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Multimodal neural recordings with Neuro-FITM
uncover diverse patterns of cortical-hippocampal
interactions
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2346 and Duygu Kuzum® 624

Many cognitive processes require communication between the neocortex and the hippocampus. However, coordination
between large-scale cortical dynamics and hippocampal activity is not well understood, partially due to the difficulty in simulta-
neously recording from those regions. In the present study, we developed a flexible, insertable and transparent microelectrode
array (Neuro-FITM) that enables investigation of cortical-hippocampal coordinations during hippocampal sharp-wave ripples
(SWRs). Flexibility and transparency of Neuro-FITM allow simultaneous recordings of local field potentials and neural spiking
from the hippocampus during wide-field calcium imaging. These experiments revealed that diverse cortical activity patterns
accompanied SWRs and, in most cases, cortical activation preceded hippocampal SWRs. We demonstrated that, during SWRs,
different hippocampal neural population activity was associated with distinct cortical activity patterns. These results suggest
that hippocampus and large-scale cortical activity interact in a selective and diverse manner during SWRs underlying various
cognitive functions. Our technology can be broadly applied to comprehensive investigations of interactions between the cortex

and other subcortical structures.

ferent cortical and subcortical structures. Understanding of

these long-range interactions in the brain requires monitor-
ing of simultaneous activity patterns across these areas. This could
be achieved by simultaneous multimodal recordings combining
electrophysiological recordings and large-scale functional optical
imaging. However, seamless integration of optical imaging with
electrophysiology is difficult with conventional microelectrodes
because large probe shanks made of rigid and opaque materials can
prevent lowering of the microscope objective and block the field of
view of imaging. To address this issue, we developed ‘Neuro-FITM,
an array that can be implanted into deep cortical layers and sub-
cortical structures. The flexible probe shank of Neuro-FITM can
be bent to the side to allow lowering of the microscope objective.
Optical transparency of the shank provides a clear field of view and
prevents optical shadows or additional noise in optical signals. Low
impedance of Neuro-FITM provides reliable recordings of local
field potentials (LFPs), high-frequency oscillations and single units
with a high signal-to-noise ratio (SNR).

In the present study, we performed multimodal experiments with
Neuro-FITM to investigate the coupling between the hippocampus
and the cortex during SWRs. It has been suggested that hippocam-
pal SWRs coordinate activity between the hippocampus and the
cortex'™". Experiments with closed-loop manipulations have shown
the indispensable role of SWRs in learning and memory°~’. However,
most studies focused only on a single or a few cortical regions®"2, so
little is known about the simultaneous interaction between multiple
cortical regions and the hippocampus during SWRs. Furthermore,

Brain computations often require interactions between dif-

it is unclear whether the cortex is passively activated by hippocam-
pal SWRs or whether certain cortical activity patterns can precede
SWRs. Importantly, simultaneous variations across SWRs in hip-
pocampal population activity and cortical activity patterns have not
been studied. These questions could be addressed by simultaneous
multimodal recordings that include electrophysiological recordings
of the hippocampus and functional imaging of the cortex across
large areas. We implanted Neuro-FITM into the hippocampus and
performed simultaneous electrophysiological recordings of SWRs
and single units during wide-field calcium imaging of most of the
dorsal cortex in awake, head-fixed mice. Empowered by the multi-
modal recording capability, we investigated the large-scale cortical
activity patterns associated with SWRs on a single-event basis using
tensor component analysis (TCA)" and found a rich spatiotempo-
ral diversity. Furthermore, by performing decoding analysis with
a support vector machine (SVM)'", we found that different corti-
cal activity patterns relate to distinct activity of hippocampal neu-
rons. Our results reveal that SWRs accompany diverse and specific
interactions between the activity of the hippocampus and that of
the cortex, and support the model that SWRs mediate diverse corti-
cal-hippocampal interactions depending on the behavioral context
and demand.

Results

Neuro-FITM fabrication and characterization. Neuro-FITM
arrays developed in the present study combine three key advan-
tages: flexibility, transparency and shuttle-free implantation in
a single probe. They were fabricated on transparent and flexible

'Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA. 2Neurobiology Section, Division of Biological
Sciences, University of California San Diego, La Jolla, CA, USA. 3Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA,
USA. “Department of Neurosciences, University of California San Diego, La Jolla, CA, USA. *Kavli Institute for Brain and Mind, University of California
San Diego, La Jolla, CA, USA. ¢Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA. "These authors contributed equally:
Xin Liu, Chi Ren, Yichen Lu. ®e-mail: tkomiyama@ucsd.edu; dkuzum@eng.ucsd.edu

886

NATURE NEUROSCIENCE | VOL 24 | JUNE 2021 | 886-896 | www.nature.com/natureneuroscience


mailto:tkomiyama@ucsd.edu
mailto:dkuzum@eng.ucsd.edu
http://orcid.org/0000-0003-3993-3505
http://orcid.org/0000-0003-3367-6536
http://orcid.org/0000-0001-9609-4600
http://orcid.org/0000-0002-2125-1285
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-021-00841-5&domain=pdf
http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE

REPORT

c
Encapsulation
layer

a To preamplifier

~

Electrode
wires

Substrate
layer

i k 0
;C:: 400 ¢ Fixed current: =25 nA g
~ @ Z
® 300 o
2 S & —45
5] 3 ©
g 3 £
2 200 g
E E
100 L L L L L L L 104 L L L I I I —9o L . " " L "
@ 90 90 0 4&0 A0 10 10 10° 10" 102 10°  10* 10° 10° 10" 102 10° 10* 10°
Deposition time (s) Frequency (Hz) Frequency (Hz)
I % A 2 M 40 " e——
= Au 35| Corr.=0.79 = = Substrate
_ = PtNP o 30| P=6.81x10 ' ¢ 8 0.8 = Bent shank
< c S el c m Recording tip
= : =% £ 06 Total shank
E of 05 @20t g
g = 2 @ 04
5 S o 15+ c
o Z % g
[ = 02|
5 |
-30 . L ) I I I I I

500 600 700 800 900 1,000
Wavelength (nm)

0 \
100 150 200 250 300 350 400 450
Impedance (kQ)

-0.5

0 0.5 1
Voltage (V)

Fig. 1| Characterization of Neuro-FITM. a, Neuro-FITM connected to the customized printed circuit board. b, Microscope image showing the layout

of the microelectrode array. ¢, Schematic showing exploded view of the three-layered structure of Neuro-FITM. d-f, SEM images of the array showing
10-um-diameter microelectrode openings and 2-um-wide wires connecting to the microelectrodes: array tip showing the arrangement of microelectrodes
(d); 10-um-diameter microelectrodes and 2-pm-wide wires encapsulated with 2-um-thick Parylene-C (e), and magnified view of a single microelectrode
and its connected wires encapsulated with 2-um-thick Parylene-C (). g-i, SEM images showing PtNPs deposited on to the Au microelectrodes: PtNPs
deposited on Au microelectrode (g) and surface and grains of PtNPs (h, and further magnified view in i). j, Electrode impedance as a function of deposition
time during PtNP deposition (mean +s.d., n=3 electrodes for a deposition time of 60, 90, 180, 210 and 270 s; n=4 electrodes for 120, 150 and 240 s of
deposition time). k, EIS magnitude (left) and phase (right) compared between Au and PtNP-deposited Au electrodes. PtNPs reduced the impedance of Au
electrodes. The phase plot shows that PtNP electrodes are more resistive at higher frequency ranges than Au electrodes, consistent with the reduction in
the impedance magnitude (mean +s.d., n=26 electrodes for Au and n=21 electrodes for PtNP). I, Cyclic voltammetry characteristics of PtNP-deposited
electrodes showing redox peaks corresponding to electrochemical reactions of Pt, indicating an active engagement of PtNPs in the redox processes at the
electrochemical interface. m, Noise level for electrodes with different impedances measured in 0.1 M phosphate-buffered saline solution. Recorded signals
were first high-pass filtered at 5 Hz and chunked into nonoverlapping 1-s segments. The noise level for each segment was defined as its root mean square
value. Each dot marks the mean noise level for each recording channel. The error bar marks the s.e.m. for n=87 measurements. The noise levels are higher
for electrodes with higher impedance (two-sided Student's t-test, P=6.81x 107, n=23, degree of freedom =21). Corr., correlation. n, Transmittance of the

substrate, the bent shank, the recording tip and the total shank as a function of wavelength.

Parylene-C substrate (Fig. 1a—c). Briefly, a polydimethylglutarimide
sacrificial layer was spin-coated on a silicon wafer. A 14-pm-thick
Parylene-C layer was deposited with the chemical-vapor deposi-
tion method. Then, 5-nm Cr and 100-nm Au were deposited with
sputtering and patterned with photolithography and wet etching.
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A 2-um-thick Parylene-C layer was deposited as the encapsula-
tion layer (Fig. 1c). Electrode openings were patterned with pho-
tolithography and oxygen plasma etching. The profile of the probe
was defined with photolithography and oxygen reactive ion etch-
ing (Fig. 1d-f). Neuro-FITM arrays can be fabricated in various
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configurations depending on the specific needs of the experiments.
The Neuro-FITM probe shown in Fig. 1 is designed to record hip-
pocampal LFPs and units during optical imaging. The width of the
array is 50 pm at the tip, whereas the shank is tapered up to a maxi-
mum width of 170 pm at the top. The array consists of 32 circular
recording electrodes, each with a diameter of 10 pum connected to
2-um-wide wires. The scanning electron microscope (SEM) images
show the profile of the probe and well-defined electrode open-
ings (Fig. 1d-f). We fabricated several different configurations of
Neuro-FITM, including probes with smaller electrode spacing
(20pm) for potential use in a tetrode configuration (Extended
Data Fig. 1a), probes with a higher channel count (64 channels per
shank; Extended Data Fig. 1b), and probes with longer shanks to
allow recording from deeper structures of the brain or to use in rats
(Extended Data Fig. 1c) and primates (Extended Data Fig. 1d).

Reducing the electrode impedance is important to minimize
the electrical noise, particularly for single-unit recordings'*-"".
To achieve low impedance, platinum nanoparticles (PtNPs) were
deposited on to 10-um Au electrodes of Neuro-FITM probes
(Fig. 1g-i)"". The electrode impedance can be controlled as a
function of PtNP deposition time (Fig. 1j) and the size of the PtNP
increases as the deposition time increases'”. The largest grains of
PtNPs are about 500nm in diameter for 180s of deposition time.
Electrochemical impedance spectroscopy (EIS) results show that
the impedance of the Neuro-FITM electrodes was reduced by
~16X (Fig. 1k) as a result of PtNP deposition. Cyclic voltammetry
(CV) measurements confirm that the PtNPs are actively engaged in
the redox processes at the electrochemical interface (Fig. 11). The
impedance of our 10-um-diameter electrodes is ~150kQ at 1kHz,
similar to those of the Neuropixel probes (~150kQ)'® even though
the surface area (78.5pum?) is half the size (Neuropixel =144 pm?).
Considering the impedance is inversely proportional to the elec-
trode area, the impedance of Neuro-FITM electrodes is effectively
two times smaller than the Neuropixel probes. We investigated the
effect of impedance reduction on recording noise. Figure 1m shows
recorded electrical noise as a function of electrode impedance, var-
ied by controlling PtNP deposition time. Neuro-FITM electrodes
exhibit sufficiently low noise (10 uV) for reliable detection and sort-
ing of single units.

Optical transparency is important for seamless integration
of electrophysiological recordings and optical imaging in multi-
modal experiments'®’. We characterized the optical transparency
of Neuro-FITM. The transmittance of the bent shank is ~95.7%
and the recording tip with dense Au electrodes and interconnects
shows a transmittance of ~50% (Fig. 1n). It is important to point
out that, although the Au electrodes and Au wires are not trans-
parent, the functional imaging would not be affected because: (1)
Neuro-FITM is vertically implanted so that the penetrating tip
of the probe does not directly block the light pathway and (2) the
bent shank in the light pathway has thin Au wires, resulting in a
high transmittance of ~95.7%. To better clarify the advantages of
Neuro-FITM in multimodal configurations involving two-photon
microscopy or wide-field imaging, we compared Neuro-FITM
with commercially available NeuroNexus and Neuropixel probes
(Extended Data Fig. 2). The high flexibility of Neuro-FITM allows
bending of the probe shank away to lower the microscope objective
for two-photon imaging (Extended Data Fig. 2b), whereas the rigid
shanks of the Neuropixel and NeuroNexus probes prevent lower-
ing of the microscope objective to its working distance. Wide-field
microscope images (Extended Data Fig. 2¢) show that NeuroNexus
and Neuropixel probes block the field of view and generate shad-
ows. In addition, large probe shanks can also result in out-of-focus
images (Extended Data Fig. 2¢, Neuropixel probe). Transparency
of Neuro-FITM prevents blocking of the field of view and the for-
mation of optical shadows that can obscure imaging. In addition
to multiphoton imaging and wide-field imaging, the Neuro-FITM
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array is also compatible with other optical imaging techniques com-
monly used in neuroscience, including near-infrared spectroscopy
and diffuse optical tomography.

In vivo multimodal recordings with Neuro-FITM. Vertical
implantation of Neuro-FITM arrays is critical for not blocking the
light pathway during optical imaging and minimizing implanta-
tion damage. To implant Neuro-FITM arrays vertically without
using a rigid shuttle or adding a bioresorbable stiffening layer, we
carefully engineered the geometry and length of the microelec-
trode array by performing mechanical analysis to prevent buckling
during insertion. Furthermore, the probe was designed to include
additional micromanipulator pads to maximize insertion force
against buckling (Fig. 2a; see Methods). Note that implantation of
Neuro-FITM arrays with very long probe lengths designed for pri-
mate use (Extended Data Fig. 1d) will require the aid of shuttles
during the insertion step. After the insertion and successful target-
ing of the hippocampus (Fig. 2b), the shank of the array was bent
away to the side to allow lowering of the microscope objective to its
working distance and to clear the field of view of the microscope
(Fig. 2a and Extended Data Fig. 3a). The 2-pm-wide wires are con-
fined to a narrow width to increase transparency of the shank and to
minimize formation of shadows during imaging (Fig. 2¢c). To inves-
tigate the use of Neuro-FITM in in vivo multimodal experiments,
we implanted it into the CA1 layer of hippocampus (Fig. 2b and
Extended Data Fig. 3b) of transgenic mice expressing GCaMP6s in
most cortical excitatory neurons” (CaMK2-tTA::tetO-GCaMP6s;
see Methods). We performed simultaneous electrophysiological
recordings of CAl and wide-field calcium imaging of the dorsal
cortex’'. Hippocampal SWRs were detected in multiple channels
located near the CAl pyramidal layer (Fig. 2d), with concurrent
large-scale cortical dynamics monitored using wide-field calcium
imaging. Figure 2e shows representative examples of various spatial
patterns of cortical activation during individual SWRs.

In addition to recordings of high-frequency SWR events,
Neuro-FITM electrodes also detected spikes from multiple hippo-
campal neurons (12+2 (mean=+s.e.m.) neurons in each animal).
Most neurons could be detected in multiple adjacent channels,
each exhibiting different spike amplitudes (Extended Data Fig. 3c).
Figure 3a shows spike waveforms of 21 neurons recorded across
different channels in three recording sessions from one animal.
Figure 3b shows the spike waveforms of all 21 neurons from the chan-
nel with the largest amplitude. Recorded neurons show stable spike
waveforms across the sessions. The SNR of the electrical recordings
is critical for spike detection and sorting as well as reliable detec-
tion of SWRs across different sessions. Therefore, we investigated
the SNR for both unit (Fig. 4a) and LFP recordings, adopting the
method used for measuring spike SNR of Neuropixel probes'®. The
SNR is computed as A/(0.6457 X B), where A is the maximum signal
amplitude and B is the baseline taken as the median absolute devia-
tion (MAD). The mean SNR of detected spikes is between 6 and 15
(Fig. 4b), similar to the SNR recorded by Neuropixel and other Si
probes'®*. To quantify the SNR of the LFP recordings, we measured
the SNR for ripples and sharp-wave events using the same method'®.
The LFP signals recorded from the channels located in the pyrami-
dal layer were bandpass filtered at the ripple frequency range (120-
250Hz) and sharp-wave frequency range (5-50Hz), respectively.
The baseline was then chosen as the MAD of the filtered signal from
each channel. For each ripple event, the maximum signal amplitude
is taken. The distribution of the detected amplitude and the SNR
for ripples and sharp waves are shown in Fig. 4c,d-f, respectively.
These results confirm that Neuro-FITM achieves high SNR for both
single-unit and LFP recordings in all animals. Another important
question is how the SNR of fluorescence response in wide-field
imaging would be affected by the presence of Neuro-FITM elec-
trodes. We characterized the SNR of the AF/F to quantify whether
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Fig. 2 | Simultaneous multimodal recordings from the hippocampus and cortex. a, Surgical setup. Neuro-FITM was first inserted into the hippocampus
(left) and then the shank was bent down to the right side to allow lowering of the microscope objective and clearing of the field of view for imaging (right).
b, Penetrating trajectory of Neuro-FITM in the hippocampus visualized by immunostaining against GFAP. The arrowhead indicates the trajectory in the
CA1 pyramidal layer. ¢, Field of view of wide-field calcium imaging during the experiment. Note that the array shank was largely invisible and generated
minimal shadows on the overlaying cortex. d, Representative LFP recordings from the channels of the Neuro-FITM probe in one recording session. Multiple
channels adjacent (red) to the pyramidal layer of CA1 detected SWRs. e, Examples of simultaneously recorded hippocampal SWRs (left column) and
cortical activity (right column, single image frames at SWR onset). Cortical activity shows diverse spatial patterns during SWRs.

the implanted array affects imaging quality following the procedure
used in a previous study”. Briefly, we first identified the onset and
offset time points of each cortical activation event. The SNR of each
event is computed as the ratio between the maximum AF/F ampli-
tude during activation and the s.d. of the AF/F fluctuation during
[—1s, 0s] before onset. We found similar SNR for the fluorescence
activity from the area covered by the Neuro-FITM shank and the
corresponding area in the contralateral hemisphere (Fig. 4g), show-
ing that Neuro-FITM does not significantly change the SNR of
fluorescence signals during wide-field calcium imaging.

Cortical activation onset tends to precede hippocampal SWRs.
Our multimodal recording setup with Neuro-FITM provides an
ideal platform to investigate the spatiotemporal properties of cor-
tical-hippocampal interactions during SWRs. We first examined
the large-scale cortical activity patterns averaged across all SWRs.
To analyze the onsets of cortical activity and SWR accurately with-
out contamination from prior SWR events, we focused on SWRs
that did not have other SWRs for at least the preceding 3s (4,290
‘well-separated SWRs’ out of 8,643 SWRs). We found that the onset
of cortical activation averaged across SWRs preceded SWR onset
by 1.33+0.15s (mean=+s.d.; Fig. 5a and Extended Data Fig. 4a)
whereas the peak of cortical activation occurred 0.67+0.18s
(mean +s.d.) after the SWR onset. To investigate whether differ-
ent cortical regions have different activation timing relative to SWR
onset, we parcellated the dorsal cortex into 16 individual regions
based on Allen Brain Atlas (Fig. 5b) and examined the activity of
each cortical region around SWR onset. On average, all the cortical
regions increased their activity around SWRs (Fig. 5c and Extended
Data Fig. 4b). Furthermore, the activation onset timing of cortical
regions relative to the SWR onset exhibited an anteroposterior gra-
dient, with the earlier activation of posterior cortical regions such
as visual cortex, retrosplenial cortex and posterior parietal cortex
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(Fig. 5d and Extended Data Fig. 5). Similarly, the fraction of SWR
events with the activation of the cortical region leading SWR onset
increased from anterior to posterior cortical regions (Fig. 5¢). Of
SWRs, 93.78% had at least one cortical region with activity onset
preceding the SWR onset. Taken together, in most SWR events, the
cortical activation started before hippocampal SWRs, especially in
posterior cortical regions.

Distinct patterns of cortical activity around SWRs. Given that
multimodal recordings with Neuro-FITM showed spatiotempo-
ral variations in cortical activity from SWR event to SWR event
(Fig. 2e), we next asked whether there were distinct cortical activa-
tion patterns that were reproducibly observed across subsets of the
SWRs. Simultaneous wide-field imaging of the dorsal cortex and
SWR recordings from the hippocampus with Neuro-FITM across
many sessions generated large-scale neural datasets that can be ana-
lyzed to answer this question. To this end, we performed a two-stage
TCAP on the activity from all the recorded cortical regions during
all SWR events, including SWRs that were and were not well sepa-
rated. TCA is an unsupervised dimensionality reduction method
that extracts recurring patterns in high-dimensional data (Extended
Data Fig. 6) by decomposing the data into three factors (Fig. 6a).
The region factors and time factors describe the spatial and tempo-
ral dynamics of cortical patterns, respectively, and the event factors
measure the weighting of a given SWR event on the established set
of patterns. By multiplying the region factors and time factors, we
identified eight distinct cortical activity pattern templates that were
common across all animals (Fig. 6b and Extended Data Fig. 7a).
The patterns exhibited distinct activated regions focusing on either
the anterior or the posterior cortices, with patterns 1, 2 and 3 domi-
nated by anterior regions (‘anterior patterns’) and patterns 4, 5 and
6 dominated by posterior regions (‘posterior patterns’), with differ-
ent time courses relative to the SWR onset. Besides patterns 1-6
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Fig. 3 | The neuron spike waveforms in different recording sessions from one mouse. a, Spatial profiles of spike waveforms of all 21 neurons recorded
across 32 channels in three recording sessions marked by three different colors. Many neurons exhibit stable waveforms that are most prominent in
adjacent channels. b, Spike waveforms of all 21 neurons from the channel with the largest amplitude recorded in three sessions. Different colors indicate
different recording sessions, as in a. The waveforms of the same neuron recorded at different sessions are highly similar.

showing transient and spatially discrete activity patterns, pattern 7
was dominated by an extended activation in the visual cortex and
pattern 8 showed periodic and oscillatory activation in all cortical
regions. The cortical activity pattern in each SWR event could be
well reconstructed as a linear sum of the eight templates weighted
by the event factors (Extended Data Fig. €b).

To explore the diversity of SWR-associated cortical activity, we
first measured the two-dimensional (2D) correlation between the
cortical activity during individual well-separated SWR events and
each of the cortical pattern templates. The correlations for SWR

890

events followed a continuous distribution instead of aggregating
into isolated clusters (Fig. 6¢), indicating that broadly distributed
diverse cortical activity patterns were associated with SWRs. To
examine the SWR events with divergent associated cortical activ-
ity, we next focused our analysis on groups of SWR events with
cortical activity that was mainly dominated by one of the cortical
pattern templates (Fig. 6¢, colored dots, 2D correlation >0.45). In
total, ~36% of all the well-separated SWR events were assigned to
one of the cortical pattern templates. The cortical activity averaged
across the SWR events assigned to each cortical pattern template
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the mean SNR averaged over all the neurons and the error bar denotes the s.e.m. Each dot represents the spike SNR for one neuron. AU, arbitrary units.

¢, Histogram of amplitude of the detected ripples. The red line shows the MAD of the ripple-range LFPs (120-250 Hz). d, Mean SNR for the ripples
detected in all six mice. Each dot represents the mean SNR of the ripples recorded in one recording channel. e, Histogram of amplitude of the sharp waves
during SWR. The red line shows the MAD of the sharp-wave range LFPs (5-50 Hz). f, Mean SNR for the sharp waves detected in all six mice. Each dot
represents the mean SNR of the sharp waves recorded in one recording channel. g, SNR of the AF/F for the cortical regions covered by the array shank
(ipsilateral, Ipsi.) versus the symmetrical cortical regions on the contralateral (Contra.) side, showing a similar SNR for both cases.

highly resembled the corresponding template (Fig. 6d, compare
with Fig. 6b). Thus, many SWR events accompany diverse sets of
reproducible cortical activity patterns. For the SWR events assigned
to the two patterns with peak activity immediately after ripple onset
(patterns 2 and 5), we also found the activity onset of most cortical
regions preceded ripple onset by 0.16-0.6 s (Extended Data Fig. 7b).
Figure 6e shows the fraction of SWR events assigned to each pat-
tern for all the mice. Overall, there were more SWR events associ-
ated with the posterior cortical patterns than the anterior patterns,
suggesting a more frequent coupling between the hippocampus and
posterior cortical regions during SWRs.

Different cortical patterns associate with distinct hippocampal
activity. Considering that SWR-associated cortical activity exhib-
ited distinct patterns, we explored whether hippocampal neuronal
activity during individual SWR events is differentially modulated
depending on the concurrent cortical patterns. In addition to SWRs,
Neuro-FITM electrodes also detect spikes from the nearby hippo-
campal neurons in multimodal experiments. Figure 7a shows three
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representative hippocampal neurons exhibiting selective (neurons
1 and 2) or nonselective (neuron 3) firing rates at the onsets of
SWRs associated with different cortical patterns. To study the dis-
tinct modulation of hippocampal neurons during different cortical
activity patterns, we performed SVM decoding analysis to exam-
ine whether cortical patterns could be discriminated based on the
hippocampal population activity. SVM is a decoding technique that
looks for a hyperplane to best separate the data according to their
classes, while maximizing the margin between the data samples and
the hyperplane. SVM has been shown to give a robust decoding
performance for high-dimensional data, especially when the size
of the dataset is limited. As a result of this advantage, it has been
commonly used to decode stimuli and choices using neuronal activ-
ity**-*%. In the present study, we built an SVM decoder that performs
pairwise discrimination of cortical patterns based on hippocampal
population activity. The SWR events associated with two cortical
patterns were selected, and the decoder attempted to discriminate
the cortical patterns using the spiking activity of the simultaneously
recorded hippocampal neurons (12+2 neurons in each animal;
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Fig. 7b). We used the recursive feature elimination algorithm®,
which selected the subset of neurons in each decoder with activity
that was informative about the cortical activity patterns (‘discrimi-
nant neurons’). This process was repeated for all pairs of cortical
patterns. For many cortical pattern pairs, the cortical patterns could
be discriminated significantly above chance based on the activ-
ity of hippocampal neurons during SWRs. Figure 7c shows the
decoding accuracy for each cortical pattern pair from one example
mouse. In all six mice, a large fraction of cortical pattern pairs was

892

distinguishable (Fig. 7d and Extended Data Fig. 8). By examining
the decodable cortical pattern pairs, we found that different subsets
of hippocampal neurons were discriminant for different cortical
pattern pairs (Extended Data Fig. 9a), and all hippocampal neurons
were discriminant in at least one of the pairs. These results suggest
that all hippocampal neurons are modulated differently depend-
ing on cortical activity patterns during SWRs. We also repeated the
decoding analysis using hippocampal pyramidal cells and interneu-
rons separately. We found that both hippocampal pyramidal cells
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event factors to capture the spatiotemporal dynamics of single SWR events. b, Common SWR-associated cortical activity pattern templates identified
across animals by the TCA algorithm. Note that patterns 1-6 exhibited activation of anterior or posterior cortical regions with three different time courses
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frequently than anterior regions.

and interneurons can decode the cortical activity pattern, indicating
that both neuron types were modulated specifically during SWRs
(Extended Data Fig. 9b).

Given that many cortical pattern pairs could be decoded, we fur-
ther investigated whether hippocampal neuron activity exhibited
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consistent modulations based on the different features of cortical
activity patterns. To address this issue, we analyzed two groups of
pattern pairs. One included pattern pairs with the same activation
time course but different activated regions (anterior versus poste-
rior, pattern 1 versus 4, 2 versus 5 and 3 versus 6), whereas the other
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included pattern pairs with the same activated regions but different index’ for each neuron as the difference in the spike counts dur-
time courses (early versus late, for example, pattern 1 versus 2 or 4  ing one pattern versus the other, divided by the sum of the two
versus 5). To compare the activation levels of discriminant neurons  (Methods). When comparing posterior with anterior patterns acti-
determined by the recursive feature elimination algorithm for corti-  vated at similar timing, we found that posterior patterns were asso-
cal pattern pairs (Extended Data Fig. 9a), we defined the ‘preference  ciated with higher firing in a majority of discriminant neurons than

894 NATURE NEUROSCIENCE | VOL 24 | JUNE 2021 886-896 | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE

TECHNICAL REPORT

the anterior patterns, which was evident in a significantly positive
preference index (Fig. 7e). In contrast, when comparing cortical acti-
vation of similar areas but with different timing, the general activity
level of discriminant neurons did not show a significant preference
for earlier versus later activation (Fig. 7e). Despite the lack of consis-
tent difference in the general hippocampal activation level for E-L
pattern pairs, their decoding accuracy was similar to that for A-P
pattern pairs (Fig. 7e). We also repeated the same decoding analy-
sis and preference index analysis for all the ripple events, including
the non-well-separated SWRs (Extended Data Fig. 10). The results
are qualitatively similar compared with Fig. 7, indicating that the
conclusions are generalizable across heterogeneous ripples. Taken
together, these results reveal diverse associations between cortical
activity patterns and hippocampal neuronal activity during SWRs.
The posterior cortical activation is associated with stronger hippo-
campal activation in most of the hippocampal neurons. The relative
timing between cortex and SWRs is associated with heterogeneous
modulation of individual hippocampal neurons.

Discussion

We developed a mostly transparent, bendable microelectrode array
(Neuro-FITM) to enable cortex-wide simultaneous optical imaging
during electrophysiological recordings. To achieve the same goal,
conventional silicon probes would have to be inserted contralater-
ally or horizontally, which would inevitably lead to long insertion
trajectories causing additional implantation damage to the brain
tissue. Furthermore, horizontal implantation will cause increased
mechanical stress applied on to the thin silicon shank at the clamp-
ing point, which can lead to premature fracture of the probe.
Instead, our flexible array could be inserted vertically to the hippo-
campus with the shortest trajectory, minimizing brain tissue dam-
age. In addition, our Neuro-FITM has up to 64 recording electrodes
per shank, providing a higher spatial resolution for electrophysiol-
ogy compared with other polymer-based microelectrodes used for
hippocampal recordings***'. Given the high flexibility and small
dimensions of the insertable shank of the array, we anticipate that
our flexible microelectrode array will improve the stability of unit
recordings in chronic studies.

Our Neuro-FITM array could potentially be combined with
other neural technologies that further expand its applications into
various neuroscience studies. For example, Neuro-FITM array could
be integrated with wireless electrophysiological recording platforms
for wireless data transmission*>~*, which are ideal for recordings in
freely moving animals. The Neuro-FITM array could also be aug-
mented to allow simultaneous electrophysiological recordings and
manipulations of neural activity. This could be achieved by opti-
mizing the charge injection capacity of the electrodes for electri-
cal stimulation®, or by incorporating micro-light-emitting diodes*
or waveguides” into the device to form optoelectronic neural
interfaces.

The simultaneous multimodal recordings of the hippocampal
and cortical activity allowed us to characterize the cortical-hip-
pocampal interactions during individual SWRs. In contrast to the
conventional notion that cortical activity is mainly triggered by
hippocampal SWRs'"'>*" (but see refs. *'°*?), our findings sug-
gest that the hippocampus and cortex exhibit bidirectional com-
munications, with the cortical activation frequently preceding SWR
onset. Furthermore, the relative timing between cortical activa-
tion and SWRs is area specific. The cortical activation could start
before or after SWRs in both anterior and posterior cortical regions,
whereas the activation of posterior cortical regions precedes SWRs
more frequently than that of anterior regions. A previous study in
nonhuman primates performed simultaneous functional magnetic
resonance imaging (fMRI) recordings of the whole brain and elec-
trophysiological recordings of the hippocampus, and showed that
the activation of several cortical regions can, on average, precede

NATURE NEUROSCIENCE | VOL 24 | JUNE 2021 | 886-896 | www.nature.com/natureneuroscience

hippocampal SWRs. However, the SNR of fMRI limited their analy-
sis to the average activity across SWRs and prevented the analysis
of the diversity of cortical activity during individual SWRs". The
approach adopted in the present study achieved a sufficient SNR
to perform single-event analyses across large recording areas to
uncover the remarkable and coordinated diversity of cortical and
hippocampal activity during SWRs. The activation of different
cortical regions with different timing relative to SWR onset forms
distinct cortical activity patterns from SWR to SWR. Importantly,
these cortical activity patterns differentially associate with the hip-
pocampal neuronal activity, which indicated that these patterns are
not merely random fluctuation but that there is, rather, a predictable
relationship of cortical activity patterns with hippocampal neuron
populations, indicative of large-scale neuron assemblies that span
the hippocampus and cortex.

The interaction between hippocampus and single brain regions
under different behavioral states has been extensively studied. For
example, it has been reported that awake SWRs were accompanied by
the reactivation of neurons in the prefrontal cortex, suggesting that
the awake SWRs played important roles in memory retrieval'>**. On
the other hand, the existence of a bidirectional loop between the hip-
pocampus and the auditory cortex, which could play a role in memory
consolidation, was also demonstrated’. A recent study showed that, on
a larger scale, the coupling between hippocampal ripples and ripples
in association cortices becomes stronger after spatial learning, sug-
gesting a closer communication between the hippocampus and asso-
ciation cortices during memory transfer*. The hippocampus encodes
a variety of information including spatial, sensory and reward**.
The broad and diverse activation of cortical regions we observed dur-
ing hippocampal SWRs may reflect a specific binding of distinct types
of information encoded in the hippocampus and the relevant corti-
cal regions through different anatomical connections. The diversity
of cortical-hippocampal interactions around SWRs suggests that the
hippocampus and cortex can communicate through multiple infor-
mation streams based on contexts and cognitive processes. Future
studies should uncover how such cortical-hippocampal interaction is
dynamically shaped when the animals are experiencing different task
contexts or under different behavioral states.
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Methods

Array design and measurement. The Neuro-FITM array has 32 or 64 electrodes
with a flexible shank (Fig. 1a,b and Extended Data Fig. 1). The electrodes are
aligned in two rows that are 20 pm apart from either edge of the probe. The
diameter of each electrode is 10 pm and the spacing between adjacent electrodes

is 50 or 20 pm. For the electrode designed to record in mouse hippocampus, the
distance between the top and bottom electrodes is 750 pm, which is long enough

to record from multiple depths of the CA1 region in the dorsal-ventral axis. The
microelectrode array consists of a 1.55-mm probe and a 1.9-cm transparent flexible
shank, connecting the electrodes to the ZIF connector. To determine the optimal
length of the shank for shuttle-free insertion, we performed mechanical analysis

as shown in equation (1), where w=170pm, t=16 pm, L and E=3.2 GPa are the
width, thickness, length and Young’s modulus of the shank. The maximum force

a probe can uphold without buckling is inversely proportional to the square of its
length. As the insertion force F required to penetrate brain tissue was commonly
accepted to be 1 mN*", we estimated that the length of the probe must be shorter
than 1.9 mm. Therefore, we chose the length of the probe to be 1.8 mm, which was
long enough to target the CA1 region of the mouse hippocampus, yet short enough
to prevent buckling during insertion.

T Ewt®

1
5.88L2 w

Fpp =

All electrochemical characterizations were performed with Gamry 600 Plus
in 0.01 M phosphate-buffered saline (Sigma-Aldrich, catalog no. P3813 dry
powder dissolved in deionized water). To measure the EIS and CV, we adopted
a three-electrode configuration, where the Ag/AgCl (gauge 25) served as the
reference electrode, and Pt (gauge 25) as the counter electrode. During EIS, the
applied AC voltage was 20 mV, with frequency ranging from 100kHz to 1 Hz at
open circuit potential. We performed EIS of one representative array and the mean
and s.d. are shown in Fig. 1k. During CV, the applied voltage between the PtNP/Au
electrodes and the Ag/AgCl ones ranged from —0.9V to 1V (Fig. 11). To stabilize
the electrode/electrolyte interface, we performed CV of a representative channel.
During the measurement of CV and EIS, we used a customized Faraday cage to
shield from the 60-Hz powerline contamination and other electromagnetic noises.

Animals. All procedures were performed in accordance with protocols approved
by the University of California San Diego (UCSD) Institutional Animal Care and
Use Committee and guidelines of the National Institute of Health (NIH). Mice
(cross between CaMKIIa-tTA:B6;CBA-Tg(Camk2a-tTA)1Mmay/] (JAX 003010)
and tetO-GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/] (JAX 024742), Jackson
laboratories) were group housed in disposable plastic cages with standard bedding
in a room with a reversed light cycle (12h:12h). Temperatures and humidity
ranged from 18°C to 23 °C and 40% to 60%, respectively. Experiments were
performed during the dark period. Both male and female healthy adult mice (6
weeks or older) were used. Mice had no prior history of experimental procedures
that could affect the results.

Surgery, multimodal experiments and data acquisition. Adult mice (6 weeks
or older) were anesthetized with 1-2% isoflurane and injected with enrofloxacin
(10mgkg™) and buprenorphine (0.1 mgkg™") subcutaneously. A circular piece
of scalp was removed to expose the skull. After cleaning the underlying bone
using a surgical blade, a customized head-bar was implanted on to the exposed
skull over the cerebellum (~1 mm posterior to lambda) with cyanoacrylate glue
and cemented with dental acrylic (Lang Dental). Two stainless-steel wires (A-M
Systems, catalog no. 791900) were implanted into the cerebellum as ground/
reference. The exposed skull was covered with cyanoacrylate glue applied several
times. After cyanoacrylate glue formed a solid layer, a craniotomy (~0.5mm in
diameter, ~1.5-1.7 mm lateral and ~2.1-2.3 mm posterior to bregma) was made
at the right hemisphere for microelectrode array insertion and the dura over

the exposed brain surface was carefully removed. The microelectrode array was
connected to the amplifier board first and held by a customized electrode holder
attached to a micromanipulator (Sutter Instrument, catalog no. MP-285). The
array was inserted at ~45pums™'. Once inserted, the array was secured to the
skull with Vetbond (3M). After the Vetbond became solid, the array was carefully
released from the electrode holder and the exposed part of the array shank was
bent to the right side of the animal. The amplifier board was fixed on to the right
head-bar clamp arm on the stage (Fig. 2a and Extended Data Fig. 3a). Animals
were fully awake before recordings. In six of eight animals, we successfully
recorded SWRs and spikes in multiple recording channels. To quantify the
accuracy of array implantation, we measured the distance between the target
location and the actual location of the tip of the array based on the staining
results (Extended Data Fig. 3b). We found that the distance was 100+ 33 pm in
the medial-lateral direction, 113 + 18 pm in the anteroposterior direction and

87 +24 pm in the vertical direction.

The wide-field calcium imaging was performed using a commercial
fluorescence microscope (Axio Zoom.V16, Zeiss, objective lens (1x, 0.25
numerical aperture)) and a CMOS camera (ORCA-Flash4.0 v.2, Hamamatsu)
through the intact skull as previously described”'. Images were acquired using
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HClImage Live (Hamamatsu) at 29.98 Hz, 512 x 512 pixels? (field of view,
11x 11 mm? binning, 4; 16 bit).

The microelectrode array was attached to a customized connector board
that routed the electrical signals to the Intan RHD2132 amplifier boards (Intan
Technologies). Electrophysiological recordings were performed using the Intan
RHD 2000 system. The sampling rate was 30 kHz. For each animal, all recording
sessions are on the same day with a 5- to 10-min interval between sessions. In
total, six mice were recorded, each having two to three sessions. The length of each
session was 1 h.

Immunohistochemistry. The microelectrode array was left in the brain for
4-5weeks before perfusion to allow glial scar formation, which is a good
indication of the array location. The mice were anesthetized (ketamine/xylazine,
150 mgkg~'/12mgkg™" of body weight) and perfused transcardially with 4%
paraformaldehyde. Brains were then cryoprotected in a 30% sucrose solution
overnight. Then, 50-mm coronal sections were cut with a microtome (Microm
HM 430, Thermo Fisher Scientific) and blocked in a solution consisting of 4%
normal donkey serum, 1% bovine serum albumin and 0.3% Triton X-100 in
phosphate-buffered saline for 1h at room temperature. They were then incubated
overnight at 4 °C with primary antibodies (1:1,000 chicken anti-green fluorescent
protein (GFP), Aves Labs; 1:400 goat anti-glial fibrillary acidic protein (GFAP),
Santa Cruz) diluted in the blocking solution. After washing, sections were then
incubated in Alexa Fluor-conjugated secondary antibodies (1:1,000 anti-chicken
488; 1:1,000 anti-goat 594, Jackson Immuno Research) for 2h at room temperature.
Slices were then mounted with a mounting medium for DAPIT staining (Vector
Laboratories) and imaged using a fluorescence microscope (ApoTome.2, Zeiss;
Fig. 2b and Extended Data Fig. 3b).

SWR detection, spike sorting and AF/F processing. The detection of SWRs

was performed using the following procedures. The raw LFP signals from the
channels near CA1 pyramidal layers were bandpass filtered at 100-200 Hz
(eighth-order Butterworth filter) in both forward and reverse directions to prevent
phase distortion. Hilbert’s transform was then used to obtain the envelope of the
ripple-band signals. To detect the potential SWR events, we set a threshold to
2-3s.d.s above the mean. Once the ripple-band envelope crossed the threshold, one
candidate SWR event was labeled. The start and end times of this candidate SWR
event were then defined as the times when the envelope just passed or returned
back to the mean level. Between the start and end times, if the peak amplitude of
the signal envelope further exceeded 4-6s.d.s above the mean, then an SWR event
was finally identified. Note that, similar to other studies’"*, we considered only
SWR events with a duration >20ms.

The spike sorting was performed with Kilosort 2 (ref. **) and the output results
were followed by manual curation. The recording sessions from the same day were
pooled before the spike sorting to identify the same neurons across sessions. The
LFP data were first high-pass filtered at 250 Hz (third-order Butterworth filter) and
whitened to remove the correlation between nearby channels. Then the Kilosort
algorithm identified the best templates and the putative clusters of neurons, along
with their spike timing and amplitudes. These preliminary results were further
manually refined by merging the same neurons, splitting different neurons and
labeling low-amplitude inseparable spikes as multi-unit activities. Finally, the
hippocampus pyramidal cells and interneurons were classified based on the firing
rates and the asymmetry of the spike waveforms™.

To obtain the AF/F time series from the wide-field calcium imaging data,
images of 512 x 512 pixels® were first down-sampled to 128 X 128 pixels. For
each pixel, time-varying baseline fluorescence (F) was estimated for a given
time point as the 10th percentile value >180s around it. For the start and end
of each imaging block, the following and preceding 90-s windows were used
to determine the baseline, respectively. The raw AF/F of each pixel was z-score
normalized. We corrected for hemodynamic contamination following published
procedures®'. Briefly, we performed principal component analysis (PCA) followed
by independent component analysis (ICA)*' on z-score-normalized AF/F to
extract hemodynamic components from the total signal. We first performed
PCA and preserved the top 50 PCs, which explained ~95% variance of the data.
Then the spatial ICA was performed over the top 50 PCs to generate 50 spatially
independent modules. Finally, the modules containing the vasculature activities
were excluded and the reconstruction of cortical activity was done with the
remaining modules. We screened different numbers of components (20, 40, 50, 150
and 200) preserved in PCA/ICA analysis and, using 50 components, gave the best
separation of hemodynamic and neural signal. To obtain the AF/F of each cortical
region, the dorsal cortex was manually parcellated into individual regions based on
the Allen Brain Atlas (Fig. 5b) and the AF/F time series was computed as the mean
of the pixel values within each cortical region.

The time delay between cortical activation and SWRs. For the analysis of the
timing of SWR onset and the onset of dorsal cortex activity averaged across SWR
events (Fig. 5a and Extended Data Fig. 4), we included only the well-separated
SWRs that did not have any preceding SWR events for at least 3s. This was to
prevent potential contamination from the tail of cortical activity associated with
preceding SWRs. The onset timing of the event-averaged cortical activity was
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defined as the earliest activity onset across 16 cortical regions. For each region,
using the AF/F at —2s relative to SWR onset as the baseline, we performed
rank-sum tests at each frame between —2s and 2 s relative to SWR onset. The
activity onset time for each cortical region was defined as the time when its AF/F
was significantly higher (P<0.05) than the baseline for at least three consecutive
frames. The mean onset time was computed by first averaging across sessions
within animals and later averaging across animals. The peak time of event-averaged
cortical activity was defined as the time when cortical activity averaged across 16
regions reached the maximum value. The mean peak time was computed by first
averaging across sessions within animals and then averaging across animals.

For the analysis of timing between SWR onset and the activity onset of each
cortical region during individual SWRs (Fig. 5d,e and Extended Data Fig. 5), we
also focused on well-separated SWR events. The activity onset of each cortical
region was identified as previously described?'. In brief, we first computed the
derivative of the smoothed AF/F traces (loess, 1-s window) and defined the
inactive segments as the periods with the derivative within 1s.d. of the whole
derivative trace. Then we defined AF/F events as the periods when the derivative
exceeded the 1s.d. of the inactive period. For each event, the onset time was first
estimated as the time when the derivative exceeded the 1s.d. criterion, and the
offset time was estimated as the time when the derivative dropped to <0 for the
first time after the onset. To further refine the onset time, for each event, the
baseline AF/F was defined as the value at the first time point when the derivative
was >0 before the offset time, and AF/F noise level was defined as the mean of the
absolute difference between the raw and smoothed AF/F traces. The onset was
further refined as the last time point before the offset time when the AF/F value is
within the noise level from the baseline AF/F.

After identifying the activity onset of each cortical region, we determined
the timing of each SWR onset relative to the activity onset of each region using
the following procedures. For each SWR onset, we first examined the slope of
the instantaneous AF/F traces of one region. If the AF/F was rising, we looped
backward in time frame by frame until reaching —1s before the SWR onset. If a
cortical activity onset was detected within this time interval, we labeled this SWR
event as occurring after the cortical activity onset. On the other hand, if the AF/F
was not rising, we looped forward in time frame by frame until reaching +1 s after
the SWR onset. If a cortical activity onset was detected within this time interval, we
labeled this SWR event as occurring before the cortical activity onset. The above
procedure was done for every well-separated SWR and all the cortical regions.

Two-stage TCA algorithm. To prepare the data for the TCA algorithm, we
performed the preprocessing procedures described below. The AF/F traces in

each cortical region were z-score normalized within each recording session.

For each SWR event, we used the 3-s AF/F traces (1s before SWR onset, 2s

after) from 16 cortical regions to construct a 2D data matrix (region X time).

Then we concatenated the 2D data matrices from all the SWR events to form

a three-dimensional (3D) data tensor (region X time X event). Finally, the data
tensors from all the six mice were concatenated along the event dimension to form
a big data tensor (Fig. 6a).

The TCA has been demonstrated to be effective in discovering the
low-dimensional dynamics of neural activity'’. However, as the original algorithm
did not guarantee achieving the global optimum, the results could vary from
run to run. To achieve reliable results, we devised a two-stage TCA algorithm,
which includes a pre-clustering step to alleviate the variations from individual
runs. The detailed procedure is shown in Extended Data Fig. 6a. The first stage
of the algorithm consisted of fitting a TCA model with a sufficiently high rank
order. The tensor toolbox v.3.0 (https://www.tensortoolbox.org) was used to
perform TCA decomposition. To determine this rank order, we fitted multiple
TCA models with rank 2-15 and examined the reconstruction error of each TCA
model. The reconstruction error started to show diminishing returns toward rank
15 (Extended Data Fig. 6b). Therefore, we chose rank 15 for the initial TCA and
ran it 100 times. Each result gave a slightly different decomposition of the original
high-dimensional data. To capture the underlying dynamics that were common
and consistent in most TCA results, we performed clustering of the 1,500 TCA
spatiotemporal patterns by computing the similarity matrix using 2D correlation.
Then the community detection algorithm was performed with the community
detection toolbox (http://netwiki.amath.unc.edu/GenLouvain/GenLouvain) to
identify the clusters. As shown in the sorted similarity matrix (Extended Data
Fig. 6¢), we identified eight different clusters of TCA patterns. The number of
patterns assigned to each cluster is shown in Extended Data Fig. 6d. Examples
of randomly chosen patterns assigned to each cluster are shown in Extended
Data Fig. 6f. The second stage of the TCA algorithm used the centroids of
eight clusters identified from the first stage to initialize the region and time
factors, leaving all the event factors randomly initialized. Then we ran the TCA
optimization algorithm as before until it converged to obtain the final set of TCA
factors (Extended Data Fig. 7a). Compared with the original TCA algorithm,
our two-stage TCA algorithm gave significantly lower reconstruction error
(P=1.38x10""; Extended Data Fig. 6e).

Cortical pattern assignment. To assign the cortical activity pattern of each SWR
event to one of the eight spatiotemporal templates (Fig. 6b), we computed the 2D

correlation between the z-score-normalized AF/F traces and each template. If the
correlation value for one pattern was higher than a threshold (0.45; Fig. 6c-e), we
assigned the SWR event to that pattern. If one SWR event was assigned to multiple
patterns, we excluded that SWR event.

The algorithm for pairwise discrimination of the cortical patterns. To
discriminate the cortical patterns based on hippocampal activity, we used the SVM.
The hippocampal neuron firing counts during 0-100 ms relative to SWR onset
were used as input features for the SVM algorithm. As the numbers of SWR events
assigned to each cortical pattern template were often unbalanced (Fig. 6¢), we
modified the misclassification costs to be inversely proportional to the sample
frequencies of the two pattern types in each pair, N1 and N2. Therefore,
misclassifying pattern type 1 as pattern type 2 had cost N2/(N1+ N2), whereas
misclassifying pattern type 2 as pattern type 1 had cost N1/(N1+ N2). Also, to
measure the decoding performance, we used balanced accuracy instead of the
accuracy, which could be misleading in the unbalanced datasets. The balanced
accuracy was defined as the average of the correct proportion for each class (that is,
cortical pattern). We performed the recursive feature elimination®** to identify the
discriminant neurons for each cortical pattern pair (Extended Data Fig. 9). This
was done by choosing the subset of neurons that give the highest balanced
accuracy in the leave-one-out cross-validation. To evaluate whether the decoding
performance for each cortical pattern pair was significantly better than chance, we
randomly shuffled the cortical pattern identities 2,000 times, performed SVM
using the identified discriminant neurons and computed the balanced accuracy in
each shuffle to obtain a null distribution of it. Then we computed the P value based
on the balanced accuracy from the original dataset and the distribution of the
balanced accuracy from the shuffled dataset (Fig. 7c, and Extended Data Figs. 10b
and 8). The exact P values associated with Fig. 7c are as follows: mouse 1:
P(1-2)=0.086, P(1-3) =0.2815, P(1-4) =0.1415, P(1-5) =0.153, P(1-6) =0.0035,
P(1-7)=0.094, P(1-8) = 0.0965, P(2-3) =0.3365, P(2-4) =0.0315, P(2-5) =0.036,
P(2-6)=0.0535, P(2-7) =0.0245, P(2-8) = 0.0425, P(3-4) =0.5235, P(3-5) =0.28,
P(3-6)=0.052, P(3-7) =0.037, P(3-8) = 0.3795, P(4-5) =0.13, P(4-6)=0.0695,
P(4-7)=0.005, P(4-8) =0.016, P(5-6) =0.153, P(5-7) =0.017, P(5-8) =0.062,
P(6-7) =0.0205, P(6-8) =0.0025, P(7-8) = 0.0275; mouse 2: P(1-2) =0.0035,
P(1-3)=0.0045, P(1-4) =0.004, P(1-5) = 0.0665, P(1-6) =0, P(1-7) =0, P(1-8) =0,
P(2-3)=0.009, P(2-4) =0.017, P(2-5) =0.0525, P(2-6) = 0.0375, P(2-7) = 0.0055,
P(2-8)=0.0005, P(3-4)=0.039, P(3-5)=0.007, P(3-6) =0.0545, P(3-7) =0.035,
P(3-8)=0.0025, P(4-5) =0.0125, P(4-6) = 0.001, P(4-7) =0.002, P(4--8) =0,
P(5-6) =0.0085, P(5-7) =0.006, P(5-8) = 0.0015, P(6-7) =0, P(6-8) =0.001,
P(7-8) = 0; mouse 3: P(1-2) =0.0105, P(1-3) =0.015, P(1-4) =0.024,
P(1-5)=0.0275, P(1-6) =0.0035, P(1-7) =0, P(1-8) =0.0295, P(2-3) =0.008,
P(2-4)=0.006, P(2-5)=0.017, P(2-6) =0.2245, P(2-7) =0.0015, P(2-8) =0.0135,
P(3-4) =0.0005, P(3-5) =0.017, P(3-6) =0.1865, P(3-7) =0.001, P(3-8) = 0.015,
P(4-5)=0.047, P(4-6) =0.001, P(4-7)=0.0035, P(4-8) = 0.041, P(5-6) =0.0035,
P(5-7)=0, P(5-8)=0.0165, P(6-7) =0.0295, P(6-8) =0.034, P(7-8) =0.2295;
mouse 4: P(1-2)=0.0055, P(1-3) =0.0085, P(1-4) = 0.023, P(1-5)=0.0135,
P(1-6)=0.054, P(1-7) =0.0135, P(1-8) =0.167, P(2-3) =0.073, P(2-4) =0.013,
P(2-5)=0.037, P(2-6) =0.0765, P(2-7) =0.3305, P(2-8) =0.1825, P(3-4) =0.25,
P(3-5)=0.0675, P(3-6)=0.0175, P(3-7) =0.03, P(3-8) =0.029, P(4-5) =0.034,
P(4-6)=0.0905, P(4-7) =0.0375, P(4-8) = 0.0675, P(5-6) =0.0015,
P(5-7)=0.0775, P(5-8) =0.0285, P(6-7) = 0.046, P(6-8) = 0.094, P(7-8) = 0.39;
mouse 5: P(1-2) =0.0335, P(1-3)=0.0755, P(1-4) =0.009, P(1-5) =0.0075,
P(1-6)=0.013, P(1-7) =0, P(1-8) =0.0055, P(2-3) =0.0295, P(2-4) =0.0145,
P(2-5)=0.0495, P(2-6) =0.057, P(2-7) =0.0215, P(2-8) = 0.1255, P(3-4) =0.0875,
P(3-5)=0.0195, P(3-6) =0.015, P(3-7) = 0.0095, P(3-8) =0.0535, P(4-5)=0.0155,
P(4-6) =0.009, P(4-7) =0.0325, P(4-8) = 0.0245, P(5-6) =0.0145, P(5-7) =0.0415,
P(5-8)=0.026, P(6-7) =0.007, P(6-8) =0.0065, P(7-8) =0.1315; mouse 6:
P(1-2)=0.018, P(1-3)=0.0175, P(1-4) =0.017, P(1-5) =0.0065, P(1-6) = 0.046,
P(1-7)=0.013, P(1-8) =0.001, P(2-3) = 0.007, P(2-4) = 0.0105, P(2-5) =0.108,
P(2-6)=0.0115, P(2-7) =0.1615, P(2-8) = 0.0025, P(3-4) =0.0345, P(3-5)
=0.0025, P(3-6)=0.008, P(3-7) =0.001, P(3-8) =0.0045, P(4-5) =0.0835,
P(4-6)=0.0015, P(4-7) = 0.062, P(4-8) =0.017, P(5-6) =0.0315, P(5-7) =0.03,
P(5-8) =0.0065, P(6-7) =0.0055, P(6--8) = 0.0025, P(7-8) =0.0125. The exact

P values associated with Extended Data Fig. 10b are as follows: mouse 1:
P(1-2)=0.0645, P(1-3)=0.1735, P(1-4)=0.0315, P(1-5) =0.057, P(1-6) =0.128,
P(1-7)=0.008, P(1-8)=0.027, P(2-3) =0.1735, P(2-4) =0.0375, P(2-5) =0.0025,
P(2-6)=0.0205, P(2-7) =0.0135, P(2-8) = 0.345, P(3-4) =0.1685, P(3-5) = 0.0225,
P(3-6)=0.012, P(3-7) =0.04, P(3-8) = 0.3775, P(4-5)=0.01, P(4-6) =0.3415,
P(4-7)=0.0415, P(4-8)=0.289, P(5-6) =0.042, P(5-7) =0.1595, P(5-8) =0.066,
P(6-7)=0.473, P(6-8) =0.01, P(7-8) =0.07; mouse 2: P(1-2) =0.018,
P(1-3)=0.034, P(1-4) =0.007, P(1-5)=0.114, P(1-6) = 0.0065, P(1-7) =0.0245,
P(1-8)=0, P(2-3) =0.0135, P(2-4) =0.012, P(2-5) =0.0115, P(2-6) =0.037,
P(2-7)=0.0205, P(2-8) =0, P(3-4) =0.058, P(3-5) =0, P(3-6) =0.02,
P(3-7)=0.0345, P(3-8) =0.0035, P(4-5)=0.0115, P(4-6) =0.0015, P(4-7) =0,
P(4-8) =0, P(5-6) =0.0465, P(5-7) = 0.009, P(5-8) =0, P(6-7) =0, P(6-8) =0,
P(7-8)=0; mouse 3: P(1-2) =0, P(1-3) =0.001, P(1-4) =0.0135, P(1-5) = 0.035,
P(1-6)=0.011, P(1-7)=0.0935, P(1-8) =0.001, P(2-3)=0.0575, P(2-4) =0.0015,
P(2-5)=0.003, P(2-6)=0.0515, P(2-7) =0.0045, P(2-8) =0.0015, P(3-4) =
=0.0025, P(3-5) =0.0225, P(3-6) = 0.2895, P(3-7) = 0.0045, P(3-8) = 0.0025,
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P(4-5)=0.002, P(4-6) =0.0295, P(4-7) =0.002, P(4-8)=0.0205, P(5-6) =0.023,
P(5-7)=0.0055, P(5-8) =0.01, P(6-7) =0.088, P(6-8)=0.002, P(7-8) =0.0355;
mouse 4: P(1-2) =0.221, P(1-3) =0.177, P(1-4)=0.111, P(1-5) = 0.0335,
P(1-6)=0.011, P(1-7) =0.0175, P(1-8) = 0.0435, P(2-3) =0.0765, P(2-4) = 0.0025,
P(2-5)=0.0205, P(2-6) =0.0615, P(2-7) =0.001, P(2-8) =0.143, P(3-4) =0.2925,
P(3-5)=0.0335, P(3-6) =0.009, P(3-7) =0.049, P(3-8) =0.0335, P(4-5) =0.0105,
P(4-6)=0.123, P(4-7) =0.022, P(4-8) =0.1275, P(5-6) =0.0195, P(5-7) =0.105,
P(5-8)=0.1305, P(6-7) =0.0875, P(6-8) = 0.0255, P(7-8) =0.11; mouse 5:
P(1-2)=0.085, P(1-3) =0.627, P(1-4) =0.1625, P(1-5) =0.4755, P(1-6) =0.024,
P(1-7)=0.259, P(1-8)=0.009, P(2-3) =0.105, P(2-4) = 0.052, P(2-5) =0.1565,
P(2-6) =0, P(2-7) = 0.0065, P(2-8) = 0.09, P(3-4) = 0.142, P(3-5)=0.0705,
P(3-6)=0.176, P(3-7) =0.014, P(3-8) = 0.12, P(4-5) = 0.0705, P(4-6) =0.0015,
P(4-7)=0.2375, P(4-8)=0.007, P(5-6)=0.001, P(5-7) =0.185, P(5-8) =0.0995,
P(6-7)=0.0075, P(6-8) =0.0105, P(7-8) = 0.115; mouse 6: P(1-2) =0.063,
P(1-3)=0.021, P(1-4) =0.023, P(1-5) = 0.0065, P(1-6) =0.0995, P(1-7) =0.013,
P(1-8)=0.1085, P(2-3) =0.01, P(2-4) =0.0105, P(2-5) = 0.004, P(2-6) =0.0455,
P(2-7)=0.0925, P(2-8) =0.0005, P(3—4) =0.008, P(3-5) =0.004, P(3-6) =0.044,
P(3-7)=0.003, P(3-8) =0.0165, P(4-5) =0.0105, P(4-6) =0.034, P(4-7) =0.2415,
P(4-8)=0.077, P(5-6) =0.011, P(5-7) = 0.0035, P(5-8) =0.045, P(6-7) = 0.0035,
P(6-8)=0.033, P(7-8) =0.012. Finally, to further quantify the overall decoding
performance for each mouse, we computed the fraction of distinguishable cortical
pattern pairs (P <0.05) over the cortical pattern pairs included in the analysis
within each animal (Fig. 7d and Extended Data Fig. 10c). To examine whether the
fraction of distinguishable cortical pattern pairs in each animal is significant, we
tested against the null hypothesis that the fraction is obtained by chance. As the
probability of each pattern pair being mislabeled as distinguishable is 0.05, under
the null hypothesis, the number of distinguishable pairs in each mouse follows a
binomial distribution where the parameter P=0.05 and N equals the number of
pattern pairs included in the analysis within each animal. Therefore, the critical
number of pattern pairs, N, is determined as the smallest integer that makes the
binomial cumulative density function >0.95. Finally, the chance level fraction is
obtained as the ratio between Nc and N.

Hippocampal neuron firing rates under different cortical patterns during
SWRs. To obtain the instantaneous firing rates between —1's and 2 s relative to
SWR onset for each hippocampal neuron, we used 100-ms time bins without
overlap for each SWR event (Fig. 7a and Extended Data Fig. 10a). We defined the
preference index (PI) to measure whether one neuron showed higher activity for
one pattern than the other (Fig. 7e and Extended Data Fig. 10d). For each pattern
pair (for example, pattern X and pattern Y), the preference index of one neuron
was calculated using its mean firing count between 0 and 100 ms relative to SWR
onset under each pattern, as shown in equation (2).

Firing count (X) — Firing count (Y)

PI(X) = (2)

Firing count (X) + Firing count (Y)

The early versus the late group included pattern pairs of pattern 1 versus 2,
1 versus 3, 2 versus 3, 4 versus 5, 4 versus 6 and 5 versus 6. The anterior versus
posterior group included pattern pairs of pattern 1 versus 4, 2 versus 5 and 3
versus 6. For each cortical pattern pair, the preference index at population level
was calculated by averaging across discriminant hippocampal neurons (Fig. 7e and
Extended Data Fig. 10d).

Statistics and reproducibility. For electrode arrays designed for recordings in
mice, rats and monkeys, four electrode arrays were imaged, respectively, and
example images are shown in Fig. 1 and Extended Data Fig. 1. Two animals were
excluded from eight animals from recordings and analyses due to unsuccessful
implantations. The six animals with successful implantations went through the
same recording procedures and were all included in analyses. All statistical analyses
were performed in MATLAB. Statistical tests were two tailed and significance was
defined by an a pre-set to 0.05. Error bars and shaded regions surrounding line
plots indicate +s.e.m. unless otherwise noted. All the statistical tests are described
in the figure legends and each test was selected based on data distributions using
histograms. For Fig. 1m, a two-sided Student’s ¢-test was used to test the correlation
between the electrode impedance and the recording noise level. For Fig. 5d,¢, a
two-tailed bootstrap test (10,000X) was used to test the median time difference
between SWR and cortical activity onset and the fraction of SWR events occurring
before or after cortical activity onset. For Fig. 7c, the decodable pattern pair was
determined by a one-tailed shuffling test, which randomly permuted the labels of
cortical patterns. For Fig. 7d, the chance level number of decodable pattern pairs
(nc) was computed from the inverse of binomial cumulative distribution with
probability 0.95 and the chance level fraction was obtained by dividing nc with
n=28, the number of pattern pairs on which decoding was performed. For Fig. 7e,
a two-tailed bootstrap test (10,000X) was used to determine the significance of
preference index and the balanced accuracy. Multiple comparisons were corrected
for using Benjamini-Hochberg corrections. Sample sizes (1) are as follows where
applicable: recording sessions per animal, 2, 3, 3, 3, 2, 2; well-separated SWRs/

all SWRs per animal, 530/1,245, 896/1,785, 787/1,440, 826/1,618, 673/1,365,
578/1,190; hippocampal neurons per animal, 8, 21, 14, 11, 10, 10. No statistical
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methods were used to predetermine sample size but our sample sizes are similar to
those reported in previous publications from our lab”' and others using wide-field
calcium imaging’”” and electrophysiological recordings*. No randomization

was performed. Randomization is not necessary to our study because all animals
underwent the same surgical and recording procedures. Data collection and
analysis were not performed blind to the conditions of the experiments.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data are available upon request from the authors. The Allen Brain Atlas could
be accessed through Brain Explorer 2: http://mouse.brain-map.org/static/
brainexplorer. Source data are provided with this paper.

Code availability

The codes for ripple detection, two-stage TCA and the pairwise decoding
of cortical patterns are available at https://github.com/xinliuucsd/
hippocampus-cortex.
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20 um spacing - 20 pum spacing
10 ym diameter > 10 um diameter
32 channels 64 channels

Extended Data Fig. 1| Microscope pictures of different Neuro-FITM probe designs. a, Microscope image of the recording tip of 32 channel Neuro-FITM
array with 20 pm spacing. b, Same as (a), but for 64 channel Neuro-FITM array with 20 pm spacing. ¢, Picture of the whole probe (left), the microscope

pictures of the recording tip of 32 channel Neuro-FITM array with 100 pm spacing (middle) and 20 pm spacing (right) for recording in rats. d, Same as ¢,
but for 32 channel Neuro-FITM array with 100 pm spacing and 50 pm spacing for recording in primates.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Testing the multimodal recording setup using Neuro-FITM and standard silicon probes under both the wide-field and 2-photon
imaging systems. a, A picture of the probes tested in the multimodal recording setup. b, Pictures of the side view under the 2-photon imaging system.
Neuro-FITM can be completely bent to the side as shown with the blue dashed line. Both the Neuronexus probes and the Neuropixel probe prevent the
lowering of microscope objective (total rigid part indicated by red double arrow). The right column are the 2-photon images of the array surface, showing
the thin Au wires, the boundary of the array substrate, and the penetration point. ¢, Pictures of the experimental setup (top), the zoom-in side view
(middle), and the field of view (bottom) under wide-field imaging system, showing the blocking of field of view (Neuronexus probes) and preventing the
lowering of microscope objective (Neuropixel probe). Wide-field image shows that mostly transparent Neuro-FITM does not block the field of view or
generate shadows.
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Mouse 1 Mouse 3

Mouse 4 Mouse 5 Mouse 6

200 pm

Extended Data Fig. 3 | Implantation of Neuro-FITM array to hippocampus in in vivo experiments and the spike waveforms of example neurons.

a, Surgical setup of array implantation in actual experiments. Note that the array shank is largely invisible. The edge of the shank is marked by yellow
dashed lines. b, The staining results of 6 mice, showing the successful penetration to the CA1 pyramidal layer. Arrowheads: trajectory in CA1 pyramidal
layer. ¢, The spike waveforms of a few example neurons recorded from different animals. Single neurons can be detected in multiple adjacent channels,
each exhibiting different waveform amplitudes.
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onset (mean +s.e.m., across SWR events). Black dashed lines: SWR onset.
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selected 20 TCA patterns in each cluster for clusters 1-8. Patterns within each cluster exhibited similar spatiotemporal properties.
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Extended Data Fig. 7 | The two-stage TCA result and the cortical activation timing analysis for two patterns. a, Factors generated by two-stage TCA
algorithm. The high-dimensional data of SWR-associated activity from 16 cortical regions was decomposed into 3 factors. The region factors and time
factors describe the spatial and temporal dynamics of cortical patterns respectively and the event factors measure the weighting of a given SWR event

on the established set of patterns. b, Cortical activation timing for pattern 2 and pattern 5. Shown in each row are the pattern template (left), the average
cortical activity for the events assigned to the pattern (middle), and the P-value maps (right) for all the cortical regions at [-1s, 2 s] time interval aligned to
SWR onset, showing significantly higher activity than baseline (-1s) for most cortical regions.
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Extended Data Fig. 8 | The decoding accuracy of all cortical pattern pairs in each animal. Many cortical pattern pairs can be distinguished from each
other in each animal. The distinguishable pattern pairs are marked by asterisks (shuffling 2,000 times, one-tailed, *P < 0.05, **P < 0.01, ***P < 0.001,

see Methods for exact p values). B. acc.: balanced accuracy.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

NATURE NEUROSCIENCE TECHNICAL REPORT

a Mouse 4
=]
[ =4
o
2
s z
5
0]
z
B Discriminant neurons
[ Nondiscriminant neurons
Pattern pairs with decoding accurcy
not significantly better than chance
b > PYR + INT INT
x 100 100 100
[
g 80 80 80
[oyeN
seo 60 60 60
:.D
82 40 40 40
=2
5 20 20 20 A |_||'||'|
ki m|
= 0 0 0
© 123456 123456 123456
Mouse ID Mouse ID Mouse ID

Extended Data Fig. 9 | Discriminant neurons in decoding cortical pattern identity and the fraction of distinguishable pairs using different neuron
populations. a, Discriminant neurons selected by feature elimination algorithm in decoding for each pattern pair. Note that the decoding often requires
information from multiple hippocampal neurons, and all hippocampal neurons contributed to the decoding of some pattern pairs. b, The decoding results
of cortical patterns using both the PYR and INT, the PYR only, and the INT only. Gray lines: the chance level fraction with P < 0.05. The chance level
number of decodable pattern pairs (nc) was computed from the inverse of binomial cumulative distribution with probability 0.95 (one-sided binomial test,
n = 28 pattern pairs). The chance level fraction was obtained by dividing nc with n = 28, the number of pattern pairs on which decoding was performed.
PYR: pyramidal neurons, INT: interneurons. For PYR + INT, the p-values for mouse 1-6 are 2.24E-10, 5.10E-32, 5.10E-32, 2.60E-14, 9.17E-26, 8.42E-30. For

PYR only, the p-values for mouse 1-6 are 1.26E-11, 8.42E-30, 9.63E-16, 0.16, 5.56E-7, 2.60E-14. For INT only, the p-values for mouse 1-6 are 0.76, 0.0023,
2.60E-14, 5.56E-7, 4.92E-5, 4.92E-5.
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Extended Data Fig. 10 | Different cortical activity patterns associated with distinct hippocampal neuronal activity patterns during all SWRs. a, Raster
plots (spikes) and the peri-event time histograms of example hippocampal neurons. b, Decoding accuracy of all cortical pattern pairs from all 6 animals.
Cortical pattern pairs that are significantly distinguishable based on hippocampus activity are marked by asterisks (shuffled 2,000 times, one-tailed,

*P < 0.05, **P < 0.01, ***P < 0.001, see Methods for exact p values). B. acc.: balanced accuracy. ¢, Fraction of distinguishable cortical pattern pairs in
each animal. Gray lines: the chance level fraction with P < 0.05. The p-values for mouse 1-6 are 6.13x107, 1.99x10734, 1.00x10-%, 2.60x107%, 4.73x1078,
9.17x107%, n = 28 pattern pairs. d, Preference index and decoding accuracy between anterior (A)-posterior (P) and early (E) - late (L) pattern pairs. Left:
preference index of discriminant hippocampus neurons between A-P pairs (pattern 1vs. 4, 2 vs. 5, and 3 vs. 6) or between E-L patterns (pattern 1vs.
2,1vs.3,2vs.3,4vs. 5,4 vs. 6,and 5 vs. 6). Posterior patterns were associated with higher firing counts of discriminant neurons than the anterior
patterns (two-tailed bootstrap test, 10,000 times, ***P(A-P)= 0.0005, n = 16 pattern pairs) while no significant differences were detected between
early and late patterns (P(E-L) = 0.4380, n = 27 pattern pairs). Gray circles: preference index averaged over all neurons for each pair within each animal.
Middle: same as Left but for individual discriminant neurons (two-tailed bootstrap test, 10,000 times, ***P(A-P) = O, n = 71 neurons, P(E-L) = 0.3591,

n =129 neurons). Gray dots: preference index of individual discriminant neurons. Right: Decoding accuracy between A-P and E-L pairs was similar
(two-tailed bootstrap test, 10,000 times, P = 0.4745, n = 16 pattern pairs for A-P, n = 27 pattern pairs for E-L). All error bars are s.e.m. Gray circles:
decoding accuracy for each pair.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

O O]

lXI The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

O 0O 0OX

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 X X X

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The electrical recordings was collected by Intan RHD2000 system and loaded into MATLAB for processing using standard script provided
by Intan (Version 1.3). The wide-field calcium imaging data was collected by HCImage Live (Hamamatsu) through a commercial
fluorescence microscope (Axio Zoom.V16, Zeiss, objective lens (1x, 0.25 NA)) and a CMOS camera (ORCA-Flash4.0 V2, Hamamatsu) and
processed using Custom MATLAB code (R2019b).

Data analysis Custom MATLAB code was used for LFP data processing, ripple detection, statistical analysis and SVM decoding models. The version of the
MATLAB program is R2019b. The spike sorting was done with Kilosort v2.0 (https://github.com/Mouseland/Kilosort2). Custom MATLAB code
for two-stage TCA algorithm was developed, which requires the tensor toolbox v3.0 for MATLAB (https://www.tensortoolbox.org/) and
community detection toolbox (http://netwiki.amath.unc.edu/GenlLouvain/GenlLouvain). The codes for ripple detection, two-stage tensor
component analysis, and the pairwise decoding of cortical patterns are available at https://github.com/xinliuucsd/hippocampus-cortex.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Allen Brain Atlas - Brain Explorer 2: http://mouse.brain-map.org/static/brainexplorer
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Figures that have associated raw data: Figures 1-7, Extended Data Figures 3-10.
Data available on request from the authors.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The animal number was based on previous experiments from our lab (Makino
et al., Neuron, 2017) and others using wide-field calcium imaging (Musall et al., Nat. Neurosci, 2019; Pinto et al., Neuron, 2019) and
electrophysiological recordings (Clancy et al., Nat. Neurosci, 2019).

Data exclusions  No animals with successful implantation were excluded from analysis. For all analyses of SWR associated cortical activity except for TCA, we
excluded SWR events which had any preceding SWR events within 3 seconds. This was to prevent potential contamination from the tail of
cortical activity associated with preceding SWRs. The exclusion criteria were not pre-established.

Replication Surgical implantation and recording experiments were repeated in 8 animals. 6 out of 8 replication attempts were successful.

Randomization  No randomization was performed. Randomization is irrelevant to our study as all animals underwent same surgical and recording procedures.

Blinding Investigators were not blind to group allocation during data collection and analysis as all animals underwent same surgical and recording
procedures.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XNXXOXXOS
ODO0OXOOKX

Dual use research of concern

Antibodies

Antibodies used chicken anti-GFP, Aves Labs, AB_2307313
goat anti-GFAP, Santa Cruz, sc-6170
anti-chicken 488, Jackson Immuno Research, 703-545-155
anti-goat 594, Jackson Immuno Research, 703-585-003

Validation All the antibodies used in the study have been satisfactorily validated by commercial vendors.
chicken anti-GFP, Aves Labs, AB_2307313
https://www.aveslabs.com/products/green-fluorescent-protein-gfp-antibody
goat anti-GFAP, Santa Cruz, sc-6170
https://www.scbt.com/p/gfap-antibody-c-19
anti-chicken 488, Jackson Immuno Research, 703-545-155
https://www.jacksonimmuno.com/catalog/products/703-545-155
anti-goat 594, Jackson Immuno Research, 703-585-003
https://www.jacksonimmuno.com/catalog/products/705-585-003
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mice (cross between CaMKlla-tTA:B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010] and tetO-GCaMP6s: B6;DBA-Tg(tetOGCaMP6s)
2Niell/J [JAX 024742], Jackson laboratories, 6 weeks or older) were group-housed in disposable plastic cages with standard bedding in
a room with a reversed light cycle (12 h-12 h). Temperatures and humidity ranged from 18-23 °C and 40-60%, respectively.
Experiments were performed during the dark period. Both male and female healthy adult mice were used.

Wild animals The study did not involve wild animals.
Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All procedures were performed in accordance with protocols approved by the UCSD Institutional Animal Care and Use
Committee and guidelines of the National Institute of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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