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Abstract—We consider the joint transmit and receive design
for multi-input multi-output radar with slow-time processing. The
radar employs multiple transmit apertures to improve diversity.
The design parameters include the spatial transmit code for each
aperture, which varies from pulse to pulse to provide Doppler shap-
ing, and the space-time receive filter, to jointly optimize the radar
output signal-to-interference-and-noise ratio (SINR). To relieve the
dependence on specific target parameters as required by some
prior methods, we use the average SINR, averaged with respect
to the target location/Doppler uncertainties, as the design metric.
Simulation results show that our proposed multi-aperture solution
outperforms a previous single-aperture based space-time transmit
and receive design as well as the conventional phased-array radar.

Index Terms—MIMO radar, space-time transmit and receive
design, multi-aperture, average SINR.

I. INTRODUCTION

IN RECENT years, multi-input multi-output (MIMO) radar
has been of significant interest owing to its unique advantages

over phased-array radar [1]–[3], i.e., better target detection
capability [4]–[7] and superior parameter estimation perfor-
mance [8]–[11]. Joint transmit and receive design through maxi-
mizing the output signal-to-interference-and-noise ratio (SINR)
is a key enabling technology.

Joint design can be performed by jointly optimizing the
transmit waveform and receive filter using the prior target and
clutter knowledge [12]. Along this direction, [13] proposed
two sequential optimization algorithms to maximize the output
SINR with constant-modulus and similarity constraints by using
semidefinite relaxation (SDR). A different design which relaxes
the constant-modulus constraint by a peak-to-average power
ratio constraint was considered in [14]. Joint waveform and
receive design for slow-moving target detection in clutter using
space-time adaptive processing was examined in a number of
works via cyclic optimization [15], mutual information maxi-
mization [16], and worst-case optimization [17]. In contrast, [18]
proposed a joint design of the space-time transit code and receive
filter, assuming all transmitters employ the same waveform.
Moreover, the joint design problem can be pursued only in
the spatial domain. Increasing the number of transmit apertures
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brings more degrees of freedom for interference suppression [3].
Transmit aperture optimization under a power constraint was
investigated in [19], while [20] considered a similar problem
with an additional similarity constraint with respect to (w.r.t.)
some desired transmit beam patterns.

Similar to [18], we consider a space-time transmit and receive
design problem for MIMO radar. A major distinction is that,
while [18] uses a single aperture for transmission, we incorporate
multiple apertures in the design. To relieve the dependence on
specific target parameters as required by most prior studies, we
use the average SINR, averaged w.r.t. the target location/Doppler
uncertainties, as the design metric. A sequential optimization
algorithm is proposed to solve the joint design problem by iter-
atively optimizing the SINR w.r.t. the transmit code and receive
filter. The optimization w.r.t. the multi-aperture transmit code is
converted into a fractional programming (FP) problem by using a
semidefinite programming (SDP) based approximation. The FP
problem is solved by Dinkelbach’s algorithm, which is followed
by a randomization procedure to obtain the optimum transmit
code. The simulation results show that our proposed method
converges in a few iterations and outperforms the single-aperture
scheme [18] in terms of the average output SINR.

II. SIGNAL MODEL

A MIMO radar consisting of Nt transmit antennas (TXs)
and Nr receive antennas (RXs) was considered in [18]. Each
TX emits a slow-time coded coherent train of K pulses. Let
bk = [b1(k), . . . , bNt(k)]

T ∈ CNt×1 denote a complex space-
time code for the k-th pulse, k = 1, . . . ,K, where (·)T denotes
the transpose. Suppose there is a moving target at an azimuth
angle θ0. At the RX, the received signal is down-converted,
matched-filtered, and sampled at the pulse rate. The output can
be expressed as [18]

ỹk = α0e
j2π(k−1)v0ar(θ0)a

T
t (θ0)bk + d̃k + ñk, (1)

where d̃k donates the clutter, ñk the noise, α0 the complex
target amplitude, v0 the normalized target Doppler frequency,
while at(θ0) ∈ CNt×1 and ar(θ0) ∈ CNr×1 denote the transmit
and receive steering vector. For uniform linear array (ULA), the
steering vector at(θ0) = [1, e−jπ sin θ0 , . . . , e−jπ(Nt−1) sin θ0 ]T

and ar(θ0) is similarly defined.
Unlike the single-aperture system in [18], we consider a

MIMO radar that employsM(M ≤ Nt) transmit apertures using
M orthogonal waveforms. For the m-th aperture, the TXs trans-
mit a space-time code bm,k ∈ CNt×1 during the k-th pulse. A set
of matched-filters are used at the receivers to separate signals
from different apertures. Then, the received signal associated
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with the m-th aperture can be written as

ym,k = α0e
j2π(k−1)v0ar(θ0)a

T
t (θ0)bm,k + dm,k + nm,k,

where dm,k is the clutter and nm,k is the noise. By stacking the
M outputs ym,k into a vector yk = [yT

1,k, . . . ,y
T
M,k]

T , we have

yk = α0e
j2π(k−1)v0A(θ0)bk + dk + nk, (2)

where A(θ0) = IM ⊗ [ar(θ0)a
T
t (θ0)], ⊗ denotes the Kro-

necker product, IM the M ×M identity matrix, and bk, dk,
nk are similarly formed from bm,k, dm,k, and nm,k. Let y =
[yT

1 , . . . ,y
T
K ]T . The received signals becomes

y = α0P(θ0, v0)b+ d+ n, (3)

where P(θ0, v0) = Diag(p(v0))⊗A(θ0), Diag(p(v0)) de-
notes a diagonal matrix formed by the temporal steering vector
p(v0) = [1, ej2πv0 , . . . , ej2π(K−1)v0 ]T , and b,d,n are similarly
formed from bk, dk, and nk.

A space-time receive filter w ∈ CNrMK×1 is used to filter the
received signal y. The output can be expressed as

z = wHy = α0w
HP(θ0, v0)b+wHd+wHn, (4)

where (·)H denotes the conjugate transpose. The problem of
interest is to jointly design b and w.

III. PROPOSED APPROACH

In this section, we first introduce the design criterion, the
average output SINR, for the joint design of the multi-aperture
code b and receive filter w in (4). Then, a sequential procedure
is proposed to iteratively optimize the average SINR w.r.t. w
and b.

A. Average Output SINR

Since the target parameters θ0 and v0 are usually unknown,
we propose to employ the average SINR as the design metric

ρ(b,w) =
σ2
0E[

∣∣wHP(θ0, v0)b
∣∣2]

E[|wHd|2] +wHRw
, (5)

where θ0, v0, and α0 are modeled as independent random
variables. σ2

0 = E[|α0|2] and R is the noise covariance matrix.
The clutter d =

∑L
l=1 αlP(θl, vl)b consists of echoes from L

scatterers located at θl with complex amplitudes αl and normal-
ized Doppler vl, whereαl, θl, and vl are modeled as uncorrelated
random variables [12]. Hence, the average SINR becomes

ρ(b,w) =
wHΓbw

wHΘbw +wHRw
=

bHΓwb

bHΘwb+wHRw
, (6)

where Γb and Θb are NrMK ×NrMK covariance matrices
depending onb, whileΓw andΘw areNtMK ×NtMK covari-
ance matrices depending on w. The explicit expressions for Γb

andΓw as well asΘb andΘw are given by (16) and, respectively,
(23) in Appendix A.

B. Proposed Design

The joint design problem seeks to maximize the average SINR
under a joint energy and constant-modulus constraint:

max
b,w

ρ(b,w)

s.t. |b(n)| = 1/
√

NtMK, n = 1, . . . , NtMK.

(7)

Next, we propose an alternating method that sequentially and
iteratively optimizes the average SINR w.r.t. w and b.

1) Receive Filter Design: We first optimize the receive filter
w by fixing the transmit code b to the one obtained from the �-th
iteration b(�). Then, problem (7) becomes

max
w

wHΓ
(�)
b w

wHΘ
(�)
b w +wHRw

, (8)

whose solution w(�+1) is the eigenvector corresponding to the
largest eigenvalue of the matrix (Θ

(�)
b +R)−1Γ

(�)
b .

2) Multi-Aperture Transmit Code Design: By fixing w to
w(�+1), problem (7) can be rewritten as

max
b

bHΓ
(�+1)
w b

bHΘ
(�+1)
w b+

(
w(�+1)

)H
Rw(�+1)

s.t. |b(n)| = 1/
√

NtMK, n = 1, . . . , NtMK,

(9)

which is non-convex and can be relaxed into an SDP problem:

max
B

tr(Γ(�+1)
w B)

tr(Θ(�+1)
w B) +

(
w(�+1)

)H
Rw(�+1)

s.t. Diag(B) = INtMK/(NtMK), B � 0,

(10)

where B = bbH and B � 0 indicates that B is a positive
semidefinite matrix. Problem (10) is a FP problem that can be
solved by Dinkelbach’s algorithm [21], [22]. Specifically, by
introducing a slack variable ζ, (10) can be converted into

max
B,ζ

f(B)− ζg(B)

s.t. Diag(B) = INtMK/(NtMK), B � 0,
(11)

where f(B) represents the numerator of the ratio in (10), g(B)
corresponds to the denominator. Problem (11) can be solved with
an inner iteration which sequentially and iteratively maximizes
the objective function w.r.t. B and ζ.

Denote the slack variable ζ at the �1-th inner iteration as ζ(�1).
Then, the matrix B(�1+1) can be obtained by solving

max
B

f(B)− ζ(�1)g(B)

s.t. Diag(B) = INtMK/(NtMK), B � 0,
(12)

which is a convex problem and can be solved through standard
numerical solvers, e.g., CVX [23]. Once the solution for (12)
is obtained, we can update the slack variable ζ(�1+1) for the
(�1 + 1)-st iteration by

ζ(�1+1) =
f(B(�1+1))

g(B(�1+1))
. (13)

The slack variable ζ is initialized as 0 for each inner iteration
and the iterative process of Dinkelbach’s algorithm ends when
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Fig. 1. Convergence behavior of the proposed method.

the improvement of the cost function of (11) over two adjacent
iterations is smaller than a tolerance δ, i.e. δ = 10−3.

After solving (10), we need to convert the optimal solution
B(�+1) into a feasible solution b(�+1) to (9). A randomization
method can be used to obtain a solution b(�+1) from B(�+1)

[24]. Consider a random complex vector ξ with zero-mean
and covariance matrix B(�+1). It is easy to show that (12) is
equivalent to the following stochastic optimization problem

max
E[ξξH ]

F(ξ)

s.t. E[Diag(ξξH)] = INtMK/(NtMK), E[ξξH ] � 0,

(14)

where F(ξ) = E[ξΓ
(�+1)
w ξH ]− ζ(�1)(E[ξΘ

(�+1)
w ξH ] +

(w(�+1))HRw(�+1)). Hence, the stochastic interpretation
of the SDR in (14) allows us to obtain an approximate rank-one
solution to (9). Specifically, given B(�1+1), we can generate a
set of independent and identically distributed complex Gaussian
random vectors ξi ∼ CN (0,B(�1+1)), i = 1, . . . , Q, where Q
is the number of randomization trials. Then, a rank-one solution
is obtained as

b(�+1) = argmax
˜ξi

ξ̃
H

i Γ
(�+1)
w ξ̃i

ξ̃
H

i Θ
(�+1)
w ξ̃i +

(
w(�+1)

)H
Rw(�+1)

,

(15)

where ξ̃i(n) = ξi(n)/(|ξi(n)|
√
NtMK), n = 1, . . . , NtMK.

Simulation results show that Q = 1000 is generally sufficient to
yield a good solution.

The proposed sequential algorithm is detailed in Algo-
rithm 1. The computational complexity for Algorithm 1
is mainly due to the generalized eigenvalue decomposi-
tion in Step 1), solving the convex problem in Step 3a),
and randomization in Step 6), which have a complexity of
O(NrMK)3,O(NtMK)3.5, andO(Q(NtMK)2), respectively
[25].

IV. RESULTS

In this section, the performance of the proposed joint design is
investigated via numerical simulations. We consider a colocated
MIMO radar withNt = 5TXs andNr = 3RXs. We set the code
lengthK = 10 and a total ofM = 4 transmit apertures are used.
The Doppler frequencies and azimuth angles for the target and
the clutter are generated by using the statistic models described
in Appendix A. In the simulation, unless otherwise specified,
the target mean azimuth and Doppler are θ̄0 = 5◦ and v̄0 = 0.15
with uncertainty intervals ϑ0 = 2◦ and ε0 = 0.04, respectively.

Algorithm 1: The Proposed Sequential Algorithm.
Input: Known parameters that define problem (7).
Output: The receive filter w and the transmit code b.
Initialization: Initialize b(0) and set � = 1.
repeat
1) Update w(�) by solving (8).
2) Initialize ζ(0) = 0 and set iteration index �1 = 1.
3) repeat

a) Solve for B(�1+1) by using (12).
b) Update ζ(�1+1) with (13).
c) Set �1 = �1 + 1.

4) until convergence.
5) return B(�+1) = B(�1).
6) Apply randomization to obtain b(�+1) by using (15).
7) Set � = �+ 1.
until convergence.
return w = w(�) and b = b(�).

Following a standard space-time clutter model [26], the clutter
is generated from L = 20 scatterers which are uniformly lo-
cated along the diagonal clutter ridge of the Doppler-azimuth
plane. Like the target model, the clutter model includes similar
azimuth/Doppler uncertainty intervals for each clutter scatterer
(see Appendix A). In addition, we assume the noise n is a zero-
mean circular complex Gaussian random vector with covariance
matrix R = σ2INrMK and σ2 = 0.01. The target and clutter
powers are σ2

0 = 10 dB and, respectively, σ2
l = 30 dB, or varied

over a range of values as specified.
We consider the performance of the following methods:
� MA: The proposed multi-aperture joint transmit-receive

design for MIMO radar.
� SA: The single-aperture joint transmit-receive design for

MIMO radar [18].
� PA: The conventional phased-array radar with a single

transmit aperture and a minimum variance distortionless
response based receiver.

Note that an initialization of the transmit code is required. In
the simulation,b is initialized as a normalized all-one vector with
unit energy ||b||2 = 1 for both MA and SA. Moreover, every bk
for PA is fixed to be the conjugate of at(θ̄0).

We first examine the convergence of the proposed method.
Fig. 1 shows that the SA converges faster, due to its smaller prob-
lem size, than the MA, and both methods converge within a small
number of iterations, e.g., less than 10 iterations. Moreover, the
MA offers about 3 dB improvement over the SA method.

Next, we consider the output SINR versus the target and
clutter power. Fig. 2 (a) shows that the output SINR of
all considered methods increases when the target power in-
creases, with MA being the best. We see as the clutter
power increases, the output SINR decreases and the gap be-
tween the MA and SA becomes larger, which indicates that
the MA can better cope with stronger clutter. This is be-
cause the MA offers more degrees of freedom for clutter
suppression.

Finally, we evaluate the effects of the clutter azimuth and
Doppler uncertainties. Fig. 2 (c) and (d) show the output
SINR versus the clutter azimuth uncertainty interval ϑ0 and,
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Fig. 2. Output SINR versus (a) target power, (b) clutter power, (c) clutter azimuth uncertainty, and (d) clutter Doppler uncertainty.

respectively, clutter Doppler uncertainty interval ε0. The re-
sults show that the output SINR decreases as the uncer-
tainty intervals increase due to the increasing inaccuracy
on the knowledge of the clutter. Moreover, the MA still
outperforms the SA even with a large clutter uncertainty
level.

V. CONCLUSIONS

We proposed a joint design of the space-time transmit code
and the receive filter in a multi-aperture MIMO radar by maxi-
mizing the average radar output SINR. The resulting non-convex
optimization problem was solved in an sequential and iterative
manner along with FP and SDP techniques. The results show that
our proposed multi-aperture approach outperforms the single-
aperture joint transmit and receive design for MIMO radar as
well as the conventional phased-array radar.

APPENDIX A
CALCULATION OF COVARIANCE MATRICES IN (6)

Γb and Γw can be rewritten in block matrix forms as

Γb = (σ2
0Γ

k1,k2

b )K×K , Γw = (σ2
0Γ

k1,k2
w )K×K , (16)

where the sub-matrices Γk1,k2

b ∈ CMNr×MNr and Γk1,k2
w ∈

CMNt×MNt for k1, k2 = 1, . . . ,K. By treating the target
Doppler v0 and angle θ0 as independent random variables, the
block matrices Γk1,k2

b and Γk1,k2
w can be expressed as

Γk1,k2

b = E[ej2π(k1−k2)v0 ]E[A(θ0)bk1
bHk2

AH(θ0)], (17)

Γk1,k2
w = E[e−j2π(k1−k2)v0 ]E[AH(θ0)wk1

wH
k2
A(θ0)], (18)

where wk denotes the receive filter for the k-th pulse. The target
Doppler v0 is assumed to be uniformly distributed: v0 ∼ U(v̄0 −
ε0
2 , v̄0 +

ε0
2 ). Then, the first expectation of (17) becomes

E[ej2π(k1−k2)v0 ] = ej2πv̄0(k1−k2)sinc[πε0(k1 − k2)]. (19)

By defining matrix Bk = [b1,k, . . . , bM,k], we have

A(θ0)bk =
(
BT

k ⊗ INr

)
(at(θ0)⊗ ar(θ0)) , (20)

and the second expectation of (17) can be written as

E[A(θ0)bk1
bHk2

AH(θ0)] =
(
BT

k1
⊗ INr

)
Ψ

(
BT

k2
⊗ INr

)H
,

Ψ =

∫ θ̄0+
ϑ0
2

θ̄0−ϑ0
2

(
at(θ0)a

H
t (θ0)

)⊗ (
ar(θ0)a

H
r (θ0)

)
dθ0. (21)

The target azimuth θ0 is also assumed to be uniformly dis-
tributed: θ0 ∼ U(θ̄0 − ϑ0

2 , θ̄0 +
ϑ0

2 ). Ψ can be partitioned into
Nt ×Nt blocks, each of which is an Nr ×Nr sub-matrix. De-
noting Ψp1p2

q1q2
as the (p1, p2)-th entry of the (q1, q2)-th block of

Ψ, we have

Ψp1p2
q1q2

=
1

ϑ0

∫ θ̄0+
ϑ0
2

θ̄0−ϑ0
2

e−jπ sin θ0[(q1−q2)+(p1−p2)]dθ0. (22)

Similarly, Γw can be calculated by following the derivation
of Γb. The first part of the expectation in (18) can be obtained
from the conjugate of the matrix in (19). To compute the second
expectation of (18), we define a matrixWk = [w1,k, . . . ,wM,k]
withwm,k ∈ CNr×1 as the filter for them-th aperture of the k-th
pulse. Then, we have

E[AH(θ0)wk1
wH

k2
A(θ0)] =

(
WT

k1
⊗ INt

)
Ψ̃

(
WT

k2
⊗ INt

)H
,

Ψ̃ =

∫ θ̄0+
ϑ0
2

θ̄0−ϑ0
2

(
a∗

r (θ0)a
T
r (θ0)

)⊗ (
a∗

t (θ0)a
T
t (θ0)

)
dθ0,

which can be similarly obtained as in (22).
The clutter azimuth θl and Doppler vl are assumed to be

independent and uniformly distributed variables with mean θ̄l,
v̄l and uncertainty intervals ϑl, εl. Then, the covariance matrices
Θb and Θw can be written as

Θb =
L∑

l=1

σ2
l Θb,l, Θw =

L∑
l=1

σ2
l Θw,l, (23)

where σ2
l = E[|αl|2]. Note that matrices Θb,l and Θw,l can be

similarly obtained from (16) by replacing θ0 and v0 with θl and
vl, respectively.
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