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Abstract—Although routinely utilized in literature, orthogonal
waveforms may lose orthogonality in distributed multi-input multi-
output (MIMO) radar with spatially separated transmit (TX) and
receive (RX) antennas, as the waveforms may experience distinct
delays and Doppler frequency offsets unique to different TX-RX
propagation paths. In such cases, the output of each waveform-
specific matched filter (MF), employed to unravel the waveforms
at the RXs, contains both an auto term and multiple cross terms,
i.e., the filtered response of the desired and, respectively, undesired
waveforms. We consider the impact of non-orthogonal waveforms
and their cross terms on target detection with or without timing,
frequency, and phase errors. To this end, we present a general signal
model for distributed MIMO radar, examine target detection using
existing coherent/non-coherent detectors and two new detectors,
including a hybrid detector that requires phase coherence locally
but not across distributed antennas, and provide a statistical anal-
ysis leading to closed-form expressions of false alarm and detection
probabilities for all detectors. Our results show that cross terms can
behave like foes or friends, respectively, if they and the auto term
add destructively or constructively, depending on the propagation
delay, frequency, and phase offsets. Regarding sync errors, we show
that phase errors affect only coherent detectors, frequency errors
degrade all but the non-coherent detector, while all are impacted
by timing errors, which result in a loss in the signal-to-noise ratio
(SNR).

Index Terms—Distributed MIMO radar, non-orthogonal
waveforms, asynchronous propagation, timing, frequency, and
phase errors, target detection.

I. INTRODUCTION

A. Background

MULTI-INPUT multi-output (MIMO) radar, equipped
with multiple transmit/receive (TX/RX) antennas, has

been of significant interest for civilian and military applications
in recent years [1]–[27]. There are two broad categories, namely
co-located MIMO radar (e.g., [1]), where the antennas in the
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TX and, respectively, RX array are closely spaced (to within a
few wavelengths), and distributed MIMO radar [2], where the
antennas are widely separated from each other. A distributed
MIMO radar can be deployed with its sensors placed close to
the radar scene (e.g., via unmanned aerial vehicles) and probe the
scene from different aspect angles, allowing the radar to exploit
the spatial and geometric diversity to enhance target detection
and localization performance [2], [3], [8], [9]. A large body
of works have been devoted to the development of distributed
MIMO radar related techniques, such as power allocation [10],
antenna placement [11], neural network based optimization [12],
detection in homogeneous [13] and non-homogeneous [14]
clutter environments, low-complexity multi-target detection and
localization [15], among others.

This paper considers target detection in distributed MIMO
radar with non-orthogonal waveforms. A MIMO radar transmits
multiple waveforms from its TXs to probe the environment.
The RXs employ a set of matched filters (MFs), one for each
waveform, which are intended to unravel the radar echoes and
separate the information carried by different waveforms. Un-
der the condition that the waveforms are orthogonal with zero
cross-correlation, a frequently used assumption in the litera-
ture, the MF output would contain only the filtered echo of
the desired waveform, i.e., the auto term, but no cross terms
from the undesired waveforms, thus resulting in ideal waveform
separation. However, it is impossible to maintain orthogonality
with arbitrary delays and frequency shifts [16]. The problem
becomes more severe in distributed MIMO radar, since the re-
ceived signals are inherently asynchronous, i.e., waveforms sent
from different TXs in general cannot simultaneously arrive at an
RX due to different propagation distances. Moreover, different
TX-RX pairs observe distinct Doppler frequencies for the same
moving target due to different aspect angles [3]. Such delay
and frequency offsets would render orthogonal waveform on
transmit non-orthogonal at the RXs. Hence, the often neglected
cross terms can be significant.

The effects of cross terms were examined in [17], which treat
them as deterministic unknowns, whereas in [18], [19], they
were modeled as random quantities with an unknown covariance
matrix. In either case, the waveform correlation, which is known,
was not utilized. We introduce herein an efficient and more
general representation for the cross terms by taking into account
the asynchronous signal propagation in distributed MIMO radar.

Another objective of this paper is to consider the impact
of synchronization errors, or sync errors for brevity, on target
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detection in distributed MIMO radar. Synchronization among
TXs and RXs in distributed MIMO radar is non-trivial, as the
sensors are spatially separated, driven by individual local clocks
and oscillators. Phase synchronization, which is essential in
applications requiring coherent processing such as direction
finding, were considered in several studies. Specifically, the
phase identifiability problem in self-calibrating MIMO radar
was discussed in [20]. Various phase synchronization schemes
involving centralized or distributed processing were proposed
in [21]. A number of works examined signal detection [22],
direction finding [23], imaging [24], and beamforming [25]
in the presence of phase errors when timing/frequency errors
are negligible. Meanwhile, [26] proposed a solution for target
detection when the observations from different RXs are not
correctly registered, i.e., aligned in the same spatial coordinate
system, due to possible timing mismatches among the sensors.
While these studies underscore the importance of synchroniza-
tion, joint investigations of the effects of timing, frequency, and
phase errors, which are coupled with each other, on distributed
MIMO radar are lacking. Another limitation is that orthogonal
waveforms are assumed in most cases.

B. Main Contributions

A systematic framework is presented in this paper, which
covers signal modeling, detection methods, and statistical anal-
ysis, for target detection in distributed MIMO radar with non-
orthogonal waveforms and sync errors. The main contributions
are summarized as follows.

1) Modeling: We develop a general asynchronous signal
model for distributed MIMO radar, which can incorporate tim-
ing, frequency, and phase errors among RXs and TXs. The
auto and cross terms in the MF output are the auto- and cross-
ambiguity functions of the waveforms sampled at distinct delays
and Doppler frequencies associated with individual propagation
paths. We show the model encompasses the co-located MIMO
radar as a special case, which will be used to benchmark the
distributed MIMO radar and shed light on the impact of cross
terms and sync errors on target detection.

2) Detection Methods: We consider coherent and non-
coherent target detection methods for distributed MIMO radar.
We first briefly review a classical non-coherent detector
(NCD) [2], which is an energy detector, and a recently intro-
duced approximate coherent detector (ACD) [27], which phase-
compensates the auto terms in the MF output but neglects cross
terms. We then introduce an improved coherent detector (CD)
that allows for cross terms and, moreover, exploits diversities in
signal strength among different TX-RX paths. We also propose
a new hybrid detector (HD) as a trade-off solution to bridge
NCD and CD. HD coherently processes output samples of
each MF and non-coherently integrates across different MFs.
Since it requires phase coherence locally but not across spatially
distributed antennas, HD bypasses the stringent phase synchro-
nization requirement of CD and, meanwhile, enjoys additional
coherent processing gain over NCD.

3) Analysis: We provide a statistical analysis of the 4 de-
tectors NCD, ACD, CD, and HD. Closed-form expressions of

the probability of false alarm and, respectively, the probability
of detection are derived for either non-fluctuating or fluctuating
targets. With simple tuning, these expressions are applicable
to cases with or without sync errors and, furthermore, can be
extended to co-located MIMO radar. Therefore, they offer useful
tools to investigate the impacts of asynchronous propagation,
cross terms, and sync errors in distributed MIMO radar.

4) Key Observations: To examine the impact of non-
orthogonal waveforms, we consider different distributed set-ups
with varying offsets1 in delay, frequency, and phase among
different TX-RX paths, which lead to cross terms with vary-
ing magnitudes and phases compared with those of the auto
terms. For benchmarking, we compare the distributed MIMO
radar with a co-located MIMO radar which employs orthogonal
waveforms and contains only auto terms in its MF outputs. This
is possible since co-located MIMO radar has co-located sensors
which can operate synchronously without delay, frequency, and
phase offsets, thus obviating cross terms. Our comparative study
reveals that, interestingly, the non-orthogonal distributed MIMO
radar may under- or out-performs the orthogonal co-located
MIMO radar in target detection. The performance depends on
if the cross terms behave as interference, which occur when the
auto and cross terms add destructively, or as assistance, which
occurs when they add constructively. It should be noted that
delay, frequency, and phase offsets, which are coupled with each
other (e.g., a delay offset implies a phase offset, see Section II),
all affect how cross terms add with auto terms.

Numerical simulations are also provided to illustrate the im-
pact of sync errors on the 4 detectors NCD, ACD, CD, and HD.
Our results indicate that: (a) NCD and HD are immune from
phase errors, which affect only coherent detectors ACD and CD;
(b) frequency errors, caused by either carrier offsets or Doppler
estimation errors, affect all but NCD; and (c) all detectors are
affected by timing errors, which cause the MF output to be
sampled off the peak location of the auto ambiguity function
(see Section II), thus resulting in a loss in the signal-to-noise
ratio (SNR). If the timing error is sufficiently small (i.e., much
smaller than the reciprocal of the waveform bandwidth but still
significant relative to the carrier period) so that the SNR loss is
negligible, then it will only impact coherent detectors such as
ACD or CD as the timing-error-induced phase error may not be
negligible.

The remainder is organized as follows. A general signal
model for distributed MIMO radar is presented in Section II.
Target detection methods are discussed in Section III, and their
statistical analysis in Section IV. Section V contains numerical
results, followed by conclusions in Section VI.

Notations: We use boldface symbols for vectors (lower case)
and matrices (upper case). (·)T denotes the transpose and (·)H
the conjugate transpose. ‖ · ‖ and | · | denote the vector 2-norm
and absolute value, respectively. E{·} represents the statistical
expectation. CN (u,Σ) denotes the complex Gaussian distribu-
tion with mean u and covariance matrix Σ. [X]mm indicates the

1Such offsets, caused by spatially distributed and inherently asynchronous
sensors, exist even if the RXs have perfect timing, frequency and phase infor-
mation of the TXs, and therefore shall not be confused as sync errors.
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Fig. 1. Transmit and receive configuration of a distributed MIMO radar.

(m,m)-th element of the diagonal matrix X while [x]m denotes
the m-th element of the vector x.

II. SIGNAL MODEL

We first present a signal model for distributed MIMO radar
with or without sync errors, and then briefly discuss the co-
located MIMO radar, which is a special case of the former and
will be employed as a benchmark for comparison.

A. Distributed MIMO Radar

We consider a distributed MIMO radar system with M TXs
andN RXs as shown in Fig. 1. The TXs employ pulsed transmis-
sion to probe an area of interest by usingM waveforms. During a
coherent processing interval, a succession of K periodic pulses
are transmitted by each TX. Specifically, at the m-th TX, the
transmitted pulses are given by

s̃m(t) = bmum(t)ej[2π(f̂c+Δc
t,m)t+φt,m], (1)

whereum(t) =
∑K−1
k=0 pm(t− kTs) is the baseband transmitted

signal, pm(t) is the complex envelope of a single pulse for TX
m, Ts is the pulse repetition interval (PRI), bm is the transmit
amplitude, f̂c is the nominal carrier frequency, Δc

t,m denotes the
carrier frequency error introduced by the m-th TX, and φt,m

is the carrier initial phase. The pulse waveform pm(t) has unit
energy and is of the same duration Tp for all TXs. Therefore,
|bm|2 denotes the energy transmitted in a single pulse.

Suppose there is a moving target at a distanceRt,m to them-th
TX and a distanceRr,n to then-th RX. The signal s̃n(t) observed
at the n-th RX consists of echoes from the target illuminated by
M waveforms

s̃n(t) =

M∑
m=1

αbmξmnum(t− τmn)

× ej2π(f̂c+Δc
t,m+ ˜fmn)(t−τmn)ejφt,m , (2)

where α is the target amplitude, τmn = (Rt,m +Rr,n)/c is the
(m,n)-th TX-RX propagation delay, and f̃mn is the bistatic
target Doppler frequency [3], [13] observed by the n-th RX in
response to the radar waveform transmitted from the m-th TX.
In addition, ξmn is the channel coefficient associated with the
(m,n)-th TX-RX pair [28]:

ξmn =

√
Gr,nGt,mλ2

(4π)3R2
t,mR

2
r,n
, (3)

where λ is the wavelength of the signal and Gt,m and Gr,n are
the m-th TX and, respectively, n-th RX antenna gain.

A local carrier ej[2π(f̂c+Δc
r,n)t+φr,n] is generated at the n-th

RX for down conversion, where Δc
r,n and φr,n denote the local

carrier frequency error and initial phase, respectively. After
down conversion, the baseband signal is

sn(t) =
M∑
m=1

αbmξmnum(t− τmn)e
j2π(f̂c+Δc

t,m+ ˜fmn)(t−τmn)

× ejφt,ne−j[2π(f̂c+Δc
r,n)t+φr,n]

=

M∑
m=1

αbmξmnum(t− τmn)e
jψmn

× e−j2π(f̂c+Δc
r,n)τmnej2πfmn(t−τmn), (4)

where ψmn � φt,m − φr,n denotes the initial phase offset and
fmn � f̃mn +Δc

t,m −Δc
r,n denotes the combined frequency

offset between the m-th TX and n-th RX. A set of M matched
filters (MFs), each matched to one of M waveforms, are used
at the n-th RX. Each MF requires estimates of the target delay
τmn and Doppler fmn for compensation. In the following, we
first consider the general case with possible sync errors, and
then extend the result to the ideal case of no sync error, which
is included as a benchmark for comparative studies.

1) With Sync Errors: At the n-th RX, sn(t) is con-
volved with M MFs, gm(t) = p∗m(−t)ej2π(fmn+Δf

mn)t, m =
1, . . . ,M , where Δf

mn denotes the frequency error between the
effective Doppler frequency fmn and its estimate f̂mn.2 Let us
define the cross ambiguity function (CAF) as

χmm̄(ν, f) =

∫
pm(μ)p∗m̄(μ− ν)ej2πfμdμ. (5)

Then, the output of the m-th MF at the n-th RX xmn(t) can be
written as

xmn(t) =
M∑
m̄=1

αbm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄ne−j2πfm̄nτm̄n

× ej2π(fmn+Δf
mn)t

K−1∑
k=0

∫
pm̄(μ− kTs − τm̄n)

× p∗m(μ− t)ej2π(fm̄n−fmn−Δf
mn)μdμ

=
M∑
m̄=1

αbm̄ξm̄ne
−j2π(f̂c+Δc

r,n)τm̄nej2π(fmn+Δf
mn)(t−τm̄n)

×ejψm̄n

K−1∑
k=0

χmm̄(t−τm̄n−kTs, fm̄n−fmn−Δf
mn)

× ej2πkTs(fm̄n−fmn−Δf
mn). (6)

2Although the frequency error Δf
mn includes both the carrier frequency error

and Doppler mismatch, the former is usually much smaller as the TXs and RXs
are cooperative, which enables accurate tracking of the carrier frequency, e.g.,
via phase-locked loop. The Doppler mismatch can be more significant due to
target motion uncertainty. Therefore, we may refer to Δf

mn as the frequency
error or the Doppler error interchangeably.
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The continuous-time signal xmn(t) is sampled at the pulse
rate, leading to K slow-time samples obtained at time in-
stants t = τmn +Δt

mn + kTs, k = 0, . . . ,K − 1, where Δt
mn

denotes the timing error between the true propagation delay τmn
and its estimate τ̂mn. Then, the output samples can be written
as

xmn(k) = xmn(t)
∣∣∣
t=τmn+Δt

mn+kTs

= αbmξmne
j2πkTsfmn

× χmm(Δt
mn,−Δf

mn)e
−j2π(f̂c+Δc

r,n)τmnej2π(fmn+Δf
mn)Δ

t
mn

× ejψmn +
∑
m̄ �=m

αbm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄nej2πkTsfm̄n

× χmm̄(τmn +Δt
mn − τm̄n, fm̄n − fmn −Δf

mn)

× ej2π(fmn+Δf
mn)(τmn+Δt

mn−τm̄n),

m = 1, . . . ,M ; n = 1, . . . , N ; k = 0, . . . ,K − 1. (7)

Remark 1: It can be seen that the output sample xmn(k)
consists ofM components: the first term is the auto term between
them-th waveform and them-th MF, and the other components
represent the cross terms between the other M − 1 waveforms
and them-th MF. The cross terms vanish when waveforms pm(t)
are orthogonal to each other, which is a routine assumption in the
MIMO literature. In practice, maintaining strict orthogonality
across time and frequency in distributed MIMO radar with asyn-
chronous propagation is infeasible [16]. With non-orthogonal
waveforms or waveforms that are orthogonal only with zero
delay/Doppler, cross terms are present as residuals, which may
become non-negligible and need to be accounted for.

Remark 2: The derivation of (6) and (7) appears to suggest
that the radar receiver requires prior estimates of the target delay
and Doppler, which are unnecessary. The problem is addressed
by having the receiver scanning through the delay/Doppler un-
certainty region, which is discretized into a set of range/Doppler
bins. In our derivation, range/Doppler measurements are ob-
tained by using a set of MFs, each matched to a distinct Doppler
frequency, and sampling the MF outputs at the Nyquist rate. In
practice, the above process is often approximated by a more
efficient procedure, which involves processing the target re-
turn using a fixed MF, sampling the MF output in fast- and
slow-times, and then converting to the frequency domain by the
fast Fourier transform (FFT) [28]. Note that (7) describes the
observed signal only for the range-Doppler bin with the target.
For non-target range-Doppler bins, the measurements contain
noise. These two types of measurements are summarized by the
hypothesis testing data model in (18).

Next, we stack the K slow-time samples and form xmn =
[xmn(0), . . . , xmn(K − 1)]T , which can be expressed as

xmn = αSnXmnhmn, (8)

where the K ×M Doppler steering matrix Sn is

Sn = [s(f1n), . . . , s(fMn)],

s(f) = [1, ej2πTsf , . . . , ej2π(K−1)Tsf ]T , (9)

the M ×M ambiguity function matrix Xmn is diagonal with
diagonal elements given by

[Xmn]m̄m̄ = χmm̄(τmn +Δt
mn − τm̄n, fm̄n − fmn −Δf

mn),
(10)

and the m̄-th element of the M × 1 channel vector hmn is

[hmn]m̄ = bm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄n

× ej2π(fmn+Δf
mn)(τmn+Δt

mn−τm̄n). (11)

2) Without Sync Errors: Equations (7)–(11), which describe
the general signal model for distributed MIMO radar, also hold
for the ideal case without sync errors, by setting Δf

mn = 0,
Δc

r,n = 0, and Δt
mn = 0, ∀m, ∀n. In other words, we need

replace (10) and (11) by

[Xmn]m̄m̄ = χmm̄(τmn − τm̄n, fm̄n − fmn), (12)

[hmn]m̄ = bm̄ξm̄ne
jψm̄ne−j2πf̂cτm̄nej2πfmn(τmn−τm̄n). (13)

Remark 3: It is worth to note that matched filtering and sam-
pling only require the knowledge of the delay τmn and Doppler
fmn, but not the carrier phase offset ψmn. Therefore, phase
errors are absent from the signal model Equations (7)–(13).
However, for coherent detection, the observed signal xmn will
be phase-compensated, and phase estimation errors will impact
such detectors (see Sections III-B and IV-B for details).

B. Co-Located MIMO Radar

Co-located MIMO radar, which is a special case of distributed
MIMO radar, can be described by Equations (7)–(13) with
some simplifications. Specifically, with co-located antennas, we
have identical target delay τmn, ∀m,n, and identical Doppler
frequency fmn, ∀m,n. In addition, if the TXs share the same
oscillator, and so are the RXs, then the phase offset ψmn is
constant ∀m,n.

Assume the radar employs waveforms that are orthogonal
with zero delay and Doppler, i.e.,

χmm̄(0, 0) = 0, ∀m �= m̄. (14)

Then, the cross terms in (7) disappear for co-located MIMO radar
when there is no sync error. In this case, (7) can be simplified as

xmn(k) = αbmξmne
−j2πf̂cτmnχmm(0, 0)ej2πkTsfmnejψmn .

(15)

In turn, (10) and (11) reduces to

[Xmn]m̄m̄ =

⎧⎪⎨⎪⎩
0, m̄ �= m,

χmm(0, 0), m̄ = m,

(16)

[hmn]m̄ = bm̄ξm̄ne
−j2πf̂cτm̄nejψm̄n . (17)

Equations (16) and (17) along with (9), describe the orthogonal
co-located MIMO radar, which will be employed to benchmark
the non-orthogonal distributed MIMO radar.

III. TARGET DETECTION

Let ymn denote the noise contaminated observation of xmn.
The target detection problem is described by the following
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hypothesis testing:

H0 : ymn = wmn,

H1 : ymn = αSnXmnhmn +wmn,

m = 1, 2, . . . ,M, n = 1, 2, . . . , N, (18)

where wmn is the noise, assumed to be Gaussian distributed,
wmn ∼ CN (0, σ2

mnI). Note that the above hypothesis testing
applies to both distributed and co-located MIMO radars. In the
following, we first consider target detection approaches for the
general case, i.e., distributed MIMO radar with possible sync
errors, and then extend/simplify the solutions to the cases with
no sync error and co-located MIMO radar. For target detection,
we discuss several detectors, including a conventional non-
coherent detector (NCD) [2], an approximate coherent detector
(ACD) [27], a coherent detector (CD), and a hybrid detector
(HD). The latter two are new.

A. Non-Coherent Detector

A simple detector for the hypothesis testing (18) is based on
non-coherent integration of the MF outputs [2]:

TNCD �
M∑
m=1

N∑
n=1

yHmnymn
H1

≷
H0

γNCD, (19)

where γNCD is a threshold set for a given level of false alarm. It
is clear that the above NCD is an energy detector.

B. Coherent Detectors

The above NCD does not require any phase synchronization.
Improved detection performance can be achieved by exploiting
phase information. One such detector, ACD, was introduced
in [27], which performs phase compensation for the auto terms
in the MF output (7). Specifically, let ψ̂mn, τ̂mn, and f̂mn denote
estimates of the phase offset, delay, and Doppler frequency. The
ACD is given by

TACD =

∣∣∣∣∣
M∑
m=1

N∑
n=1

K−1∑
k=0

e−jθ̂mnkymn(k)

∣∣∣∣∣
2
H1

≷
H0

γACD, (20)

where γACD is the threshold, ymn(k) denotes the k-th element
of ymn and

θ̂mnk = ψ̂mn − 2πf̂cτ̂mn + 2πkTsf̂mn, (21)

ψ̂mn � ψmn +Δp
mn, (22)

τ̂mn � τmn +Δt
mn, (23)

f̂mn � fmn +Δf
mn, (24)

where Δp
mn, Δt

mn, and Δf
mn denote the phase, timing, and

Doppler errors.
Albeit simple, the ACD has two limitations. First, it performs

phase compensation only for the auto-term, while neglecting
the cross terms in (7), which is non-negligible when the wave-
forms are not orthogonal. Second, it applies equal weights in
combining the outputs from different MFs, which is suboptimal
since the TX-RX propagation paths associated with different
MFs are different with potentially different SNRs. To address
these limitations, we propose an improved CD with derivation

presented in Appendix I-A. Specifically, let Ŝn, X̂mn, and ĥmn
be formed as in Equations (9)–(11), by using the phase, delay,
and Doppler frequency estimates:

Ŝn = [s(f̂1n), . . . , s(f̂Mn)], (25)

[X̂mn]m̄m̄ = χmm̄(τ̂mn − τ̂m̄n, f̂m̄n − f̂mn), (26)

[ĥmn]m̄ = bm̄ξm̄ne
jψ̂m̄ne−j2πf̂cτ̂m̄nej2πf̂mn(τ̂mn−τ̂m̄n). (27)

Then, the new CD is given by

TCD =

∣∣∣∣∣
M∑
m=1

N∑
n=1

(ŜnX̂mnĥmn)
Hymn

∣∣∣∣∣
2
H1

≷
H0

γCD, (28)

where γCD denotes the test threshold. It can be seen that the
CD sequentially performs Doppler filtering by Ŝn, joint phase
compensation and amplitude weighting by X̂mn and ĥmn,
followed by coherent integration across antennas.

C. Hybrid Detector

The above CD requires the knowledge of the phases, the CAFs
of all waveforms, and the channel coefficients ξmn. Although
achieving the best performance with ideal knowledge, CD is
sensitive to knowledge/estimation errors. In Appendix I-B, we
derive a new HD detector that bypasses the stringent requirement
of CD and can still achieve considerable improvement over
the NCD, i.e., it offers a compromise between CD and NCD.
Specifically, the HD is given by

THD =
M∑
m=1

N∑
n=1

‖Ŝn(ŜHn Ŝn)
−1ŜHn ymn‖2

H1

≷
H0

γHD, (29)

where it is assumed K ≥M so that the matrix inverse exists.
Clearly, HD projects ymn onto the subspace spanned by the
Doppler steering vectors Ŝn, which is coherent processing of the
signal observed at the (m,n)-th MF, followed by non-coherent
integration across different RXs and TXs. Hence, it is a hybrid
detector. The projection preserves the target signal ymn undis-
torted, while rejecting the noise component in the orthogonal
subspace. This leads to an improved SNR, allowing HD to
outperform the NCD. Note that HD requires phase coherent only
locally, i.e., within the output of each MF, but not across spatially
distributed antennas.

D. Impact of Sync Errors

For NCD, sync errors in timing, Doppler, and phase only affect
the MF measurements in (18), but do not have any impact on
the NCD implementation (19). This implies that without sync
errors, NCD is still given by (19), except that the MF outputs
ymn are represented by (18), along with (9), (12), and (13).

For ACD and CD, sync errors affect both measurements and
implementation, due to the additional phase/amplitude compen-
sation employed by the latter. In the case of no sync errors,
the MF measurements are given by (18), along with (9), (12),
and (13). The phase compensations {θ̂mnk} in (21) should be
replaced by their true values for ACD (20), while for CD (28), the
amplitude/phase compensation quantities {Ŝn}, {X̂mn}, and
{ĥmn} should be replaced by their error-free counterparts.
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For HD, sync errors also affect both the measurements and
implementation due to the Doppler projection in (29). In the
absence of sync errors, the measurements (18) have the same
representation as discussed above, whereas (29) should be im-
plemented with the true Doppler matrices {Sn}.

E. Extension to Co-Located MIMO Radar

For co-located MIMO radar with orthogonal waveforms, the
MF measurements are represented by (18), along with (9), (16),
and (17). The implementations of the NCD, ACD/CD, and HD
remain the same as in distributed MIMO radar, which are given
by (19), (20), (28) and (29), respectively. Finally, the discussions
on the impact of sync errors in Section III-D for distributed
MIMO radar are also applicable to co-located MIMO radar.

IV. STATISTICAL ANALYSIS

In this section, we provide a statistical analysis of the 4
detectors, NCD, CD, ACD, and HD, introduced in Section III
and derive expressions of their false alarm and detection proba-
bilities. We only consider the general case with sync errors, since
the test statistic of each detector retains the same form, although
the statistical distributions are affected by the presence/absence
of sync errors, but can be easily determined by using the corre-
sponding signal representations as detailed in Section III-D. For
each detector, we derive the probability of detection for the case
of non-fluctuating target and, respectively, the case of fluctuating
target assuming the Swerling I model [28]. Finally, we briefly
discuss how to extend these results to co-located MIMO radar.

A. NCD

Theorem 1: Given the signal model (18) with or without
sync errors, the probability of false alarm and the probability
of detection with a non-fluctuating target for the NCD (19) are
given by

Pf =
Γ(KMN)− Γ̄(KMN, γNCD/σ

2)

Γ(KMN)
, (30)

Pd = QKMN

(
√

λNCD,

√
2γNCD

σ2

)
, (31)

where Γ̄(·, ·) denotes the upper incomplete Gamma function,
Γ(·) the Gamma function,Qm(a, b) the generalized Marcum-Q
function, and the noncentrality parameter is given by

λNCD =

M∑
m=1

N∑
n=1

2|α|2
σ2

‖SnXmnhmn‖2. (32)

Proof: See Appendix II-A.
Next, we examine the average probability of detection in the

case of fluctuating target. For Swerling I target, the probability
density function (pdf) of the radar cross section (RCS) ρ = |α|2
is [28]

f(ρ) =
1

ρ̄
e−ρ/ρ̄, (33)

where ρ̄ = E{ρ}. Let λ′
NCD � λNCD/ρ. The average probability

of detection is given by

P̄d =

∫ ∞

0

f(ρ)Pddρ

=

∫ ∞

0

1

ρ̄
e−ρ/ρ̄QKMN

(√
λ′

NCDρ,

√
2γNCD

σ2

)
dρ

=
Γ̄(KMN, γNCD/σ

2)

Γ(KMN)

+
λ′

NCD

(
γNCD
σ2

)KMN
F1(1,KMN + 1,

γNCDλ′
NCD

σ2(λ′
NCD+2/ρ̄) )

(KMN)!(λ′
NCD + 2/ρ̄)e

γNCD
σ2

,

(34)

wherex!denotes the factorial,F1(·, ·, ·) is the Kummer confluent
hypergeometric function [29], and the third equality is obtained
by using [30, Theorem 1].

B. CD

Theorem 2: Given the signal model (18) with or without
sync errors, the probability of false alarm and the probability
of detection with a non-fluctuating target for the CD (28) are
given by

Pf = e−
γCD
ςσ2 , (35)

Pd = Q1(
√

λCD,

√
2γCD

ςσ2
), (36)

where the noncentrality parameter is given by

λCD =
2|α|2

∣∣∣∑M
m=1

∑N
n=1(ŜnX̂mnĥmn)

HSnXmnhmn

∣∣∣2
σ2
∑M
m=1

∑N
n=1 ‖ŜnX̂mnĥmn‖2

,

(37)
and the scaling factor is

ς =

M∑
m=1

N∑
n=1

‖ŜnX̂mnĥmn‖2. (38)

Proof: See Appendix II-B.
Similar to NCD, the average probability of detection for the

case of Swerling I fluctuating target is given by

P̄d =

∫ ∞

0

1

ρ̄
e−ρ/ρ̄Q1(

√
λ′

CDρ,

√
2γCD

ςσ2
)dρ

= Γ̄(1,
γCD

ςσ2
) +

λ′
CDγF1(1, 2,

γCDλ′
CD

ςσ2(λ′
CD+2/ρ̄) )

ςσ2(λ′
CD + 2/ρ̄)e

γCD
ςσ2

, (39)

where λ′
CD � λCD/ρ.

C. ACD

Theorem 3: Given the signal model (18) with or without
sync errors, the probability of false alarm and the probability
of detection with a non-fluctuating target for the ACD (20) are
given by

Pf = e−
γACD

KMNσ2 , (40)
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Pd = Q1(
√

λACD,

√
2γACD

KMNσ2
), (41)

where

λACD =
2
∣∣∣∑M

m=1

∑N
n=1

∑K−1
k=0 e

−jθ̂mnkxmn(k)
∣∣∣2

KMNσ2
, (42)

where θ̂mnk is defined in (21) and xmn(k) is defined in (7).
Proof: See Appendix II-C.
Define λ′

ACD � λACD/ρ. The average probability of detection
for the case of Swerling I fluctuating target is given by

P̄d = Γ̄(1,
γACD

KMNσ2
)

+
λ′

ACDγACDF1(1, 2,
γACDλ′

ACD
KMNσ2(λ′

ACD+2/ρ̄) )

KMNσ2(λ′
ACD + 2/ρ̄)e

γACD
KMNσ2

. (43)

D. HD

Theorem 4: Given the signal model (18) with or without
sync errors, the probability of false alarm and the probability
of detection with a non-fluctuating target for the HD (29) are
given by

Pf =
Γ(NM2)− Γ̄(NM2, γHD/σ

2)

Γ(NM2)
, (44)

Pd = QNM2

(
√

λHD,

√
2γHD

σ2

)
, (45)

where the noncentrality parameter is given by

λHD =
|α|2∑M

m=1

∑N
n=1 ‖Ŝn(ŜHn Ŝn)

−1ŜHn SnXmnhmn‖2
σ2/2

.

(46)

Proof: See Appendix II-D.
Then, the average probability of detection for the case of

Swerling I fluctuating target is given by

P̄d =
Γ̄(NM2, γHD/σ

2)

Γ(NM2)

+
λ′

HD

(
γHD
σ2

)NM2

F1(1, NM
2 + 1,

γHDλ′
HD

σ2(λ′
HD+2/ρ̄) )

(NM2)!(λ′
HD + 2/ρ̄)e

γHD
σ2

,

(47)

where λ′
HD � λHD/ρ.

E. Extension to Co-Located MIMO Radar

As discussed in Section III-E, NCD, CD, ACD, and HD can
be applied for target detection in co-located MIMO radar. It is
easy to see that Theorems 1 to 4, as well as the expressions (34),
(39), (43), and (47) for the average probability of detection, still
hold for co-located MIMO radar. The only difference is that the
noncentrality parameter λ involved in each detector, as well as ς
(38) for the CD, should be calculated by using the corresponding
signal representations, as discussed in Section III-E.

V. SIMULATION RESULTS

In this section, simulation results are presented to demonstrate
the performance of the NCD [2], ACD [27], along with the
proposed CD and HD, for target detection in distributed MIMO
radar. The performance of these detectors are assessed by using
both computer simulation and the analytical results reported in
Section IV. The SNR of the (m,n)-th propagation path, which
is measured at the n-th RX matched to the m-th TX waveform,
is defined as

SNRmn =
|bmξmn|2E{|α|2}

σ2
mn

, (48)

where the noise variance is chosen as σ2
mn = 1. We consider

a Swerling I target mdel, where the target amplitude α ∼
CN (0, σ2) is randomly generated from trial to trial but remains
fixed within a coherent processing interval (CPI) in Monte
Carlo simulations. We assume identical SNR for all paths, i.e.,
SNRmn = SNR, ∀m,n, except in Section V-B where the effect
of different SNRs is examined. The simulation scenarios involve
a distributed MIMO radar withM = 2TXs andN = 1RX. The
propagation delays are τ11 = 0.61Tp and τ21 = 0.1Tp unless
otherwise stated, where Tp = 10−5 s is the pulse duration. The
pulse repetition frequency (PRF) is 500 Hz, the carrier frequency
is 3 GHz, the target Doppler frequencies are f11 = 200 Hz
and f21 = 190 Hz, unless otherwise stated, and the number of
pulses within a CPI is K = 12. The phases are ψ11 = 0.1π and
ψ21 = 0.3π unless otherwise stated and the probability of false
alarm is Pf = 10−4.

In the following, we first introduce two sets of linear frequency
modulation (LFM) based waveforms, also known as chirps,
which are used by the MIMO radar for testing. Then, we ex-
amine the performance of these detectors in various distributed
environments with non-identical propagation path strengths,
different delays, phases, and Doppler frequencies, as well as
in the presence of sync errors.

A. Test Waveforms

LFM waveforms, which are frequently used in radar, are
employed as test waveforms. We consider two types of LFM
waveforms with different ambiguity characteristics. The first are
multi-band chirps:

pm(t) =
1√
Tp
ejπβ(t

2/Tp+ηmt)

0 ≤ t ≤ Tp, m = 1, . . . ,M, (49)

where β is the bandwidth of the waveform and η is a bandwidth
gap parameter that is selected to keep the frequency bands of
different waveforms non-overlapping. The ambiguity functions
of the multi-band chirps can be obtained by using (49) in (5),
which are shown in Fig. 2(a) whenM = 2, η = 3, and β = 400
kHz. The multi-band chirps are orthogonal with zero cross
ambiguity at zero delay and Doppler, i.e., when the waveforms
arrive at the RX synchronously. However, they are not strictly or-
thogonal in distributed MIMO radar due to asynchronous propa-
gation, but can be considered as approximately orthogonal since
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Fig. 2. Auto- and cross-ambiguity function versus the delay (normalized by
the pulse duration Tp) with zero Doppler.

the cross ambiguity is relatively low for small delay/Doppler
offsets.

The second are single-band chirps with overlapping instan-
taneous frequency. For M = 2, we employ an up chirp given
by

pu(t) =
1√
Tp
ej(πβt

2/Tp+κπβt), 0 ≤ t < Tp, (50)

and a down chirp

pd(t) =
1√
Tp
ej(−πβt

2/Tp+2πβt+κπβt), 0 ≤ t ≤ Tp, (51)

where κ is a constant that controls the center frequency of the
chirps. The general expression of the single-band chirps can be
found in [27, eq. (9)]. Fig. 2(b) depicts the ambiguity functions
of the single-band chirps when M = 2, κ = 3, and β = 400
kHz, which shows the single-band chirps are non-orthogonal
waveforms with high cross ambiguity.

B. Effect of Unequal Channel Strength

We consider a scenario when the two propagation paths from
the TXs to the RX have different SNR. In particular, we fix
SNR11 = 0 dB while varying SNR21. Figs. 3(a) and (b) depict
the average probability of detection P̄d versus SNR21, where P̄d
is determined by using the theoretical analysis in Section IV
and simulation, respectively. It is seen that the analysis per-
fectly matches the computer simulation for all 4 detectors. With

Fig. 3. P̄d of distributed MIMO radar versus SNR offset SNR21 − SNR11,
where SNR11 = 0 dB. The solid lines are obtained from theoretical analysis
while the markers (circles) are obtained by simulation.

the multi-band chirps, Fig. 3(a) shows that CD outperforms
ACD when SNR21 �= SNR11, where the benefit comes from
the amplitude weighting employed by CD. In addition, HD is
slightly worse than ACD but outperforms NCD since it employs
partial coherent combining within each CPI but non-coherent
combining across different antennas.

With single-band chirps, the 4 detectors exhibit similar per-
formance behaviors in Fig. 3(b) except that the gap between CD
and ACD is larger and, furthermore, CD outperforms ACD even
at SNR21 = SNR11. This is because with single-band chirps, the
cross terms in the MF outputs (7) are more significant, which are
accounted for by CD in its phase compensation but are neglected
by ACD.

C. Effect of Propagation-Induced Offsets and Cross Terms

As shown in Section II-A, asynchronous propagation is inher-
ent in distributed MIMO radar, leading to inevitable offsets in
delays, Doppler frequencies, and phases, as well as cross terms
in the MF output (7), even when the RX is perfectly synchronized
with the TXs. Next, we examine the effect of such asynchronous
propagation induced offsets on target detection. From now on,
we no longer consider ACD, which is superseded by CD. In
addition, we include the co-located MIMO radar as a bench-
mark, which assumes the TXs and RX are synchronous with
zero delay/Doppler/phase offsets and orthogonal waveforms are
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Fig. 4. P̄d of distributed MIMO radar versus delay offset τ21 − τ11 (normal-
ized by the pulse duration Tp) in comparison with the synchronous co-located
MIMO radar, when SNR = 0 dB, ψ11 = ψ21 = 0, and f21 = f11 = 0.

employed, and as a result, there are no cross terms in the MF
output (see Section II-B and III-E).

Fig. 4 shows the performance of the CD, HD, and NCD
of the distributed MIMO radar under various timing offsets,
in comparison with the co-located MIMO radar, where P̄d is
computed analytically. It can be seen that the performance of all
3 detectors for distributed MIMO radar fluctuates as the delay
offset varies. This is because the propagation delay affects the
phase of the auto and cross terms, as shown in (7). The auto
and cross terms may add constructively when the difference
of their phases is between −π/2 and π/2, or destructively
when otherwise, which causes the fluctuation of the detection
performance. A comparison between Figs. 4(a) and (b) shows
that the single-band chirps exhibit a larger fluctuation. This is
because the single-band chirps have a larger cross terms than the
multi-band chirps.

Figs. 5 and 6 show the detection performance of the CD,
HD, and NCD for the distributed MIMO radar versus phase
offset and, respectively, Doppler offset, in comparison with the
benchmark co-located MIMO radar. These detectors are seen to
exhibit similar performance fluctuations as observed in Fig. 4
for similar reasons. Note that even though HD and NCD do not
use phase information for detection, the observed signal varies
with the phase offset, which leads to performance variation for
these detectors.

Fig. 5. P̄d of distributed MIMO radar versus phase offset ψ21 − ψ11 (nor-
malized by π) in comparison with the synchronous co-located MIMO radar,
when SNR = 0 dB, τ11 = 0.61Tp, τ21 = 0.1Tp, and f21 = f11 = 0.

It is interesting to note from Figs. 4 to 6 that the distributed
MIMO radar, whose MF outputs include both auto- and cross-
terms, may out- or under-perform the co-located MIMO radar,
which only has the auto-terms, due to the aforementioned
constructive or destructive addition. The challenge is that it is
non-trivial to control how the auto- and cross-terms are added
with each other, which are affected by many factors including
the delays, phases, and Doppler frequencies of the propagation
paths, as well as the ambiguities of the waveforms.

D. Effect of Sync Errors

Finally, we evaluate the effects of sync errors, including
timing, phase, and Doppler frequency errors, on detection per-
formance. Fig. 7 depicts the simulated and analytical P̄d for CD,
HD, and NCD under various timing conditions. Again, there is
a perfect match between the simulated and analytical results. In
addition, it is seen that in general, as the timing error increases,
the performance of all 3 detectors degrades. This is because a
larger timing error implies the sampling location is further away
from the peak of the auto ambiguity function, which results in
a higher loss of the energy of the desired auto term and the
associated SNR. It was observed in [27], if the timing error is
much smaller than the reciprocal of the waveform bandwidth
but still significant relative to the carrier period so that the SNR
loss is negligible, then it will only impact coherent detectors
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Fig. 6. P̄d of distributed MIMO radar versus Doppler offset f21 − f11 (nor-
malized by the PRF) in comparison with the synchronous co-located MIMO
radar, when SNR = 0 dB, τ11 = 0.61Tp, τ21 = 0.1Tp, and ψ11 = ψ21 = 0.

such as ACD as the timing-error-induced phase error may not
be negligible. The observation applies to CD as well. For space
limitation, we do not duplicate the result here.

The impact of phase error is shown in Fig. 8. It is observed
that the phase error only affects CD, which is because the
implementation of HD and NCD does not require any knowledge
of the phase while the CD requires it for coherent integration
across antennas. On the other hand, Fig. 9 shows the impact of
Doppler frequency error. It is seen that Doppler frequency error
degrades the performance of both CD and HD but not that of
NCD. This is because the Doppler knowledge is required for the
implementation of CD and HD. Interestingly, HD outperforms
NCD with or without the Doppler error, while it exhibits much
better performance than CD when Doppler error is present.

VI. CONCLUSION

We examined the impact of non-orthogonal waveforms and
sync errors on target detection in distributed MIMO radar. Our
main contributions include the general asynchronous signal
model for distributed MIMO radar, the new CD and HD de-
tectors, a complete statistical analysis of CD, HD, and the pre-
viously introduced NCD and ACD for distributed MIMO radar
with sync errors. Our results indicate that cross terms stemmed
from non-orthogonal waveforms can be beneficial or detrimental
to target detection, while sync errors in timing, frequency, and
phase have different impacts on different detectors. The fact that

Fig. 7. P̄d of distributed MIMO radar versus SNR without timing errors
(Δt

mn = 0) or with two sets of timing errors. The solid lines are obtained from
theoretical analysis while the markers (circles) are obtained by simulation.

detection can benefit from cross terms opens up future research
possibilities for TX-side encoding to reap such performance
gain, if propagation related delay/frequency offsets in delay can
be made available to the TXs. Another future topic of interest is
to extend the study to cases involving clutter and extended target
detection.

APPENDIX I
DERIVATIONS OF CD (28) AND HD (29)

A. Derivation of CD (28)

Coherent detection requires the knowledge of the Doppler
steering matrices Sn, ambiguity function matrices Xmn, and
channel vectors hmn for phase and amplitude compensation.
Given these estimates, a CD can be obtained by using a gener-
alized likelihood ratio test (GLRT) framwork, which is detailed
next.

Let Y � [y11, . . . ,yMN ]T ∈ CMN×K , which contains ob-
servations from all RXs. According to (18), the likelihood
function under H1 and H0 can be expressed as

p1(Y;α) =
1

(πσ2)KMN

× exp

(
− 1

σ2

M∑
m=1

N∑
n=1

‖ymn − αSnXmnhmn‖2
)
, (52)
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Fig. 8. P̄d of distributed MIMO radar versus SNR without phase error
(Δp

mn = 0) or with phase errors (Δp
11 = 0.053π and Δ

p
21 = 0.79π).

p0(Y) =
1

(πσ2)KMN
exp

(
− 1

σ2

M∑
m=1

N∑
n=1

‖ymn‖2
)
. (53)

It follows the log-likelihood ratio (LLR) is

l(Y) = log
p1(Y;α)

p0(Y)

=
1

σ2

M∑
m=1

N∑
n=1

(‖ymn‖2 − ‖ymn − αSnXmnhmn‖2
)
.

(54)

The GLRT requires the maximum likelihood estimate (MLE)
of α under H1. Taking the derivative of the log-likelihood
ln p1(Y;α) w.r.t. α and setting it to zero yields the MLE

α̂ =

∑M
m=1

∑N
n=1(SnXmnhmn)

Hymn∑M
m=1

∑N
n=1(SnXmnhmn)H(SnXmnhmn)

. (55)

Substituting the MLE into the LLR:

l(Y) =

∑M
m=1

∑N
n=1 y

H
mnSn(S

H
n Sn)

−1SHn ymn

σ2
∑M
m=1

∑N
n=1(SnXmnhmn)H(SnXmnhmn)

.

(56)

The denominator of l(Y) can be absolved into the test threshold,
which reduces the GLRT to

T̃CD =

∣∣∣∣∣
M∑
m=1

N∑
n=1

(SnXmnhmn)
Hymn

∣∣∣∣∣
2

. (57)

Fig. 9. P̄d of distributed MIMO radar versus SNR without Doppler frequency
errors (Δf

mn = 0 Hz) or with Doppler frequency errors (Δf
11 = −25 Hz and

Δf
21 = 10 Hz).

For practical implementation, Sn, Xmn, and hmn are con-
structed from delay/phase/Doppler estimates. In the presence of
sync errors, they are formed by Equations (25)–(27), in which
case the CD is given by (28).

B. Derivation of HD (29)

The HD can be obtained by using GLRT and treating
βmn = αXmnhmn, which lumps the target amplitude α, am-
biguity function matrix Xmn, and channel coefficient hmn,
as an unstructured unknown vector. Specifically, let β �
[β11, . . . ,βMN ]T ∈ CMN×K . According to (18), the likeli-
hood functions can be expressed as

p1(Y;β) =
1

(πσ2)KMN

× exp

(
− 1

σ2

M∑
m=1

N∑
n=1

‖ymn − Snβmn‖2
)
,

(58)

p0(Y) =
1

(πσ2)KMN
exp

(
− 1

σ2

M∑
m=1

N∑
n=1

‖ymn‖2
)
,

(59)
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The MLE of βmn is obtained by taking the derivative of
ln p1(Y;β) w.r.t. βmn and setting it to zero:

β̂mn = (SHn Sn)
−1SHn ymn. (60)

Using the above MLE in the LLR along with some simplifica-
tions leads to the following test statistic

T̃HD =
M∑
m=1

N∑
n=1

‖Sn(SHn Sn)
−1SHn ymn‖2. (61)

In practice, Sn is replaced by Ŝn formed from (25) along with
Doppler estimates, leading to (29).

APPENDIX II
PROOFS OF THEOREMS 1 TO 4

A. Proof of Theorem 1

Consider the NCD (19), which is included below for easy
reference (dropping the subscript “NCD” for simplicity)

T =

M∑
m=1

N∑
n=1

yHmnymn. (62)

Clearly, T is a square sum involving 2KMN independent and
identically distributed (i.i.d.) real Gaussian random variables
with variance σ2/2 and zero mean (under H0) and non-zero
mean (under H1), respectively. Hence,

T �
{

σ2

2 X 2
2KMN under H0

σ2

2 X ′2
2KMN (λ) under H1,

(63)

where X 2
2KMN and X ′2

2KMN (λ) denote the central and, respec-
tively, noncentral chi-square distribution with 2KMN degrees
of freedom and the noncentrality parameter λ is given by (32).
Based on the above distributions, the probability of false alarm
and the probability of detection can be calculated as

Pf =

∫ ∞

γ

f(T |H0)dT

=
2

σ2

∫ ∞

γ

1

2KMNΓ(KMN)

(
2x

σ2

)KMN−1

e−
x
σ2 dx

=
Γ(KMN)− Γ̄(KMN, γ/σ2)

Γ(KMN)
(64)

Pd =

∫ ∞

γ

f(T |H1)dT

=
1

σ2

∫ ∞

γ

e−
x+λσ2/2

σ2

(
2x

λσ2

)KMN−1
2

I(KMN−1)

(√
2λx

σ2

)
dx

= QKMN

(√
λ,

√
2γ

σ2

)
. (65)

B. Proof of Theorem 2

Let Y �
∑M
m=1

∑N
n=1(ŜnX̂mnĥmn)

Hymn. The test statis-
tic of CD (28) can be written as

T = |Y |2 . (66)

It is easy to show that Y is complex Gaussian with

E{Y |H0} = 0, (67)

E{Y |H1} = α

M∑
m=1

N∑
n=1

(ŜnX̂mnĥmn)
HSnXmnhmn, (68)

var{Y |H0} = var{Y |H1} = σ2
M∑
m=1

N∑
n=1

‖ŜnX̂mnĥmn‖2.

(69)

Let

T̃ � 2T

σ2
∑M
m=1

∑N
n=1 ‖ŜnX̂mnĥmn‖2

. (70)

It follows that

T̃ �
{

X 2
2 under H0

X ′2
2 (λ) under H1,

(71)

where the noncentrality parameter λ is given by (37). Hence, the
probability of false alarm is given by

Pf = P (T > γ|H0) = P

(
T̃ >

2γ

ςσ2

∣∣∣H0

)
= e−

γ

ςσ2 , (72)

where ς is defined in (38). Likewise, the probability of detection
is given by

Pd = P (T > γ|H1) = P (T̃ >
2γ

ςσ2
|H1)

= 1− Fχ′2
2 (λ)(

2γ

ςσ2
) = Q1(

√
λ,

√
2γ

ςσ2
), (73)

where Fχ′2
2 (λ)(x) = 1−Q1(

√
λ,
√
x) is the cumulative distri-

bution function (CDF) of the non-central chi-square random
variable χ

′2
2 (λ).

C. Proof of Theorem 3

Define X =
∑M
m=1

∑N
n=1

∑K−1
k=0 e

−jθ̂mnkymn(k). The test
statistic of ACD (20) is equivalent to

T = |X|2 . (74)

Based on the distribution of ymn, we can obtained the dis-
tribution of ymn(k) as ymn(k) � CN (0, σ2) under H0 and
ymn(k) � CN (xmn(k), σ

2) under H1. Thus, we have

X �

⎧⎨⎩
CN (0, σ2) under H0

CN (
M∑
m=1

N∑
n=1

K−1∑
k=0

e−jθ̂mnkxmn(k), σ
2) under H1,

(75)
where xmn(k) is defined in (7). The distribution of the test
statistic becomes

T �
{

σ2

2 X 2
2 under H0

σ2

2 X ′2
2 (λ) under H1,

(76)

where the noncentrality parameter is given by (42). Then, the
probability of false alarm is

Pf = P (T > γ|H0) = e−
γ

KMNσ2 , (77)

and the probability of detection is

Pd = P (T > γ|H1) = 1− Fχ′2
2 (λ)(

2γ

KMNσ2
)

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on September 07,2021 at 18:55:17 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: SIGNAL DETECTION IN DISTRIBUTED MIMO RADAR WITH NON-ORTHOGONAL WAVEFORMS AND SYNC ERRORS 3683

= Q1(
√

λ,

√
2γ

KMNσ2
). (78)

D. Proof of Theorem 4

The HD test statistic (29) can be written as

T =

M∑
m=1

N∑
n=1

ϕ̂HmnŜ
H
n Ŝnϕ̂mn, (79)

where ϕ̂mn = (ŜHn Ŝn)
−1ŜHn ymn, which is a complex Gaus-

sian random vector since it is a linear transformation of ymn.
Specifically, under H1, ϕ̂mn � CN (ϕmn,Cϕ̂mn

), where

ϕmn = α(ŜHn Ŝn)
−1ŜHn SnXmnhmn, (80)

Cϕ̂mn
= σ2(ŜHn Ŝn)

−1. (81)

As a result, we have

ϕ̂HmnŜ
H
n Ŝnϕ̂mn
σ2/2

= 2ϕ̂HmnC
−1
ϕ̂mn

ϕ̂mn. (82)

Next, let ϕmn = νmn + jμmn and ϕ̂mn = ν̂mn + jμ̂mn, and
define the 2M × 1 real vectors εmn = [νTmn μ

T
mn]

T and ε̂mn =
[ν̂Tmn μ̂Tmn]

T . Then, the test statistic is equivalent to [31, Ap-
pendix 15A]:

ϕ̂HmnŜ
H
n Ŝnϕ̂mn
σ2/2

= ε̂TmnC
−1
ε̂mn

ε̂mn, (83)

where Cε̂mn
is the 2M × 2M covariance matrix of the real

vector ε̂mn. Since ϕ̂mn � CN (ϕmn,Cϕ̂mn
), we have

ε̂mn � N (εmn,Cε̂mn
). (84)

Clearly, ε̂TmnC
−1
ε̂mn

ε̂mn is central (underH0) and noncentral (un-
der H1) chi-square distributed [32, Section 2.3]. Equivalently,
we have

ϕ̂HmnŜ
H
n Ŝnϕ̂mn
σ2/2

�
{

X 2
2M under H0

X ′2
2M (λmn) under H1,

(85)

where

λmn = εTmnC
−1
ε̂mn

εmn = 2ϕHmnC
−1
ϕ̂mn

ϕmn

=
|α|2hHmnXH

mnS
H
n Ŝn(Ŝ

H
n Ŝn)

−1ŜHn SnXmnhmn
σ2/2

. (86)

According to the summation rule for a sum of weighted cen-
tral/noncentral chi-square random variables [33], the original
test statistic of the HD is given by

T

σ2/2
�
{

X 2
2NM2 under H0

X ′2
2NM2(λ) under H1,

(87)

where λ =
∑M
m=1

∑N
n=1 λmn. Based on the above distribu-

tions, the probability of false alarm and the probability of detec-
tion of the HD can be obtained by employing similar derivations
as in (64) and (65):

Pf =
Γ(NM2)Γ̄(NM2, γ/σ2)

Γ(NM2)
(88)

Pd = QNM2

(√
λ,

√
2γ

σ2

)
. (89)
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