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A B S T R A C T   

While significant modeling advances have unpacked the complexities of interdependent infrastructure, post- 
disaster reconnaissance consistently demonstrates a wide variability of outcomes and how much is still to be 
learned. With that in mind, one might expect the treatment of uncertainty to be quite advanced in interde
pendent infrastructure models, but we find that to not be the case. In this work, we identify, define, and describe 
two key classes of uncertainty: system uncertainty and modeling uncertainty. System uncertainty is inherent in 
all complex infrastructure systems and possesses several subclasses (e.g., physical uncertainty and operational 
uncertainty). Modeling uncertainty occurs when researchers downscale a complex system to a mathematical or 
other symbolic representation. It too has several subclasses (e.g., parameter uncertainty and completeness un
certainty). We then identify how the literature to date treats uncertainty with respect to each type of uncertainty. 
While some work has investigated the implications of physical and temporal uncertainty, by and large, most 
types of uncertainty have had minimal exploration, suggesting significant knowledge gaps. Finally, we suggest a 
path forward for treatment and discussion of uncertainty, including what can be learned from other fields 
involving complex interdependent systems.   

1. Introduction 

Since the release of Presidential Decision Directive 63 twenty years 
ago, US doctrine on critical infrastructure has placed significant 
emphasis on improving our understanding of interdependencies (e.g., 
PDD-21 1998, EO13231 2001, NIPP 2013) [20,112,113]. The rationale 
is, if we know the sources and the strengths of dependencies, we can 
proactively intervene and prevent cascading failures from one sector to 
the next. Researchers and scientists, in collaboration with public and 
private infrastructure organizations, have heeded the call; without 
doubt, significant contributions have been made. Reconnaissance of 
cascading failures of infrastructure following 9/11 and Hurricane 
Sandy, among other post-disaster investigations, have provided detailed 
case studies on the causes of these failures and what later transpired [53, 
74,96]. Plenty more studies have used real system data to identify 
potentially fragile or critical nodes [71,92] and to propose enhanced 
recovery strategies [42,79,107]. The research has also significantly 
pushed the boundaries of mathematical modeling [30,101]. However, as 

many ex post-disaster studies reveal, what we know about dependencies 
might be quite limited. Further, the existence and strengths of de
pendencies do not always comport with what is expected. That is, sig
nificant uncertainty exists. 

With that in mind, one might expect the treatment of uncertainty to 
be quite advanced when discussing and modeling interdependent 
infrastructure. In sum, we find that not to be true. Moreover, while 
credence has been given to aleatory uncertainty, particularly when 
modeling hazard scenarios and component failures, the discussion of the 
sources and magnitude of uncertainty in interdependent infrastructure is 
extremely limited. This implies that little is understood of the influence 
that these uncertainties have on coupled system performance. While 
most articles assume dependencies to be fixed and binary (e.g., [27, 
122]), the reality is that some dependencies are far more spatially and 
temporally fluid. This is especially true when the source of a dependency 
is less physical and more a function of individual or societal decisions 
[60]. Operational and organizational changes within an infrastructure 
sector can alter more mundane aspects such as repair sequences, and 
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more strategic aspects, such as investment prioritization, which in total, 
changes system resilience. Socio-economic disruptions have complex 
interactions with infrastructure with respect to the availability of parts, 
labor, and capital, among other aspects, and are usually discounted in 
infrastructure models [32]. The degree to which human behavior and 
bureaucratic frameworks influence complex infrastructure systems is 
just as influential as the reliability of system components – as is unfor
tunately illustrated in the 2021 Texas Winter Storms – though is not 
often considered in the interdependent infrastructure literature. This 
paper provides the language and a framework for the field to discuss 
these important aspects. 

Dependencies need not be stationary connections nor deterministic. 
Some connections may be ephemeral and exist only in periods of ex
tremes, such as peaks in customer demand, while others are constant, 
such as the dependences of water pumps on electric-power. De
pendencies also possess varying degrees of strength, with some de
pendencies being strong, such as how a generation unit requires water 
for its cooling towers, and other dependencies having loose associations, 
such as how the transportation and energy sector are intertwined via 
tariffs [94]. 

A significant portion of interdependent infrastructure models do not 
discuss or mathematically capture system uncertainty. While it would be 
wholly impossible for a single model to capture and quantify all un
certainties affecting the coupled system, ignoring uncertainty in its en
tirety is similarly dubious. It suggests that results and the models 
themselves may possess significant uncertainty. This, we argue, could 
create ramifications for decision-makers who are not informed of the 
limits of understanding. 

The purpose of this paper is three-fold. The first is to isolate and 
categorize the root sources of uncertainty in the field of interdependent 
infrastructure. This is completed in Section 3. A methodology for how 
the divisions were created is provided in Section 2. Broadly, we divide 
this into two groups: system uncertainty and modeling uncertainty. 
System uncertainty deals more with internal properties of infrastructure 
and how external factors (e.g., operators and the environment) influence 
the operability of interdependent networks. The discussion leverages 
much of the taxonomy used to describe dependencies (e.g., physical and 
geographic dependence, as defined by [89]), but also incorporates 
mention of how significant epistemic uncertainty exists within these 
systems – a discussion that is often eschewed. Further, we explore how 
policy decisions and decisions made by operators and other infrastruc
ture decision-makers contribute to system uncertainty. Modeling un
certainty, on the other hand, focuses on the uncertainty that results 
when researchers downscale a complex system to a mathematical or 
other symbolic representation. This uncertainty is inherent with all 
models. Inaccurate and incomplete data, computational constraints 
placed on models, and assumptions due to lack of knowledge all 
contribute to modeling uncertainty. 

The second purpose of this work is to evaluate how the current state 
of the science handles uncertainty. This is provided to some degree in 
Section 3, and Section 4 is devoted to this. To be clear, our work is by no 
means a comprehensive review of the current literature. Ouyang [77] 
performs this task quite well. Rather, we identify works that have driven 
the scholarship in the area of uncertainty and interdependent infra
structure (which is relatively few) and discuss the types of uncertainty 
contained in these papers. By having first identified the root sources of 
uncertainty in Section 3, we can then discuss the types of uncertainty 
that are present and missing in this space. 

The third purpose is to provide a path forward when discussing and 
handling uncertainty in interdependent infrastructure. In Section 5, we 
discuss the importance of presenting uncertainty when conveying 
research results to decision-makers and the need to expand beyond 
physical “hard” systems to include the interactions with “soft” infra
structure systems (e.g., financial systems) and humans. We also identify 
current best practices for handling uncertainty that are used presently in 
other fields involving complex interdependent systems (e.g., the climate 

and global change literature). 
The foundational work on uncertainty by Der Kiureghian and 

Ditlevsen [21] poses a provocative question about whether taxonomies 
(aleatory and epistemic, in their case) actually matter, especially once 
modeling begins and aleatory and epistemic uncertainty can begin to 
merge. We argue that they do matter. First, the field of interdependent 
infrastructure is relatively nascent, and our observation is that lexical 
gaps are leading to modeling gaps, especially when it comes to incor
porating the impacts of human and societal decisions. The second is 
more practical. Knowing what causes the uncertainties allows decision 
makers and funders (e.g., federal agencies) to decide how to expend 
resources to reduce uncertainty (and thus often times, risk). For 
example, epistemic uncertainty can be resolved (or at least reduced) 
through more research. Aleatory uncertainty can be resolved (or at least 
reduced) through better equipment, improved protocols, and general 
system investments. This influences investment decisions, but on the flip 
side, decisions-makers need to be informed about the types of un
certainties and their sources. 

This work builds from and is complementary to other work in the 
space that explores the dimensions of interdependent infrastructure [51, 
89,97,119]. Early work in this space tends to focus on how to decompose 
coupled systems into discrete functional dimensions. It has not placed 
much emphasis on the role of human decisions, institutions, and bu
reaucracies (e.g., Rinaldi et al. [89] uses the catchall “logical”). Recent 
work by Sharma et al. [97] is similar to our work in the methodological 
approach for developing taxonomies (see Section 2). They decompose 
their classification of interdependent infrastructure into orthogonal di
mensions (“ontology” and “epistemology”) as we do in our classification 
of sources of uncertainty (“systems” and “modeling”). However, our 
classification structure is unique and we link our dimensions to how it is 
treated in the literature whereas existing work has not linked the di
mensions of interdependencies to uncertainty nor describe how uncer
tainty is present in interdependent infrastructure models. 

As this work demonstrates, insufficient consideration has been given 
to uncertainty. This could make researchers over-confident of their re
sults and also provide too little information to decision-makers. This 
work makes progress at overcoming this shortfall by systematically 
categorizing the types of uncertainty that are present in interdependent 
infrastructure systems and identifying gaps in the literature. We believe 
this to be timely and critically important as the field advances into more 
complicated interdependent networks, such as socio-technical networks 
[60]. 

2. Methodology 

Our study uses taxonomy methods to delineate types of uncertainty 
encountered in modeling interdependent infrastructure. Taxonomies, 
also known as classifications, frameworks, and typologies, occur in 
many areas of science [3,23]. Some authors use the terms interchange
ably while others provide precise definitions for each term [72]; we 
chose the former. At the most basic level, taxonomies and their related 
terms seek to group similar types of concepts or objects and distinguish 
them from those that are less similar. Grouping occurs across one or 
more dimensions, which are composed of any number of characteristics. 

In our study we follow the general taxonomy method of Nickerson 
et al. [72]. The first step in taxonomy creation is deciding on its purpose. 
For this study, the purpose is to categorize types of uncertainties so that 
model creators and users can better understand the implication of each 
uncertainty type in model use and interpretation. 

The next step is to decide to choose criteria that will be used to judge 
the usefulness of the taxonomy. Popular criteria that we adopt are two 
subjective measures, conciseness and robustness, and four objective 
measures, uniqueness of dimensions, uniqueness of characteristics 
within a dimension, whether cases are uniquely classified, and no null 
cells. The subjective measures are chosen to ensure the taxonomy is 
usable. It should not have too many dimensions and characteristics as to 
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be unwieldy and not too few as to lack meaningful distinctions among 
cases. The objective measures ensure that dimensions and characteris
tics are not duplicative, that the taxonomy makes precise categoriza
tions, and that there are no ‘empty’ spots in the taxonomy with no cases 
or unlikely combinations of characteristics. 

After the taxonomy purpose and criteria are set, the main method
ological process is an iterative loop between empirical-to-conceptual 
and conceptual-to-empirical subprocesses, where the loop is repeated 
until the usefulness criteria are met. The primary distinction between 
the two subprocesses are their starting points. Empirical-to-conceptual 
begins with a set of objects or concepts. Based on inspection of the ob
jects and background knowledge, researchers create characteristics that 
are relevant to the purpose of the taxonomy. Once the candidate char
acteristics have been identified, then the objects are grouped into di
mensions by some type of cluster analysis or informally by graphical or 
some other manual technique. 

In contrast, the conceptual-to-empirical subprocess begins with re
searchers using their background knowledge of existing theory to 
deduce relevant dimensions and characteristics. Once created the re
searchers examine objects for fit with the deduced characteristics. At the 
end of either sub-process is an initial taxonomy that may be further 
modified by another subprocess. The choice of which subprocess to use 
in the first loop is usually a function of a sufficiently large sample of 
objects and the richness of background theory. For example, big data 
applications have large sample sizes but often poor theory. As a result, a 
natural first choice for sub-process is empirical-to-conceptual. For ana
lyses such as ours, where background theory is relatively rich but only a 
few cases are available, a conceptual-to-empirical approach is more 
appropriate. 

After the initial taxonomy is created, further loops may be entered if 
the taxonomy criteria are not met. If new objects are found, or if some 
objects were reserved for out-of-sample testing, then another empirical- 
to-conceptual loop might be helpful. Otherwise, conceptual-to-empirical 
analysis may be used to further refine the taxonomy. With either sub
process, dimensions may be added or eliminated if needed. The litera
ture on taxonomy creation emphasizes that finding an ‘optimal’ 
taxonomy structure is unlikely, and that focus should be put on con
structing a taxonomy that best fits the purpose laid out in the first step. 
This design philosophy is similar to that described in other synthesis 
techniques, such as the ‘best fit’ framework synthesis methodology used 
for systematic reviews. 

3. Sources of uncertainty in interdependent infrastructure 

This section focuses on the types of uncertainty that are inherent in 
infrastructure dependencies, inherent with our current understanding of 
interdependent infrastructure, and inherent to modeling efforts. The 
former two relate to system uncertainty and the latter relates to 
modeling uncertainty. System uncertainty possesses both aleatory and 
epistemic uncertainty, while modeling uncertainty is largely epistemic. 
These concepts, including formal definitions, are expanded upon in the 
sections that follow. 

As discussed in Nickerson et al. [72] and Sharma et al. [97], for 
taxonomies to be useful for modeling, their dimensions must be 
orthogonal. As such, our two key dimensions – systems uncertainty and 
modeling uncertainty – are orthogonal. However, in any instance when 
modeling interdependent infrastructure occurs, (at least) one type of 
system uncertainty exists and (at least) one type of modeling uncertainty 
exists. Likely, multiple types exist, and further, there are no rules that 
preclude the co-existence of a specific type of system uncertainty and a 
type of modeling uncertainty; thus, the types of uncertainty within each 
dimension should not be considered unique branches but rather 
matrixed. More specifically, each type of uncertainty contained within 
system uncertainty could intersect with each type of uncertainty con
tained within modeling uncertainty and vice versa. 

3.1. System uncertainty 

We define system uncertainty for interdependent infrastructure 
networks as uncertainty concerning the events, states, quantities, or 
phenomena (including system shocks and external hazards) that influ
ence and connect infrastructure networks. System uncertainty both re
flects uncertainty intrinsic to coupled systems (largely aleatory 
uncertainty, though we identify one instance where epistemic uncer
tainty could play a role) and reflects a limited understanding of the 
phenomena that connects coupled systems (epistemic uncertainty). 
Understanding which uncertainties are reducible and which are not 
provides important context for decision-makers in terms of when and 
where to allocate research funds (for knowledge discovery) and when to 
alter properties or components of the system (to enhance system 
reliability). 

For simplicity, the forms of system uncertainty described in this 
section largely stem from Rinaldi et al. [89] – e.g., physical, geographic 
(or spatial), and cyber. While we broadly consider logical dependencies 
and uncertainties, this has historically been a “catchall” for de
pendencies that are not one of the other three described in Rinaldi et al. 
[89]. As such, we divide logical dependencies into multiple additional 
orthogonal categories. Furthermore, we identify additional forms of 
uncertainties (e.g., temporal uncertainty) that we feel are not appro
priate in the four original divisions discussed in the originating work. 
The sources of uncertainty are presented in Table 1 and a short discus
sion of each follows. 

To illustrate how the different sources of system uncertainty can be 
measured, consider a set of systems, S, subject to some phenomenon, A, 
and with their performance characterized by a (possibly time- 
dependent) vector, X (e.g., the state of or flow between the systems). 
For simplicity, and without loss of generality, we consider two systems, 
System 1 and System 2. In Table 1, some examples of uncertainty metrics 
for the different uncertainty sources are given using the aforementioned 
notation. 

Before proceeding, we add brief notes on the work’s scope. First, we 
limit the discussion to only uncertainties related to dependencies and do 
not discuss uncertainties that are inherent to a single infrastructure 
system (e.g., the reliability of a transformer at an electrical substation). 
Second, the types of uncertainty below refer to a one-way dependence 
for both simplicity and because the reciprocating forms of dependency 
may not be identical to the one discussed. That being said, multiple 
forms of system uncertainty – if not all the forms discussed below – are 
likely to exist in any coupled system. This is discussed with more depth 
in Section 5. Third, this may not be a collectively exhaustive list, and 
rather reflects the current understanding of interdependent infrastruc
ture. More research and discussion in this field may highlight additional 
sources of uncertainty. 

3.1.1. Physical uncertainty 
Definition: Uncertainty about the quantities characterizing the flow 

between the systems. 
Example: A water pumping station (or a pumphouse) requires 

electric-power for operations. The flow of electric-power can be uncer
tain, especially in times of extremes. The flow can depend on the state of 
the parent system (i.e., how much electric-power can be provided) and 
the state of the child system (i.e., how much power is required). Alter
natively, the flow can depend on the state of the electric cable that 
connects the systems. 

Discussion: Physical dependencies assume a flow of some commodity 
(e.g., water, power, widgets) from one system to another. This flow re
quires something physical over which the commodity is transported. 
Because these physical connections are forged by individuals and or
ganizations, knowledge of these connections exists (i.e., the existence 
and mechanism of these links is established). Thus, the phenomenon 
surrounding physical uncertainty is well characterized and it lacks 
epistemic uncertainty. (This is not to say that everyone with operational 
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responsibilities knows of these physical connections – a form of infor
mational uncertainty). 

With this in mind, physical uncertainty possesses aleatory uncer
tainty and is inherent to the system. The uncertainty resides in the 
quantity of flow being provided. Flow uncertainty can originate in the 
parent system based on the level of service it is able to provide (i.e., its 
state), originate in the child system based on what it demands, or 
originate in the reliability of the component that connects the systems. 
The literature largely assumes that flow from the parent to the child 
system depends on the operability of the parent network and its ability 
to provide the service (e.g., [121]). We cannot find an example in the 
literature where the reliability of the component(s) that physically 
connects the systems is considered. 

Of the uncertainties discussed in this paper, physical uncertainty is 
the most prevalent in the literature – likely coinciding with physical 
dependencies being so ubiquitous. Zio and Sansavini [121] imbed a 
Monte Carlo simulation that represents probabilistic failure scenarios for 
a single network within an interdependent network model to quantify 
how internal failures propagate to external systems along with its un
certainty. This method is similar to Wu and Dueñas-Osorio [114] which 
uses established seismic fragility curves to model the damage of com
ponents in the water sector and how these failures could propagate. 
Zhang et al. [118] simplify this approach by assigning conditional fail
ure probabilities to those links that connect networks. In this instance, 
the conditional probabilities reflect more the state of the parent network 
than the state of the actual component connecting the systems. 

3.1.2. Spatial uncertainty 
Definition: Uncertainty about how phenomena (e.g., hazardous 

events) affect collocated systems and how the spatial distribution of 
collocated systems influences system states. 

Example 1: Roads that are impassable due to debris after a wind
storm are likely to have downed power lines and thus intersections with 
signal outages. Electrical and road networks are linked by the wind and 
their spatial proximity. The hazardous event (the wind) initiates the 
failure sequence in this instance. 

Example 2: Internet cables are often collocated with water distri
bution infrastructure underneath roadways. A water main break can 
flood these cables if not properly protected, and lead to wide-spread 
Internet outages. The water main break initiates the failure in this 
instance, but the impacts are magnified by the close spatial proximity of 
the systems. 

Discussion: This type of uncertainty is unique in that there are two 
underlying phenomena – one extrinsic and one intrinsic – which 
spatially connect infrastructure systems. The first relates to how hazards 
or other external spatial shocks probabilistically connect two systems. 
The closer two assets from different systems are, the more likely one is to 
be damaged if the other is damaged when spatially-distributed hazards 
occur. They are also likely to sustain similar degrees of damage; however 
distinct systems have different vulnerabilities to hazards for a variety of 
reasons. There is inherent and thus aleatory uncertainty to this process. 
A windstorm could cause debris to make a roadway impassable, but 
there remains a possibility that electric lines remain intact. Significant 
research is underway exploring the epistemic uncertainty that remains 
in our knowledge about hazards (e.g., [9]), but this uncertainty is not a 
property of the infrastructure system. 

A second type of spatial uncertainty does not concern external haz
ards, but rather is a function of collocation and an event that occurs in 
one of the systems. A component failure in one system (an intrinsic 
event) could damage components in systems that are close, and thus 
affect their operational states as well. As with hazards, this is a form of 
aleatory uncertainty, as the likelihood of a component failure is a 
property of the system. There has been discussion about how infra
structure operators and researchers do not understand spatial de
pendencies well (e.g., O’Rourke [74] discusses the previously unknown 
spatial dependencies between the US Stock Exchange and the water in 
New York City following 9/11). While these spatial dependencies were 
unknown, we argue that this is a type of informational uncertainty (and 
thus a form of epistemic uncertainty). 

3.1.3. Temporal uncertainty 
Definition: Uncertainty about how dependencies and phenomena 

Table 1 
Sources of system uncertainty and their definition  

Source of System 
Uncertainty 

Definition Example uncertainty metrics Main type of uncertainty 

Physical 
uncertainty 

Uncertainty about the quantities characterizing the flow 
between the systems 

P(X ≤ x) = P(X1 ≤ x1), where X1 characterizes the flow from 
System 1 to System 2 

Aleatory 

Spatial 
uncertainty 

Uncertainty about how phenomena (e.g., hazardous events) 
affect collocated systems and how phenomena behind the 
spatial distribution of collocated systems influences system 
states 

P(X ≤ x | A), where X characterizes the performance/state of 
the systems and A is a spatial phenomenon, such as a 
hazardous event 

Aleatory 

Temporal 
uncertainty 

Uncertainty about how dependencies and phenomena that link 
systems (e.g., consumer demand shifts) depends on and 
changes over time 

P(X(t) | A), t > T, and P(T ≤ t | A), where X(t) characterizes the 
performance of the systems at time t and T is the time between 
the occurrence of a phenomenon A and dependency effects 
starting to express themselves 

Aleatory 

Governance 
uncertainty 

Uncertainty about possible future regulations, policies, or 
norms and how they could impact system performance or the 
operational environment 

P(X ≤ x | A) and P(A), where X characterizes the performance/ 
state of the systems and A is a governance phenomenon (top- 
down decisions) that may affect the system (e.g., new 
regulations) 

Epistemic (A) 
Aleatory (X) 

Socio-economic 
uncertainty 

Uncertainty about decisions made by consumers and other end- 
users in response to a disruption or other external stimuli 

P(X ≤ x | A) and P(A), where X characterizes the performance/ 
state of the systems and A is a socio-economic phenomenon 
(bottom-up decisions) that may affect the system (e.g., changes 
in supply chains, demand, or consumer/market behavior) 

Epistemic or aleatory (A), 
depending on the 
phenomenon 
Aleatory (X) 

Operational 
uncertainty 

Uncertainty about the phenomena that dictate operational 
decisions or procedures 

P(A), where A is a phenomenon that - if it occurs - dictates 
operational decisions or procedures 

Aleatory or epistemic, 
depending on the 
phenomenon 

Informational 
uncertainty 

Uncertainty by the child network about the state of or the 
phenomena affecting a parent network due to a lack of 
knowledge 

From the point of view of System 2: P(X1 ≤ x1) or P(A1), where 
X1 characterizes the state of System 1 and A1 is a phenomenon 
affecting System 1 

Epistemic 

Cyber uncertainty Uncertainty about the state of the cyber infrastructure enables 
the flow of information between systems and uncertainty about 
the quantities that reflect the flow of information using cyber 
infrastructure 

Special case of informational uncertainty, where X 
characterizes the states of the cyber subsystems 
and/or 
Analogous to physical uncertainty, where X characterizes the 
flow of information between the systems 

Aleatory  

A.C. Reilly et al.                                                                                                                                                                                                                                



Reliability Engineering and System Safety 213 (2021) 107756

5

that link systems (e.g., consumer demand shifts) depends on and 
changes over time. 

Example: Many cellular towers (like other critical infrastructures) 
have backup generators for the case where they lose electric-power. 
There are instances where generators were low on fuel at the start of 
the outage or simply ran out at some point in time, possibly stymying 
electric-power restoration due to an inability to effectively 
communicate. 

Discussion: This class of uncertainty focuses on how dependencies 
and the phenomena that affect dependencies both depend on time and 
change over time. This could be seen as an extension of the other types of 
uncertainty discussed in this paper; it acknowledges that random events 
all have a time component. A pipe breaks at some point in time. Infor
mation that could change restoration plans becomes known at a certain 
point in time. When these random events will be realized is uncertain. 
There could be a significant lag time between the initiating event and 
effects on downstream systems. Rinaldi et al. [89] described in detail 
how the California energy crisis in the late 1990’s contributed to agri
cultural losses and ultimately to problems within the banking and 
finance sector. This was witnessed over years, and was not a quick 
system “shock.” 

We argue that there is another aspect to this dimension of uncer
tainty. That is, temporal uncertainty also considers how dependencies 
between systems change over time. We could envision scenarios 
whereby systems are independent, but are sporadically linked during 
times of extremes. For example, a water system could operate without 
relying on natural gas, but could become critical and large consumers of 
natural gas during electric-power outages to operate key pumps. This is 
an example of significant changes in end-user demands. 

This type of uncertainty likely contains both aleatory and epistemic 
uncertainty. There is an inherent randomness to when components fail. 
However, how dependencies evolve over time - especially in socio- 
technical systems - is more complex than a coin flip. It is arguably the 
basis of emerging research on dynamic dependencies (e.g., [37]) and 
could itself be a new frontier in interdependent infrastructure research 
[60,67]. While consideration of temporal aspect is common in interde
pendent literature, especially when it comes to staging restoration se
quences (e.g., [45,47]), the uncertainties associated with it are generally 
less acknowledged. However, the body of work that examines correla
tion among recovery curves contradicts this statement [25,123]. 

3.1.4. Governance uncertainty 
Definition: Uncertainty about possible future regulations, policies, or 

norms and how they could impact system performance or the opera
tional environment (e.g., trade agreements and how they affect infra
structure development). This can also be viewed as uncertainty 
stemming from top-down decisions. 

Example 1: Governing entities overseeing public-private partner
ships (PPP) for infrastructure development or expansion can impact 
system performance and its ability to respond to disruptions. The dy
namics of a PPP framework can determine specific performance re
quirements or safety standards, which can drastically alter operations 
[19]. 

Example 2: Government policies can influence the level of infra
structure protection employed, and thus modify operations. Policy 
changes in the US have led to a focus on infrastructure resilience by 
requiring infrastructure operators and owners to include resilience and 
protection indices in their risk assessments [69]. 

Discussion: Governance uncertainty results from a lack of knowledge 
about how governing bodies, organizations, and stakeholders may 
constrain, dictate, or guide the development, operations, and mainte
nance of infrastructure systems and the ways in which this will impact 
system performance. Anticipation of policies and inter-agency agree
ments and their effect on the system can help characterize and reduce 
uncertainty through modeling [68]. Generally, governance uncertainty 
is epistemic because governance phenomena are hard to predict. Many 

regulatory reforms result from system disruption. For instance, the 2003 
Northeast Blackout led to the formation of EPACT 2005, a regulatory 
organization tasked with ensuring US grid reliability and developing 
reliability standards [41]. This added operational and investment costs 
to electric utilities, but also, in theory, could have disincentivized 
dependent sectors in investing in backup power. However, in certain 
cases governance uncertainty is aleatory as it results from dynamics 
across governing bodies and potential unintended consequences of 
policies (e.g., moral hazard resulting from insurance policies). 

Prior studies have focused on the implication of governance in 
infrastructure management and the role of infrastructure networks in 
policy development. Examples include policy frameworks for infra
structure development [15], policy implications on reconstruction after 
disasters [80], the role of governance in infrastructure risk management 
[109], and the need for policymakers to understand and learn from 
infrastructure networks before making decisions of infrastructure in
vestment and regulation ([110]). However, minimal work has been done 
to quantify and characterize the uncertainty that stems from how reg
ulatory or policy uncertainty affects the operations or system perfor
mance of interdependent infrastructure. Taneja et al. [103] explored 
how to design adaptive and flexible port infrastructure systems to 
manage international trade unpredictability and globalization. Hiteva 
and Watson [40] explore the future of how interdependent infrastruc
ture may be governed. They make compelling arguments including in
vestment in joint infrastructure projects in targeted areas and rethinking 
how government agencies oversee systems. 

3.1.5. Socio-economic uncertainty 
Definition: Uncertainty about decisions made by consumers and 

other end-users in response to a disruption or other external stimuli. 
These, in aggregate, alter demand for infrastructure and affect other 
market-forces (e.g., interest rates). This can also be viewed as uncer
tainty stemming from bottom-up decisions. 

Example: Response by humans and markets to disruption can result 
in demand shifts for infrastructure systems. In a city with multi-modal 
transit systems, extreme precipitation can drive demand from the 
roads (e.g., bus, biking, scooter) to underground transit systems (e.g., 
subways, metro, train) which can lead to system disruption (e.g., delays) 
and amplify the impact of a disaster (e.g., more rescues due to delayed 
track/station flooding). 

Discussion: Uncertainties from socio-economic interdependencies 
are a result of how people - individually and collectively - respond to 
disrupted infrastructure, and how this in turn, impacts infrastructure 
performance, community functioning, and multiple sectors of the 
economy. For simplicity, we divide this classification into economic 
uncertainty and socio-uncertainty. 

The uncertainties in economic interdependencies results from (i) the 
lack of information about the different economic sectors and their 
interdependent relations (epistemic uncertainty), (ii) the inherent 
randomness in economic loss estimation (aleatory uncertainty). To 
address epistemic uncertainty, input-output tables have been used to 
inform production and demand levels for each economic sector and 
derive interdependent relations [35]. Aleatory uncertainty is described 
using probabilistic models and Bayesian variations to existing methods 
of loss estimation which is less studied [115]. 

One way in which economic uncertainty manifests is in supply 
chains. While the speed of infrastructure recovery directly influences 
economic losses, so do the dynamics of supply chains and how supply 
chains react to the failures. This leads to a third layer of uncertainty for 
economic interdependencies, which is the dynamic behavior of supply 
chains and combines both types of uncertainty. Links within the supply 
chain network are not only uncertain but also dynamic over time. 
Depending on the spatial and temporal distribution of demand and 
supply across economic sectors, dependencies between supply chain 
nodes and edges can appear, disappear, or change in magnitude of 
importance. Changes in the demand can be the result of uncertainty in 
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social interdependencies which may or may not be predictable. For 
example, a shortage of desk furniture during a pandemic could have 
been predicted whereas an increase in demand for toilet paper was not 
anticipated. 

In addition to economic impact and loss estimation, uncertainty in 
social interdependencies is the result of human and organizational 
behavior in human-infrastructure interactions. Conceptual and 
simulation-based frameworks have been developed to model the human 
layer within infrastructure interdependencies [49,61] such as 
agent-based models that capture interdependencies between infra
structure and human agents [16,100]. Consideration of socio-economic 
perspectives in infrastructure modeling has recently gained attention 
Karakoc et al. [46] where planning and restoration is informed by 
socio-economic indicators. Uncertainty from short-term disruptions (e. 
g., natural hazards) and long-term changes (e.g., development) propa
gates differently through socio-economic and infrastructure systems, 
leading to a dynamic reconfiguration of interdependencies and an 
intersection with temporal uncertainty. 

3.1.6. Operational uncertainty 
Definition: Uncertainty about the phenomena that dictate opera

tional decisions or procedures. 
Example: The US Army Corps of Engineers operates 29 locks on the 

Mississippi River that allow for the transport of bulk commodities. 
Changes to operations, including lock closures, have ripple effects on 
bulk commodity transport and commodity markets. 

Discussion: While infrastructure operations are increasingly digitally 
monitored, owners and operators still make the bulk of the operational 
and repair decisions. These decisions heuristics may be (and usually are) 
informed by data derived from system monitoring and operational 
protocols. Protocols are put into place to maintain reliability and to 
prevent catastrophic failures (e.g., nuclear power plants). Despite pro
tocols, operators use judgement and experience to make decisions, 
especially during unforeseen situations [64]. Biases, lack of training, 
inexperience, and risk tolerances all affect which decision operators 
make [99], and thus, these decisions lack certainty. When these opera
bility decisions affect child systems – such as could be the case when an 
electric-power utility decides a repair sequence following a major wind 
storm – it creates uncertainty as to when services will function again or 
as to how reliable some components are, and presumably, could cause 
the child system to make more conservative decisions. 

Whether this is a form of aleatory or epistemic uncertainty is 
debatable. To be a form of aleatory uncertainty, we would need to as
sume that decisions are probabilistic acts made in proportion to how 
decision-makers value one alternative relative to other alternatives (e.g., 
as described in [57]), and that these preference weights are quantifiable. 
Known decision biases makes this proposition somewhat dubious. 
Regardless of the types of uncertainty that is present, minimal research 
has explored how operational decisions propagate in highly networked 
coupled systems. Ouyang and Wang [79] and González et al. [33] 
explore the impacts of decisions related to repair sequences of coupled 
systems, but their objectives are to be prescriptive and what repair se
quences should resemble. Reilly et al. [87] make hypotheses regarding 
decisions that strategic operators from interdependent networks would 
make, though the framework is conceptual and abstract. We are unable 
to find literature related to operational and decision uncertainty in 
interdependent infrastructure and how these decisions propagate into 
operability. 

3.1.7. Informational uncertainty 
Definition: Uncertainty by the child network about the state of or the 

phenomena affecting a parent network due to a lack of knowledge. 
Example: Water management utilities often need to repair pumps 

after major hurricanes. Assuming that many of the pump stations are 
without power, repair sequencing could be done more effectively if the 
water utility knew when power would be restored to each station. 

Discussion: Infrastructure operators and owners make frequent 
tactical and strategic decisions, including when and how to invest re
sources, how to conduct system repairs, and often how much supply they 
should generate. While through sensors and other technology, they have 
increasing situational awareness about the state and the phenomena 
affecting their own system, it is uncommon for them to have complete 
operational information about the systems on which they depend. We 
can envision this being relevant in numerous circumstances, and some 
jurisdictions are trying to reduce this lack of knowledge. For example, in 
one city with which an author spoke, when a utility applies for a permit 
to conduct underground maintenance or repair, other utilities with 
equipment in the area are notified. This is to encourage collocated 
utilities to simultaneously conduct maintenance and to notify them 
about possible outages. That being said, an author has spoken with many 
utilities in the aftermath of outages caused by minor weather events or 
component failures to major weather events, and a frequent grievance is 
that they tend to know little about when systems on which they depend 
will be operational again. This, they say, slows recovery in that they are 
unable to sequence their repair strategy to align with when that of other 
utilities. 

Contrary to reality, the bulk of the interdependent infrastructure 
literature on network decision-making makes assumptions that all 
parties have complete and perfect knowledge about other systems. For 
example, Cavdaroglu et al. [13] and González et al. [33] formulate 
prescriptive interventions for sequencing repairs following disasters and 
Reilly et al. [87] discuss how interdependent infrastructure may gain a 
competitive advantage by exploiting their (assumed to be 
universally-known) interdependencies. While mathematically conve
nient, this assumption is dubious at best. Sharkey et al. [95] is an 
exception to this assessment. While it did not examine informational 
uncertainty per se, it did explore how better coordination via informa
tion sharing among sectors could speed restoration processes using an 
optimization framework. More recently, Talebiyan and Dueñas-Osorio 
[101] modeled operational decisions under uncertainty in an interde
pendent context using a Bayesian Hierarchical Model and demonstrated 
model improvements when less uncertainty is present (e.g., through 
communication). 

We argue that informational uncertainty is likely the only form of 
system uncertainty to be solely composed of epistemic uncertainty. This 
uncertainty results from a lack of knowledge about another system by 
decision-makers. Withholding information, could, in theory, be strate
gically advantageous [87], though it also could slow repair and resto
ration of services, and contribute to redundant investments. The NIPP 
(2013) has called for additional information sharing among sectors to 
help reduce informational uncertainties [20]. No guidance has been 
offered, however, on what types of information are useful, and when or 
how that information should be shared. 

3.1.8. Cyber uncertainty 
Definition: Uncertainty about the state of the cyber infrastructure 

enables the flow of information between systems and uncertainty about 
the quantities that reflect the flow of information using cyber 
infrastructure. 

Example: Electric generation units are highly integrated with com
plex SCADA systems for system monitoring and control. Some of this 
information is transmitted to grid operators via cyber infrastructure. A 
lapse in security protocols exposes the unit to intrusion and which, in 
theory, could cause massive outages. 

Discussion: In many ways, this class of uncertainty is similar to 
physical uncertainty. Many sectors rely on a consistent flow of infor
mation, usually over the Internet or other telecommunication networks, 
about the status of other sectors in a manner similar to how water pumps 
rely on a steady flow of electric-power. Increasingly, this communica
tion facilitates both automated controls (e.g., part of the concept behind 
“Smart Cities,” see: [117]) and data and knowledge transfer (e.g., using 
email or a Cloud service provider). What makes this concept slightly 
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unique from physical uncertainty is that (a) it strictly relates to an in
formation flow and (b) the physical pathway that facilitates the infor
mation flow is often neither owned nor operated by the system 
generating the information nor the system consuming the information. 

Numerous infrastructure sectors, including water and railroads, now 
rely on highly integrated SCADA systems, and other types of Industrial 
Control Systems (ICS) for operations. These systems tend to be internal, 
and the properties of uncertainty surrounding them are considered 
outside the scope of this paper. However, sectors are increasingly 
dependent on another for digital communication. Telecommunications 
and electric-power are obvious examples. 

Similar to physical uncertainty, cyber uncertainty, we contend, 
consists mainly of aleatory uncertainty. Cyber connections are physical 
connections (e.g., wires, wireless signals) forged by individuals and their 
existence lacks uncertainty, which is not to say all operators are aware of 
their existence (informational uncertainty). However, the level of ser
vice that a cyber connection can provide depends on the reliability 
system components (aleatory uncertainty), e.g., routers and Ethernet 
cables, and how the system is operated (operational uncertainty). 

This is not to say that epistemic uncertainty does not exist within 
cyber systems. Scala et al. [93] identifies five sources of epistemic un
certainty within cyber systems (e.g., system scalability and human 
behavior). Cherdantseva et al. [14] reviewed methods for evaluating the 
risk of cyber systems, though these methods generally assumed that 
uncertainty is characterized. While research increasingly considers 
cyber dependencies [6], little research explicitly considers cyber un
certainties in interdependent infrastructure. Tian and Sansavini [105] 
begin this work by conducting a simulation to see how grid spitting – the 
separating of electric networks into islands due to imminent instability – 
is governed by reliable communication and cyber infrastructure. 

3.2. Modeling uncertainty 

We define modeling uncertainty for interdependent infrastructure 
systems as uncertainty that stems from downscaling complex interde
pendent systems into a conceptual or mathematical model, or some 
other symbolic representation. Modeling uncertainty arises within all 
models [73]. In this section, we describe four generic types of modeling 
uncertainty and then give examples of sources of each. Unlike system 
uncertainty, modeling uncertainty is largely composed of epistemic 
uncertainty. 

The generic types of modeling uncertainty that we describe follow 
from Aven and Zio [2]. We additionally include completeness uncer
tainty, which is also known as ontological uncertainty [62]. This is 
consistent with recent arguments made by Bjerga et al. [10] that 
completeness uncertainty - defined by the degree to which sources of 
uncertainty are included in the model - is not implicitly contained within 
other types of uncertainty but rather is a form of modeling uncertainty 
itself. Table 2 lists the generic types of modeling uncertainty and 

provides examples of some of their sources. 
Interdependent infrastructure models, f, link two or more systems 

using parameters, Z, to represent performance characteristics, Y. These 
performance characteristics are uncertain and can be system-wide 
quantities of interest (e.g., the number of people losing water supply) 
or more focused quantities (e.g., the flow of electricity in a line). The 
values of Y and Z may be influenced by external phenomena or events, A 
(e.g., wind gusts, operational changes). 

3.2.1. Parameter uncertainty 
Definition: Uncertainty about the values of parameters, Z, used in 

model f. 
Example: Consider a codependent and collocated electric-power 

utility and water utility which reside in a hurricane-prone region. A 
model, f(Z1, Z2, ZA), is created to forecast the number of customers, Y, 
that lose water supply as a result of a hurricane. Parameters Z1, Z2 and ZA 
may include features related to the water system (e.g., the pressure at 
different nodes in the systems), features related to the power system (e. 
g., the reliability utility poles), as well as features related to hurricane, A 
(e.g., wind speed), respectively. Parameters Z1 and Z2 along with the 
parameters that represent the event A usually possess uncertainty. 

Discussion: This type of uncertainty addresses uncertainty about 
parameters used within models. This type of uncertainty is usually in the 
class of epistemic uncertainty and often results from inaccurate and 
incomplete data. For example, it is impossible to collect all system state 
data for massive infrastructure systems due to their complexity and the 
cost. Further, instrumentation error can lead to additional knowledge 
gaps. Parameter uncertainty is typically managed by assigning proba
bility distribution to the parameters, such as the rate parameter in a 
Poisson probability model used to model the occurrences of hurricanes 
(e.g., [98]). This type of uncertainty can be in the class of aleatory un
certainty when the parameter is an observable but random quantity, 
such as a hurricane wind speed when used to forecast electric-power 
outages (e.g., [34]). 

Of the types of modeling uncertainty discussed in this paper, 
parameter uncertainty appears to be the type most commonly addressed 
in the interdependent infrastructure literature, albeit it is still uncom
mon. For example, Barker and Haimes [4] describe a multi-objective 
approach to evaluate the uncertainty in the “parameters of interde
pendency” using an inoperability input-output model (IIM). Moreover, 
[5] quantifies implications of uncertainty from expert-elicited proba
bility distributions using IIM for an interdependent set of economic and 
infrastructure sectors. 

3.2.2. Model output uncertainty and model structural uncertainty 
Definition (model output uncertainty): Uncertainty about the dif

ference between the model output, f(Z), and the actual outcome, Y, for 
parameters, Z. This difference is also called the model error, f(Z) - Y. 

Definition (model structural uncertainty): The difference between 

Table 2 
Types and sources of modeling uncertainty  

Type of Modeling 
Uncertainty 

Definition Example Uncertainty 
Metrics 

Possible Sources of Uncertainty Type of Uncertainty 

Parameter 
uncertainty 

Uncertainty about the values of the 
parameters, Z, of a model f 

P(Z ≤ z) Inaccurate and incomplete data Epistemic (aleatory if the 
parameter is subject to 
random variation) 

Model output 
uncertainty 

Uncertainty about the difference between 
the model output, f(Z) and the actual 
outcome, Y 

P(f(Z) - Y ≤ d) Incomplete knowledge about the values of the model 
parameters that permeate through the model; 
assumptions, simplifications, approximations 
introduced in the model 

Epistemic 

Model structural 
uncertainty 

Uncertainty about the difference between 
the model output f(Ztrue) given the true 
parameter Ztrue and the actual outcome, Y  

∫
P(f(Z) - Y ≤ d | Z = z) 

dH(z), where H(z) = P 
(Z ≤ z) 

Assumptions, simplifications, approximations 
introduced in the model 

Epistemic 

Completeness 
uncertainty 

Uncertainty about the completeness of the 
parameter vector Z 

Not commonly 
quantified 

Incomplete knowledge of the system, phenomena and/ 
or processes involved 

Epistemic  
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the model output f(Ztrue) given the true parameters, Ztrue, and the actual 
outcome Y. This difference is also called the conditional model error f 
(Ztrue) - Y. 

Example: Consider again the interconnected water and power system 
subject to hurricanes described above. The model, f(Z1, Z2 | ZA), could 
predict the number of customers who will lose water supply given a 
wind speed, ZA. If this is done in advance of a storm, wind speed, ZA, is an 
estimate. However, Y can later be observed. It is likely that |f(Z1, Z2 | ZA) 
- Y| ≥ 0 due to the uncertainty in the parameter vector Z = (Z1, Z2, ZA), 
but the magnitude of this difference is uncertain before event A occurs. 

Model structural uncertainty is slightly different. Even if the 
parameter values, including the true wind speed, ZAtrue, were known a 
priori, it is likely that |f(Z1true, Z2true | ZAtrue) - Y| ≥ 0 due to structural 
inaccuracies in the model. That is the model, which is a simplified 
representation of the system, possesses errors. This could be due to 
erroneous or limiting assumptions made by the modeler or computa
tional limits. This is akin “metadoxastic uncertainty” in Murphy et al. 
[70] and, in principle, should influence the level of confidence we have 
in our models. 

Discussion: The adage by George Box “All models are wrong, but 
some are useful,” describe these uncertainties well. Both model output 
uncertainty and model structural uncertainty are influenced by as
sumptions and judgments made by the researcher that may not be true, 
and by simplifications and approximations introduced in the model. 
That is, the structure of the model and the complex process it represents 
is not perfectly accurate. This could be due to human error and the 
modeler being unaware of how to appropriately compose the model, or 
potentially due to volitional uncertainty and the modeler bringing their 
own judgements and assumption about alternatives into the process 
[70]. Additionally, parameter uncertainty due to incomplete knowledge 
contributes to model output uncertainty when these parameter un
certainties permeate through the model. Because all models have 
structural deficiencies, both model output uncertainty and model 
structural uncertainty are types of epistemic uncertainty. These types of 
uncertainty are handled in different ways. The researcher could leverage 
different modeling techniques to answer the same question, or the 
researcher could relax some assumptions and identify their influence of 
the assumption on outcomes. Similarly, the researcher could potentially 
gain access to more computational resources, which would allow them 
to run more granular models. 

Note that model output uncertainty and model structural uncertainty 
are evaluated before observing the outcome Y. Thus, when the risk 
assessment is carried out and f(Z) is used to predict Y, the outcome of Y is 
uncertain. 

Still, there are no articles in the interdependence infrastructure 
modeling literature that directly address model output or model struc
tural uncertainty. However, there are a myriad of articles that accom
plish this indirectly. Take the entire body of work that uses Shelby 
County, TN - a county in the United States that is especially prone to 
floods and earthquake - as a case study (e.g., [24,33,43,46,116]). All of 
these models examine network robustness and recovery strategies for 
different modeling assumptions and approaches. They thus acknowl
edge that no one model accurately predicts all outcomes. 

3.2.3. Completeness uncertainty 
Definition: Uncertainty about the completeness of the parameter 

vector Z. 
Example: Consider again the interconnected water and power system 

in a hurricane-prone region. An operator or researcher may be interested 
in developing a model, f(Z), to predict the performance of the water 
system, Y, given a hurricane. The parameter vector Z reflects relevant 
sources of risk, such as the age of the water system, the exposure of the 
power system, and the intensity of the hurricane. However, the vector Z 
is incomplete. There will always be aspects that are excluded (e.g., 
squirrels chewing through an electrical line [66]). This is in part due to 
modeling limitations, and in part because of knowledge gaps or 

ignorance regarding key phenomena [11]. Completeness uncertainty 
reflects the uncertainty about both the number of factors that are 
missing in the model and the contribution those missing factors have on 
the outcome. 

Discussion: Completeness uncertainty is a type of epistemic uncer
tainty. It results from incomplete knowledge about the system, phe
nomena, and/or random processes and their contribution to the 
outcomes. It is common to distinguish between known and unknown 
completeness uncertainty. There are often reasons to exclude some 
known events, interactions, or other factors in a model. These reasons 
could include limited resources, a lack of tradition for including, etc. 
[10]. This is an instance of known completeness uncertainty. On the 
other hand, there may be unaccounted factors because they are un
known to the risk analyst. For obvious reasons, these elements are 
excluded from modeling efforts and results in unknown completeness 
uncertainty. The interdependent literature largely avoids this topic. Liu 
and Song [56], a literature review on urban critical infrastructure net
works, discuss how both coupled networks and instances of “unknown 
unknowns” are pressing challenges in the field. They argue that 
resilience-based design approaches - ones that emphasize adaptation 
over redundancy - may help to ameliorate some of these problems. 

3.3. The relationship between system uncertainty and modeling 
uncertainty 

System uncertainty and modeling uncertainty are separate concepts, 
though the fact that they both exist likely influences how we understand 
and report on the other. The former is inherent with all complex systems 
while the latter reflects how the researcher understands, interprets, and 
then mathematically downscales the complex system. They are, how
ever, interdependent themselves (see Figure 1). System uncertainty 
(should) influence model design and thus model uncertainty. Der Kiur
eghian and Ditlevsen (2009) offers rich reflection and insight on how 
aleatory uncertainty in complex systems (e.g., material properties in 
their case) quickly becomes a form of epistemic uncertainty once 
measured and modeled [21]. They argue that the lines between aleatory 
and epistemic uncertainty can become muddled during the modeling 
process (see Section 3.1 in Der Kiureghian and Ditlevsen (2009) for a 
longer exposition of this idea). Linking model uncertainty to system 
uncertainty, if the purpose of models is to learn from them and to ulti
mately make enhancements to the system, then the decisions that are 
made using models will influence system uncertainty. Exactly how 
system and modeling uncertainty are related in practice is an open 
question, and is to some extent related to broader philosophical ques
tions about the role models play in science [28]. 

Figure 1. Conceptual relationship between system uncertainty and modeling 
uncertainty 
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4. Treatment of uncertainty in the literature 

Various methods have been developed to model interdependencies 
of infrastructure networks facing disruptions, including empirical ap
proaches (e.g., [92]), network-based approaches (e.g., [1,27,31,36]), 
simulation and agent-based approaches (e.g., [8,26,104]) and Leontief 
input-output approaches (e.g., [4,35,115]), among many others [77]. In 
this section, we briefly review the body work in each of these categories 
and discuss if and how they incorporate uncertainty. 

4.1. Empirical approaches 

Empirical approaches use observed data sto make inferences about 
underlying phenomena. Thus, in a way, empirical approaches either 
implicitly or explicitly acknowledge the presence of uncertainty because 
they use data to make a best guess at the “true” values of the underlying 
process. These methods regularly rely on observations following 
extreme disruptions (e.g., an earthquake) because doing so otherwise 
requires an often-infeasible detangling of functioning components and 
interactions [50]. However, as discussed in Dueñas-Osorio and Kwa
sinski [25], a major drawback to date of these approaches is the “lack of 
measured coupling strengths under diverse operating conditions.” 
Essentially, by only taking one snapshot of the system, it is impossible to 
understand the magnitude of uncertainty within the system and the 
diversity of system responses. 

The body of literature that leverages operational data remains rela
tively small compared with the larger body of research devoted to 
network modeling [48,92]. While the datasets are often challenging to 
obtain, when combined with emerging data science techniques (e.g., 
[116]), they hold tremendous potential for exposing previously un
known complex interactions [96]. McDaniels et al. [63] develops an 
archetypical framework for empirical observations; continuing and 
expanding work in this vain may facilitate modern data exploratory 
approaches and reveal more about the range of outcome possibilities. 
However, additional consideration should be given to expanding the set 
of dependency archetypes to include the roles that individuals, in
stitutions, and governance systems have in shaping dependencies and 
how the dependencies evolve over time. 

4.2. Network models 

In network-based approaches, components of the infrastructure are 
mathematically represented by nodes that are connected by directed 
edges (i.e., links with a specific direction). Edges can be within one 
network or between different networks to represent interdependencies. 
Within these approaches, topology-based methods provide tangible in
sights on the performance of an infrastructure, they are computationally 
efficient and they require less data on system characteristics in com
parison to flow-based methods which require more information and 
provide more realistic descriptions of network operations [51,83]. Both 
methods, however, present limitations in assessing the uncertainty of 
interdependencies due to computational and modeling constraints [39, 
76]. A few studies consider probabilistic methods to overcome these 
limitations. Probabilistic extensions include conditional probabilities 
used to measure the strength of an interdependency and model 
cascading failures [38] and Bayesian network approaches combined 
with minimum link set to model interdependencies based on the access 
to repair resources [43,89]. While these extensions model uncertainty at 
the system level, the topology of the network in these studies is pre
defined and assumed to be the same, thus adding additional modeling 
uncertainty. Recent work considers dynamic network models to capture 
uncertain and dynamic interdependencies [116]. 

4.3. Simulation and agent-based models 

A logical extension to network models is to imbed them within a 

simulation model to explore how the model performs over a range of 
parameters. This class of models are among the more relevant models for 
quantifying the implications of uncertainty. The approach can focus on 
uncertainty stemming from the hazard or operational environment 
exclusively (e.g., [26,90]), and can additionally include the actions of 
individuals or organizations, for example in repair sequences (e.g., [8, 
42]). The latter approach is often composed of agent-based models 
(ABMs). Interdependent Markov-chains have also been used more 
recently with success to probabilistically relate two or networks (e.g., 
[85]). 

Simulation models have especially explored the effects of physical, 
spatial, and temporal uncertainty (e.g., [12,106]). To some extent, via 
ABMs, they have been extended to consider the actions of individuals (e. 
g., [88]). This somewhat limited body of work focuses mostly on oper
ational and governance uncertainties (e.g., [78,104]), and informational 
and socio-economic uncertainty have had minimal exploration in these 
platforms (e.g., [44]). Similarly, these models generally view the source 
of uncertainty to stem from parameters - either the true value of a 
deterministic parameter is unknown or the parameter itself is uncertain 
(e.g., [42]). While useful, the modeling approaches should be expanded 
more often to consider whether the structure of the model possesses 
inaccuracies and the impact this could have (e.g., [59]). 

4.4. Inoperability Input-Output Models 

The original input-output (I-O) model [52,65] has been transformed 
to assess how decreased functionality, or inoperability, in an infra
structure can propagate to a number of other interconnected industry 
sectors [91]. Further extensions of the inoperability input-output model 
(IIM) include a discrete-time dynamic version, dynamic inoperability 
input-output model (DIIM), to quantify the temporal propagation of the 
disruption and the recovery process [54] and the multiregional IIM 
(MRIIM) to capture spatial characteristics of a cascading disruption 
[17]. The approach has been extensively used to model the cascading 
effect of disruptions in multiple sectors. Applications include trans
portation systems (e.g., [81]), inventory management (e.g., [29]), 
power grid (e.g., [58]), and others (e.g., [102]). The method has also 
been adapted to model cascading failure across civil infrastructure sys
tems [36]. 

Considerations of uncertainty have been addressed by using a 
probabilistic formulation of DIIM Leontief input-output [75], combining 
IIM with an extreme event uncertainty model [5], and applying an un
certain demand-driven approach [115]. These extensions make the 
implicit assumption that inoperability propagation is governed by the 
uncertainty of the parameter characterizing the function linking both 
systems. Another approach is adapting IIM to model cascading failures 
across civil infrastructure systems [36] or modeling the uncertainty of 
the interdependency matrix as a function of infrastructure stochastic 
recovery process [7], accounting for multiple sources of uncertainty. 

5. Discussion, steps forward, and conclusions 

Significant evidence points to uncertainty being vastly understudied 
in interdependent infrastructure. This is potentially concerning for 
decision-makers who are likely to be uninformed to the degree of vari
ability inherent within models. It also makes it impossible for them to 
decide whether more resources should be spent on improving system 
reliability or improving our knowledge about the system. In this section, 
we finalize the discussion though next steps and other considerations for 
the field, including how the field can learn from other disciplines to 
incorporate uncertainty. 

5.1. Reconceptualization of infrastructure 

The significant majority of the interdependent infrastructure litera
ture focuses on hard infrastructure (e.g., electric-power systems, 
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transportation systems) and less on soft infrastructure (e.g., hospitals, 
governance systems) and the people these systems serve. Among the 
next frontiers for interdependent infrastructure models will be how 
physical infrastructure interacts with less tangible, but no less impor
tant, soft systems to support societal functioning. This will require a 
highly interdisciplinary approach with scientists from many fields (e.g., 
[60]). The field of disaster science has laid the foundation to enable 
convergence research, and put forth recommendations including (1) 
setting a research agenda that is problem-focused and solutions-based, 
(2) embracing multidisciplinary perspectives and interdisciplinary 
problems, (3) identifying useful boundary objects [84,86]. 

5.2. The human dimension 

A major source of uncertainty in infrastructure stems from humans. 
Everything from individual demand to how groups govern adds uncer
tainty. Until recently, individuals have been treated as a monolithic 
body seeking a collectively “optimal” solution, with the perspective 
usually being that of utility owner or a regulator (e.g., [51]). Recent 
studies have shown that a more nuanced approach with a broader set of 
objectives is warranted, both within the field of interdependent infra
structure systems, and more broadly [18,60]. After extreme events, for 
example, user demand can drastically change especially as individuals 
briefly adapt to disruptions [22]. Restoration strategies could account 
for the ability of sub-populations to adapt, and prioritize repairs ac
cording to local need. Policy and regulations similarly should account 
for the impact that humans have on (and the vulnerability that some 
subpopulations possess) when creating system guidelines and other 
regulatory procedures. 

5.3. Intersection of types of uncertainty 

While this paper makes mention of it, an underexplored concept is 
that in any given situation, there are multiple types of uncertainty that 
interact. The mechanisms through which this occurs and the implica
tions of this (e.g., the degree to which this amplifies uncertainty) is 
worthy of its own investigation. This may be especially important when 
there are interaction effects that could result in unexpected emergent 
behavior. Take, for instance, the intersectionality of socio-economic 
uncertainty and governance uncertainty. The uncertainty of economic 
interdependencies lies, in part, in the dynamic behavior of supply 
chains. Each actor in the systems may respond differently to external 
shocks and stimuli, and could result in emergent behavior. Ultimately, 
supply chains are governed in part by trade agreements - a top-down 
global force that potentially constrains the actions of each actor. 
Knowledge of such agreements and economic sectors can reduce un
certainty; however, there is also inherent uncertainty in factors that 
influence trade agreements and their cascading effect on supply chains 
and economic sectors. 

This concept is additionally important because the interaction effects 
may mask the root source of the uncertainty. For example, a researcher 
may attribute uncertainty to the passage of time, but the true cause of 
the uncertainty is changes to how the system is being governed and how 
this forces operations to evolve over time. 

5.4. Learning from other fields 

The field of interdependent infrastructure is not the only field to 
explore interacting elements and to consider the role of uncertainty. In 
the climate and global change literatures, models used to gain insight 
into the interdependence of natural and social systems have greatly 
increased in complexity. This is because many relevant questions require 
investigating dynamics across multiple spatial levels over long-time 
scales. As a result, modeling uncertainty has been a topic of interest, 
in particular model output and structural model uncertainty [82,108]. 
One methodology that has been developed that might have applicability 

to interdependent infrastructure modeling is model intercomparison 
[111]. In an intercomparison exercise, multiple modeling groups use 
their models to answer the same question with parameters Z set to be as 
similar as possible. As a result, variation in model output can be isolated 
to structural differences among models, some of which are artifacts of 
practical modeling assumptions and some of which are due to differ
ences in expert knowledge and judgment as embedded in modeling 
choices. Once model outputs are produced, guided desliberative pro
cesses are undertaken to identify output differences, discuss possible 
sources of uncertainty, and design further experiments to refine esti
mates of and sources of uncertainty. In the arena of interdependent 
infrastructure, number case studies have focused on Shelby County, 
Tennessee to evaluate variants of similar problems (e.g., [24,43,46, 
116]). In principle, the field could leverage this array of models to 
address a particular risk question to isolate the role and sources of model 
output and structure model uncertainty, and possibly other forms of 
uncertainty. 

5.5. Unraveling and communicating uncertainty 

Zio and Aven [120] highlight the challenges related to the repre
sentation and communication of uncertainty through a discussion on 
smart grids. To help demystify uncertainty, they strongly encourage 
researchers to make a simplistic representation or an “architecture” 
through which to describe the relationship among elements that each 
possess uncertainty, even if quantification of the uncertainty is impre
cise. This architecture, they argue, is both useful for decision-makers to 
understand how uncertainty propagates, but also for researchers to 
understand relationships and to decide how to structure the models. This 
should be conceptually straightforward for interdependent infrastruc
ture when the components of the architecture are known, along with the 
relationship among the components. However, complications could 
emerge when some forms of uncertainty, such as informational uncer
tainty or operational uncertainty or other forms of epistemic uncer
tainty, are present. It is possible that the researcher does not have a clear 
sense of how uncertainty in ones system propagates to other systems, 
though possible and mostly likely linkages should be conveyed. 

6. Conclusion 

As evidenced by the ever-increasing body of literature, significant 
advances have been made in the modeling space for interdependent 
infrastructure. Further, governments have made investments in under
standing how systems interact and are taking steps to fortify these 
linkages - oftentimes for national security reasons (e.g., NIPP 2013 [20]; 
the proposal of The European Programme for Critical Infrastructure 
Protection [55]). Interestingly, while this body of knowledge goes into 
significant depth in some areas (e.g., optimization), the treatment of 
uncertainty lacks a thoughtful and cohesive approach. To address this, 
we identify and provide the language to discuss the types of uncertainty 
that are present in the field of interdependent infrastructure and reflect 
on how the research has addressed this uncertainty to date. Our study 
suggests that the analysis has mostly been conducted in an ad hoc 
manner. By discussing uncertainty through a structured framework, it 
both enables researchers to simply identify the types of uncertainty 
present in their system and provides them with the motivation to 
address it. When researchers present findings that include sources of 
uncertainty, it informs decision-makers with the limits of system un
derstanding, and potentially guides them to whether more resources are 
needed to better understand the system (i.e., reduce epistemic uncer
tainty) or to improve system reliability (i.e., reduce aleatory 
uncertainty). 
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Juárez. I2SimModelling and Simulation Framework for Scenario Development, 
Training, and Real-Time Decision Support of Multiple Interdependent Critical 
Infrastructures during Large Emergencies. In: NATO RTO Modelling and 
Simulation Group Conference. Vancouver, BC, Canada; 2008. 

[62] Marzocchi W, Jordan TH. Testing for Ontological Errors in Probabilistic 
Forecasting Models of Natural Systems. Proceedings of the National Academy of 
Sciences 2014;111(33):11973–8. https://doi.org/10.1073/pnas.1410183111. 

[63] McDaniels Timothy, Chang Stephanie, Peterson Krista, Mikawoz Joey, 
Reed Dorothy. Empirical Framework for Characterizing Infrastructure Failure 
Interdependencies. Journal of Infrastructure Systems 2007;13(3):175–84. 
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(175). 

[64] Meshkati Najmedin, Khashe Yalda. Operators’ Improvisation in Complex 
Technological Systems: Successfully Tackling Ambiguity, Enhancing Resiliency 
and the Last Resort to Averting Disaster: Operators’ Improvisation in Complex 

Technological Systems. Journal of Contingencies and Crisis Management 2015;23 
(2):90–6. https://doi.org/10.1111/1468-5973.12078. 

[65] Miller, Ronald, and Peter Blair. 2009. Input-Output Analysis: Foundations and 
Extensions. 2nd ed. Cambridge University Press. 

[66] Mooallem, Jon. 2013. “Squirrel Power!” The New York Times, August 31, 2013, 
sec. Opinion. https://www.nytimes.com/2013/09/01/opinion/sunday/squi 
rrel-power.html. 

[67] Mostafavi Ali. A System-of-Systems Framework for Exploratory Analysis of 
Climate Change Impacts on Civil Infrastructure Resilience. Sustainable and 
Resilient Infrastructure 2018;3(4):175–92. https://doi.org/10.1080/ 
23789689.2017.1416845. 

[68] Ali Mostafavi, Dulcy Abraham, DeLaurentis Daniel. Ex-Ante Policy Analysis in 
Civil Infrastructure Systems. Journal of Computing in Civil Engineering 2014;28 
(5):A4014006. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000350. 

[69] Moteff, John D. 2012. “Critical Infrastructure Resilience: The Evolution of Policy 
and Programs and Issues for Congress.” CRS Report for Congress. 

[70] Murphy Colleen, Gardoni Paolo, Harris Charles E. Classification and moral 
evaluation of uncertainties in engineering modeling. Science and Engineering 
Ethics 2011;17(3):553–70. 

[71] Nguyen Dung T, Shen Yilin, Thai My T. Detecting Critical Nodes in 
Interdependent Power Networks for Vulnerability Assessment. IEEE Transactions 
on Smart Grid 2013;4(1):151–9. 

[72] Nickerson Robert, Varshney Upkar, Muntermann Jan. A method for taxonomy 
development and its application in information systems. European Journal of 
Information Systems 2013;22(3):336–59. 

[73] Nilsen T, Aven T. Models and Model Uncertainty in the Context of Risk Analysis. 
Reliability Engineering & System Safety 2003;79(3):309–17. https://doi.org/ 
10.1016/S0951-8320(02)00239-9. 

[74] O’Rourke TD. Critical Infrastructure, Interdependencies, and Resilience. The 
Bridge 2007;37(1):22–9. 

[75] Orsi Mark J, Santos Joost R. Probabilistic Modeling of Workforce-Based 
Disruptions and Input–Output Analysis of Interdependent Ripple Effects. 
Economic Systems Research 2010;22(1):3–18. https://doi.org/10.1080/ 
09535311003612419. 

[76] Ouyang Min. Comparisons of Purely Topological Model, Betweenness Based 
Model and Direct Current Power Flow Model to Analyze Power Grid 
Vulnerability. Chaos 2013;23(2):023114. https://doi.org/10.1063/1.4807478. 

[77] Ouyang Min. Review on Modeling and Simulation of Interdependent Critical 
Infrastructure Systems. Reliability Engineering & System Safety 2014;121:43–60. 
https://doi.org/10.1016/j.ress.2013.06.040. 

[78] Ouyang Min, Hong Liu, Mao Zi-Jun, Yu Ming-Hui, Qi Fei. A Methodological 
Approach to Analyze Vulnerability of Interdependent Infrastructures. Simulation 
Modelling Practice and Theory 2009;17(5):817–28. https://doi.org/10.1016/j. 
simpat.2009.02.001. 

[79] Ouyang Min, Wang Zhenghua. Resilience Assessment of Interdependent 
Infrastructure Systems: With a Focus on Joint Restoration Modeling and Analysis. 
Reliability Engineering & System Safety 2015;141:74–82. https://doi.org/ 
10.1016/j.ress.2015.03.011. 

[80] Palliyaguru, R. S., and R. D. G. Amaratunga. 2010. “Policy Implications of 
Integration of Disaster Risk Reduction to Infrastructure Reconstruction.” In CIB 
2010, 10th - 13th May 2010 University of Salford. http://usir.salford.ac. 
uk/id/eprint/9755/. 

[81] Pant Raghav, Barker Kash, Grant FHank, Landers Thomas L. Interdependent 
Impacts of Inoperability at Multi-Modal Transportation Container Terminals. 
Transportation Research Part E: Logistics and Transportation Review 2011;47(5): 
722–37. https://doi.org/10.1016/j.tre.2011.02.009. 

[82] Pastor AV, Vieira DCS, Soudijn FH, Edelenbosch OY. How Uncertainties Are 
Tackled in Multi-Disciplinary Science? A Review of Integrated Assessments under 
Global Change. Catena 2020;186:104305. 

[83] Patterson SA, Apostolakis GE. Identification of Critical Locations across Multiple 
Infrastructures for Terrorist Actions. Reliability Engineering & System Safety 
2007;92(9):1183–203. https://doi.org/10.1016/j.ress.2006.08.004. 

[84] Peek Lori, Tobin Jennifer, Adams Rachel M, Wu Haorui, Mathews Mason Clay. 
A Framework for Convergence Research in the Hazards and Disaster Field: The 
Natural Hazards Engineering Research Infrastructure CONVERGE Facility. 
Frontiers in Built Environment 2020;6(110):1–19. https://doi.org/10.3389/ 
fbuil.2020.00110. 

[85] Rahnamay-Naeini Mahshid, Hayat Majeed M. Cascading Failures in 
Interdependent Infrastructures: An Interdependent Markov-Chain Approach. IEEE 
Transactions on Smart Grid 2016;7(4):1997–2006. https://doi.org/10.1109/ 
TSG.2016.2539823. 

[86] Reilly Allison C, Dillon Robin L, Guikema Seth D. Agent-Based Models as an 
Integrating Boundary Object for Interdisciplinary Research: Agent-Based Models. 
Risk Analysis 2018. https://doi.org/10.1111/risa.13134 [in press]. 

[87] Reilly Allison C, Samuel Andrew, Guikema Seth D. ‘Gaming the System’: Decision 
Making by Interdependent Critical Infrastructure. Decision Analysis 2015;12(4): 
155–72. https://doi.org/10.1287/deca.2015.0318. 

[88] Rigole Tom, Vanthournout Koen, De Brabandere K, Deconinck Geert. Agents 
Controlling the Electric Power Infrastructure. International Journal of Critical 
Infrastructures 2008;4(1–2):96–109. 

[89] Rinaldi Steven M, Peerenboom James P, Kelly Terrence K. Identifying, 
Understanding, and Analyzing Critical Infrastructure Interdependencies. IEEE 
Control Systems Magazine 2001;21(6):11–25. 

[90] Rosato V, Issacharoff L, Tiriticco F, Meloni S, De Porcellinis S, Setola R. Modelling 
Interdependent Infrastructures Using Interacting Dynamical Models. 

A.C. Reilly et al.                                                                                                                                                                                                                                

https://doi.org/10.1088/1751-8113/49/19/195101
https://doi.org/10.1080/23789689.2017.1345253
https://doi.org/10.1080/23789689.2017.1345253
https://doi.org/10.1007/s10111-018-0510-2
https://doi.org/10.1007/s10111-018-0510-2
https://doi.org/10.1016/j.ijdrr.2019.101228
https://doi.org/10.1016/j.scs.2020.102072
https://doi.org/10.3390/su11195143
https://doi.org/10.3390/su11195143
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0049
https://doi.org/10.1061/(ASCE)0733-9488(2006)132:3(115)
https://doi.org/10.1061/(ASCE)0733-9488(2006)132:3(115)
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0052
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0052
https://doi.org/10.1371/journal.pone.0224522
https://doi.org/10.1002/sys.20051
https://doi.org/10.1002/sys.20051
https://doi.org/10.1016/j.ress.2019.106617
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0057
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0057
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000103
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000103
https://doi.org/10.1007/s11069-018-3302-3
https://doi.org/10.1029/2018EF000926
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0061
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0061
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0061
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0061
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0061
https://doi.org/10.1073/pnas.1410183111
https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(175)
https://doi.org/10.1111/1468-5973.12078
https://www.nytimes.com/2013/09/01/opinion/sunday/squirrel-power.html
https://www.nytimes.com/2013/09/01/opinion/sunday/squirrel-power.html
https://doi.org/10.1080/23789689.2017.1416845
https://doi.org/10.1080/23789689.2017.1416845
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000350
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0070
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0070
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0070
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0071
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0071
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0071
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0072
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0072
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0072
https://doi.org/10.1016/S0951-8320(02)00239-9
https://doi.org/10.1016/S0951-8320(02)00239-9
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0074
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0074
https://doi.org/10.1080/09535311003612419
https://doi.org/10.1080/09535311003612419
https://doi.org/10.1063/1.4807478
https://doi.org/10.1016/j.ress.2013.06.040
https://doi.org/10.1016/j.simpat.2009.02.001
https://doi.org/10.1016/j.simpat.2009.02.001
https://doi.org/10.1016/j.ress.2015.03.011
https://doi.org/10.1016/j.ress.2015.03.011
http://usir.salford.ac.uk/id/eprint/9755/
http://usir.salford.ac.uk/id/eprint/9755/
https://doi.org/10.1016/j.tre.2011.02.009
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0082
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0082
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0082
https://doi.org/10.1016/j.ress.2006.08.004
https://doi.org/10.3389/fbuil.2020.00110
https://doi.org/10.3389/fbuil.2020.00110
https://doi.org/10.1109/TSG.2016.2539823
https://doi.org/10.1109/TSG.2016.2539823
https://doi.org/10.1111/risa.13134
https://doi.org/10.1287/deca.2015.0318
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0088
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0088
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0088
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0089
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0089
http://refhub.elsevier.com/S0951-8320(21)00285-4/sbref0089


Reliability Engineering and System Safety 213 (2021) 107756

13

International Journal of Critical Infrastructures 2008;4(1-2):63. https://doi.org/ 
10.1504/IJCIS.2008.016092. 

[91] Santos Joost R, Haimes Yacov Y. Modeling the Demand Reduction Input-Output 
(I-O) Inoperability Due to Terrorism of Interconnected Infrastructures. Risk 
Analysis 2004;24(6):1437–51. https://doi.org/10.1111/j.0272- 
4332.2004.00540.x. 

[92] Sarker Partha, Lester Henry D. Post-Disaster Recovery Associations of Power 
Systems Dependent Critical Infrastructures. Infrastructures 2019;4(2):30. https:// 
doi.org/10.3390/infrastructures4020030. 

[93] Scala Natalie M, Reilly Allison C, Goethals Paul L, Cukier Michel. Risk and the 
Five Hard Problems of Cybersecurity. Risk Analysis 2019;39(10):2119–26. 
https://doi.org/10.1111/risa.13309. 

[94] Shackley Simon, Green Ken. A Conceptual Framework for Exploring Transitions 
to Decarbonised Energy Systems in the United Kingdom. Energy 2007;32(3): 
221–36. https://doi.org/10.1016/j.energy.2006.04.010. 

[95] Sharkey Thomas C, Cavdaroglu Burak, Nguyen Huy, Holman Jonathan, 
Mitchell John E, Wallace William A. Interdependent Network Restoration: On the 
Value of Information-Sharing. European Journal of Operational Research 2015; 
244(1):309–21. https://doi.org/10.1016/j.ejor.2014.12.051. 

[96] Sharkey Thomas C, Nurre Sarah G, Nguyen Huy, Chow Joe H, Mitchell John E, 
Wallace William A. Identification and Classification of Restoration 
Interdependencies in the Wake of Hurricane Sandy. Journal of Infrastructure 
Systems 2016;22(1):04015007. https://doi.org/10.1061/(ASCE)IS.1943- 
555X.0000262. 

[97] Sharma Neetesh, Nocera Fabrizio, Gardoni Paolo. Classification and 
mathematical modeling of infrastructure interdependencies. Sustainable and 
Resilient Infrastructure 2021;6(1-2):1–22. 

[98] Staid Andrea, Guikema Seth D, Nateghi Roshanak, Quiring Steven M, 
Gao Michael Z. Simulation of Tropical Cyclone Impacts to the U.S. Power System 
under Climate Change Scenarios. Climatic Changse 2014;127(3–4):535–46. 
https://doi.org/10.1007/s10584-014-1272-3. 

[99] Stanton Neville, Salmon Paul, Rafferty Laura, Walker Guy, Baber Chris, 
Jenkins Daniel. Human Factors Methods: A Practical Guide for Engineering and 
Design. 2nd ed. England: Ashgate Publishing, Ltd; 2013. 

[100] Steinberg Laura, Santella Nicholas, Zoli Corri. Baton Rouge Post-Katrina: The Role 
of Critical Infrastructure Modeling in Promoting Resilience. Homeland Security 
Affairs 2011;7(7):1–34. 

[101] Talebiyan Hesam, Duenas-Osorio Leonardo. Decentralized Decision Making for 
the Restoration of Interdependent Networks. ASCE-ASME Journal of Risk and 
Uncertainty in Engineering Systems, Part A: Civil Engineering 2020;6(2): 
04020012. https://doi.org/10.1061/AJRUA6.0001035. 

[102] Tamssaouet Ferhat, Nguyen Khanh TP, Medjaher Kamal. System-Level 
Prognostics Under Mission Profile Effects Using Inoperability Input-Output 
Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2019:1–11. 
https://doi.org/10.1109/TSMC.2019.2944834. 

[103] Taneja P, Ligteringen H, Van Schuylenburg M. Dealing with Uncertainty in Design 
of Port Infrastructure Systems. Journal of Design Research 2010;8(2):101–18. 
https://doi.org/10.1504/JDR.2010.032073. 

[104] Thompson James R, Frezza Damon, Necioglu Burhan, Cohen Michael L, 
Hoffman Kenneth, Rosfjord Kristine. Interdependent Critical Infrastructure Model 
(ICIM): An Agent-Based Model of Power and Water Infrastructure. International 
Journal of Critical Infrastructure Protection 2019;24:144–65. https://doi.org/ 
10.1016/j.ijcip.2018.12.002. 

[105] Tian Di-An, Sansavini Giovanni. Impact of Cyber Dependencies in Critical 
Infrastructures: The Reliability of Grid Splitting in Power Systems. Proceedings of 
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 
2018;232(5):491–504. https://doi.org/10.1177/1748006X17736165. 

[106] Val Dimitri V, Holden Richard, Nodwell Sarah. Probabilistic Analysis of 
Interdependent Infrastructures Subjected to Weather-Related Hazards. Civil 
Engineering and Environmental Systems 2014;31(2):140–52. 

[107] Valcamonico Dario, Sansavini Giovanni, Zio Enrico. Cooperative Co-Evolutionary 
Approach to Optimize Recovery for Improving Resilience in Multi-Communities. 
Reliability Engineering & System Safety 2020;197:106800. https://doi.org/ 
10.1016/j.ress.2020.106800. 

[108] van Asselt Marjolein, Rotmans Jan. Uncertainty in Integrated Assessment 
Modelling. Climatic Change 2002;54(1–2):75–105. 

[109] Asselt van, Marjolein, Vos Ellen, Wildhaber Isabelle. Some Reflections on EU 
Governance of Critical Infrastructure Risks. European Journal of Risk Regulation 
2015;6:185. 

[110] van der Mandele Martin, Warren Walker, Sten Bexelius. Policy Development for 
Infrastructure Networks: Concepts and Ideas. Journal of Infrastructure Systems 
2006;12(2):69–76. https://doi.org/10.1061/(ASCE)1076-0342(2006)12:2(69). 

[111] Warszawski Lila, Frieler Katja, Huber Veronika, Piontek Franziska, 
Serdeczny Olivia, Schewe Jacob. The Inter-Sectoral Impact Model 
Intercomparison Project (ISI–MIP): Project Framework. Proceedings of the 
National Academy of Sciences 2014;111(9):3228–32. https://doi.org/10.1073/ 
pnas.1312330110. 

[112] White House. 1998. “Presidential Decision Directive - Critical Infrastructure 
Protection (PDD 63).” Washington, DC. https://fas.org/irp/offdocs/pdd/pdd-63. 
htm. 

[113] White House. 2001. “Critical Infrastructure Protection in the Information Age - 
Executive Order 13231.” https://fas.org/irp/offdocs/eo/eo-13231.htm. 
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