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As the amount of data for computing exponentially increases, 
data transfer between memory and processor turns into a 
major bottleneck dominating the system-level energy con-

sumption. In-memory computing has been proposed to circumvent 
this bottleneck, which arises from von Neumann architecture, by 
minimizing or eliminating the energy-consuming data transfer 
between memory and processor1,2. In-memory computing with 
emerging non-volatile memories (eNVMs)3–6 has shown promising 
results for on-chip storage of weights and computation of multiply–
accumulate (MAC) operations for a single layer7–9. However, mod-
ern deep neural networks (DNNs) consist of hundreds of layers (for 
example, ResNet has 152 layers10) such that the outputs of each layer 
are individually connected to artificial neurons applying non-linear 
activation functions on weighted sums. Most in-memory comput-
ing approaches using eNVMs still rely on general processors to 
compute and propagate activation functions of each layer. However, 
activations that move in and out of the memory can dominate the 
energy consumption of in-memory computing-based accelera-
tors8,11–13. Moreover, computation of one element of activation using 
analogue-to-digital converters (ADCs) consumes energy compa-
rable to the energy consumed by a whole synaptic array for a MAC 
operation13. Since DNNs need to have a very large number of acti-
vations to achieve high accuracy13, it is critical to develop energy- 
and area-efficient implementations of activation functions, which 
can be integrated on the periphery of the synaptic arrays. Recent 
works have investigated analogue complementary metal–oxide 
semiconductor (CMOS) circuits14 and ADCs with reconfigurable 
function mapping15 for the implementation of non-linear activa-
tion functions. However, a compact and energy-efficient nanode-
vice implementing the non-linear activation functions has yet to be 
demonstrated.

Here we propose a volatile four-terminal Mott activation neu-
ron device based on vanadium dioxide (VO2) for compact and 
energy-efficient implementation of activation functions. The Mott 
activation neuron consists of a nanowire heater for precise control 

of the temperature of the VO2 film. First, we experimentally dem-
onstrate that the resistance of the Mott activation neuron can be 
switched linearly and gradually to emulate a rectified linear unit 
(ReLU) activation function, which is the most widely used activa-
tion function. The Mott activation neuron can generate an output 
voltage, which follows the ReLU activation function for a given 
weighted sum current. Then, we study the energy efficiency of the 
Mott activation neuron in comparison to activation function cir-
cuits with an analogue CMOS14 or reconfigurable digital ADC15. We 
investigate the performance of hardware neural networks imple-
mented with the Mott activation neurons in terms of energy, latency, 
peripheral neuron/circuit area and classification accuracy. Lastly, 
we fabricate CBRAM crossbar arrays and Mott activation neuron 
arrays to demonstrate edge detection using convolutional neural 
networks in hardware. Our results show that the small size and 
energy efficiency of the Mott activation neuron enable direct stack-
ing of synaptic layers in neural networks and achieve substantial 
gains in energy efficiency and area while providing high accuracy.

Mott activation neuron
Neural networks consist of a set of neurons organized in layers, con-
nected with synaptic weights (Fig. 1a). The inputs applied to the 
networks are multiplied by the corresponding weights and the mul-
tiplication results are accumulated in neurons. Then, the output of a 
neuron is calculated by passing the MAC results through a non-linear 
activation function. In-memory computing architectures map these 
neural network operations onto the arrays of eNVM devices. The 
weights are stored in arrays of eNVM devices, and the weighted 
sum is calculated using Kirchhoff ’s current law16. While in-memory 
computing allows the local storage of the weights in compact and 
energy-efficient synaptic devices, the activation function calcula-
tions are still implemented with general processors or large and 
complex neuron peripheral circuits (Fig. 1b). This substantially 
degrades energy and area efficiency at the system level. The activa-
tion function we target is the ReLU, which is the most widely used 
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activation function. The output of the ReLU activation function 
(that is, f(x) = max(0, x)) depends only on current input regardless 
of previous inputs and resistance states. In addition, the output of 
the ReLU function is linear after the transition point (that is, x = 0). 
In order to emulate the ReLU activation function, the device should 
exhibit volatile, linear and gradual resistive switching. We developed 
a four-terminal VO2-based activation device (illustrated in the inset 
of Fig. 1b on the bottom) that exploits a thermal-driven Mott transi-
tion of VO2 to embody these characteristics in a single nanodevice. 
The Mott ReLU device uses a nanowire heater (that is, Ti (20 nm)/
Au (30 nm)) to control the resistive switching of a lateral, 50 nm VO2 
gap beneath it. The heater and the VO2 gap are electrically insu-
lated by a 70 nm Al2O3 layer. A scanning electron microscope image 
of a fabricated device is shown in Fig. 1c, and detailed fabrication 
procedures are discussed in the Methods. The heater generates heat 

through Joule heating, depending on the magnitude of the weighted 
sum current generated by each column of the eNVM array. Then, 
the generated heat is transferred to the VO2 film through the electri-
cal insulator (that is, the Al2O3 layer) and induces the phase transi-
tion from the insulating states to the metallic states, which results in 
a resistivity drop. The temperature-dependent resistance of the VO2 
gap is shown in Fig. 1d. To map the gradual resistivity changes of 
the VO2 gap onto the output voltage (VOUT), a voltage divider circuit 
is implemented as illustrated in the inset of Fig. 1e. The supply volt-
age (VDD) is divided into the voltage drop across the VO2 gap and 
the load resistor, depending on the resistance ratio of the VO2 gap 
and the load resistor. As the resistance of the VO2 gap decreases, 
the voltage drop across the VO2 gap decreases, which results in the 
increment of the output voltage (or the voltage drop across the load 
resistor). As a result, the resistive switching of the VO2 gap allows 
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Fig. 1 | The Mott ReLU device for the hardware implementation of a neural network. a,b, An illustration shows a neural network (a) and hardware 
implementation (b) of the neural network with synaptic and activation (or neuron) devices. Σ represents a weighted sum while f represents the activation 
function. In b, the inset on the left shows a schematic of a resistive memory cell. The inset on the right shows a schematic of the Mott device with a 
nanowire heater. Mott activation devices allow direct stacking of multiple eNVM arrays for DNNs. The heater is connected to a column of presynaptic 
arrays and gets a weighted sum current. Then, one pad of the VO2 gap is connected to VDD and the other pad is connected to the next synaptic array. 
The pad connected to the next synaptic array is also connected to a load resistor. Weights are stored in eNVM devices, and weighted sum currents from 
each column are fed into the Mott ReLU. Then, the output of the Mott ReLU is applied as the input to the next layer. c, A scanning electron microscope 
image of the Mott device (scale bar, 1 μm). The inset shows the nanowire heater on the top of the 50 nm VO2 gap. d, Resistance of the VO2 gap when the 
temperature is swept from 280 K to 365 K. e, An illustration shows how a Mott device will be used as a ReLU activation function. The output of the ReLU 
activation function will be represented by VOUT of the Mott ReLU device while the weighted sum input to ReLU will be represented by the input current (IIN) 
to the Mott ReLU device.

Nature Nanotechnology | VOL 16 | June 2021 | 680–687 | www.nature.com/naturenanotechnology 681

http://www.nature.com/naturenanotechnology


Articles NATuRe NAnOTeCHnOLOgy

the output voltage to emulate the ReLU activation function as illus-
trated in Fig. 1e. Since the output of the Mott ReLU device is volt-
age, it can be directly applied to the next layer as an input voltage. 
Therefore, multiple synaptic layers can be directly stacked on each 
other for driving the next layers by eliminating complex digital cir-
cuits and ADCs between the layers. Moreover, the small size of the 
Mott ReLU device allows the integration of the device for each col-
umn of the synaptic array, which eliminates the need for time mul-
tiplexing and hence, enables fully parallel operations.

The main operating principle of the Mott ReLU device is the 
Mott transition (or insulator-to-metal transition) of the VO2 gap. 
The Mott transition of the VO2 gap can be induced by either electri-
cal filamentary switching or thermal-driven domain-wise switch-
ing17,18. When a voltage bias above the threshold is applied across the 
VO2 gap, Joule heating due to the bias induces filament formation, 
and the filament is widened as the voltage increases (Fig. 2a,b). Since 
the filament formation is a cascading avalanche effect, the resistance 
switching is abrupt19. By contrast, when the transition is driven by 
temperature, only the domains whose critical temperature is below 
the device temperature transit to the metallic phase (Fig. 2a,c). Since 
the transition temperature of each domain exhibits variations20, the 
number of domains switched to metallic phases gradually increases 
as the temperature increases. As a result, the resistance of VO2 grad-
ually decreases as the temperature increases (Fig. 2d). This gradual 
switching behaviour of VO2 was previously confirmed by scanning 
microwave microscopy imaging of the VO2 film20. The Mott ReLU 
device is engineered to exploit this thermal-driven linear resistive 
switching for emulating the linear increment of the ReLU activation 
function, as shown in Fig. 2e. Then, this linear resistive switching 
of the VO2 gap is projected to the output voltage. The ratio between 
VOUT and VDD of the Mott ReLU device with a 1,900-Ω-load resistor 
is demonstrated in Fig. 2f as a representative example. Two potential  

practical issues regarding the Mott transition are discussed in 
Supplementary Note 1.

To further assess the compatibility of the Mott ReLU device 
for implementing the ReLU activation function, we extensively 
characterized its switching characteristics. In addition to gradual 
switching, the resistive switching should be volatile to implement 
ReLU function in synaptic arrays. That is because the output of the 
ReLU activation function should depend only on the input at that 
moment, regardless of previous inputs and resistance states. The 
volatile switching of the Mott ReLU device is experimentally verified 
in Fig. 3a. When 1-ms-wide current pulses with various amplitudes 
are applied to the heater, the resistance of the device is switched 
and maintained only when the current pulse is high. Furthermore, 
the output voltage for a given input current should not exhibit a 
high level of variation, which could degrade neural network per-
formance. Figure 3b demonstrates that each resistance state of the 
device shows only ~4% or less variation when the resistance states are 
iteratively measured. The impact of this small variation on the neu-
ral network performance is studied in the section, Neural network 
implementations. Lastly, the endurance of the device should be high 
to allow a large number of weighted sum operations in hardware. 
For the inference with the MNIST dataset21, each Mott ReLU device 
should generate its output for 10,000 times per epoch (or a whole 
testing set). Hence, the device should endure this large number of 
cycling operations. Figure 3c experimentally demonstrates that the 
Mott ReLU device shows no sign of ON/OFF ratio degradation up 
to 5,000 cycles. It has been shown that an endurance larger than 1010 
cycles can be easily achieved with VO2 devices22. Furthermore, we 
performed pulse measurements to investigate the power consump-
tion and the latency of the Mott ReLU device. Figure 3d shows the 
total power consumption as a function of heater current, as well as 
the power consumed by the heater and the VO2 gap separately. The 
total power consumption of the Mott ReLU device is dominated by 
the heater. The latency of the Mott ReLU is 61.4 ns, measured as the 
time difference between the first saturation point of the input and 
output pulse (Fig. 3e). The energy consumption of the Mott ReLU is 
199.5 pJ for a 65 ns pulse width.

The Mott ReLU device can replace complex peripheral circuits 
for activation function calculation. Therefore, it is important to 
compare the performance of the Mott ReLU device against other 
implementations of activation functions (that is, analogue CMOS14 
and digital ADC15 circuits discussed in the Methods). The perfor-
mance benchmarking (Supplementary Note 2) results of the Mott 
ReLU device against the analogue CMOS circuit14 and the digital 
ADC implementation15 are summarized in Table 1. The energy 
consumption of the Mott ReLU can be further reduced by opti-
mizing the device to have more heat confinement on the VO2 gap. 
As the heat generated by the heater is more confined to the VO2 
gap, the device requires less heater current to achieve the same 
temperature on the VO2 gap23. Therefore, by replacing the heater 
material with a higher thermal resistance material (for example, 
Ti has a thermal resistance ~10 times higher than that of Au), the 
energy consumption of the device can be lowered. To determine 
the energy consumption of an optimized device, we developed an 
empirical thermal model of our device (Supplementary Fig. 1a,b) 
as discussed in Supplementary Note 3, which shows good agree-
ment with experimental data as shown in Fig. 2e,f. The power con-
sumption of the Mott ReLU can be reduced by ~25 times, down to 
128 μW, by increasing the thermal resistance of the nanowire heater 
(Supplementary Fig. 2a). Moreover, the latency can be reduced to 
~3.8 ns (Table 1) by minimizing the parasitic capacitance of the 
Mott ReLU below 10-11 F (Supplementary Fig. 2b), which would 
result in a total reduction of ~300 times in energy consumption 
down to 0.638 pJ (Table 1). Our experimental results show that the 
Mott ReLU device achieves a 450−1,500 times improvement in 
area and 1.5–3 times improvement in latency while achieving low 
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Fig. 2 | Switching mechanisms of VO2 gap. a–c, Schematics show a 
VO2 gap with no bias (a), filamentary switching (b) and thermal-driven 
switching (c). d, As compared to thermal-driven domain-wise switching, 
electrical filamentary switching shows an abrupt change in resistance. 
e, Resistance of the VO2 device as a function of heater current showing 
~77 levels. It shows gradual and linear resistive switching when the input 
current is larger than 5 mA. f, Voltage ratio between the output (VOUT) 
and the supply voltage (VDD) of the device as a function of heater current 
with a 1,900-Ω-load resistor as a representative example. Symbols 
are experimental data and lines are SPICE simulation results. The V–I 
characteristic is similar to the ReLU function shown in Fig. 1e.
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energy consumption. Moreover, the optimization of the Mott ReLU 
device can further reduce the energy consumption and improve 
the latency, offering substantial gains in area, latency and energy  
efficiency as a replacement to the analogue CMOS14 and digital15 
ADC circuits.

Neural network implementations
We have demonstrated that the Mott ReLU neurons can provide 
smaller area and better energy efficiency as compared to the 
other circuit implementations. It is also critical to evaluate the 
network-level performance using the Mott ReLU devices for hard-
ware implementation of DNNs. To compute the accuracy of neural 
network implementations with the Mott ReLU device, we simu-
lated multilayer perception (MLP; Fig. 4a) and LeNet-5 (ref. 21;  
Fig. 4b; the details on the configurations of the networks are dis-
cussed in the Methods). The schematic and transmission electron 
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power consumption of the Mott device is dominated by the heater. e, Heater current applied to the device and the resistance of the VO2 gap as a function 
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Table 1 | The performance of the activation device or circuit

Mott Analogue 
CMOS14

Digital 
ADC15

Energy (experimental/optimal, pJ) 199.5/0.638a 3,410 19.4

Latency (experimental/optimal, ns) 61.4/3.8a 91.91 207

Area (μm2) 0.64 951.06 289b

Leakage (μW) 27.0 11,060 –
aShows projected optimal energy and latency when the thermal resistance of the heater is 
increased by ×10 and the parasitic capacitance of a Mott ReLU is <10–11 F. bThis area is only the 
area per neuron circuit. The digital ADC implementation needs a shared circuit, which occupies 
0.086 mm2 of area. Comparison of Mott ReLU, analogue CMOS ReLU14 and digital ADC with 
reconfigurable function mapping15 at the single ReLU level. The energy, latency and leakage power 
are evaluated from the experimental measurement results shown in Supplementary Fig. 2a,b. For 
the energy estimation, we used a 65 ns pulse for the Mott ReLU case.
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microscopy image of the CBRAM cell (Supplementary Fig. 3a) 
are shown in Supplementary Fig. 3b,c, respectively. Table 2 sum-
marizes the accuracy results of the ideal (that is, software ReLU) 
and Mott ReLU cases for both MLP and LeNet-5. We investigated 
both online learning (that is, training is done on the hardware) and 
offline classification cases (that is, only inference is done on the 
hardware). When the ReLU activation functions of MLP (Fig. 4c) 
or LeNet-5 (Fig. 4d) are quantized, the accuracy degradation is not 
significant unless the precision is ~6 bit or higher. Since the preci-
sion of the Mott ReLU device is high enough (~6 bit), the accuracy 
degradation due to the Mott ReLU is negligible as compared to 
the accuracy degradation due to the synaptic devices (~10% for 
MLP and ~3% for LeNet-5). This is mainly because of the limited 
precision (~5 bit) of the CBRAM devices24. The neural networks 
with variations (cycle-to-cycle in Fig. 4e,f and device-to-device in 
Supplementary Fig. 4a,b) on the Mott ReLU are also investigated, 
and it is verified that no significant accuracy degradation due to 
the variations occurs (Supplementary Note 4). Since the Mott 
ReLU achieves accuracies close to the ideal software, the accuracy 
will not be a limiting factor for implementing activation functions 
using the Mott ReLU device.

System-level performance benchmarking
To evaluate the performance of the hardware system for neural 
networks with the Mott ReLU device, we performed system-level 
performance benchmarking for offline classification using the 
NeuroSim platform25. NeuroSim is a C++-based circuit-level 
macro-model for neuro-inspired architectures. We modified 
NeuroSim to integrate Mott ReLU peripherals with CBRAM syn-
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Table 2 | Network simulation results

Online learning Offline classification

MLP LeNet-5 MLP LeNet-5

Software (64 bit) 97.53% 99.11% 97.53% 99.11%

Mott ReLU (~6 bit) 94.0% 97.05% 94.42% 98.38%

CBRAM (~5 bit) with 
Mott ReLU (~6 bit)

84.2% 94.21% 89.97% 98.35%

The accuracy results of MLP and LeNet-5 for ideal software (64 bit), 64-bit weights with Mott 
ReLU (~6 bit) and CBRAM (~5-bit weights) with Mott ReLU (~6 bit). The results show that the Mott 
ReLU can achieve accuracy comparable to the ideal software ReLU.
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aptic cores. We compared the synaptic cores with the Mott ReLU 
peripheral against the ones with peripheral circuits implemented 
by analogue14 and digital15 CMOS ReLU circuits. For the Mott 
ReLU peripheral, the experimental results on energy and latency  
(Fig. 3d,e) are integrated into the NeuroSim platform25. The periph-
eral circuits of analogue CMOS ReLU circuits for the NeuroSim 
platform25 are developed based on the SPICE simulations. The 
dynamic energy, leakage power and latency of the Mott ReLU and 
CMOS ReLU activation circuits shown in Table 1 are integrated into 
the circuit modules.

The architecture of the hardware systems with conventional digi-
tal peripheral circuits, the Mott ReLU device and analogue CMOS 
circuits are illustrated in Fig. 5a–c, respectively. In contrast to the 
conventional analogue one-transistor one-resistor (1T1R) archi-
tecture with digital neuron peripheral (Fig. 5a)25, the Mott ReLU 
device allows a simpler synaptic core design (Fig. 5b) by avoiding 
multiplexer (MUX) sharing (Supplementary Note 5) and replac-
ing complex circuits and ADCs. Before system-level benchmark-
ing, we first investigated whether the Mott ReLU device can drive 
the inputs to the next synaptic array without additional circuits 
by performing circuit simulation with Simulation Program with 
Integrated Circuit Emphasis (SPICE; Supplementary Note 6). This 
result (Supplementary Fig. 5a,b) clearly demonstrates that the Mott 
ReLU device can generate stable output to drive the next synaptic 
layer without additional circuits. The system-level performance 
benchmarking results are summarized in Supplementary Table 1. 
The architecture with the Mott ReLU (65 ns input pulse) provides 
substantial gains over the architectures with analogue CMOS and 
digital ADC implementations (Supplementary Note 7). Lastly, 
we compared the performance of synaptic cores with the Mott 
ReLU and analogue CMOS circuits considering technology scal-
ing (130 nm to 14 nm) as discussed in the Methods. The results 
in Fig. 5d demonstrate that the experimentally measured Mott 
ReLU provides ~10 times the energy gain regardless of the CMOS  

technology node. Moreover, the system-level gain in energy can be 
further improved up to ~100 times using the optimized Mott ReLU 
in comparison to the analogue CMOS ReLU. More importantly, 
the Mott ReLU achieves an orders of magnitude smaller peripheral 
circuit area in comparison to both the digital ADC and analogue 
CMOS implementations of the activation function. The system-level 
performance results show that the Mott ReLU device offers a prom-
ising approach to replace power-hungry and large-area activation 
function circuits in the neuron periphery.

Integration of Mott ReLU devices with crossbar arrays
To demonstrate the integration of Mott ReLU devices with synaptic 
arrays in hardware, we fabricated CBRAM crossbar arrays (Fig. 6a) 
and a Mott ReLU device array (Fig. 6b) as explained in the Methods. 
We designed a custom printed circuit board (PCB; Fig. 6c) to inter-
face and integrate the CBRAM and the Mott ReLU chips in hard-
ware. Each column of the crossbar array is directly connected to 
Mott ReLU devices (Fig. 6d) to investigate how the weighted sum 
current generated by the array controls the output voltage of the 
Mott ReLU devices. First, we varied the input voltage to the crossbar 
array (−250 to 250 mV) while programming the weights of ~2/3 of 
the synaptic devices on a column to the low resistance state, and 
the rest to the high resistance state. Figure 6e shows that the out-
put voltage exhibits ReLU characteristics as the input voltage to the 
CBRAM devices is increased from –250 mV to 250 mV. Then, we 
varied the synaptic weights in the column while the input voltage 
was fixed at 130 mV. As the ratio of devices programmed to the low 
resistance state increases, the output voltage exhibits ReLU charac-
teristics (Fig. 6f). These experimental results demonstrate that the 
weighted sum current that depends on the input voltage and the 
weights (resistance) of the synaptic devices can successfully drive 
the Mott ReLU neurons to implement ReLU activation function.

For a large-scale hardware demonstration, we implemented a 
convolutional edge detection operation26 with filters (Supplementary 
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Fig. 6a,b) followed by a ReLU operation on a real-world image 
with the CBRAM crossbar and the Mott ReLU array using the cus-
tom PCB as discussed in the Methods. The weighted sum current 
resulting from the convolution operation from four representative 
10 × 10 input patches (Fig. 6g) with both the lateral and vertical 
edge detection filters (Supplementary Fig. 6a,b) mapped using a 
differential pair scheme (Supplementary Fig. 6c) are shown in Fig. 
6h,i, respectively. The weighted sum current generated during the 
convolution operation is fed to the Mott ReLU devices to perform 
the ReLU operation on the weighted sum. The output voltages of 
the Mott ReLU devices as a result of the weighted sum with the lat-
eral and vertical filters for the whole input image are shown in Fig. 
6j,k, respectively. These results show that lateral and vertical edges 
of the image are detected by implementing corresponding filters 
using the Mott ReLU devices integrated with the CBRAM cross-
bar array in hardware. The successful edge detection using the Mott 
ReLU devices integrated with the CBRAM crossbar array proves 
the feasibility of using Mott ReLU neurons as activation units for 
in-memory computing systems.

Conclusions
We introduced a nanoscale, Mott-transition-based device for the 
ReLU activation function. The device exhibits volatile, linear and 
gradual resistive switching of a VO2 film controlled by the metal 
nanowire heater on top of it. The Mott ReLU device shows minimal 
cycle-to-cycle variation and long endurance, which are important for 
hardware implementation of neural networks. We have shown that 
the Mott ReLU devices generate an output voltage, which follows the 
ReLU activation function, with the given input current. This allows 
the Mott ReLU device to drive the synaptic devices on the next layer 
directly. We performed system-level simulations for a hardware imple-
mentation of neural networks with the Mott ReLU devices. Moreover, 
we experimentally demonstrated that the Mott ReLU devices can be 
integrated with CBRAM crossbar arrays to perform filtering opera-
tions of convolutional neural networks. Our findings suggest that the 
device with Mott-transition-based activation can achieve substantial 
gains in energy, latency and area compared to the digital or analogue 
circuit implementations of the activation function, while maintain-
ing high accuracy. The small size and high energy efficiency of the 
Mott device provide a solution towards large-scale, highly parallel and 
energy-efficient in-memory computing systems for DNNs.
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Methods
Mott device fabrication. To fabricate the Mott-transition-based activation devices, 
a 70 nm VO2 film is grown by reactive sputtering on top of an Al2O3 substrate in 
4 mtorr Ar/O2 (8% O2) ambient at 520 °C. Then Ti (20 nm)/Au (30 nm) electrodes 
are patterned using electron-beam (e-beam) lithography and e-beam evaporation 
to define the 50 nm VO2 gap. Next, 70 nm Al2O3 is deposited as the insulating layer. 
A Ti (20 nm)/Au (30 nm) nanowire heater is patterned on top of the Al2O3, aligning 
with the VO2 gap using e-beam lithography and e-beam evaporation. To isolate 
each device, the VO2 film outside the active area is etched with reactive ion etching. 
The resistance of the heater is ~30 Ω, while the resistance of the VO2 gap without 
bias to the heater is ~10 kΩ.

Device measurement set-up. To measure the thermal gradual resistance switching 
of VO2 while preventing electrical switching, we apply a 1 μA current source, 
using a Keithley 6221, to the VO2 gap. The current is small enough not to initiate 
electrical switching. Then, we measure the voltage across the VO2 gap using a 
Keithley 2182A. The resistive switching of the VO2 gap is solely controlled by the 
heat generated by the heater on the top of the VO2 gap. The heat generation is 
controlled by a voltage source connected to the heater. We measure the current 
flow through the heater to measure the heat generation using an oscilloscope. For 
the variability and endurance measurement, the Keithley 6221 is used to apply a 
current pulse train to the heater. Then the resistance of the VO2 gap is extracted 
by measuring the voltage across the VO2 gap using the Keithley 2182A while 
applying constant 1 μA current through the gap using another Keithley 6221. The 
ambient temperature is controlled by a Lake Shore TTPX Probe station for all the 
measurements.

CMOS ReLU implementation. The analogue CMOS circuit consists of three 
operational amplifiers, which amplify the input current and convert the input 
current to the output voltage, and an analogue switch that implements the 
rectifying function. The digital ADC circuit is implemented using ADC with 
reconfigurable function mapping. In order to evaluate the energy and latency 
of these three different ReLU implementations as an activation function, we 
assume that all implementations get an identical weighted sum result as an input 
to the Mott ReLU device or digital/analogue CMOS circuits. The area of each 
implementation is calculated from the layout of the device or circuits.

Neural network configuration. The MLP used for network simulations is 
composed of 785 input neurons (that is, 1 input neuron for bias and the other 
784 neurons for MNIST dataset inputs), 128 hidden neurons and 10 output 
neurons. Each output neuron represents one of the digits (from 0 to 9). The 
hidden neurons have the ReLU activation function, while the output neurons have 
the soft-max activation function. LeNet-5 has six 5 × 5 convolutional filters for 
28 × 28 MNIST input images. The outputs from the convolutional filters are fed 
to the ReLU activation function. Then, the outputs of ReLU activation functions 
are down-sampled using 2 × 2 max pooling. The second convolutional layer has 
sixteen 8 × 8 convolutional filters with 2 × 2 max pooling. The outputs from the last 
max-pooling layer are fed into the FC layers, which have 120 input neurons (FC1), 
80 hidden neurons (FC2) and 10 output neurons (Output). The input neurons and 
hidden neurons of the FC layers have ReLU activation functions, while the output 
neurons have soft-max activation functions.

In the network simulations, the ReLU activation functions on the neuron layers 
(that is, the hidden layer of MLP and convolutional layers and FC layers of LeNet-
5) are implemented with the Mott ReLU based on its experimental measurement 
results. A 1,900-Ω-load resistor is connected to the Mott ReLU, and 5 mA of offset 
current is applied to the Mott ReLU through an additional row on the synaptic 
array to shift the transition point to 0 mA. The weights are mapped onto the arrays 
of CBRAM devices by using the characteristics of CBRAM devices. The CBRAM 
cells used for the simulations exhibit ~40 conductance levels (~5 bit) and an ON/
OFF ratio of 100. For the network simulation, the weights of the network ranging 
from −1 to 1 are mapped to the minimum (~1 μS) and maximum (~100 μS) 
conductance of CBRAM cells. Similarly, the outputs of the ReLU activations  
(0 to 785) are also linearly mapped to the output voltages of Mott ReLU devices  
(0 to 200 mV).

LeNet-5 requires a larger fanout for the FC1 layer. To address this, we 
incorporated a time multiplexing approach. By enabling a subset of columns of 
the synaptic array sequentially with the switch matrix, the number of devices 
connected to each Mott ReLU can be controlled. Since our architecture already 

has a switch matrix, this approach is directly implemented in performance 
benchmarking simulations with NeuroSim. It is important to note that larger-scale 
DNN models may require additional peripheral circuit blocks including buffers if 
they have many layers with large fanout. These blocks could be integrated with the 
synaptic arrays in the future and accounted for the performance benchmarking for 
different models.

Convolutional filtering with the Mott ReLU device integrated with CBRAM 
array. To implement convolutional filtering using the Mott ReLU and CBRAM 
array for image edge detection, the PCB is controlled by a semiconductor 
parameter analyser (Agilent 4155C) and a switch matrix (HP E5250A). Then, 
biasing and measurement are done by the semiconductor parameter analyser 
(Agilent 4155C). The 4 × 4 lateral and vertical filters are programmed into the 
columns of the crossbar array by unrolling the filters into 16 × 1 vectors on the 
CBRAM array. For each filter, the positive and negative weights are represented 
using two columns of the crossbar array to form a differential pair (that is, 
G = G+ – G−). The input image (180 × 270) is quantized (16 levels) and converted 
into a voltage pulse train of four binary pulses (250 mV for ‘1’ and 0 mV for ‘0’). 
For the column representing negative weights, a negative voltage pulse train is 
applied as input to form a differential pair with the column representing positive 
weights (that is, I = I+ – I−). For the convolution operation, a filter slides over the 
input image and the weighted sum currents from the pair are combined and fed 
into a Mott ReLU device. For Mott ReLU devices, 1.1 V is applied to the VO2 gap, 
load resistors are set to 3.3 kΩ and 7 mA of offset current is applied to the heater.
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