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Energy-efficient Mott activation neuron for
full-hardware implementation of neural networks
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To circumvent the von Neumann bottleneck, substantial progress has been made towards in-memory computing with synaptic
devices. However, compact nanodevices implementing non-linear activation functions are required for efficient full-hardware
implementation of deep neural networks. Here, we present an energy-efficient and compact Mott activation neuron based on
vanadium dioxide and its successful integration with a conductive bridge random access memory (CBRAM) crossbar array in
hardware. The Mott activation neuron implements the rectified linear unit function in the analogue domain. The neuron devices
consume substantially less energy and occupy two orders of magnitude smaller area than those of analogue complementary
metal-oxide semiconductor implementations. The LeNet-5 network with Mott activation neurons achieves 98.38% accuracy on
the MNIST dataset, close to the ideal software accuracy. We perform large-scale image edge detection using the Mott activa-
tion neurons integrated with a CBRAM crossbar array. Our findings provide a solution towards large-scale, highly parallel and

energy-efficient in-memory computing systems for neural networks.

data transfer between memory and processor turns into a

major bottleneck dominating the system-level energy con-
sumption. In-memory computing has been proposed to circumvent
this bottleneck, which arises from von Neumann architecture, by
minimizing or eliminating the energy-consuming data transfer
between memory and processor’”. In-memory computing with
emerging non-volatile memories (eNVMs)* has shown promising
results for on-chip storage of weights and computation of multiply—
accumulate (MAC) operations for a single layer’. However, mod-
ern deep neural networks (DNNs) consist of hundreds of layers (for
example, ResNet has 152 layers'’) such that the outputs of each layer
are individually connected to artificial neurons applying non-linear
activation functions on weighted sums. Most in-memory comput-
ing approaches using eNVMs still rely on general processors to
compute and propagate activation functions of each layer. However,
activations that move in and out of the memory can dominate the
energy consumption of in-memory computing-based accelera-
tors®!'~"*. Moreover, computation of one element of activation using
analogue-to-digital converters (ADCs) consumes energy compa-
rable to the energy consumed by a whole synaptic array for a MAC
operation®. Since DNNs need to have a very large number of acti-
vations to achieve high accuracy®, it is critical to develop energy-
and area-efficient implementations of activation functions, which
can be integrated on the periphery of the synaptic arrays. Recent
works have investigated analogue complementary metal-oxide
semiconductor (CMOS) circuits' and ADCs with reconfigurable
function mapping' for the implementation of non-linear activa-
tion functions. However, a compact and energy-efficient nanode-
vice implementing the non-linear activation functions has yet to be
demonstrated.

Here we propose a volatile four-terminal Mott activation neu-
ron device based on vanadium dioxide (VO,) for compact and
energy-efficient implementation of activation functions. The Mott
activation neuron consists of a nanowire heater for precise control

!! s the amount of data for computing exponentially increases,

of the temperature of the VO, film. First, we experimentally dem-
onstrate that the resistance of the Mott activation neuron can be
switched linearly and gradually to emulate a rectified linear unit
(ReLU) activation function, which is the most widely used activa-
tion function. The Mott activation neuron can generate an output
voltage, which follows the ReLU activation function for a given
weighted sum current. Then, we study the energy efficiency of the
Mott activation neuron in comparison to activation function cir-
cuits with an analogue CMOS' or reconfigurable digital ADC'". We
investigate the performance of hardware neural networks imple-
mented with the Mott activation neurons in terms of energy, latency,
peripheral neuron/circuit area and classification accuracy. Lastly,
we fabricate CBRAM crossbar arrays and Mott activation neuron
arrays to demonstrate edge detection using convolutional neural
networks in hardware. Our results show that the small size and
energy efficiency of the Mott activation neuron enable direct stack-
ing of synaptic layers in neural networks and achieve substantial
gains in energy efficiency and area while providing high accuracy.

Mott activation neuron

Neural networks consist of a set of neurons organized in layers, con-
nected with synaptic weights (Fig. 1a). The inputs applied to the
networks are multiplied by the corresponding weights and the mul-
tiplication results are accumulated in neurons. Then, the output of a
neuron is calculated by passing the MAC results through a non-linear
activation function. In-memory computing architectures map these
neural network operations onto the arrays of eNVM devices. The
weights are stored in arrays of eNVM devices, and the weighted
sum is calculated using Kirchhoff’s current law'®. While in-memory
computing allows the local storage of the weights in compact and
energy-efficient synaptic devices, the activation function calcula-
tions are still implemented with general processors or large and
complex neuron peripheral circuits (Fig. 1b). This substantially
degrades energy and area efficiency at the system level. The activa-
tion function we target is the ReLU, which is the most widely used
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Fig. 1| The Mott ReLU device for the hardware implementation of a neural network. a,b, An illustration shows a neural network (a) and hardware
implementation (b) of the neural network with synaptic and activation (or neuron) devices. X represents a weighted sum while f represents the activation
function. In b, the inset on the left shows a schematic of a resistive memory cell. The inset on the right shows a schematic of the Mott device with a
nanowire heater. Mott activation devices allow direct stacking of multiple eNVM arrays for DNNs. The heater is connected to a column of presynaptic
arrays and gets a weighted sum current. Then, one pad of the VO, gap is connected to V,, and the other pad is connected to the next synaptic array.

The pad connected to the next synaptic array is also connected to a load resistor. Weights are stored in eNVM devices, and weighted sum currents from
each column are fed into the Mott ReLU. Then, the output of the Mott ReLU is applied as the input to the next layer. ¢, A scanning electron microscope
image of the Mott device (scale bar, Tpm). The inset shows the nanowire heater on the top of the 50 nm VO, gap. d, Resistance of the VO, gap when the
temperature is swept from 280K to 365K. e, An illustration shows how a Mott device will be used as a ReLU activation function. The output of the ReLU
activation function will be represented by V; of the Mott ReLU device while the weighted sum input to ReLU will be represented by the input current (/)

to the Mott RelLU device.

activation function. The output of the ReLU activation function
(that is, f(x) =max(0, x)) depends only on current input regardless
of previous inputs and resistance states. In addition, the output of
the ReLU function is linear after the transition point (that is, x=0).
In order to emulate the ReLU activation function, the device should
exhibit volatile, linear and gradual resistive switching. We developed
a four-terminal VO,-based activation device (illustrated in the inset
of Fig. 1b on the bottom) that exploits a thermal-driven Mott transi-
tion of VO, to embody these characteristics in a single nanodevice.
The Mott ReLU device uses a nanowire heater (that is, Ti (20 nm)/
Au (30nm)) to control the resistive switching of a lateral, 50 nm VO,
gap beneath it. The heater and the VO, gap are electrically insu-
lated by a 70 nm Al,O, layer. A scanning electron microscope image
of a fabricated device is shown in Fig. 1c, and detailed fabrication
procedures are discussed in the Methods. The heater generates heat

through Joule heating, depending on the magnitude of the weighted
sum current generated by each column of the eNVM array. Then,
the generated heat is transferred to the VO, film through the electri-
cal insulator (that is, the Al,O; layer) and induces the phase transi-
tion from the insulating states to the metallic states, which results in
a resistivity drop. The temperature-dependent resistance of the VO,
gap is shown in Fig. 1d. To map the gradual resistivity changes of
the VO, gap onto the output voltage (Vy1), a voltage divider circuit
is implemented as illustrated in the inset of Fig. le. The supply volt-
age (Vpp) is divided into the voltage drop across the VO, gap and
the load resistor, depending on the resistance ratio of the VO, gap
and the load resistor. As the resistance of the VO, gap decreases,
the voltage drop across the VO, gap decreases, which results in the
increment of the output voltage (or the voltage drop across the load
resistor). As a result, the resistive switching of the VO, gap allows
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Fig. 2 | Switching mechanisms of VO, gap. a-¢, Schematics show a

VO, gap with no bias (a), filamentary switching (b) and thermal-driven
switching (c). d, As compared to thermal-driven domain-wise switching,
electrical filamentary switching shows an abrupt change in resistance.

e, Resistance of the VO, device as a function of heater current showing
~77 levels. It shows gradual and linear resistive switching when the input
current is larger than 5mA. f, Voltage ratio between the output (Vo)
and the supply voltage (Vpp) of the device as a function of heater current
with a 1,900-Q-load resistor as a representative example. Symbols

are experimental data and lines are SPICE simulation results. The V-I
characteristic is similar to the ReLU function shown in Fig. le.

the output voltage to emulate the ReLU activation function as illus-
trated in Fig. le. Since the output of the Mott ReLU device is volt-
age, it can be directly applied to the next layer as an input voltage.
Therefore, multiple synaptic layers can be directly stacked on each
other for driving the next layers by eliminating complex digital cir-
cuits and ADCs between the layers. Moreover, the small size of the
Mott ReLU device allows the integration of the device for each col-
umn of the synaptic array, which eliminates the need for time mul-
tiplexing and hence, enables fully parallel operations.

The main operating principle of the Mott ReLU device is the
Mott transition (or insulator-to-metal transition) of the VO, gap.
The Mott transition of the VO, gap can be induced by either electri-
cal filamentary switching or thermal-driven domain-wise switch-
ing'”'*. When a voltage bias above the threshold is applied across the
VO, gap, Joule heating due to the bias induces filament formation,
and the filament is widened as the voltage increases (Fig. 2a,b). Since
the filament formation is a cascading avalanche effect, the resistance
switching is abrupt'. By contrast, when the transition is driven by
temperature, only the domains whose critical temperature is below
the device temperature transit to the metallic phase (Fig. 2a,c). Since
the transition temperature of each domain exhibits variations®, the
number of domains switched to metallic phases gradually increases
as the temperature increases. As a result, the resistance of VO, grad-
ually decreases as the temperature increases (Fig. 2d). This gradual
switching behaviour of VO, was previously confirmed by scanning
microwave microscopy imaging of the VO, film*. The Mott ReLU
device is engineered to exploit this thermal-driven linear resistive
switching for emulating the linear increment of the ReLU activation
function, as shown in Fig. 2e. Then, this linear resistive switching
of the VO, gap is projected to the output voltage. The ratio between
Vour and Vi, of the Mott ReLU device with a 1,900-Q-load resistor
is demonstrated in Fig. 2f as a representative example. Two potential
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practical issues regarding the Mott transition are discussed in
Supplementary Note 1.

To further assess the compatibility of the Mott ReLU device
for implementing the ReLU activation function, we extensively
characterized its switching characteristics. In addition to gradual
switching, the resistive switching should be volatile to implement
ReLU function in synaptic arrays. That is because the output of the
ReLU activation function should depend only on the input at that
moment, regardless of previous inputs and resistance states. The
volatile switching of the Mott ReLU device is experimentally verified
in Fig. 3a. When 1-ms-wide current pulses with various amplitudes
are applied to the heater, the resistance of the device is switched
and maintained only when the current pulse is high. Furthermore,
the output voltage for a given input current should not exhibit a
high level of variation, which could degrade neural network per-
formance. Figure 3b demonstrates that each resistance state of the
device shows only ~4% or less variation when the resistance states are
iteratively measured. The impact of this small variation on the neu-
ral network performance is studied in the section, Neural network
implementations. Lastly, the endurance of the device should be high
to allow a large number of weighted sum operations in hardware.
For the inference with the MNIST dataset’’, each Mott ReLU device
should generate its output for 10,000 times per epoch (or a whole
testing set). Hence, the device should endure this large number of
cycling operations. Figure 3¢ experimentally demonstrates that the
Mott ReLU device shows no sign of ON/OFF ratio degradation up
to 5,000 cycles. It has been shown that an endurance larger than 10"
cycles can be easily achieved with VO, devices”. Furthermore, we
performed pulse measurements to investigate the power consump-
tion and the latency of the Mott ReLU device. Figure 3d shows the
total power consumption as a function of heater current, as well as
the power consumed by the heater and the VO, gap separately. The
total power consumption of the Mott ReLU device is dominated by
the heater. The latency of the Mott ReLU is 61.4 ns, measured as the
time difference between the first saturation point of the input and
output pulse (Fig. 3e). The energy consumption of the Mott ReLU is
199.5p] for a 65 ns pulse width.

The Mott ReLU device can replace complex peripheral circuits
for activation function calculation. Therefore, it is important to
compare the performance of the Mott ReLU device against other
implementations of activation functions (that is, analogue CMOS*
and digital ADC" circuits discussed in the Methods). The perfor-
mance benchmarking (Supplementary Note 2) results of the Mott
ReLU device against the analogue CMOS circuit' and the digital
ADC implementation'® are summarized in Table 1. The energy
consumption of the Mott ReLU can be further reduced by opti-
mizing the device to have more heat confinement on the VO, gap.
As the heat generated by the heater is more confined to the VO,
gap, the device requires less heater current to achieve the same
temperature on the VO, gap”. Therefore, by replacing the heater
material with a higher thermal resistance material (for example,
Ti has a thermal resistance ~10 times higher than that of Au), the
energy consumption of the device can be lowered. To determine
the energy consumption of an optimized device, we developed an
empirical thermal model of our device (Supplementary Fig. 1a,b)
as discussed in Supplementary Note 3, which shows good agree-
ment with experimental data as shown in Fig. 2e,f. The power con-
sumption of the Mott ReLU can be reduced by ~25 times, down to
128 pW, by increasing the thermal resistance of the nanowire heater
(Supplementary Fig. 2a). Moreover, the latency can be reduced to
~3.8ns (Table 1) by minimizing the parasitic capacitance of the
Mott ReLU below 10"F (Supplementary Fig. 2b), which would
result in a total reduction of ~300 times in energy consumption
down to 0.638 pJ (Table 1). Our experimental results show that the
Mott ReLU device achieves a 450—1,500 times improvement in
area and 1.5-3 times improvement in latency while achieving low
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Fig. 3 | Electrical characteristics of the Mott ReLU device. a, Resistance of the VO, gap when a current pulse is applied to the heater. The resistance stays
at a low resistance state only when the bias is applied. b, Cycle-to-cycle (or intra-device) variation of each resistance state of the Mott ReLU device. For
each data point, the heater cools down to set the resistance of the VO, gap back to the no-bias case before applying another bias to the heater. The circle
symbol represents the mean value while the error bars represent a 95% critical interval (CI). ¢, Endurance of the Mott ReLU device. The state of the device
is alternately switched between the highest (red symbols) and lowest resistance states (blue symbols) by flowing O mA and 18 mA current through the
heater, respectively. d, Power consumption of each component of the Mott device (that is, the heater and the VO, gap) with various heater currents. The
power consumption of the Mott device is dominated by the heater. e, Heater current applied to the device and the resistance of the VO, gap as a function
of time. 61.4 ns after the input to the Mott device is stabilized, the output of the Mott device becomes stable, as indicated by the green dashed lines.

energy consumption. Moreover, the optimization of the Mott ReLU

device can further reduce the energy consumption and improve
the latency, offering substantial gains in area, latency and energy

Table 1| The performance of the activation device or circuit

efficiency as a replacement to the analogue CMOS'" and digital" Mott Analoglzxe D|g|t1a5I
L CMOS ADC
ADC circuits.

Energy (experimental/optimal, pJ)  199.5/0.638% 3,410 19.4
Neural network implementations Latency (experimental/optimal, ns) ~ 61.4/3.8 91.91 207
We have demonstrated that the Mot.t ReLU neurons can provide .. (um?) 064 05106 289"
smaller area and better energy efficiency as compared to the

Leakage (W) 27.0 11,060 -

other circuit implementations. It is also critical to evaluate the
network-level performance using the Mott ReLU devices for hard-
ware implementation of DNNs. To compute the accuracy of neural
network implementations with the Mott ReLU device, we simu-
lated multilayer perception (MLP; Fig. 4a) and LeNet-5 (ref. *';
Fig. 4b; the details on the configurations of the networks are dis-
cussed in the Methods). The schematic and transmission electron
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2Shows projected optimal energy and latency when the thermal resistance of the heater is
increased by x10 and the parasitic capacitance of a Mott ReLU is <10"'F. °This area is only the
area per neuron circuit. The digital ADC implementation needs a shared circuit, which occupies
0.086 mm? of area. Comparison of Mott ReLU, analogue CMOS ReLU™* and digital ADC with
reconfigurable function mapping® at the single ReLU level. The energy, latency and leakage power
are evaluated from the experimental measurement results shown in Supplementary Fig. 2a,b. For
the energy estimation, we used a 65 ns pulse for the Mott ReLU case.
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Fig. 4 | Network-level implementations. a,b, A schematic of MLP (a) and LeNet-5 (b) networks used for simulations with the Mott ReLU. MLP consists of
an input layer (X), a hidden layer (Z) and an output layer (Y) with bias (B) for the input and hidden layers. MLP has one ReLU layer and LeNet-5 has four
RelU layers after convolutional (Conv) and fully connected (FC) layers. ¢,d, Accuracy of MLP (¢) and LeNet-5 (d) with the ReLU activation function for
offline classification (blue circle symbol) and online learning (red square symbol). The ReLU activation function is quantized to have 1- to 8-bit precision.
MLP needs 5-bit precision while LeNet-5 requires 6-bit precision to prevent the accuracy drop. e,f, The network simulation results for MLP (e) and LeNet-5
(f) for the whole MNIST set for each epoch (60,000 images). Experimental measurement results from Fig. 2e,f are used for these simulations. The Mott
RelU achieves an accuracy comparable to the ideal ReLU implemented in software (blue square symbol) unless the cycle-to-cycle (or intra-device)
variation of the Mott ReLU device (o) is higher than 50%. Red triangle, yellow diamond, green triangle and purple triangle symbols represent results for the

no variation, 6=10%, 6=30% and 6=50% cases, respectively.

microscopy image of the CBRAM cell (Supplementary Fig. 3a)
are shown in Supplementary Fig. 3b,c, respectively. Table 2 sum-
marizes the accuracy results of the ideal (that is, software ReLU)
and Mott ReLU cases for both MLP and LeNet-5. We investigated
both online learning (that is, training is done on the hardware) and
offline classification cases (that is, only inference is done on the
hardware). When the ReLU activation functions of MLP (Fig. 4c)
or LeNet-5 (Fig. 4d) are quantized, the accuracy degradation is not
significant unless the precision is ~6 bit or higher. Since the preci-
sion of the Mott ReLU device is high enough (~6 bit), the accuracy
degradation due to the Mott ReLU is negligible as compared to
the accuracy degradation due to the synaptic devices (~10% for
MLP and ~3% for LeNet-5). This is mainly because of the limited
precision (~5 bit) of the CBRAM devices**. The neural networks
with variations (cycle-to-cycle in Fig. 4e,f and device-to-device in
Supplementary Fig. 4a,b) on the Mott ReLU are also investigated,
and it is verified that no significant accuracy degradation due to
the variations occurs (Supplementary Note 4). Since the Mott
ReLU achieves accuracies close to the ideal software, the accuracy
will not be a limiting factor for implementing activation functions
using the Mott ReLU device.
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System-level performance benchmarking

To evaluate the performance of the hardware system for neural
networks with the Mott ReLU device, we performed system-level
performance benchmarking for offline classification using the
NeuroSim platform”. NeuroSim is a C++-based circuit-level
macro-model for neuro-inspired architectures. We modified
NeuroSim to integrate Mott ReLU peripherals with CBRAM syn-

Table 2 | Network simulation results

Online learning Offline classification

MLP LeNet-5 MLP LeNet-5
Software (64 bit) 97.53% 99.11% 97.53% 99.11%
Mott ReLU (-6 bit)  94.0% 97.05% 94.42% 98.38%
CBRAM (-5 bit) with 84.2% 94.21% 89.97% 98.35%

Mott ReLU (~6 bit)

The accuracy results of MLP and LeNet-5 for ideal software (64 bit), 64-bit weights with Mott
ReLU (-6 bit) and CBRAM (~5-bit weights) with Mott ReLU (-6 bit). The results show that the Mott
RelLU can achieve accuracy comparable to the ideal software ReLU.
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peripheral circuits. The CBRAM synaptic core has a wordline (WL) decoder (DEC), bitline (BL) switch matrix and source line (SL) switch matrix. In contrast
to the CMOS analogue activation circuit (ACT), the Mott ReLU device can be integrated for each column due to its small size. d, Peripheral energy versus
peripheral area in different technology nodes for CBRAM synaptic core with CMOS RelLU peripheral for LeNet-5 implementation. A CBRAM synaptic core
with digital ADC peripherals (green square symbol) and Mott ReLU is also presented as a reference. The parameters for different technology nodes of CMOS
circuits are adopted from the predictive technology model?*?¢, The Mott ReLU continues to provide substantial gains in energy and area even though the
CMOS is scaled down to a 14 nm node. The star symbol shows performance results using experimentally measured Mott ReLU characteristics, while the
black square symbol shows projected performance results using an optimized Mott ReLU device (that is, the thermal resistance of the heater is increased by
%10 and the parasitic capacitance is below 10" F). The system-level energy consumption using the optimized Mott ReLU can be further reduced by ~50 times.

aptic cores. We compared the synaptic cores with the Mott ReLU
peripheral against the ones with peripheral circuits implemented
by analogue' and digital> CMOS ReLU circuits. For the Mott
ReLU peripheral, the experimental results on energy and latency
(Fig. 3d,e) are integrated into the NeuroSim platform®. The periph-
eral circuits of analogue CMOS ReLU circuits for the NeuroSim
platform™ are developed based on the SPICE simulations. The
dynamic energy, leakage power and latency of the Mott ReLU and
CMOS ReLU activation circuits shown in Table 1 are integrated into
the circuit modules.

The architecture of the hardware systems with conventional digi-
tal peripheral circuits, the Mott ReLU device and analogue CMOS
circuits are illustrated in Fig. 5a-c, respectively. In contrast to the
conventional analogue one-transistor one-resistor (1T1R) archi-
tecture with digital neuron peripheral (Fig. 5a)*, the Mott ReLU
device allows a simpler synaptic core design (Fig. 5b) by avoiding
multiplexer (MUX) sharing (Supplementary Note 5) and replac-
ing complex circuits and ADCs. Before system-level benchmark-
ing, we first investigated whether the Mott ReLU device can drive
the inputs to the next synaptic array without additional circuits
by performing circuit simulation with Simulation Program with
Integrated Circuit Emphasis (SPICE; Supplementary Note 6). This
result (Supplementary Fig. 5a,b) clearly demonstrates that the Mott
ReLU device can generate stable output to drive the next synaptic
layer without additional circuits. The system-level performance
benchmarking results are summarized in Supplementary Table 1.
The architecture with the Mott ReLU (65ns input pulse) provides
substantial gains over the architectures with analogue CMOS and
digital ADC implementations (Supplementary Note 7). Lastly,
we compared the performance of synaptic cores with the Mott
ReLU and analogue CMOS circuits considering technology scal-
ing (130nm to 14nm) as discussed in the Methods. The results
in Fig. 5d demonstrate that the experimentally measured Mott
ReLU provides ~10 times the energy gain regardless of the CMOS
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technology node. Moreover, the system-level gain in energy can be
further improved up to ~100 times using the optimized Mott ReLU
in comparison to the analogue CMOS ReLU. More importantly,
the Mott ReLU achieves an orders of magnitude smaller peripheral
circuit area in comparison to both the digital ADC and analogue
CMOS implementations of the activation function. The system-level
performance results show that the Mott ReLU device offers a prom-
ising approach to replace power-hungry and large-area activation
function circuits in the neuron periphery.

Integration of Mott ReLU devices with crossbar arrays
To demonstrate the integration of Mott ReLU devices with synaptic
arrays in hardware, we fabricated CBRAM crossbar arrays (Fig. 6a)
and a Mott ReLU device array (Fig. 6b) as explained in the Methods.
We designed a custom printed circuit board (PCB; Fig. 6¢) to inter-
face and integrate the CBRAM and the Mott ReLU chips in hard-
ware. Each column of the crossbar array is directly connected to
Mott ReLU devices (Fig. 6d) to investigate how the weighted sum
current generated by the array controls the output voltage of the
Mott ReLU devices. First, we varied the input voltage to the crossbar
array (—250 to 250 mV) while programming the weights of ~2/3 of
the synaptic devices on a column to the low resistance state, and
the rest to the high resistance state. Figure 6e shows that the out-
put voltage exhibits ReLU characteristics as the input voltage to the
CBRAM devices is increased from -250mV to 250 mV. Then, we
varied the synaptic weights in the column while the input voltage
was fixed at 130 mV. As the ratio of devices programmed to the low
resistance state increases, the output voltage exhibits ReLU charac-
teristics (Fig. 6f). These experimental results demonstrate that the
weighted sum current that depends on the input voltage and the
weights (resistance) of the synaptic devices can successfully drive
the Mott ReLU neurons to implement ReLU activation function.
For a large-scale hardware demonstration, we implemented a
convolutional edge detection operation® with filters (Supplementary
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Fig. 6 | Hardware demonstration of the integration of Mott ReLU devices and a synaptic array. a, An optical image (scale bar, 150 pm) of a CBRAM
crossbar array (32 x32) and the scanning electron microscope image of a 16 x 16 CBRAM array (scale bar, 200 pm). We use a 16 x 16 array for the following
hardware implementation. b, A Mott ReLU device array that contains 44 devices (scale bar, 3mm). The insets in a and b (scale bars, 20 pm and 30 pm,
respectively) show single devices, the CBRAM and Mott ReLU device, respectively. ¢, Image of the custom PCB board with the Mott ReLU and the CBRAM
arrays wire bonded onto it to demonstrate neural network operation. d, An illustration explains how a Mott ReLU device is connected to a column of

the CBRAM array with a load resistor (Load R) in hardware. e, Output voltage of the Mott ReLU device as the input voltage (V) to the CBRAM array is
swept from -250 mV to 250 mV when ~2/3 of devices on a column of the CBRAM array are set to a low resistance state while the others are set to a high
resistance state. For the Mott ReLU device, 1.1V is applied as V;, to the VO, gap with a 3.3-kQ-load resistor connected in series, and 7 mA of offset current
is applied to the heater. f, Measured output voltage of a Mott ReLU device when the percentage of CBRAM devices at the low resistance state is varied from
0% to 100%. g, A 180 x 270 image used for edge detection. Colour bar represents the pixel intensity of the image. Four representative 10 x 10 patches and
a schematic of the convolution operation are shown below. The schematic illustrates that the convolution operation is done by sliding the 4 x 4 filters on
the image patches 49 times. h,i, For a lateral filter (h) and vertical filter (i), the experimentally measured weighted sum currents of the CBRAM array during
the convolution operations for these four patches are shown. The weighted sum current produced by the CBRAM array during the convolution operation is
fed to the Mott RelLU array to perform ReLU operation. j,k, Panels j and k show the output voltage of the Mott ReLU devices for the whole image during the
convolution and ReLU operations for the lateral and vertical filters, respectively. Colour bar represents the output voltage of the Mott RelLU.
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Fig. 6a,b) followed by a ReLU operation on a real-world image
with the CBRAM crossbar and the Mott ReLU array using the cus-
tom PCB as discussed in the Methods. The weighted sum current
resulting from the convolution operation from four representative
10% 10 input patches (Fig. 6g) with both the lateral and vertical
edge detection filters (Supplementary Fig. 6a,b) mapped using a
differential pair scheme (Supplementary Fig. 6¢) are shown in Fig.
6h,i, respectively. The weighted sum current generated during the
convolution operation is fed to the Mott ReLU devices to perform
the ReLU operation on the weighted sum. The output voltages of
the Mott ReLU devices as a result of the weighted sum with the lat-
eral and vertical filters for the whole input image are shown in Fig.
6j.k, respectively. These results show that lateral and vertical edges
of the image are detected by implementing corresponding filters
using the Mott ReLU devices integrated with the CBRAM cross-
bar array in hardware. The successful edge detection using the Mott
ReLU devices integrated with the CBRAM crossbar array proves
the feasibility of using Mott ReLU neurons as activation units for
in-memory computing systems.

Conclusions

We introduced a nanoscale, Mott-transition-based device for the
RelU activation function. The device exhibits volatile, linear and
gradual resistive switching of a VO, film controlled by the metal
nanowire heater on top of it. The Mott ReLU device shows minimal
cycle-to-cycle variation and long endurance, which are important for
hardware implementation of neural networks. We have shown that
the Mott ReLU devices generate an output voltage, which follows the
ReLU activation function, with the given input current. This allows
the Mott ReLU device to drive the synaptic devices on the next layer
directly. We performed system-level simulations for a hardware imple-
mentation of neural networks with the Mott ReLU devices. Moreover,
we experimentally demonstrated that the Mott ReLU devices can be
integrated with CBRAM crossbar arrays to perform filtering opera-
tions of convolutional neural networks. Our findings suggest that the
device with Mott-transition-based activation can achieve substantial
gains in energy, latency and area compared to the digital or analogue
circuit implementations of the activation function, while maintain-
ing high accuracy. The small size and high energy efficiency of the
Mott device provide a solution towards large-scale, highly parallel and
energy-efficient in-memory computing systems for DNNs.
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Methods

Mott device fabrication. To fabricate the Mott-transition-based activation devices,
a70nm VO, film is grown by reactive sputtering on top of an Al,O, substrate in
4mtorr Ar/O, (8% O,) ambient at 520 °C. Then Ti (20 nm)/Au (30 nm) electrodes
are patterned using electron-beam (e-beam) lithography and e-beam evaporation
to define the 50nm VO, gap. Next, 70nm ALO, is deposited as the insulating layer.
A Ti (20nm)/Au (30 nm) nanowire heater is patterned on top of the Al,O;, aligning
with the VO, gap using e-beam lithography and e-beam evaporation. To isolate
each device, the VO, film outside the active area is etched with reactive ion etching.
The resistance of the heater is ~30 €, while the resistance of the VO, gap without
bias to the heater is ~10k€2.

Device measurement set-up. To measure the thermal gradual resistance switching
of VO, while preventing electrical switching, we apply a 1 pA current source,
using a Keithley 6221, to the VO, gap. The current is small enough not to initiate
electrical switching. Then, we measure the voltage across the VO, gap using a
Keithley 2182A. The resistive switching of the VO, gap is solely controlled by the
heat generated by the heater on the top of the VO, gap. The heat generation is
controlled by a voltage source connected to the heater. We measure the current
flow through the heater to measure the heat generation using an oscilloscope. For
the variability and endurance measurement, the Keithley 6221 is used to apply a
current pulse train to the heater. Then the resistance of the VO, gap is extracted
by measuring the voltage across the VO, gap using the Keithley 2182A while
applying constant 1 pA current through the gap using another Keithley 6221. The
ambient temperature is controlled by a Lake Shore TTPX Probe station for all the
measurements.

CMOS ReLU implementation. The analogue CMOS circuit consists of three
operational amplifiers, which amplify the input current and convert the input
current to the output voltage, and an analogue switch that implements the
rectifying function. The digital ADC circuit is implemented using ADC with
reconfigurable function mapping. In order to evaluate the energy and latency

of these three different ReLU implementations as an activation function, we
assume that all implementations get an identical weighted sum result as an input
to the Mott ReLU device or digital/analogue CMOS circuits. The area of each
implementation is calculated from the layout of the device or circuits.

Neural network configuration. The MLP used for network simulations is
composed of 785 input neurons (that is, 1 input neuron for bias and the other

784 neurons for MNIST dataset inputs), 128 hidden neurons and 10 output
neurons. Each output neuron represents one of the digits (from 0 to 9). The
hidden neurons have the ReLU activation function, while the output neurons have
the soft-max activation function. LeNet-5 has six 5X 5 convolutional filters for
2828 MNIST input images. The outputs from the convolutional filters are fed

to the ReLU activation function. Then, the outputs of ReLU activation functions
are down-sampled using 2 X 2 max pooling. The second convolutional layer has
sixteen 8 X 8 convolutional filters with 2 2 max pooling. The outputs from the last
max-pooling layer are fed into the FC layers, which have 120 input neurons (FC1),
80 hidden neurons (FC2) and 10 output neurons (Output). The input neurons and
hidden neurons of the FC layers have ReLU activation functions, while the output
neurons have soft-max activation functions.

In the network simulations, the ReLU activation functions on the neuron layers
(that is, the hidden layer of MLP and convolutional layers and FC layers of LeNet-
5) are implemented with the Mott ReLU based on its experimental measurement
results. A 1,900-Q-load resistor is connected to the Mott ReLU, and 5mA of offset
current is applied to the Mott ReLU through an additional row on the synaptic
array to shift the transition point to 0 mA. The weights are mapped onto the arrays
of CBRAM devices by using the characteristics of CBRAM devices. The CBRAM
cells used for the simulations exhibit ~40 conductance levels (~5 bit) and an ON/
OFF ratio of 100. For the network simulation, the weights of the network ranging
from —1 to 1 are mapped to the minimum (~1pS) and maximum (~100 pS)
conductance of CBRAM cells. Similarly, the outputs of the ReLU activations
(0 to 785) are also linearly mapped to the output voltages of Mott ReLU devices
(0 to 200mV).

LeNet-5 requires a larger fanout for the FC1 layer. To address this, we
incorporated a time multiplexing approach. By enabling a subset of columns of
the synaptic array sequentially with the switch matrix, the number of devices
connected to each Mott ReLU can be controlled. Since our architecture already

has a switch matrix, this approach is directly implemented in performance
benchmarking simulations with NeuroSim. It is important to note that larger-scale
DNN models may require additional peripheral circuit blocks including buffers if
they have many layers with large fanout. These blocks could be integrated with the
synaptic arrays in the future and accounted for the performance benchmarking for
different models.

Convolutional filtering with the Mott ReLU device integrated with CBRAM
array. To implement convolutional filtering using the Mott ReLU and CBRAM
array for image edge detection, the PCB is controlled by a semiconductor
parameter analyser (Agilent 4155C) and a switch matrix (HP E5250A). Then,
biasing and measurement are done by the semiconductor parameter analyser
(Agilent 4155C). The 4 x 4 lateral and vertical filters are programmed into the
columns of the crossbar array by unrolling the filters into 16 X 1 vectors on the
CBRAM array. For each filter, the positive and negative weights are represented
using two columns of the crossbar array to form a differential pair (that is,
G=G*-G"). The input image (180 270) is quantized (16 levels) and converted
into a voltage pulse train of four binary pulses (250 mV for ‘1’ and 0mV for ‘0’).
For the column representing negative weights, a negative voltage pulse train is
applied as input to form a differential pair with the column representing positive
weights (that is, I=1I*-I"). For the convolution operation, a filter slides over the
input image and the weighted sum currents from the pair are combined and fed
into a Mott ReLU device. For Mott ReLU devices, 1.1V is applied to the VO, gap,
load resistors are set to 3.3kQ and 7mA of offset current is applied to the heater.
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