outline of the
CASC-J10 design and organization is provided here;
the details are in [28] and on the CASC-J10 web site.
Important changes for CASC-J10 were (for readers al-
ready familiar with the general design of CASC; others
can skip to Section 2.1):

• All divisions used a wall clock time limit, to pro-
mote use of all the cores on the CPU.

• The EPR division was put on hiatus.

• A new SotAC measure was adopted, to allow
comparison of SotAC values between CASC edi-
tions.

2.1. System Delivery, Execution, and Evaluation

The ATP systems entered into CASC are deliv-
ered to the competition organizer as StarExec instal-
lation packages, which the organizer installs and tests
on StarExec. Source code is delivered separately for
archiving on the competition web site.

The ATP systems are required to be fully automatic.
They are executed as black boxes, on one problem (in
the non-LTB divisions) or one batch (in the LTB di-
vision) at a time. Any command line parameters have
to be the same for all problems/batches in each divi-
sion. The ATP systems are required to be sound, and
are tested for soundness by submitting non-theorems
to the systems in the THF, TFA, FOF, UEQ, and LTB
divisions, and theorems to the systems in the FNT divi-
sion. Claiming to have found a proof of a non-theorem
or a disproof of a theorem indicates unsoundness. One
system was found to be unsound before CASC-J10,
and was repaired in time for the competition.

The systems in the competition divisions are ranked
according to the number of problems solved with an

http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems

Sutcliffe / CASC-J10 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
The ATP systems and entrants

ATP System Divisions Entrant Entrant’s Affiliation

ATPBoost 1.0 LTB (demo) Bartosz Piotrowski University of Warsaw &
Czech Technical University in Prague

CSE 1.3 FOF Feng Cao Southwest Jiaotong University
CSE_E 1.2 FOF Feng Cao Southwest Jiaotong University
CVC4 1.8 THF TFA FOF FNT Andrew Reynolds University of Iowa
E 2.4 UEQ (demo) CASC CASC-27 winner
E 2.5 FOF FNT UEQ LTB Stephan Schulz DHBW Stuttgart
Enigma 0.5.1 FOF Jan Jakubuv Czech Technical University in Prague
Etableau 0.2 FOF UEQ John Hester University of Florida
GKC 0.5 FOF UEQ LTB Tanel Tammet Tallinn University of Technology
iProver 3.3 FOF FNT (demo) EPR UEQ LTB Konstantin Korovin University of Manchester
lazyCoP 0.1 FOF UEQ Michael Rawson University of Manchester
leanCoP 2.2 FOF Jens Otten University of Oslo
LEO-II 1.7.0 THF Alexander Steen University of Luxembourg
Leo-III 1.4 LTB (demo) CASC CASC-27 winner
Leo-III 1.5 THF LTB Alexander Steen University of Luxembourg
MaLARea 0.9 LTB (demo) Josef Urban Czech Technical University in Prague
Prover9 1109a FOF (demo) CASC CASC fixed point
PyRes 1.3 FOF FNT EPR Stephan Schulz DHBW Stuttgart
Satallax 3.4 THF (demo) CASC CASC-27 winner
Satallax 3.5 THF Michael Färber Inria, LSV, ENS Paris-Saclay
Twee 2.2.1 FOF UEQ Nick Smallbone Chalmers University of Technology
Vampire 4.4 TFA FOF FNT (all demo) CASC CASC-27 winner
Vampire 4.5 THF TFA FOF FNT UEQ Giles Reger University of Manchester
Zipperposition 2.0 THF FOF LTB Petar Vukmirovic Vrije Universiteit Amsterdam

acceptable proof/model output (see [28] for an ex-
planation of what is “acceptable”). Ties are broken
according to the average time taken over problems
solved. Trophies are awarded to the competition divi-
sions’ winners.

In addition to the ranking, three other measures are
presented in the results: The state-of-the-art contribu-
tion (SotAC) quantifies the unique abilities of the sys-
tems (excluding the previous year’s winners that are
earlier versions of competing systems). For each prob-
lem solved by a system, its SotAC for the problem is
the fraction of systems that do not solve the problem,
and a system’s overall SotAC is the average over the
problems it solves but which are not solved by all the
systems. The core usage measures the extent to which
the systems take advantage of multiple cores. It is the
average of the ratios of CPU time to wall clock time
used, over the problems solved. The competition ran
on octa-core computers, thus the maximal core usage

was 8.0. The efficiency measure combines the number
of problems solved with the time taken. It is the aver-
age solution rate over the problems solved (the solu-
tion rate for one problem is the reciprocal of the time
taken to solve it), multiplied by the fraction of prob-
lems solved.

2.2. The Competition Problems

2.2.1. Problems for the TPTP-based Divisions
The problems for the THF, TFA, FOF, FNT, and

UEQ divisions were taken from the Thousands of
Problems for Theorem Provers (TPTP) problem library
[25], v7.4.0. The TPTP version used for CASC is not
released until after the competition has started, so that
new problems in the release have not been seen by the
entrants. The problems have to meet certain criteria to
be eligible for selection:

4 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

• The TPTP tags problems that are designed specif-
ically to be suited or ill-suited to a particular ATP
system, calculus, or control strategy as biased. Bi-
ased problems are excluded from the competition.

• The problems have to be syntactically non-prop-
ositional.

• The TPTP uses system performance data in the
Thousands of Solutions from Theorem Provers
(TSTP) solution library to compute problem diffi-
culty ratings in the range 0.00 (easy) to 1.00 (un-
solved) [31]. Difficult problems with ratings in the
range 0.21 to 0.99 are eligible. Problems of lesser
and greater ratings are made eligible if there are
not enough problems with ratings in that range.
This was unnecessary in CASC-J10. Systems can
be submitted before the competition so that their
performance data is used in computing the prob-
lem ratings.

In order to ensure that no system receives an ad-
vantage or disadvantage due to the specific presenta-
tion of the problems in the TPTP, the problems are
preprocessed to strip out all comment lines (in partic-
ular, the problem header), randomly reorder the for-
mulae/clauses (include directives are left before the
formulae, and type declarations are kept before the
symbols’ uses), randomly swap the arguments of as-
sociative connectives, randomly reverse implications,
and randomly reverse equalities.

The numbers of problems used in each division and
problem category are guided by to the numbers of el-
igible problems. The problems used are randomly se-
lected from the eligible problems based on a seed sup-
plied by the competition panel:
• The selection is constrained so that no division

or category contains an excessive number of very
similar problems [24].

• The selection is biased to select problems that are
new in the TPTP version used, until 50% of the
problems in each problem category have been se-
lected, after which random selection from old and
new problems continues.

Table 3 gives the numbers of eligible problems, the
maximal numbers that could be used after taking into
account the limitation on very similar problems, and
the numbers of problems used, in each division and
category.

The problems are given to the ATP systems in TPTP
format, in increasing order of TPTP difficulty rating.

2.2.2. Problems for the LTB Division
The problems for the LTB division are taken from

various sources, with each problem category being
based on one source. CASC-J10 had only one problem
category (and hence only one source): the HL4 prob-
lem category, which used a set of 13431 problems ex-
ported from HOL4 [6, 22].2 In CASC-27 the “bushy”
variants of a previous export of problems were used,
while in CASC-J10 the “chainy” variants of a new ex-
port were used. (See [1] for an explanation of how
the two variants are formed.) In contrast to the bushy
problems of CASC-27 that had from (only) 13 to 1389
axioms, the chainy problems had from 77 axioms to
126797 axioms, Recall from Section 1, eight versions
of each problem were provided - two first-order (FOF)
versions, two monomorphic typed first-order (TF0)
versions, one polymorphic typed first-order (TF1) ver-
sion, two monomorphic typed higher-order (TH0) ver-
sions, and one polymorphic typed higher-order (TH1)
version. Solving any version of a problem counted as a
solution to the problem.

In order to gauge the problems’ difficulty, various
ATP systems were run on the 107448 problem versions
using a 60s CPU time limit. Of the 107448 problems,
a proof for at least one version was found for 8559
problems, and at least one proof for every version was
found for 740 problems. This provided assurance that
the problems were of a reasonable difficulty. The com-
petition used the chainy problems corresponding to the
bushy problems used in CASC-27, i.e., 1000 problems
and their solutions were made available as pre-release
training data before the competition for developers to
test their systems, another 1000 problems and their so-
lutions were added as additional training data in the
competition, and 10000 of the remaining 11431 prob-
lems were used in the competition.

The problems are given to the ATP systems in TPTP
format, in the natural order of their source, i.e., for
CASC-J10 in the order of their export from HOL4. The
problem batch was unordered, which meant that the
ATP systems could attempt the problems and problem
versions in any order, could attempt them concurrently,
and could attempt each one multiple times. This pro-
vided increased opportunities for sharing logical and
control results between proof attempts.

2Special thanks to Thibault Gauthier and Chad Brown in Josef
Urban’s AI4REASON project at the Czech Institute of Informatics,
Robotics and Cybernetics, who did the exports.

Sutcliffe / CASC-J10 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Numbers of eligible and used problems

Division THF TFA FOF FNT UEQ LTB
Category TNE TEQ TFI TFE FNE FEQ FNN FNQ HL4

Eligible 118 576 253 39 404 3625 90 192 536 13431
Usable 118 576 253 38 114 877 87 192 536 11431
Used 100 400 225 25 100 400 75 175 250 10000

New 0 51 0 0 0 52 6 2 0 -

2.3. Resources

The competition computers had an octa-core In-
tel(R) Xeon(R) E5-2667 3.20GHz CPU, 128GB mem-
ory, and ran the CentOS Linux release 7.4.1708 oper-
ating system kernel 3.10.0-957.12.2.el7.x86_64. One
ATP system ran on one CPU at a time. Systems could
use all the cores on the CPU.

In the non-LTB divisions a 120s wall clock time
limit was imposed for each problem, and no CPU lim-
its were imposed (so that it could be advantageous to
use all the cores on the CPU). In the LTB division
a 172800s wall clock time limit was imposed for the
HL4 problem category, giving an average of 17.28s per
problem. There was no wall clock time limit for each
problem, and no CPU time limits. Time spent before
starting the first problem in the batch, e.g., tuning on
the training data and pre-loading the common axioms,
and time spent between ending a problem and starting
the next, e.g., learning from previous proofs, is not part
of the time taken on problems. However, the time taken
on such tasks is part of the overall time taken for the
batch.

Demonstration division systems can run on the com-
petition computers, or the computers can be supplied
by the entrant. The CASC-J10 demonstration division
systems all used the competition computers.

3. Results

For each ATP system, for each problem, four items
of data were recorded: whether or not the problem
was solved, the CPU time taken, the wall clock time
taken, and whether or not an acceptable proof/model
was output. This section summarizes the results, and
provides commentary. The result tables below give the
number of problems solved in the division, the average
wall clock time over the problems solved, the number
of proofs/models output, the state-of-the-art contribu-
tion, the (micro-)efficiency, the core usage, the num-
ber of new problems solved, and the number of prob-

lems solved in each problem category. In each table
the CASC-27 winner is emphasized. Detailed results,
including the systems’ output files, are available from
the CASC-J10 web site.

3.1. The THF Division

Table 4 summarizes the results of the THF divi-
sion. Zipperposition dominated the division. This ex-
cellent performance is of interest, and a brief system
description of Zipperposition is provided in Section 4.
In CASC-27 the THF division was won by Satallax
3.4, followed by Leo-III 1.4, Zipperposition 1.5, and
Vampire 4.4. In CASC-J10 Satallax 3.4 still outper-
formed the new versions of those systems, and also the
new Satallax 3.5. The Satallax developer explained that
the changes from Satallax 3.4 to 3.5 were expected to
“only minimally improve the performance”, and that
Satallax 3.4 outperformed 3.5 probably because of sta-
tistical fluctuations in the scheduling and the use of a
different version of E as a subsystem. While the new
versions of the other systems were still outperformed
by Satallax 3.4, each did have some improvements:
• Zipperposition 2.0 improved on version 1.5 through
a new unification algorithm that relies heavily on de-
cidable fragments of higher-order unification [33], en-
hanced boolean reasoning capabilities [34], some use
of Bhayat and Reger’s combinatory calculus [3], and
new heuristics tuned to solve problems from diverse
subsets of the TPTP.
• Vampire 4.5 improved on version 4.4 through a
rewrite based on a new superposition calculus [3],
which uses a KBO-like ordering [4] for orienting com-
binator equations. Version 4.5 also has improved sup-
port for reasoning about booleans and choice.
• Leo-III 1.5 improved on version 1.4 through a change
to a “nasty” parameter that caused version 1.4 to add
redundancy in the search space, and very simple strat-
egy scheduling that runs three different parameter set-
tings in parallel. Leo-III does not have optimized pa-
rameter settings for strategy scheduling, but, as the de-
veloper said, it’s “still better than none”.

6 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
THF division results

ATP System THF Avg Prfs Sot µ Core TNE TEQ
/500 WC out AC Eff. usage /100 /400

Zipperposition 2.0 424 14.8 424 0.35 382 4.44 83 341
Satallax 3.5 319 20.1 319 0.23 212 0.97 71 248
Vampire 4.5 299 3.7 299 0.19 400 4.57 64 235
Leo-III 1.5 287 14.7 287 0.17 90 2.47 65 222
CVC4 1.8 194 8.8 194 0.10 277 0.86 43 151
LEO-II 1.7.0 112 7.4 111 0.04 159 0.91 35 77

Demonstration division

Satallax 3.4 323 20.0 323 - 214 0.99 72 251

After the competition the developers of Vampire
reported that 320 problems could be solved by run-
ning the system with each strategy’s time slice in-
creased by a small amount. Analysis revealed that in
multi-core mode the system’s limited resource strategy
[19] deleted more clauses because the search strategies
made slower progress. The moral of the story is that, as
one of the developers said, “running on multiple cores
doesn’t always just make things run faster!!”.

Zipperposition and the Satallaxes were most effec-
tive at solving problems up to the time limit, partic-
ularly in the TEQ problem category - Zipperposition
solved 27 problems in more than 60s, and Satallax 3.5
solved 28. Zipperposition’s higher SotAC is due to its
large number of unique solutions, as noted in the indi-
vidual problem analysis below. Vampire has a higher
efficiency due to it’s lower time usage. Zipperposition
and Vampire also made most use of the multiple cores
available. Zipperposition used the cores by scheduling
50 strategies using the Python scheduler, which chose
a batch of strategies at a time to execute on as many
cores as possible. Vampire’s use of multiple cores is
explained in Section 3.3. The systems’ performances
in the two problem categories align with the overall
ranking.

The individual problem results show that 39 prob-
lems were unsolved, 46 problems were solved by all
the systems, 38 problems were solved by only one sys-
tem, and 9 problems were solved by only the two ver-
sions of Satallax (these 9 are counted as unique solu-
tions for Satallax 3.5). Of the 47 unique solutions, 28
were by Zipperposition, 9 by Satallax 3.5, 5 by CVC4,
2 each by Leo-III, and 1 each by Satallax 3.4, Vam-
pire, and LEO-II. Many of the unique solutions took
longer than average, so a simple portfolio that splits
up the time equally is not effective. A portfolio giving
Zipperposition 96s and Vampire 24s would solve 432
problems, which is a minimal gain.

After the competition the developer of Zipperposi-
tion found a bug in the implementation of a new side
condition of the system’s lambdaSup rule [2], which
would lead to incorrect proofs. As the rule is used in
only rare cases, this bug had escaped the developer’s
rigorous testing. An investigation showed that the rule
is used in proofs of only two TPTP problems, neither
of which were selected for the competition. All of Zip-
perposition’s proofs in the competition were checked
to ensure that the rule was not used. The competition
panel agreed that the bug did not manifest itself in the
competition, and thus according to the competition de-
sign no penalty was applied.

3.2. The TFA Division

Table 5 summarizes the results of the TFA divi-
sion. The winner was the new Vampire 4.5, with the
CASC-27 winner Vampire 4.4 close behind. The re-
sults parallel those of CASC-27, just with the systems’
version numbers updated. The reader is thus referred to
[29] for some insights into the systems’ performances.

Vampire’s SotAC was higher due to a large number
of unique solutions, as noted in the individual problem
analysis below. Vampire 4.5’s efficiency was higher
due to its lower time usage. None of the systems took
advantage of the multiple cores. For Vampire this is
simply an artifact of solving problems fast with one of
the first strategies started. In CVC4’s case, this is by
design.

The individual problem results show that 16 prob-
lems were unsolved, 143 problems were solved by all
the systems, 43 problems were solved by only one sys-
tem, and 35 problems were solved by only the two ver-
sions of Vampire (these 35 are counted as unique so-
lutions for Vampire 4.5). Of the 78 unique solutions,
41 were by Vampire 4.5, 31 by CVC4, and 6 by Vam-
pire 4.4. A portfolio of CVC4 and Vampire 4.5, giving

Sutcliffe / CASC-J10 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
TFA division results

ATP System TFA Avg Prfs Sot µ Core TFI TFE
/250 WC out AC Eff. usage /125 /75

Vampire 4.5 191 4.6 191 0.20 538 0.93 100 68
CVC4 1.8 187 17.9 187 0.18 302 0.83 87 72

Demonstration division

Vampire 4.4 190 17.9 190 - 284 0.90 100 69

CVC4 95s and Vampire 25s, would solve 220 prob-
lems, i.e., almost complete coverage of the division.

As was the case in the TFA divisions of CASC-27
and CASC-J9, it was rather disappointing that effec-
tively only two systems participated. The competition
organizer had been hopeful that the TFA language and
logic would be a sweet spot for ATP users [30]. Recent
indications are that THF might be more popular, espe-
cially with the “hammers” [5, 13]. The TFA division
will be placed in hiatus for CASC-28, awaiting further
interest and development.

3.3. The FOF Division

Table 6 summarizes the results of the FOF division.
The winner was the new Vampire 4.5. As has been
the case for the past few years, Vampire performed
strongly in terms of all measures - problems solved,
average time, SotAC, and efficiency. The main changes
to Vampire since version 4.4 were a major reimple-
mentation of clause selection and proof recording that
had a non-trivial downstream impact on proof search,
running strategies in parallel, a much more aggressive
normalisation and evaluation approach, the addition
of subsumption demodulation [10], and layered clause
selection [9] (however, the latter two changes were
used minimally in the competition because their full
power was not used in the main strategy schedules).
The strong performance of Enigma is noteworthy. In
CASC-27 Enigma 0.4 ran as a demonstration divi-
sion system, and came in after E and CSE_E, which it
now outperformed. The main improvements in Enigma
0.5.1 were a repair to a bug that caused it to crash dur-
ing axiom selection, anonymous guidance that makes
its machine learning phase invariant to consistent sym-
bol renaming, and new models trained for clause selec-
tion. A brief system description of Enigma is provided
in Section 4.

In CASC-27 the results divided the systems into
four groups: the Vampires, the E-based systems, the
group of CVC4/iProver/GKC, and the rest of the sys-
tems. A similar grouping had been noted in CASC-

J9. In CASC-J10 the grouping was less pronounced,
with Enigma filling the gap between the Vampires
and the E-based systems, stronger performances by
CVC4/iProver/GKC, and Zipperposition coming be-
tween CVC4/iProver/GKC and the rest of the systems.
This smoother transition is evidence of continued in-
terest and development of ATP systems for first-order
logic.

After the competition one of the developers of Vam-
pire noticed a coding mistake that had led to Vam-
pire not using the full time limit: Vampire runs sets of
schedules, but the piece of code that decided whether
to run the next set got confused between “time spent”
and “time remaining”. This meant that after half of the
time it would not run any more schedules, and as a re-
sult only four problems were solved after 60s. Interest-
ingly, this shows that only the first 60s really matter to
Vampire!

Two lower ranked systems with interesting results
in the FOF division are leanCoP and lazyCoP. lean-
CoP, like Prover9, has not changed for many years.
It, along with Prover9, provides a fixed point against
which progress can be judged. For example, leanCoP
beat CSE 1.2 in CASC-27, but was beaten by CSE 1.3
this year. lazyCoP is interesting as it was the only true
newcomer to the competition. While it’s performance
was rather weak, and it did not output complete proofs
(its proofs omitted the FOF to CNF conversion steps),
it certainly did not disgrace itself. Further, as noted in
Section 3.5, lazyCoP could make a useful contribution
to a portfolio system for UEQ problems. A brief sys-
tem description of lazyCoP is provided in Section 4.

The SotACs align with the ranking. Enigma had
lower efficiency because is has a startup time of around
2s and thus no problems are solved very quickly. GKC
had higher efficiency because it solved many problems
very quickly. In terms of core usage, the systems split
clearly into two groups: Vampire, Enigma, iProver,
GKC, lazyCoP, and Twee had higher core usage, while
the others’ core usages were around 1.00. The devel-
opers provided short explanations of how their systems
used the cores:

8 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
FOF division results

ATP System FOF Avg Prfs Sot µ Core New FNE FEQ
/500 WC out AC Eff. usage /52 /100 /400

Vampire 4.5 429 3.9 429 0.43 669 3.48 35 90 339
Enigma 0.5.1 401 10.2 401 0.37 183 4.40 25 85 316
E 2.5 351 15.2 351 0.30 398 0.95 22 83 268
CSE_E 1.2 316 9.0 316 0.26 387 1.05 21 77 239
iProver 3.3 312 10.3 312 0.25 296 5.99 26 85 227
GKC 0.5.1 289 3.1 289 0.22 406 4.13 19 75 214
CVC4 1.8 275 19.7 275 0.22 270 0.89 17 53 222
Zipperposition 2.0 237 22.6 237 0.16 174 0.96 17 57 180
Etableau 0.2 162 9.1 162 0.10 200 0.96 15 45 117
CSE 1.3 124 42.0 124 0.06 67 1.02 7 45 79
leanCoP 2.2 111 32.0 111 0.06 53 0.77 7 37 74
lazyCoP 0.1 94 8.8 0 0.04 111 4.45 4 38 56
Twee 2.2.1 68 9.8 68 0.04 70 5.33 7 10 58
PyRes 1.3 26 21.4 26 0.01 19 1.01 0 8 18

Demonstration division

Vampire 4.4 416 12.1 416 - 440 0.92 32 90 326
Prover9 1109a 146 12.9 146 0.09 123 0.91 9 25 121

• Vampire 4.5 created a schedule of strategies with
time limits, then started six processes each running one
strategy. When a strategy ended without success the
process took the next strategy from the schedule.
• Enigma first used one core to translate the prob-
lem to CNF and run LightGBM axiom selection. After
that an instance of E was run on each available core:
one in standard auto-schedule mode, another with the
LightGBM axiom selection applied, and the rest with
learned strategies (see Section 4).
• iProver created a schedule of 11 strategies with time
limits, then started a process on each core. The first
two processes ran the first two strategies for the full
time limit, the other six processes ran the remaining
nine strategies. If a strategy used up it’s time alloca-
tion without finding a proof it was replaced by the next
strategy in the schedule.
• GKC created a schedule of strategies with time lim-
its, then started a process on each core running a subset
of the strategies.
• lazyCoP maintained a priority queue of tableaux to
be expanded. A worker thread was maintained on each
core, independently exploring the tableau space in an
A* fashion.
• Twee spawned a prover instance for each core, each
using a different strategy.

There were 52 new problems in the FOF division, all
in the FEQ problem category. Forty of them are from
the TPTP’s ITP domain, which contains problems that

were also used in the LTB division. Of the 52 new
problems, 13, all ITP problems, were not solved by any
system. Those problems were eligible for the compe-
tition because they had been solved in earlier testing:
E 2.4 had found that 7 of the 13 have contradictory
axioms (see Section 3.6 for a discussion of this), and
4 others had been solved by iProver . . . in disproving
mode! Six new problems were solved by effectively
only one system, 3 by both the Vampires, and 1 by each
of Enigma, E, and CVC4.

The individual problem results show that 33 prob-
lems were unsolved, 1 problem was solved by all the
systems, 18 problems were solved by only one system,
and 13 problems were solved by only the two versions
of Vampire (these 13 are counted as unique solutions
for Vampire 4.5). Of the 31 unique solutions, 19 were
by Vampire 4.5, 6 by Vampire 4.4, 3 by Enigma, and 1
by each of CVC4, E, and Prover9. Enigma provides a
useful complement to Vampire 4.5, and a simple port-
folio giving 60s to each would solve 445 problems.

3.4. The FNT Division

Table 7 summarizes the results of the FNT division.
Vampire 4.5 came out well ahead. The effect of run-
ning Vampire on multiple cores is more pronounced
for the FNT division because the first strategy is finite
model finding that runs with a long time allocation,
which holds back other strategies if only one core is

Sutcliffe / CASC-J10 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

used. With multiple cores Vampire can try other strate-
gies in parallel with the finite model finding.

Vampire 4.5 had the highest SotAC due to the large
number of problems that only it (8 problems) or it
and Vampire 4.4 (37 problems) solved, and higher
efficiency due to its lower time usage. Vampire and
iProver were the only systems to use multiple cores (as
discussed in Section 3.3).

iProver did better in the FNQ problem category than
in previous years, thanks to a new system for devel-
oping efficient heuristics, along with general improve-
ments in iProver. E and CVC4 inverted the ranking in
the FNN problem category, and in both problem cat-
egories they solved quite different problems. In the
FNN problem category there are 26 problems that E
solved and CVC4 did not, and 10 problems that CVC4
solved and E did not. In the FNQ problem category
there are 63 problems that CVC4 solved and E did
not, and 10 problems that E solved and CVC4 did
not. Between them they solved 42 FNN problems and
94 FNQ problems, for a combined total of 136 prob-
lems. E performed better in the FNN problem category
because there are some classes of problems without
equality for which E’s calculus is a decision procedure,
while for problems with equality the equational sys-
tem very often has only an infinite saturation. CVC4
performed better in the FNQ category because, like all
SMT solvers, it has efficient support for equality rea-
soning at the quantifier-free level. This is combined
with finite model finding for universally quantified for-
mulae (including those with equality).

There were 8 new problems in the division, and most
of the systems were able to solve most of them. Six of
the new problems are syntactic problems in the FNN
problem category, generated using a single binary rela-
tion [15]. These were solved by the Vampires, CVC4,
and iProver, all of which include a finite model finder.
The other two new problems are in software verifica-
tion [16], one of which has a finite model and was un-
solved (but was eligible for the competition because it
had been solved in earlier testing by Paradox [8]), and
the other of which has only infinite models and was
solved by only the Vampires with a saturation.

The individual problem results show that 10 prob-
lems were unsolved, 12 problems were solved by all
the systems, 10 problems were solved by only one sys-
tem, and 37 problems were solved by only the two ver-
sions of Vampire (these 37 are counted as unique so-
lutions for Vampire 4.5). Of the 47 unique solutions,
45 were by Vampire 4.5, and 1 by each of Vampire 4.4
and iProver. A portfolio approach does not help.

An attentive observer of CASC might wonder why
iProver ran in the demonstration division; here’s the
explanation: During the competition, in the FOF di-
vision iProver claimed that one problem was counter-
satisfiable (a non-theorem), which made iProver un-
sound wrt the FNT division. The bug was due to a last
minute modification in a simplification index, which
caused some clauses to be “lost”, which in turn caused
incompleteness for theorem proving and, correspond-
ingly, unsoundness for disproving. The developer was
alerted, and the bug was quickly fixed. The CASC-J10
panel disqualified iProver 3.3 from the FNT division,
but agreed to having the fixed version run in the FNT
demonstration division.

3.5. The UEQ Division

Table 8 summarizes the results of the UEQ divi-
sion. The new E 2.5 won, significantly outperform-
ing the previous version 2.4 that won in CASC-27. E
2.5 had a number of improvements over E 2.4, includ-
ing: classification of clausal problems before expand-
ing equational definitions - this moves equational defi-
nition expansion under control of the automatic mode,
a stronger rewrite relation that optionally instantiates
unbound variables on the right hand side of equations
- this makes more instances orientable, and improved
generation of strategy schedules with more strategies.
Finally, more of the parameter space was evaluated on
newer clause evaluation functions to find good strate-
gies. The new version of Twee also beat E 2.4, firstly
by fixing a completeness bug that was in Twee 2.2, but
mainly by running multiple strategies in parallel.

The SotAC and efficiency values mostly align with
the ranking, with the exception of Etableau’s higher
efficiency thanks to its lower time usage. Only E and
Etableau did not use multiple cores; the ways in which
the other systems used multiple cores is explained in
Section 3.3. The developer of Etableau has promised
to “add multiprocessing” for CASC-28.

The individual problem results show that 27 prob-
lems were unsolved, 7 problems were solved by all the
systems, 26 problems were solved by only one sys-
tem, and 3 problems were solved by only the two ver-
sions of E (these 3 are counted as unique solutions for
E 2.5). Of the 29 unique solutions, 12 were by Twee,
11 by E 2.5, 3 by GKC, 2 by E 2.4, and 1 by Vam-
pire. A portfolio giving Twee 49.5s, E 2.5 64s, and
lazyCoP 6.5s, would solve 209 problems. This demon-
strates how lower ranked systems can be usefully em-
ployed alongside top performing systems. In particu-

10 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
FNT division results

ATP System FNT Avg Mdls Sot µ Core New FNN FNQ
/250 WC out AC Eff. usage /8 /75 /175

Vampire 4.5 238 5.7 238 0.50 670 3.34 7 72 166
CVC4 1.8 98 24.8 98 0.13 211 0.91 6 14 84
E 2.5 63 10.2 63 0.08 157 0.97 0 32 31
PyRes 1.3 13 8.0 13 0.00 13 0.97 0 1 12

Demonstration division

Vampire 4.4 226 8.6 226 - 299 0.98 7 65 161
iProver 3.3 183 9.7 183 0.32 371 5.63 6 56 127

Table 8
UEQ division results

ATP System UEQ Avg Prfs Sot µ Core
/250 WC out AC Eff. usage

E 2.5 202 7.8 202 0.27 595 0.95
Twee 2.2.1 197 6.0 197 0.26 532 4.41
Vampire 4.5 162 8.4 162 0.16 426 2.59
Etableau 0.2 148 2.6 148 0.14 465 0.93
GKC 0.5.1 128 8.3 128 0.10 289 5.05
iProver 3.3 124 7.4 124 0.09 293 5.31
lazyCoP 0.1 20 0.8 0 0.01 70 2.36

Demonstration division

E 2.4 185 5.4 185 - 579 0.93

lar, it is nice to see that the lowest ranked lazyCoP can
be helpful due to its ability to find some proofs very
quickly.

3.6. The LTB Division

Table 9 summarizes the results of the LTB division.
The LTB and CAX columns need explanation: After
the competition the developer of MaLARea pointed
out that some of its proofs (output by E, which is
the underlying reasoning system within MaLARea) did
not use the conjecture. Closer examination revealed
that E had found the problem’s axioms to be contradic-
tory, and that MaLARea had “solved” 1532 problems
using that contradiction (see the discussion of this issue
at the end of this section). The developer of MaLARea
explained, “once an unsoundness is found in the ax-
ioms included in many problems, MaLARea’s learning
will exploit it quite mercilessly”. Thus the LTB col-
umn of Table 9 lists the numbers of problems solved,
and the CAX column lists how many of those solutions
were by finding the axioms contradictory. Even dis-
counting the proofs by contradictory axioms, the per-
formance of MaLARea is impressive, and had the sys-

tem been in the competition division it would have won
by a large margin.3

Table 9
LTB division results

ATP System LTB CAX Avg Sot WC Core
/10000 WC AC µEff. usage

E 2.5 3393 1 4.6 0.17 127 2.6
iProver 3.3 3163 3 5.5 0.15 98 6.0
Zipperposition 2.0 1699 0 38.5 0.06 31 4.1
Leo-III 1.5 1413 0 20.6 0.06 9 7.4
GKC 0.5.1 493 0 3.7 0.01 33 4.1

Demonstration division

MaLARea 0.9 7054 1532 3.9 0.48 262 4.7
ATPBoost 1.0 1237 0 0.0 0.04 124 1.0
Leo-III 1.4 134 0 15.7 0.00 1 7.3

The strong performance of MaLARea, particularly
in contrast to the performance of MaLARea 0.8 in
CASC-27, is interesting. The key strength of MaLARea
is it’s ability to learn axiom selection from previous
proofs [14], which was important in CASC-J10 be-
cause the problems had very many axioms of which
most were unnecessary for a proof. Learning was
done initially from the training data that was pro-
vided with the batch, and subsequently from each
proof as it was found. While Leo-III 1.4 won the
LTB division of CASC-27 by performing strongly
on the TH1 v1 bushy problems that had between 7
and 345 axioms, MaLARea performed strongly in
CASC-J10 on the FOF v1 chainy problems that had
between 103 and 42675 axioms. As the developer
of MaLARea said, “The THF people still need to
learn some premise selection”. In addition to strong
axiom selection, MaLARea used specialized large-
theory strategies developed automatically by the BliStr

3MaLARea was in the demonstration division because the devel-
oper heads the group that did the problem export from HOL4.

Sutcliffe / CASC-J10 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[32] and BliStrTune [12] systems, and learned inter-
nal guidance for E from previous proofs using the
ENIGMA system [7]. Thanks to the BliStr/Tune strate-
gies and ENIGMA guidance, some of the proofs found
by MaLARea were far from trivial even after axiom
selection. The longest proof consists of 358 inferences
using 63 axioms out of the 128 selected from the prob-
lem’s 21820 axioms.

After the competition the developer of ATPBoost re-
alised that he had made a simple wrong assumption
that every problem would have at least one axiom that
was not in an included axiom file. This caused the ma-
chine learning phase after the first pass through the
problems to fail, and the system stopped. A version
of the system with that mistake corrected solved 1835
problems. Further, the developer had planned to use
multiple cores, but he explained that “something went
wrong with the way I used the parallel Perl script”.
These are simple bugs to fix, which provides a pathway
forward for an improved entry in CASC-28. The poor
performance of GKC was tracked down to a mem-
ory handling problem caused by process forks over the
very many problems.

The SotAC and efficiency values align with the rank-
ing, except for GKC’s higher efficiency thanks to its
lower time usage. The core usages are generally good,
with Leo-III using almost all the cores on average
thanks to its use of multiple external subsystems in par-
allel.

Table 10 shows the numbers of each version of
the problems solved (considering only the problems
not solved by contradictory axioms). There were 5967
problems solved across all systems and problem ver-
sions. There is quite a high degree of specialization to
specific problem versions, with Zipperposition having
the broadest range. Four systems solved only FOF ver-
sions, MaLARea solved only FOF v1 versions, Leo-III
1.5 solved mostly polymorphic versions, and E solved
only FOF and TF0 v1 versions. Leo-III 1.4 solved only
TH0 v2 versions, which was a contrast to CASC-27
when it won the division by solving TH0 v1, TH0 v2,
and TH1 v1 versions. This year the TH1 v1 and TH0
v1 versions contained duplicate type declarations that
Leo-III 1.4 could not deal with. There are some inter-
esting complementary performances, e.g., Zipperposi-
tion with Leo-III 1.5 on TF1 v1 and TH0 v1 versions,
and Zipperposition with Leo-III 1.4 on TH0 v2 ver-
sions.

Zipperposition solved a broad range of problem ver-
sions for a variety of reasons, including use of various
higher-order features in different configurations, use of

E as a backend, and being suited to particular problem
versions’ encodings. Zipperposition had a burst of 668
solutions in the 65s to 75s wall clock range4. Of the
834 TH0 v2 problems solved by Zipperposition, 656
have a final inference by “eprover”, i.e., they were fi-
nally solved by the E backend. Of those 656, 646 have
wall clock times in the 65s to 75s range. This burst of
solutions is due to Zipperposition translating clauses
with shallow proof depth to lambda-free higher-order
logic, and running E in its auto-schedule mode.

The individual problem results (for any version
of each problem, considering only the problems not
solved by contradictory axioms) show that 4030 prob-
lems were unsolved, 107 problems were solved by all
the systems, and 2100 problems were solved by only
one system. No problems were solved by only the
two versions of Leo-III (which would have counted as
unique solutions for Leo-III 1.5). Of the 2100 unique
solutions, 1778 were by MaLARea, 162 by Leo-III
1.5, 89 by E, 42 by iProver, 25 by Zipperposition, and
4 by GKC. As the systems have different approaches
to solving the problems, a portfolio approach cannot
be (easily) considered, but is noteworthy that even the
lowly ranked GKC makes a small unique contribution.

The discovery that some of the LTB problems had
contradictory axioms opened a can of worms. The con-
tradiction was traced back through the new export (ex-
plained in Section 2.2.2) to axioms in HOL4. A HOL4
developer explained that those “were there to make
extraction to SML/OCaml somewhat reasonable, and
were not for a logical sense”. The bug in HOL4 has
now been fixed. At the same time, the process for ex-
porting from HOL4 came under close scrutiny, and
some further errors were revealed. An updated export
of HOL4 with all the fixes will be available in the fu-
ture. HOL4 is a very well established and highly used
corpus, and it is a noteworthy success story for ATP
to find the inconsistency after many years of no one
noticing. Finding a contradiction in the axioms of large
corpora is useful [21], but for users a proof by virtue
of contradictory axioms is typically not what is de-
sired. At best, one such proof is all that is needed, af-
ter which efforts are made to remove the contradiction
from the axioms. For the LTB division in CASC-28
proofs by contradictory axioms will be recognized and
applauded, but only one for each contradictory set will
count for ranking.

4See the performance plot at http://www.tptp.org/CASC/J10/
WWWFiles/ResultsPlots.html#HL4Problems

http://www.tptp.org/CASC/J10/WWWFiles/ResultsPlots.html#HL4Problems
http://www.tptp.org/CASC/J10/WWWFiles/ResultsPlots.html#HL4Problems

12 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 10
Problems solved for each version

Ver E iPro’ Zip’n Leo’5 ATPB’ GKC Leo’4 MaL’ Union

FOF v1 3187 2945 0 0 455 382 0 5522 5695
FOF v2 143 218 0 0 782 111 0 0 1133
TF0 v1 62 0 0 0 0 0 0 0 62
TF0 v2 0 0 0 0 0 0 0 0 0
TF1 v1 0 0 32 52 0 0 0 0 83
TH0 v1 0 0 38 2 0 0 0 0 40
TH0 v2 0 0 834 0 0 0 134 0 963
TH1 v1 0 0 795 1359 0 0 0 0 1592

Sum 3392 3163 1669 1413 1237 493 134 5522 5970

4. System Descriptions

As was noted in Sections 3.1, 3.3, and 3.5, there
were three systems of particular interest in CASC-J10:
Zipperposition because of it’s dominant performance
in the THF division, Enigma because of it’s strong
performance in the FOF division, and lazyCoP as the
only true newcomer to the competition that could also
usefully contribute to a UEQ portfolio. The following
brief system descriptions were written by their devel-
opers.

Zipperposition is a superposition-based theorem
prover for typed first-order logic with equality and
higher-order logic. The core architecture of the prover
is based on saturation with an extensible set of rules
for inferences and simplifications. Support for higher-
order logic is based on the complete calculus for
boolean-free higher-order logic [2]. To support effi-
cient enumeration of complete sets of unifiers Zipper-
position implements an efficient full unification pro-
cedure [33]. Pragmatic support for boolean reason-
ing [34] is another factor contributing to Zipperposi-
tion’s high success rate. Part of this extension is lazy
clausification, which enables Zipperposition to work
directly on the formula level instead of the clause level.
This makes it possible to simulate some of the infer-
ences that Satallax (the CASC-27 winner, based on
higher-order tableaux), performs. As a complementary
higher-order approach, in some configurations Zipper-
position uses the combinator-based calculus of Bhayat
and Reger [3]. Various subsets of TPTP problems were
used to create heuristic configurations that perform
well on all types of TPTP problems.

Enigma5 [11] is an Efficient learning-based inference
guiding machine, implemented as an extension of the

5Research supported by ERC Consolidator grant no.
649043 AI4REASON, the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15_003/0000466, and the European Regional
Development Fund.

E prover [20]. The core idea behind Enigma is to use
machine learning methods on a corpus of proofs, to
learn a model that classifies clauses as useful or not
in proof search. The machine learning methods em-
ployed are Gradient Boosting Decision Trees (GBDT
- implemented by the XGBoost and LightGBM frame-
works) and Graph Neural Networks (GNN - imple-
mented by the Tensorflow framework). GNN models
are very complementary (different models solve differ-
ent problems), and GBDT models can be used to mem-
orize and generalise many GNN strategies into a single
strategy. Only GBDT models were used in the compe-
tition because of their superior speed on standard hard-
ware. Before the competition E was run on the TPTP
with a portfolio of BliStrTune [12] strategies, to gen-
erate initial training data. Several iterations of training
and testing were used to generate additional training
data and to learn models with improved performance.
Additionally, a LightGBM premise selection filter was
trained for axiom selection. Based on the number of
input formulae, a simple SInE filter was optionally ap-
plied for the learned strategies.

lazyCoP [18] is a connection-tableaux system for
first-order logic with equality. lazyCoP implements the
lazy paramodulation calculus [17], with some addi-
tional inferences such as “shortcut” strict rules and
equality lemmas. The system implements well-known
refinements of the predicate connection calculus, such
as tautology elimination and strong regularity, lifted to
equalities where appropriate. The resulting system ap-
pears to be complete, but no theoretical claim is made
one way or another. This first version of the system ex-
plores a tableaux-level search space using a classic A*
informed-search algorithm. The (admissible) heuristic
function is the number of open branches. The system
is implemented in Rust, allowing control over mem-
ory allocation and layout while avoiding some classes
of memory/thread safety bugs. These safety guaran-

Sutcliffe / CASC-J10 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tees allow an easy implementation of multi-threading:
lazyCoP uses all available cores to search, and scales
nearly linearly. The system does not yet include a cus-
tom clausification routine - a recent build of Vampire
is used for this purpose.

5. Conclusion

CASC-J10 was the twenty-fifth large scale compe-
tition for fully automatic, classical logic ATP systems.
CASC-J10 fulfilled its objectives by evaluating the rel-
ative capabilities of current ATP systems, and stimu-
lating development and interest in ATP.

The highlights of CASC-J10 were: a disappointing
turnout in the TFA division (a lowlight), consistent
proof and model output across all divisions, revelations
of unsoundness and contradictory axioms, the emer-
gence of machine learning as a potential game changer
in ATP, and another fascinating LTB division.

The most impactful change in CASC-J10 was the
use of wall clock time limits, which enabled the sys-
tems to take advantage of multiple cores. This change
has been noted at various points in this paper. The
most common approach was to create a schedule of
strategies with time limits, then use the multiple cores
to work through the strategies in competition paral-
lel. This approach was used by Enigma, GKC, iProver,
Twee, Vampire, and Zipperposition. A specific bene-
fit of running mutiple strategies in competition parallel
was that one of the initial strategies, but not the one that
would be run first in a sequential approach, could find a
solution without having to wait for preceding stratgies
to complete. This was noticied particularly by Vampire
4.5 in the TFA and FNT divisions. Two systems took
other approaches: lazyCoP explored its tableaux space
in parallel, while Leo-III ran multiple external sub-
systems in parallel. Most systems “rolled their own”
use of the multiple cores, by explicitly starting multi-
ple processes. Two other approaches noted were lazy-
CoP’s use of multi-threading in Rust, and Zipperposi-
tion’s use of the Python scheduler. CASC-28 will be
the third CASC edition with wall clock time limits. As
the system developers refine their approaches and gain
experience with the use of multiple cores, the impact
of wall clock time limits is expected to increase, and
core usage values will improve further.

While the design of CASC is mature and stable, each
year’s experiences lead to ideas for changes and im-
provements. Some changes that are being considered
for CASC-28 are:

• The TFA division will be placed on hiatus.
• The Sledgehammer (SLH) division, previously

run in CASC-26 [27], will be revived. The di-
vision’s prize will be a “romantic hotel stay
in Amsterdam”, generously donated by Jasmin
Blanchette’s Matryoshka project6.

• Only one proof by contradictory axioms, for each
contradictory set, will count towards the ranking
in the LTB division.

As always, the ongoing success and utility of CASC
depends on ongoing contributions of problems to the
TPTP. The automated reasoning community is encour-
aged to continue making contributions of all types of
problems.

Acknowledgements

This material is based upon work supported by
the National Science Foundation under Grant No.
1730419.

References

[1] J. Alama, T. Heskes, D. Külwein, E. Tsivtsivadze, and J. Ur-
ban. Premise Selection for Mathematics by Corpus Analy-
sis and Kernel Methods. Journal of Automated Reasoning,
52(2):191–213, 2014.

[2] A. Bentkamp, J. Blanchette, P. Vukmirovic, and U. Waldmann.
Superposition with Lambdas. In P. Fontaine, editor, Proceed-
ings of the 27th International Conference on Automated De-
duction, number 11716 in Lecture Notes in Computer Science,
pages 55–73. Springer-Verlag, 2019.

[3] A. Bhayat and G. Reger. A Combinator-Based Superposition
Calculus for Higher-Order Logic. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International
Joint Conference on Automated Reasoning, number 12166 in
Lecture Notes in Artificial Intelligence, pages 278–296, 2020.

[4] A. Bhayat and G. Reger. A Knuth-Bendix-Like Ordering for
Orienting Combinator Equations. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International
Joint Conference on Automated Reasoning, number 12166 in
Lecture Notes in Artificial Intelligence, pages 259–277, 2020.

[5] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban. Ham-
mering Towards QED. Journal of Formalized Reasoning,
9(1):101–148, 2016.

[6] C. Brown, T. Gauthier, C. Kaliszyk, G. Sutcliffe, and J. Urban.
GRUNGE: A Grand Unified ATP Challenge. In P. Fontaine,
editor, Proceedings of the 27th International Conference on
Automated Deduction, number 11716 in Lecture Notes in
Computer Science, pages 123–141. Springer-Verlag, 2019.

6http://matryoshka.gforge.inria.fr

http://matryoshka.gforge.inria.fr

14 Sutcliffe / CASC-J10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[7] K. Chvalovsky, J. Jakubuv, M. Suda, and J. Urban. ENIGMA-
NG: Efficient Neural and Gradient-Boosted Inference Guid-
ance for E. In P. Fontaine, editor, Proceedings of the 27th
International Conference on Automated Deduction, number
11716 in Lecture Notes in Computer Science, pages 197–215.
Springer-Verlag, 2019.

[8] K. Claessen and N. Sörensson. New Techniques that Improve
MACE-style Finite Model Finding. In P. Baumgartner and
C. Fermueller, editors, Proceedings of the CADE-19 Work-
shop: Model Computation - Principles, Algorithms, Applica-
tions, 2003.

[9] B. Gleiss and M. Suda. Layered Clause Selection for
Saturation-based Theorem Proving. In P. Fontaine, P. Rüm-
mer, and S. Tourret, editors, Proceedings of the 7th Workshop
on Practical Aspects of Automated Reasoning, page To appear,
2020.

[10] L. Gleiss, B. Kovacs and J. Rath. Subsumption Demodulation
in First-Order Theorem Proving. In N. Peltier and V. Sofronie-
Stokkermans, editors, Proceedings of the 10th International
Joint Conference on Automated Reasoning, number 12166 in
Lecture Notes in Computer Science, pages 297–315, 2020.

[11] J. Jakubuv, M. Chvalovský, K. Olsák, B. Piotrowski, M. Suda,
and J. Urban. ENIGMA Anonymous: Symbol-Independent In-
ference Guiding Machine (System Description). In N. Peltier
and V. Sofronie-Stokkermans, editors, Proceedings of the 10th
International Joint Conference on Automated Reasoning, num-
ber 12167 in Lecture Notes in Artificial Intelligence, pages
448–463, 2020.

[12] J. Jakubuv and J. Urban. Hierarchical Invention of Theorem
Proving Strategies. AI Communications, 31(3):237–250, 2018.

[13] J. Jakubuv and J. Urban. Hammering Mizar by Learning
Clause Guidance. In Proceedings of the 10th International
Conference on Interactive Theorem Proving, Leibniz Interna-
tional Proceedings in Informatics, page To appear. Dagstuhl
Publishing, 2019.

[14] C. Kaliszyk, J. Urban, and J. Vyskocil. Machine Learner for
Automated Reasoning 0.4 and 0.5. In S. Schulz, L. de Moura,
and B. Konev, editors, Proceedings of the 4th Workshop on
Practical Aspects of Automated Reasoning, number 31 in EPiC
Series in Computing, pages 60–66. EasyChair Publications,
2015.

[15] T. Lampert and A. Nakano. Deciding Simple Infinity Ax-
iom Sets with One Binary Relation by Superpostulates. In
N. Peltier and V. Sofronie-Stokkermans, editors, Proceedings
of the 10th International Joint Conference on Automated Rea-
soning, number 12166 in Lecture Notes in Artificial Intelli-
gence, pages 201–217, 2020.

[16] D.L. Li and A. Tiu. Combining ProVerif and Automated Theo-
rem Provers for Security Protocol Verification. In P. Fontaine,
editor, Proceedings of the 27th International Conference on
Automated Deduction, number 11716 in Lecture Notes in
Computer Science, pages 354–365. Springer-Verlag, 2019.

[17] A. Paskevich. Connection Tableaux with Lazy Paramodula-
tion. Journal of Automated Reasoning, 40(2-3):179–194, 2008.

[18] M. Rawson and G. Reger. lazyCoP 0.1. EasyChair Preprints
3926, 2020.

[19] A. Riazanov and A. Voronkov. Limited Resource Strategy in
Resolution Theorem Proving. Journal of Symbolic Computa-
tion, 36(1-2):101–115, 2003.

[20] S. Schulz. E: A Brainiac Theorem Prover. AI Communications,
15(2-3):111–126, 2002.

[21] S. Schulz, G. Sutcliffe, J. Urban, and A. Pease. Detecting
Inconsistencies in Large First-Order Knowledge Bases. In
L. de Moura, editor, Proceedings of the 26th International
Conference on Automated Deduction, number 10395 in Lec-
ture Notes in Computer Science, pages 310–325. Springer-
Verlag, 2017.

[22] K. Slind and M. Norrish. A Brief Overview of HOL4. In
O. Mohamed, C. Munoz, and S. Tahar, editors, Proceedings
of the 21st International Conference on Theorem Proving in
Higher Order Logics, number 5170 in Lecture Notes in Com-
puter Science, pages 28–32. Springer-Verlag, 2008.

[23] A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: a Cross-
Community Infrastructure for Logic Solving. In S. Demri,
D. Kapur, and C. Weidenbach, editors, Proceedings of the 7th
International Joint Conference on Automated Reasoning, num-
ber 8562 in Lecture Notes in Artificial Intelligence, pages 367–
373, 2014.

[24] G. Sutcliffe. The CADE-16 ATP System Competition. Journal
of Automated Reasoning, 24(3):371–396, 2000.

[25] G. Sutcliffe. The TPTP Problem Library and Associated In-
frastructure. The FOF and CNF Parts, v3.5.0. Journal of Auto-
mated Reasoning, 43(4):337–362, 2009.

[26] G. Sutcliffe. The CADE ATP System Competition - CASC. AI
Magazine, 37(2):99–101, 2016.

[27] G. Sutcliffe. The CADE-26 Automated Theorem Proving Sys-
tem Competition - CASC-26. AI Communications, 30(6):419–
432, 2017.

[28] G. Sutcliffe. Proceedings of the 10th IJCAR
ATP System Competition. Online, Earth, 2020.
http://www.tptp.org/CASC/J10/Proceedings.pdf.

[29] G. Sutcliffe. The CADE-27 Automated Theorem Proving
System Competition - CASC-27. AI Communications, 32(5-
6):373–389, 2020.

[30] G. Sutcliffe and F.J. Pelletier. Hoping for the Truth - A Survey
of the TPTP Logics. In Z. Markov and I. Russell, editors, Pro-
ceedings of the 29th International FLAIRS Conference, pages
110–115, 2016.

[31] G. Sutcliffe and C.B. Suttner. Evaluating General Purpose
Automated Theorem Proving Systems. Artificial Intelligence,
131(1-2):39–54, 2001.

[32] J. Urban. BliStr: The Blind Strategymaker. In S. Autexier,
editor, Proceedings of the 1st Global Conference on Artificial
Intelligence, number 36 in EPiC Series in Computing, pages
312–319. EasyChair Publications, 2015.

[33] P. Vukmirovic, A. Bentkamp, and V. Nummelin. Efficient Full
Higher-order Unification. In Z.M. Ariola, editor, Proceedings
of the 5th International Conference on Formal Structures for
Computation and Deduction, number 167 in Leibniz Interna-
tional Proceedings in Informatics, pages 5:1–5:20. Dagstuhl
Publishing, 2020.

[34] P. Vukmirovic and V. Nummelin. Boolean Reasoning in a
Higher-Order Superposition Prover. In P. Fontaine, P. Rüm-
mer, and S. Tourret, editors, Proceedings of the 7th Workshop
on Practical Aspects of Automated Reasoning, page To appear,
2020.

	Introduction
	Outline of Design and Organization
	System Delivery, Execution, and Evaluation
	The Competition Problems
	Problems for the TPTP-based Divisions
	Problems for the LTB Division

	Resources

	Results
	The THF Division
	The TFA Division
	The FOF Division
	The FNT Division
	The UEQ Division
	The LTB Division

	System Descriptions
	Conclusion
	Acknowledgements
	References

