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Abstract—We examine the impact of synchronization errors on
target detection in distributed multi-input multi-output (MIMO)
radar. The problem was initially considered in a recent work
[1], which also introduced an approximate coherent detector
(ACD). The ACD neglects the cross correlation of the radar
waveforms, which may be significant in distributed MIMO
radar. As the sensors are spatially distributed, the waveforms
undergo different propagation delays and Doppler frequencies
and thus may lose mutual orthogonality. The problem becomes
more severe in the presence of synchronization errors. In this
paper, we propose an improved coherent detector (CD) that
takes into account the cross correlation in phase compensation
and exploits different signal strength among different transmit-
receive (TX-RX) paths. We also propose a new hybrid detector
(HD) as a trade-off solution, in terms of detection performance
and synchronization requirement, to bridge coherent detection
and non-coherent detection. Numerical results are presented to
illustrate the performance of existing and proposed detectors with
or without synchronization errors.

Index Terms—Distributed MIMO radar; non-orthogonal wave-
forms; asynchronous propagation; timing, frequency, and phase
errors; target detection

I. INTRODUCTION

A multi-input multi-output (MIMO) radar transmits mul-

tiple waveforms from its transmitters (TXs) to probe the

environment. The receivers (RXs) employ a set of matched

filters (MFs), one for each waveform, which are intended to

unravel the radar echoes and separate the information carried

by different waveforms. Most previous studies on distributed

MIMO radar assume the transmit waveforms are orthogonal

with zero cross-correlation across all time delays and Doppler

frequencies and can be perfectly separated at each RX (e.g.,

[2]–[5]). However, in practice, it is impossible to maintain

orthogonality with arbitrary delay and frequency shift [6],

which means the MF output contains not only the filtered echo

of the desired waveform, i.e., the auto term, but also the cross
term from the undesired waveforms, thus resulting in non-ideal

separation. The effects of cross terms were examined in [7],

which treat them as deterministic unknowns, whereas in [8],

[9], they were modeled as random quantities with an unknown

covariance matrix. In either case, the waveform correlation,

which is known, was not utilized.

This work was supported in part by the Army Research Office under Co-
operative Agreement Number W911NF-19-2-0234 and the National Science
Foundation under grant ECCS-1923739.

In distributed MIMO radar, sensors are spatially separated,

driven by individual local clocks and oscillators, synchro-

nization among TXs and RXs is non-trivial. Phase synchro-

nization, which is essential in applications requiring coher-

ent processing such as direction finding, were considered in

several studies. Specifically, the phase identifiability problem

in self-calibrating MIMO radar was discussed in [10]. Vari-

ous phase synchronization schemes involving centralized or

distributed processing were proposed in [11]. A number of

works examined signal detection [12], direction finding [13],

and beamforming [14] in the presence of phase errors when

timing/frequency errors are negligible. While these studies

underscore the importance of synchronization, joint investi-

gations of the effects of timing, frequency, and phase errors,

which are coupled with each other, on distributed MIMO radar

are lacking.

We started to examine the impact of non-orthogonal wave-

forms and synchronization issues on distributed MIMO radar

in [1]. We continue the investigation and present herein new

advances in signal modeling and detection methods. Specifi-

cally, we develop a more general signal model which incor-

porates timing, frequency, and phase errors among RXs and

TXs. To study the impacts of synchronization errors on target

detection in distributed MIMO radar, we consider coherent and

non-coherent target detection methods for distributed MIMO

radar. We first briefly review a classical non-coherent detec-

tor (NCD) and a recently introduced approximate coherent

detector (ACD) discussed in [1]. The ACD performs phase

compensation only for the auto terms and neglect the cross

terms. Moreover, it applies equal weights in combining differ-

ent MF outputs, without accounting for their potential different

SNRs associated with different TX-RX pairs. To address these

problems, we propose an improved coherent detector (CD)

that allows for cross terms and, moreover, exploits diversities

in signal strength among different TX-RX paths. We also

propose a new hybrid detector (HD) as a trade-off solution to

bridge NCD and CD. HD coherently processes output samples

of each MF and non-coherently integrates across different

MFs. Since it requires phase coherence locally but not across

spatially distributed antennas, HD bypasses the stringent phase

synchronization requirement of CD and, meanwhile, enjoys

additional coherent processing gain over NCD. Numerical

results are presented to illustrate the performance of these

non-coherent, coherent, and hybrid detectors with or without
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Fig. 1. Transmit and receive configuration of a distributed MIMO radar.

synchronization errors.

II. SIGNAL MODEL

Consider a distributed MIMO radar system with M TXs

and N RXs as shown in Fig. 1. The TXs employ pulsed

transmission to probe an area of interest by using M wave-

forms. During a coherent processing interval, a succession of

K periodic pulses are transmitted by each TX. Specifically, at

the m-th TX, the transmitted pulses are given by

s̃m(t) = bmum(t)ej[2π(f̂c+Δc
t,m)t+φt,m], (1)

where um(t) =
∑K−1

k=0 pm(t−kTs) is the baseband transmitted

signal, pm(t) is the complex envelope of a single pulse for TX

m, Ts is the pulse repetition interval (PRI), bm is the transmit

amplitude, f̂c is the nominal carrier frequency, Δc
t,m denotes

the carrier frequency error introduced by the m-th TX, and

φt,m is the carrier initial phase. The pulse waveform pm(t)
has unit energy and is of the same duration Tp for all TXs.

Therefore, |bm|2 denotes the energy transmitted in a single

pulse.

Suppose there is a moving target at a distance Rt,m to the

m-th TX and a distance Rr,n to the n-th RX. The signal s̃n(t)
observed at the n-th RX consists of echoes from the target

illuminated by M waveforms

s̃n(t) =

M∑
m=1

αbmξmnum(t− τmn)

× ej2π(f̂c+Δc
t,m+ ˜fmn)(t−τmn)ejφt,m , (2)

where α is the target amplitude, τmn = (Rt,m + Rr,n)/c

is the (m,n)-th TX-RX propagation delay, and f̃mn is the

bistatic target Doppler frequency [4] observed by the n-th RX

in response to the radar waveform transmitted from the m-th

TX. In addition, ξmn is the channel coefficient associated with

the (m,n)-th TX-RX pair [15]:

ξmn =

√
Gr,nGt,mλ2

(4π)3R2
t,mR2

r,n

, (3)

where λ is the wavelength of the signal and Gt,m and Gr,n

are the m-th TX and, respectively, n-th RX antenna gain.

A local carrier ej[2π(f̂c+Δc
r,n)t+φr,n] is generated at the n-

th RX for down conversion, where Δc
r,n and φr,n denote the

local carrier frequency error and initial phase, respectively.

After down conversion, the baseband signal is

sn(t) =

M∑
m=1

αbmξmnum(t− τmn)e
j2π(f̂c+Δc

t,m+ ˜fmn)(t−τmn)

× ejφt,ne−j[2π(f̂c+Δc
r,n)t+φr,n]

=

M∑
m=1

αbmξmnum(t− τmn)e
jψmn

× e−j2π(f̂c+Δc
r,n)τmnej2πfmn(t−τmn), (4)

where ψmn � φt,m − φr,n denotes the initial phase offset and

fmn � f̃mn + Δc
t,m − Δc

r,n denotes the combined frequency

offset between the m-th TX and n-th RX. A set of M matched

filters (MFs), each matched to one of M waveforms, are used

at the n-th RX. Each MF requires estimates of the target delay

τmn and Doppler fmn for compensation. In the following, we

first consider the general case with possible synchronization

errors, and then extend the result to the ideal case of no

synchronization error, which is included as a benchmark for

comparative studies.

At the n-th RX, sn(t) is convolved with M MFs, gm(t) =

p∗m(−t)ej2π(fmn+Δf
mn)t, m = 1, . . . ,M , where Δf

mn denotes

the frequency error between the effective Doppler frequency
fmn and its estimate f̂mn. Let us define the cross ambiguity
function (CAF) as

χmm̄(ν, f) =

∫
pm(μ)p∗m̄(μ− ν)ej2πfμdμ. (5)

Then, the output of the m-th MF at the n-th RX xmn(t) can

be written as

xmn(t) =

M∑
m̄=1

αbm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄ne−j2πfm̄nτm̄n

× ej2π(fmn+Δf
mn)t

K−1∑
k=0

∫
pm̄(μ− kTs − τm̄n)

× p∗m(μ− t)ej2π(fm̄n−fmn−Δf
mn)μdμ

=
M∑

m̄=1

αbm̄ξm̄ne
−j2π(f̂c+Δc

r,n)τm̄nej2π(fmn+Δf
mn)(t−τm̄n)

× ejψm̄n

K−1∑
k=0

χmm̄(t− τm̄n − kTs, fm̄n − fmn −Δf
mn)

× ej2πkTs(fm̄n−fmn−Δf
mn). (6)

The continuous-time signal xmn(t) is sampled at the pulse

rate, leading to K slow-time samples obtained at time instants

t = τmn+Δt
mn+kTs, k = 0, · · · ,K−1, where Δt

mn denotes

the timing error between the true propagation delay τmn and
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its estimate τ̂mn. Then, the output samples can be written as

xmn(k) = xmn(t)
∣∣∣
t=τmn+Δt

mn+kTs

= αbmξmne
j2πkTsfmn

× χmm(Δt
mn,−Δf

mn)e
−j2π(f̂c+Δc

r,n)τmnej2π(fmn+Δf
mn)Δ

t
mn

× ejψmn +
∑
m̄ �=m

αbm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄nej2πkTsfm̄n

× χmm̄(τmn +Δt
mn − τm̄n, fm̄n − fmn −Δf

mn)

× ej2π(fmn+Δf
mn)(τmn+Δt

mn−τm̄n), (7)

m = 1, . . . ,M ; n = 1, . . . , N ; k = 0, . . . ,K − 1.

Remark 1: It can be seen that the output sample xmn(k)
consists of M components: the first term is the auto term
between the m-th waveform and the m-th MF, and the other

components represent the cross terms between the other M−1
waveforms and the m-th MF. The cross terms vanish when

waveforms pm(t) are orthogonal to each other, which is

a routine assumption in the MIMO literature. In practice,

maintaining strict orthogonality across time and frequency

in distributed MIMO radar with asynchronous propagation is

infeasible [6]. With non-orthogonal waveforms or waveforms

that are orthogonal only with zero delay/Doppler, cross terms

are present as residuals, which may become non-negligible

and need to be accounted for.

Next, we stack the K slow-time samples and form xmn =
[xmn(0), · · · , xmn(K − 1)]T , which can be expressed as

xmn = αSnXmnhmn, (8)

where the K ×M Doppler steering matrix Sn is

Sn = [s(f1n), · · · , s(fMn)], (9)

s(f) = [1, ej2πTsf , · · · , ej2π(K−1)Tsf ]T ,

the M ×M ambiguity function matrix Xmn is diagonal with

diagonal elements given by

[Xmn]m̄m̄ = χmm̄(τmn +Δt
mn − τm̄n, fm̄n − fmn −Δf

mn),
(10)

and the m̄-th element of the M × 1 channel vector hmn is

[hmn]m̄ = bm̄ξm̄ne
jψm̄ne−j2π(f̂c+Δc

r,n)τm̄n

× ej2π(fmn+Δf
mn)(τmn+Δt

mn−τm̄n). (11)

III. TARGET DETECTION

Let ymn denote the noise contaminated observation of xmn.

The target detection problem is described by the following

hypothesis testing:

H0 : ymn = wmn,

H1 : ymn = αSnXmnhmn +wmn, (12)

m = 1, 2, · · · ,M, n = 1, 2, · · · , N,

where wmn is the noise, assumed to be Gaussian distributed,

wmn ∼ CN (0, σ2
mnI). In the following, we consider target de-

tection approaches for the general case, i.e., distributed MIMO

radar with possible synchronization errors. For target detec-

tion, we discuss several detectors, including a conventional

non-coherent detector (NCD) [3], an approximate coherent

detector (ACD) [1], a coherent detector (CD), and a hybrid

detector (HD). The latter two are new.

A. Non-Coherent Detector

A simple detector for the hypothesis testing (12) is based

on non-coherent integration of the MF outputs [3]:

TNCD �
M∑

m=1

N∑
n=1

yH
mnymn

H1

≷
H0

γNCD, (13)

where γNCD is a threshold set for a given level of false alarm.

It is clear that the above NCD is an energy detector.

B. Coherent Detectors

The above NCD does not require any phase synchronization.

Improved detection performance can be achieved by exploiting

phase information. One such detector, ACD, was introduced in

[1], which performs phase compensation for the auto terms in

the MF output (7). Specifically, let ψ̂mn, τ̂mn, and f̂mn denote

estimates of the phase offset, delay, and Doppler frequency.

The ACD is given by

TACD =

∣∣∣∣∣
M∑

m=1

N∑
n=1

K−1∑
k=0

e−jθ̂mnkymn(k)

∣∣∣∣∣
2
H1

≷
H0

γACD, (14)

where γACD is the threshold, ymn(k) denotes the k-th element

of ymn and

θ̂mnk = ψ̂mn − 2πf̂cτ̂mn + 2πkTsf̂mn, (15)

ψ̂mn � ψmn +Δp
mn, (16)

τ̂mn � τmn +Δt
mn, (17)

f̂mn � fmn +Δf
mn, (18)

where Δp
mn, Δt

mn, and Δf
mn denote the phase, timing, and

Doppler errors.

Albeit simple, the ACD has two limitations. First, it per-

forms phase compensation only for the auto-term, while ne-

glecting the cross terms in (7), which is non-negligible when

the waveforms are not orthogonal. Second, it applies equal

weights in combining the outputs from different MFs, which is

suboptimal since the TX-RX propagation paths associated with

different MFs are different with potentially different SNRs.

To address these limitations, an improved CD can be derived

by using a generalized likelihood ratio test (GLRT) approach

to solve the hypothesis testing problem (12). Specifically, we

first obtain the maximum likelihood estimate (MLE) of the

target amplitude α, and then use the MLE in the likelihood

ratio of (12). The resulting CD detector is summarized as

follows. Let Ŝn, X̂mn, and ĥmn be formed as in (9)-(11),

by using prior estimates of the phase, delay, and Doppler

frequency:

Ŝn = [s(f̂1n), · · · , s(f̂Mn)], (19)

[X̂mn]m̄m̄ = χmm̄(τ̂mn − τ̂m̄n, f̂m̄n − f̂mn), (20)

[ĥmn]m̄ = bm̄ξm̄ne
jψ̂m̄ne−j2πf̂cτ̂m̄nej2πf̂mn(τ̂mn−τ̂m̄n). (21)
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Then, the new CD is given by

TCD =

∣∣∣∣∣
M∑

m=1

N∑
n=1

(ŜnX̂mnĥmn)
Hymn

∣∣∣∣∣
2
H1

≷
H0

γCD, (22)

where γCD denotes the test threshold. It can be seen that the

CD sequentially performs Doppler filtering by Ŝn, joint phase

compensation and amplitude weighting by X̂mn and ĥmn,

followed by coherent integration across antennas.

C. Hybrid Detector

The above CD requires the knowledge of the phases, the

CAFs of all waveforms, and the channel coefficients ξmn. Al-

though achieving the best performance with ideal knowledge,

CD is sensitive to knowledge/estimation errors. Another new

HD detector can be obtained by using the GLRT approach.

Specifically, the idea is to treat αhmn as an unstructured M×1
unknown vector. We can first obtain the MLE α̂hmn of this

vector, and then use the MLE in the likelihood ratio of (12).

The resulting HD is given by

THD =

M∑
m=1

N∑
n=1

‖Ŝn(Ŝ
H
n Ŝn)

−1ŜH
n ymn‖2

H1

≷
H0

γHD. (23)

Clearly, HD projects ymn onto the subspace spanned by the

Doppler steering vectors Ŝn, which is coherent processing of

the signal observed at the (m,n)-th MF, followed by non-

coherent integration across different RXs and TXs. Hence, it

is a hybrid detector. Note that HD requires phase coherent

only locally, i.e., within the output of each MF, but not

across spatially distributed antennas. As such, HD detector

bypasses the more stringent coherence requirement of CD,

while it can still benefit from local coherent integration and

achieve considerable improvement over the NCD, i.e., it offers

a compromise between CD and NCD.

IV. SIMULATION RESULTS

Simulation results are presented to compare the NCD [3],

ACD [1], along with the proposed CD and HD, for target

detection in distributed MIMO radar. The SNR of the (m,n)-
th propagation path, which is measured at the n-th RX matched

to the m-th TX waveform, is defined as

SNRmn =
|bmξmn|2E{|α|2}

σ2
mn

, (24)

where the noise variance is chosen as σ2
mn = 1 and E{·}

represents the statistical expectation. We consider a Swerling

I target model, where the target amplitude α ∼ CN (0, σ2)
is randomly generated from trial to trial but remains fixed

within a coherent processing interval (CPI) in Monte Carlo

simulations. We assume identical SNR for all paths, i.e.,

SNRmn = SNR, ∀m,n, except in the first example (Fig. 2).

The simulation scenarios involve a distributed MIMO radar

with M = 2 TXs and N = 1 RX. The propagation delays

are τ11 = 0.61τ and τ21 = 0.1τ unless otherwise stated,

where τ = 10−5 s is the pulse duration. The pulse repetition

frequency (PRF) is 500 Hz, the carrier frequency is 3 GHz
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Fig. 2. P̄d of distributed MIMO radar versus SNR offset SNR21 − SNR11,
where SNR11 = 0 dB.

and the waveform bandwidth is 1MHz. The target Doppler

frequencies are f11 = 200 Hz and f21 = 190 Hz, unless

otherwise stated, and the number of pulses within a CPI is

K = 12. The phases are ψ11 = 0.1π and ψ21 = 0.3π
unless otherwise stated and the probability of false alarm is

Pf = 10−4.

The radar waveforms are single-band linear frequency mod-

ulation (LFM) waveforms or chirps with overlapping instan-

taneous frequency [1]. For M = 2, we employ an up chirp

pu(t) =
1√
τ
ej(πβt

2/τ+κπβt), 0 ≤ t < τ, (25)

and a down chirp

pd(t) =
1√
τ
ej(−πβt2/τ+2πβt+κπβt), 0 ≤ t ≤ τ, (26)

where κ is a constant that controls the center frequency of the

chirps and β is the bandwidth of the waveform. The ambiguity

functions of the single-band chirps can be found in [1], which

shows that the waveforms are non-orthogonal with high cross

ambiguity.

First, we test the effect of unequal channel strength, where

the two propagation paths from the TXs to the RX have dif-

ferent SNR. In particular, we fix SNR11 = 0 dB while varying

SNR21. Fig. 2 depicts the average probability of detection P̄d

versus SNR21. It shows that CD outperforms both ACD and

HD, where the benefit comes from the amplitude weighting

and, respectively, fully coherent processing employed by CD.

In addition, both HD and ACD outperforms the completely

non-coherent NCD, and the relative performance between HD

and ACD depends on the SNR offset.

Next we evaluate the effects of synchronization errors,

including timing, phase, and Doppler frequency errors, on

detection performance. Fig. 3 depicts the performance of CD,

HD, and NCD under various timing conditions. It is seen that

in general, as the timing error increases, the performance of

all 3 detectors degrades. This is because a larger timing error

implies the sampling location is further away from the peak of

the auto ambiguity function, which results in a higher loss of

the energy of the desired auto term and the associated SNR. It

was observed in [1], if the timing error is much smaller than
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Fig. 4. P̄d of distributed MIMO radar versus SNR without phase error
(Δ

p
mn = 0) or with phase errors (Δ

p
11 = 0.023π and Δ

p
21 = 0.76π).

the reciprocal of the waveform bandwidth but still significant

relative to the carrier period so that the SNR loss is negligible,

then it will only impact coherent detectors such as ACD as the

timing-error-induced phase error may not be negligible. The

observation applies to CD as well. For space limitation, we

do not duplicate the result here.

The impact of phase error is shown in Fig. 4. It is observed

that the phase error only affects CD, which is because the im-

plementation of HD and NCD does not require any knowledge

of the phase while the CD requires it for coherent integration

across antennas. On the other hand, Fig. 5 shows the impact

of Doppler frequency error. It is seen that Doppler frequency

error degrades the performance of both CD and HD but not

that of NCD.

V. CONCLUSIONS

We examined the impact of synchronization errors on target

detection in distributed MIMO radar. Our main contributions

include the general asynchronous signal model for distributed

MIMO radar, the new CD and HD detectors. Our results

indicate that synchronization errors in timing, frequency, and

phase have different impacts on different detectors. Specifi-

cally, NCD and HD are immune from phase errors, which

affect only coherent detectors ACD and CD. On the other

hand, the frequency errors will affect all but NCD. Finally,
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Fig. 5. P̄d of distributed MIMO radar versus SNR without Doppler frequency
errors (Δf

mn = 0) or with Doppler frequency errors (Δf
11 = −10 Hz and

Δf
21 = 25 Hz).

all detectors are affected by timing errors, which cause the

MF output to be sampled off the peak location of the auto

ambiguity function, thus resulting in a loss in the SNR.
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