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While significant modeling advances have unpacked the complexities of interdependent infrastructure, post-
disaster reconnaissance consistently demonstrates a wide variability of outcomes and how much is still to be
learned. With that in mind, one might expect the treatment of uncertainty to be quite advanced in interde-

;neftr;it:; c:-:;rgelin pendent infrastructure models, but we find that to not be the case. In this work, we identify, define, and describe
simulation & two key classes of uncertainty: system uncertainty and modeling uncertainty. System uncertainty is inherent in

all complex infrastructure systems and possesses several subclasses (e.g., physical uncertainty and operational
uncertainty). Modeling uncertainty occurs when researchers downscale a complex system to a mathematical or
other symbolic representation. It too has several subclasses (e.g., parameter uncertainty and completeness un-
certainty). We then identify how the literature to date treats uncertainty with respect to each type of uncertainty.
While some work has investigated the implications of physical and temporal uncertainty, by and large, most
types of uncertainty have had minimal exploration, suggesting significant knowledge gaps. Finally, we suggest a
path forward for treatment and discussion of uncertainty, including what can be learned from other fields

involving complex interdependent systems.

1. Introduction

Since the release of Presidential Decision Directive 63 twenty years
ago, US doctrine on critical infrastructure has placed significant
emphasis on improving our understanding of interdependencies (e.g.,
PDD-21 1998, EO13231 2001, NIPP 2013) [20,112,113]. The rationale
is, if we know the sources and the strengths of dependencies, we can
proactively intervene and prevent cascading failures from one sector to
the next. Researchers and scientists, in collaboration with public and
private infrastructure organizations, have heeded the call; without
doubt, significant contributions have been made. Reconnaissance of
cascading failures of infrastructure following 9/11 and Hurricane
Sandy, among other post-disaster investigations, have provided detailed
case studies on the causes of these failures and what later transpired [53,
74,96]. Plenty more studies have used real system data to identify
potentially fragile or critical nodes [71,92] and to propose enhanced
recovery strategies [42,79,107]. The research has also significantly
pushed the boundaries of mathematical modeling [30,101]. However, as
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many ex post-disaster studies reveal, what we know about dependencies
might be quite limited. Further, the existence and strengths of de-
pendencies do not always comport with what is expected. That is, sig-
nificant uncertainty exists.

With that in mind, one might expect the treatment of uncertainty to
be quite advanced when discussing and modeling interdependent
infrastructure. In sum, we find that not to be true. Moreover, while
credence has been given to aleatory uncertainty, particularly when
modeling hazard scenarios and component failures, the discussion of the
sources and magnitude of uncertainty in interdependent infrastructure is
extremely limited. This implies that little is understood of the influence
that these uncertainties have on coupled system performance. While
most articles assume dependencies to be fixed and binary (e.g., [27,
122]), the reality is that some dependencies are far more spatially and
temporally fluid. This is especially true when the source of a dependency
is less physical and more a function of individual or societal decisions
[60]. Operational and organizational changes within an infrastructure
sector can alter more mundane aspects such as repair sequences, and
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more strategic aspects, such as investment prioritization, which in total,
changes system resilience. Socio-economic disruptions have complex
interactions with infrastructure with respect to the availability of parts,
labor, and capital, among other aspects, and are usually discounted in
infrastructure models [32]. The degree to which human behavior and
bureaucratic frameworks influence complex infrastructure systems is
just as influential as the reliability of system components — as is unfor-
tunately illustrated in the 2021 Texas Winter Storms - though is not
often considered in the interdependent infrastructure literature. This
paper provides the language and a framework for the field to discuss
these important aspects.

Dependencies need not be stationary connections nor deterministic.
Some connections may be ephemeral and exist only in periods of ex-
tremes, such as peaks in customer demand, while others are constant,
such as the dependences of water pumps on electric-power. De-
pendencies also possess varying degrees of strength, with some de-
pendencies being strong, such as how a generation unit requires water
for its cooling towers, and other dependencies having loose associations,
such as how the transportation and energy sector are intertwined via
tariffs [94].

A significant portion of interdependent infrastructure models do not
discuss or mathematically capture system uncertainty. While it would be
wholly impossible for a single model to capture and quantify all un-
certainties affecting the coupled system, ignoring uncertainty in its en-
tirety is similarly dubious. It suggests that results and the models
themselves may possess significant uncertainty. This, we argue, could
create ramifications for decision-makers who are not informed of the
limits of understanding.

The purpose of this paper is three-fold. The first is to isolate and
categorize the root sources of uncertainty in the field of interdependent
infrastructure. This is completed in Section 3. A methodology for how
the divisions were created is provided in Section 2. Broadly, we divide
this into two groups: system uncertainty and modeling uncertainty.
System uncertainty deals more with internal properties of infrastructure
and how external factors (e.g., operators and the environment) influence
the operability of interdependent networks. The discussion leverages
much of the taxonomy used to describe dependencies (e.g., physical and
geographic dependence, as defined by [89]), but also incorporates
mention of how significant epistemic uncertainty exists within these
systems — a discussion that is often eschewed. Further, we explore how
policy decisions and decisions made by operators and other infrastruc-
ture decision-makers contribute to system uncertainty. Modeling un-
certainty, on the other hand, focuses on the uncertainty that results
when researchers downscale a complex system to a mathematical or
other symbolic representation. This uncertainty is inherent with all
models. Inaccurate and incomplete data, computational constraints
placed on models, and assumptions due to lack of knowledge all
contribute to modeling uncertainty.

The second purpose of this work is to evaluate how the current state
of the science handles uncertainty. This is provided to some degree in
Section 3, and Section 4 is devoted to this. To be clear, our work is by no
means a comprehensive review of the current literature. Ouyang [77]
performs this task quite well. Rather, we identify works that have driven
the scholarship in the area of uncertainty and interdependent infra-
structure (which is relatively few) and discuss the types of uncertainty
contained in these papers. By having first identified the root sources of
uncertainty in Section 3, we can then discuss the types of uncertainty
that are present and missing in this space.

The third purpose is to provide a path forward when discussing and
handling uncertainty in interdependent infrastructure. In Section 5, we
discuss the importance of presenting uncertainty when conveying
research results to decision-makers and the need to expand beyond
physical “hard” systems to include the interactions with “soft” infra-
structure systems (e.g., financial systems) and humans. We also identify
current best practices for handling uncertainty that are used presently in
other fields involving complex interdependent systems (e.g., the climate
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and global change literature).

The foundational work on uncertainty by Der Kiureghian and
Ditlevsen [21] poses a provocative question about whether taxonomies
(aleatory and epistemic, in their case) actually matter, especially once
modeling begins and aleatory and epistemic uncertainty can begin to
merge. We argue that they do matter. First, the field of interdependent
infrastructure is relatively nascent, and our observation is that lexical
gaps are leading to modeling gaps, especially when it comes to incor-
porating the impacts of human and societal decisions. The second is
more practical. Knowing what causes the uncertainties allows decision
makers and funders (e.g., federal agencies) to decide how to expend
resources to reduce uncertainty (and thus often times, risk). For
example, epistemic uncertainty can be resolved (or at least reduced)
through more research. Aleatory uncertainty can be resolved (or at least
reduced) through better equipment, improved protocols, and general
system investments. This influences investment decisions, but on the flip
side, decisions-makers need to be informed about the types of un-
certainties and their sources.

This work builds from and is complementary to other work in the
space that explores the dimensions of interdependent infrastructure [51,
89,97,119]. Early work in this space tends to focus on how to decompose
coupled systems into discrete functional dimensions. It has not placed
much emphasis on the role of human decisions, institutions, and bu-
reaucracies (e.g., Rinaldi et al. [89] uses the catchall “logical”). Recent
work by Sharma et al. [97] is similar to our work in the methodological
approach for developing taxonomies (see Section 2). They decompose
their classification of interdependent infrastructure into orthogonal di-
mensions (“ontology” and “epistemology”) as we do in our classification
of sources of uncertainty (“systems” and “modeling”). However, our
classification structure is unique and we link our dimensions to how it is
treated in the literature whereas existing work has not linked the di-
mensions of interdependencies to uncertainty nor describe how uncer-
tainty is present in interdependent infrastructure models.

As this work demonstrates, insufficient consideration has been given
to uncertainty. This could make researchers over-confident of their re-
sults and also provide too little information to decision-makers. This
work makes progress at overcoming this shortfall by systematically
categorizing the types of uncertainty that are present in interdependent
infrastructure systems and identifying gaps in the literature. We believe
this to be timely and critically important as the field advances into more
complicated interdependent networks, such as socio-technical networks
[601].

2. Methodology

Our study uses taxonomy methods to delineate types of uncertainty
encountered in modeling interdependent infrastructure. Taxonomies,
also known as classifications, frameworks, and typologies, occur in
many areas of science [3,23]. Some authors use the terms interchange-
ably while others provide precise definitions for each term [72]; we
chose the former. At the most basic level, taxonomies and their related
terms seek to group similar types of concepts or objects and distinguish
them from those that are less similar. Grouping occurs across one or
more dimensions, which are composed of any number of characteristics.

In our study we follow the general taxonomy method of Nickerson
etal. [72]. The first step in taxonomy creation is deciding on its purpose.
For this study, the purpose is to categorize types of uncertainties so that
model creators and users can better understand the implication of each
uncertainty type in model use and interpretation.

The next step is to decide to choose criteria that will be used to judge
the usefulness of the taxonomy. Popular criteria that we adopt are two
subjective measures, conciseness and robustness, and four objective
measures, uniqueness of dimensions, uniqueness of characteristics
within a dimension, whether cases are uniquely classified, and no null
cells. The subjective measures are chosen to ensure the taxonomy is
usable. It should not have too many dimensions and characteristics as to
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be unwieldy and not too few as to lack meaningful distinctions among
cases. The objective measures ensure that dimensions and characteris-
tics are not duplicative, that the taxonomy makes precise categoriza-
tions, and that there are no ‘empty’ spots in the taxonomy with no cases
or unlikely combinations of characteristics.

After the taxonomy purpose and criteria are set, the main method-
ological process is an iterative loop between empirical-to-conceptual
and conceptual-to-empirical subprocesses, where the loop is repeated
until the usefulness criteria are met. The primary distinction between
the two subprocesses are their starting points. Empirical-to-conceptual
begins with a set of objects or concepts. Based on inspection of the ob-
jects and background knowledge, researchers create characteristics that
are relevant to the purpose of the taxonomy. Once the candidate char-
acteristics have been identified, then the objects are grouped into di-
mensions by some type of cluster analysis or informally by graphical or
some other manual technique.

In contrast, the conceptual-to-empirical subprocess begins with re-
searchers using their background knowledge of existing theory to
deduce relevant dimensions and characteristics. Once created the re-
searchers examine objects for fit with the deduced characteristics. At the
end of either sub-process is an initial taxonomy that may be further
modified by another subprocess. The choice of which subprocess to use
in the first loop is usually a function of a sufficiently large sample of
objects and the richness of background theory. For example, big data
applications have large sample sizes but often poor theory. As a result, a
natural first choice for sub-process is empirical-to-conceptual. For ana-
lyses such as ours, where background theory is relatively rich but only a
few cases are available, a conceptual-to-empirical approach is more
appropriate.

After the initial taxonomy is created, further loops may be entered if
the taxonomy criteria are not met. If new objects are found, or if some
objects were reserved for out-of-sample testing, then another empirical-
to-conceptual loop might be helpful. Otherwise, conceptual-to-empirical
analysis may be used to further refine the taxonomy. With either sub-
process, dimensions may be added or eliminated if needed. The litera-
ture on taxonomy creation emphasizes that finding an ‘optimal’
taxonomy structure is unlikely, and that focus should be put on con-
structing a taxonomy that best fits the purpose laid out in the first step.
This design philosophy is similar to that described in other synthesis
techniques, such as the ‘best fit” framework synthesis methodology used
for systematic reviews.

3. Sources of uncertainty in interdependent infrastructure

This section focuses on the types of uncertainty that are inherent in
infrastructure dependencies, inherent with our current understanding of
interdependent infrastructure, and inherent to modeling efforts. The
former two relate to system uncertainty and the latter relates to
modeling uncertainty. System uncertainty possesses both aleatory and
epistemic uncertainty, while modeling uncertainty is largely epistemic.
These concepts, including formal definitions, are expanded upon in the
sections that follow.

As discussed in Nickerson et al. [72] and Sharma et al. [97], for
taxonomies to be useful for modeling, their dimensions must be
orthogonal. As such, our two key dimensions — systems uncertainty and
modeling uncertainty — are orthogonal. However, in any instance when
modeling interdependent infrastructure occurs, (at least) one type of
system uncertainty exists and (at least) one type of modeling uncertainty
exists. Likely, multiple types exist, and further, there are no rules that
preclude the co-existence of a specific type of system uncertainty and a
type of modeling uncertainty; thus, the types of uncertainty within each
dimension should not be considered unique branches but rather
matrixed. More specifically, each type of uncertainty contained within
system uncertainty could intersect with each type of uncertainty con-
tained within modeling uncertainty and vice versa.
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3.1. System uncertainty

We define system uncertainty for interdependent infrastructure
networks as uncertainty concerning the events, states, quantities, or
phenomena (including system shocks and external hazards) that influ-
ence and connect infrastructure networks. System uncertainty both re-
flects uncertainty intrinsic to coupled systems (largely aleatory
uncertainty, though we identify one instance where epistemic uncer-
tainty could play a role) and reflects a limited understanding of the
phenomena that connects coupled systems (epistemic uncertainty).
Understanding which uncertainties are reducible and which are not
provides important context for decision-makers in terms of when and
where to allocate research funds (for knowledge discovery) and when to
alter properties or components of the system (to enhance system
reliability).

For simplicity, the forms of system uncertainty described in this
section largely stem from Rinaldi et al. [89] — e.g., physical, geographic
(or spatial), and cyber. While we broadly consider logical dependencies
and uncertainties, this has historically been a “catchall” for de-
pendencies that are not one of the other three described in Rinaldi et al.
[89]. As such, we divide logical dependencies into multiple additional
orthogonal categories. Furthermore, we identify additional forms of
uncertainties (e.g., temporal uncertainty) that we feel are not appro-
priate in the four original divisions discussed in the originating work.
The sources of uncertainty are presented in Table 1 and a short discus-
sion of each follows.

To illustrate how the different sources of system uncertainty can be
measured, consider a set of systems, S, subject to some phenomenon, A,
and with their performance characterized by a (possibly time-
dependent) vector, X (e.g., the state of or flow between the systems).
For simplicity, and without loss of generality, we consider two systems,
System 1 and System 2. In Table 1, some examples of uncertainty metrics
for the different uncertainty sources are given using the aforementioned
notation.

Before proceeding, we add brief notes on the work’s scope. First, we
limit the discussion to only uncertainties related to dependencies and do
not discuss uncertainties that are inherent to a single infrastructure
system (e.g., the reliability of a transformer at an electrical substation).
Second, the types of uncertainty below refer to a one-way dependence
for both simplicity and because the reciprocating forms of dependency
may not be identical to the one discussed. That being said, multiple
forms of system uncertainty - if not all the forms discussed below — are
likely to exist in any coupled system. This is discussed with more depth
in Section 5. Third, this may not be a collectively exhaustive list, and
rather reflects the current understanding of interdependent infrastruc-
ture. More research and discussion in this field may highlight additional
sources of uncertainty.

3.1.1. Physical uncertainty

Definition: Uncertainty about the quantities characterizing the flow
between the systems.

Example: A water pumping station (or a pumphouse) requires
electric-power for operations. The flow of electric-power can be uncer-
tain, especially in times of extremes. The flow can depend on the state of
the parent system (i.e., how much electric-power can be provided) and
the state of the child system (i.e., how much power is required). Alter-
natively, the flow can depend on the state of the electric cable that
connects the systems.

Discussion: Physical dependencies assume a flow of some commodity
(e.g., water, power, widgets) from one system to another. This flow re-
quires something physical over which the commodity is transported.
Because these physical connections are forged by individuals and or-
ganizations, knowledge of these connections exists (i.e., the existence
and mechanism of these links is established). Thus, the phenomenon
surrounding physical uncertainty is well characterized and it lacks
epistemic uncertainty. (This is not to say that everyone with operational
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Table 1
Sources of system uncertainty and their definition
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Source of System Definition Example uncertainty metrics Main type of uncertainty
Uncertainty
Physical Uncertainty about the quantities characterizing the flow P(X < x) = P(X; < x;), where X; characterizes the flow from Aleatory
uncertainty between the systems System 1 to System 2
Spatial Uncertainty about how phenomena (e.g., hazardous events) P(X < x | A), where X characterizes the performance/state of ~ Aleatory
uncertainty affect collocated systems and how phenomena behind the the systems and A is a spatial phenomenon, such as a
spatial distribution of collocated systems influences system hazardous event
states
Temporal Uncertainty about how dependencies and phenomena thatlink ~ P(X(0) | A), t > T, and P(T < t | A), where X(¢) characterizes the ~ Aleatory
uncertainty systems (e.g., consumer demand shifts) depends on and performance of the systems at time t and T is the time between
changes over time the occurrence of a phenomenon A and dependency effects
starting to express themselves
Governance Uncertainty about possible future regulations, policies, or P(X < x | A) and P(A), where X characterizes the performance/  Epistemic (A)
uncertainty norms and how they could impact system performance or the state of the systems and A is a governance phenomenon (top-  Aleatory (X)

operational environment

Socio-economic Uncertainty about decisions made by consumers and other end-

uncertainty users in response to a disruption or other external stimuli
Operational Uncertainty about the phenomena that dictate operational
uncertainty decisions or procedures
Informational Uncertainty by the child network about the state of or the
uncertainty phenomena affecting a parent network due to a lack of

knowledge

Uncertainty about the state of the cyber infrastructure enables
the flow of information between systems and uncertainty about
the quantities that reflect the flow of information using cyber
infrastructure

Cyber uncertainty

down decisions) that may affect the system (e.g., new
regulations)

P(X < x | A) and P(A), where X characterizes the performance/
state of the systems and A is a socio-economic phenomenon
(bottom-up decisions) that may affect the system (e.g., changes
in supply chains, demand, or consumer/market behavior)
P(A), where A is a phenomenon that - if it occurs - dictates
operational decisions or procedures

From the point of view of System 2: P(X; < x1) or P(A;), where
X; characterizes the state of System 1 and A; is a phenomenon
affecting System 1

Special case of informational uncertainty, where X
characterizes the states of the cyber subsystems

and/or

Analogous to physical uncertainty, where X characterizes the
flow of information between the systems

Epistemic or aleatory (A),
depending on the
phenomenon

Aleatory (X)

Aleatory or epistemic,
depending on the
phenomenon

Epistemic

Aleatory

responsibilities knows of these physical connections — a form of infor-
mational uncertainty).

With this in mind, physical uncertainty possesses aleatory uncer-
tainty and is inherent to the system. The uncertainty resides in the
quantity of flow being provided. Flow uncertainty can originate in the
parent system based on the level of service it is able to provide (i.e., its
state), originate in the child system based on what it demands, or
originate in the reliability of the component that connects the systems.
The literature largely assumes that flow from the parent to the child
system depends on the operability of the parent network and its ability
to provide the service (e.g., [121]). We cannot find an example in the
literature where the reliability of the component(s) that physically
connects the systems is considered.

Of the uncertainties discussed in this paper, physical uncertainty is
the most prevalent in the literature — likely coinciding with physical
dependencies being so ubiquitous. Zio and Sansavini [121] imbed a
Monte Carlo simulation that represents probabilistic failure scenarios for
a single network within an interdependent network model to quantify
how internal failures propagate to external systems along with its un-
certainty. This method is similar to Wu and Duenas-Osorio [114] which
uses established seismic fragility curves to model the damage of com-
ponents in the water sector and how these failures could propagate.
Zhang et al. [118] simplify this approach by assigning conditional fail-
ure probabilities to those links that connect networks. In this instance,
the conditional probabilities reflect more the state of the parent network
than the state of the actual component connecting the systems.

3.1.2. Spatial uncertainty

Definition: Uncertainty about how phenomena (e.g., hazardous
events) affect collocated systems and how the spatial distribution of
collocated systems influences system states.

Example 1: Roads that are impassable due to debris after a wind-
storm are likely to have downed power lines and thus intersections with
signal outages. Electrical and road networks are linked by the wind and
their spatial proximity. The hazardous event (the wind) initiates the
failure sequence in this instance.

Example 2: Internet cables are often collocated with water distri-
bution infrastructure underneath roadways. A water main break can
flood these cables if not properly protected, and lead to wide-spread
Internet outages. The water main break initiates the failure in this
instance, but the impacts are magnified by the close spatial proximity of
the systems.

Discussion: This type of uncertainty is unique in that there are two
underlying phenomena — one extrinsic and one intrinsic — which
spatially connect infrastructure systems. The first relates to how hazards
or other external spatial shocks probabilistically connect two systems.
The closer two assets from different systems are, the more likely one is to
be damaged if the other is damaged when spatially-distributed hazards
occur. They are also likely to sustain similar degrees of damage; however
distinct systems have different vulnerabilities to hazards for a variety of
reasons. There is inherent and thus aleatory uncertainty to this process.
A windstorm could cause debris to make a roadway impassable, but
there remains a possibility that electric lines remain intact. Significant
research is underway exploring the epistemic uncertainty that remains
in our knowledge about hazards (e.g., [9]), but this uncertainty is not a
property of the infrastructure system.

A second type of spatial uncertainty does not concern external haz-
ards, but rather is a function of collocation and an event that occurs in
one of the systems. A component failure in one system (an intrinsic
event) could damage components in systems that are close, and thus
affect their operational states as well. As with hazards, this is a form of
aleatory uncertainty, as the likelihood of a component failure is a
property of the system. There has been discussion about how infra-
structure operators and researchers do not understand spatial de-
pendencies well (e.g., O’Rourke [74] discusses the previously unknown
spatial dependencies between the US Stock Exchange and the water in
New York City following 9/11). While these spatial dependencies were
unknown, we argue that this is a type of informational uncertainty (and
thus a form of epistemic uncertainty).

3.1.3. Temporal uncertainty
Definition: Uncertainty about how dependencies and phenomena
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that link systems (e.g., consumer demand shifts) depends on and
changes over time.

Example: Many cellular towers (like other critical infrastructures)
have backup generators for the case where they lose electric-power.
There are instances where generators were low on fuel at the start of
the outage or simply ran out at some point in time, possibly stymying
electric-power restoration due to an inability to effectively
communicate.

Discussion: This class of uncertainty focuses on how dependencies
and the phenomena that affect dependencies both depend on time and
change over time. This could be seen as an extension of the other types of
uncertainty discussed in this paper; it acknowledges that random events
all have a time component. A pipe breaks at some point in time. Infor-
mation that could change restoration plans becomes known at a certain
point in time. When these random events will be realized is uncertain.
There could be a significant lag time between the initiating event and
effects on downstream systems. Rinaldi et al. [89] described in detail
how the California energy crisis in the late 1990’s contributed to agri-
cultural losses and ultimately to problems within the banking and
finance sector. This was witnessed over years, and was not a quick
system “shock.”

We argue that there is another aspect to this dimension of uncer-
tainty. That is, temporal uncertainty also considers how dependencies
between systems change over time. We could envision scenarios
whereby systems are independent, but are sporadically linked during
times of extremes. For example, a water system could operate without
relying on natural gas, but could become critical and large consumers of
natural gas during electric-power outages to operate key pumps. This is
an example of significant changes in end-user demands.

This type of uncertainty likely contains both aleatory and epistemic
uncertainty. There is an inherent randomness to when components fail.
However, how dependencies evolve over time - especially in socio-
technical systems - is more complex than a coin flip. It is arguably the
basis of emerging research on dynamic dependencies (e.g., [37]) and
could itself be a new frontier in interdependent infrastructure research
[60,67]. While consideration of temporal aspect is common in interde-
pendent literature, especially when it comes to staging restoration se-
quences (e.g., [45,471), the uncertainties associated with it are generally
less acknowledged. However, the body of work that examines correla-
tion among recovery curves contradicts this statement [25,123].

3.1.4. Governance uncertainty

Definition: Uncertainty about possible future regulations, policies, or
norms and how they could impact system performance or the opera-
tional environment (e.g., trade agreements and how they affect infra-
structure development). This can also be viewed as uncertainty
stemming from top-down decisions.

Example 1: Governing entities overseeing public-private partner-
ships (PPP) for infrastructure development or expansion can impact
system performance and its ability to respond to disruptions. The dy-
namics of a PPP framework can determine specific performance re-
quirements or safety standards, which can drastically alter operations
[19].

Example 2: Government policies can influence the level of infra-
structure protection employed, and thus modify operations. Policy
changes in the US have led to a focus on infrastructure resilience by
requiring infrastructure operators and owners to include resilience and
protection indices in their risk assessments [69].

Discussion: Governance uncertainty results from a lack of knowledge
about how governing bodies, organizations, and stakeholders may
constrain, dictate, or guide the development, operations, and mainte-
nance of infrastructure systems and the ways in which this will impact
system performance. Anticipation of policies and inter-agency agree-
ments and their effect on the system can help characterize and reduce
uncertainty through modeling [68]. Generally, governance uncertainty
is epistemic because governance phenomena are hard to predict. Many
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regulatory reforms result from system disruption. For instance, the 2003
Northeast Blackout led to the formation of EPACT 2005, a regulatory
organization tasked with ensuring US grid reliability and developing
reliability standards [41]. This added operational and investment costs
to electric utilities, but also, in theory, could have disincentivized
dependent sectors in investing in backup power. However, in certain
cases governance uncertainty is aleatory as it results from dynamics
across governing bodies and potential unintended consequences of
policies (e.g., moral hazard resulting from insurance policies).

Prior studies have focused on the implication of governance in
infrastructure management and the role of infrastructure networks in
policy development. Examples include policy frameworks for infra-
structure development [15], policy implications on reconstruction after
disasters [80], the role of governance in infrastructure risk management
[109], and the need for policymakers to understand and learn from
infrastructure networks before making decisions of infrastructure in-
vestment and regulation ([110]). However, minimal work has been done
to quantify and characterize the uncertainty that stems from how reg-
ulatory or policy uncertainty affects the operations or system perfor-
mance of interdependent infrastructure. Taneja et al. [103] explored
how to design adaptive and flexible port infrastructure systems to
manage international trade unpredictability and globalization. Hiteva
and Watson [40] explore the future of how interdependent infrastruc-
ture may be governed. They make compelling arguments including in-
vestment in joint infrastructure projects in targeted areas and rethinking
how government agencies oversee systems.

3.1.5. Socio-economic uncertainty

Definition: Uncertainty about decisions made by consumers and
other end-users in response to a disruption or other external stimuli.
These, in aggregate, alter demand for infrastructure and affect other
market-forces (e.g., interest rates). This can also be viewed as uncer-
tainty stemming from bottom-up decisions.

Example: Response by humans and markets to disruption can result
in demand shifts for infrastructure systems. In a city with multi-modal
transit systems, extreme precipitation can drive demand from the
roads (e.g., bus, biking, scooter) to underground transit systems (e.g.,
subways, metro, train) which can lead to system disruption (e.g., delays)
and amplify the impact of a disaster (e.g., more rescues due to delayed
track/station flooding).

Discussion: Uncertainties from socio-economic interdependencies
are a result of how people - individually and collectively - respond to
disrupted infrastructure, and how this in turn, impacts infrastructure
performance, community functioning, and multiple sectors of the
economy. For simplicity, we divide this classification into economic
uncertainty and socio-uncertainty.

The uncertainties in economic interdependencies results from (i) the
lack of information about the different economic sectors and their
interdependent relations (epistemic uncertainty), (ii) the inherent
randomness in economic loss estimation (aleatory uncertainty). To
address epistemic uncertainty, input-output tables have been used to
inform production and demand levels for each economic sector and
derive interdependent relations [35]. Aleatory uncertainty is described
using probabilistic models and Bayesian variations to existing methods
of loss estimation which is less studied [115].

One way in which economic uncertainty manifests is in supply
chains. While the speed of infrastructure recovery directly influences
economic losses, so do the dynamics of supply chains and how supply
chains react to the failures. This leads to a third layer of uncertainty for
economic interdependencies, which is the dynamic behavior of supply
chains and combines both types of uncertainty. Links within the supply
chain network are not only uncertain but also dynamic over time.
Depending on the spatial and temporal distribution of demand and
supply across economic sectors, dependencies between supply chain
nodes and edges can appear, disappear, or change in magnitude of
importance. Changes in the demand can be the result of uncertainty in
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social interdependencies which may or may not be predictable. For
example, a shortage of desk furniture during a pandemic could have
been predicted whereas an increase in demand for toilet paper was not
anticipated.

In addition to economic impact and loss estimation, uncertainty in
social interdependencies is the result of human and organizational
behavior in human-infrastructure interactions. Conceptual and
simulation-based frameworks have been developed to model the human
layer within infrastructure interdependencies [49,61] such as
agent-based models that capture interdependencies between infra-
structure and human agents [16,100]. Consideration of socio-economic
perspectives in infrastructure modeling has recently gained attention
Karakoc et al. [46] where planning and restoration is informed by
socio-economic indicators. Uncertainty from short-term disruptions (e.
g., natural hazards) and long-term changes (e.g., development) propa-
gates differently through socio-economic and infrastructure systems,
leading to a dynamic reconfiguration of interdependencies and an
intersection with temporal uncertainty.

3.1.6. Operational uncertainty

Definition: Uncertainty about the phenomena that dictate opera-
tional decisions or procedures.

Example: The US Army Corps of Engineers operates 29 locks on the
Mississippi River that allow for the transport of bulk commodities.
Changes to operations, including lock closures, have ripple effects on
bulk commodity transport and commodity markets.

Discussion: While infrastructure operations are increasingly digitally
monitored, owners and operators still make the bulk of the operational
and repair decisions. These decisions heuristics may be (and usually are)
informed by data derived from system monitoring and operational
protocols. Protocols are put into place to maintain reliability and to
prevent catastrophic failures (e.g., nuclear power plants). Despite pro-
tocols, operators use judgement and experience to make decisions,
especially during unforeseen situations [64]. Biases, lack of training,
inexperience, and risk tolerances all affect which decision operators
make [99], and thus, these decisions lack certainty. When these opera-
bility decisions affect child systems — such as could be the case when an
electric-power utility decides a repair sequence following a major wind
storm — it creates uncertainty as to when services will function again or
as to how reliable some components are, and presumably, could cause
the child system to make more conservative decisions.

Whether this is a form of aleatory or epistemic uncertainty is
debatable. To be a form of aleatory uncertainty, we would need to as-
sume that decisions are probabilistic acts made in proportion to how
decision-makers value one alternative relative to other alternatives (e.g.,
as described in [57]), and that these preference weights are quantifiable.
Known decision biases makes this proposition somewhat dubious.
Regardless of the types of uncertainty that is present, minimal research
has explored how operational decisions propagate in highly networked
coupled systems. Ouyang and Wang [79] and Gonzdlez et al. [33]
explore the impacts of decisions related to repair sequences of coupled
systems, but their objectives are to be prescriptive and what repair se-
quences should resemble. Reilly et al. [87] make hypotheses regarding
decisions that strategic operators from interdependent networks would
make, though the framework is conceptual and abstract. We are unable
to find literature related to operational and decision uncertainty in
interdependent infrastructure and how these decisions propagate into
operability.

3.1.7. Informational uncertainty
Definition: Uncertainty by the child network about the state of or the
phenomena affecting a parent network due to a lack of knowledge.
Example: Water management utilities often need to repair pumps
after major hurricanes. Assuming that many of the pump stations are
without power, repair sequencing could be done more effectively if the
water utility knew when power would be restored to each station.
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Discussion: Infrastructure operators and owners make frequent
tactical and strategic decisions, including when and how to invest re-
sources, how to conduct system repairs, and often how much supply they
should generate. While through sensors and other technology, they have
increasing situational awareness about the state and the phenomena
affecting their own system, it is uncommon for them to have complete
operational information about the systems on which they depend. We
can envision this being relevant in numerous circumstances, and some
jurisdictions are trying to reduce this lack of knowledge. For example, in
one city with which an author spoke, when a utility applies for a permit
to conduct underground maintenance or repair, other utilities with
equipment in the area are notified. This is to encourage collocated
utilities to simultaneously conduct maintenance and to notify them
about possible outages. That being said, an author has spoken with many
utilities in the aftermath of outages caused by minor weather events or
component failures to major weather events, and a frequent grievance is
that they tend to know little about when systems on which they depend
will be operational again. This, they say, slows recovery in that they are
unable to sequence their repair strategy to align with when that of other
utilities.

Contrary to reality, the bulk of the interdependent infrastructure
literature on network decision-making makes assumptions that all
parties have complete and perfect knowledge about other systems. For
example, Cavdaroglu et al. [13] and Gonzalez et al. [33] formulate
prescriptive interventions for sequencing repairs following disasters and
Reilly et al. [87] discuss how interdependent infrastructure may gain a
competitive advantage by exploiting their (assumed to be
universally-known) interdependencies. While mathematically conve-
nient, this assumption is dubious at best. Sharkey et al. [95] is an
exception to this assessment. While it did not examine informational
uncertainty per se, it did explore how better coordination via informa-
tion sharing among sectors could speed restoration processes using an
optimization framework. More recently, Talebiyan and Duenas-Osorio
[101] modeled operational decisions under uncertainty in an interde-
pendent context using a Bayesian Hierarchical Model and demonstrated
model improvements when less uncertainty is present (e.g., through
communication).

We argue that informational uncertainty is likely the only form of
system uncertainty to be solely composed of epistemic uncertainty. This
uncertainty results from a lack of knowledge about another system by
decision-makers. Withholding information, could, in theory, be strate-
gically advantageous [87], though it also could slow repair and resto-
ration of services, and contribute to redundant investments. The NIPP
(2013) has called for additional information sharing among sectors to
help reduce informational uncertainties [20]. No guidance has been
offered, however, on what types of information are useful, and when or
how that information should be shared.

3.1.8. Cyber uncertainty

Definition: Uncertainty about the state of the cyber infrastructure
enables the flow of information between systems and uncertainty about
the quantities that reflect the flow of information using cyber
infrastructure.

Example: Electric generation units are highly integrated with com-
plex SCADA systems for system monitoring and control. Some of this
information is transmitted to grid operators via cyber infrastructure. A
lapse in security protocols exposes the unit to intrusion and which, in
theory, could cause massive outages.

Discussion: In many ways, this class of uncertainty is similar to
physical uncertainty. Many sectors rely on a consistent flow of infor-
mation, usually over the Internet or other telecommunication networks,
about the status of other sectors in a manner similar to how water pumps
rely on a steady flow of electric-power. Increasingly, this communica-
tion facilitates both automated controls (e.g., part of the concept behind
“Smart Cities,” see: [117]) and data and knowledge transfer (e.g., using
email or a Cloud service provider). What makes this concept slightly
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unique from physical uncertainty is that (a) it strictly relates to an in-
formation flow and (b) the physical pathway that facilitates the infor-
mation flow is often neither owned nor operated by the system
generating the information nor the system consuming the information.

Numerous infrastructure sectors, including water and railroads, now
rely on highly integrated SCADA systems, and other types of Industrial
Control Systems (ICS) for operations. These systems tend to be internal,
and the properties of uncertainty surrounding them are considered
outside the scope of this paper. However, sectors are increasingly
dependent on another for digital communication. Telecommunications
and electric-power are obvious examples.

Similar to physical uncertainty, cyber uncertainty, we contend,
consists mainly of aleatory uncertainty. Cyber connections are physical
connections (e.g., wires, wireless signals) forged by individuals and their
existence lacks uncertainty, which is not to say all operators are aware of
their existence (informational uncertainty). However, the level of ser-
vice that a cyber connection can provide depends on the reliability
system components (aleatory uncertainty), e.g., routers and Ethernet
cables, and how the system is operated (operational uncertainty).

This is not to say that epistemic uncertainty does not exist within
cyber systems. Scala et al. [93] identifies five sources of epistemic un-
certainty within cyber systems (e.g., system scalability and human
behavior). Cherdantseva et al. [14] reviewed methods for evaluating the
risk of cyber systems, though these methods generally assumed that
uncertainty is characterized. While research increasingly considers
cyber dependencies [6], little research explicitly considers cyber un-
certainties in interdependent infrastructure. Tian and Sansavini [105]
begin this work by conducting a simulation to see how grid spitting — the
separating of electric networks into islands due to imminent instability —
is governed by reliable communication and cyber infrastructure.

3.2. Modeling uncertainty

We define modeling uncertainty for interdependent infrastructure
systems as uncertainty that stems from downscaling complex interde-
pendent systems into a conceptual or mathematical model, or some
other symbolic representation. Modeling uncertainty arises within all
models [73]. In this section, we describe four generic types of modeling
uncertainty and then give examples of sources of each. Unlike system
uncertainty, modeling uncertainty is largely composed of epistemic
uncertainty.

The generic types of modeling uncertainty that we describe follow
from Aven and Zio [2]. We additionally include completeness uncer-
tainty, which is also known as ontological uncertainty [62]. This is
consistent with recent arguments made by Bjerga et al. [10] that
completeness uncertainty - defined by the degree to which sources of
uncertainty are included in the model - is not implicitly contained within
other types of uncertainty but rather is a form of modeling uncertainty
itself. Table 2 lists the generic types of modeling uncertainty and

Table 2
Types and sources of modeling uncertainty

Reliability Engineering and System Safety 213 (2021) 107756

provides examples of some of their sources.

Interdependent infrastructure models, f, link two or more systems
using parameters, Z, to represent performance characteristics, Y. These
performance characteristics are uncertain and can be system-wide
quantities of interest (e.g., the number of people losing water supply)
or more focused quantities (e.g., the flow of electricity in a line). The
values of Y and Z may be influenced by external phenomena or events, A
(e.g., wind gusts, operational changes).

3.2.1. Parameter uncertainty

Definition: Uncertainty about the values of parameters, Z, used in
model f.

Example: Consider a codependent and collocated electric-power
utility and water utility which reside in a hurricane-prone region. A
model, f(Z1, Zy, Za), is created to forecast the number of customers, Y,
that lose water supply as a result of a hurricane. Parameters Z;, Z; and Zp
may include features related to the water system (e.g., the pressure at
different nodes in the systems), features related to the power system (e.
g., the reliability utility poles), as well as features related to hurricane, A
(e.g., wind speed), respectively. Parameters Z; and Z5 along with the
parameters that represent the event A usually possess uncertainty.

Discussion: This type of uncertainty addresses uncertainty about
parameters used within models. This type of uncertainty is usually in the
class of epistemic uncertainty and often results from inaccurate and
incomplete data. For example, it is impossible to collect all system state
data for massive infrastructure systems due to their complexity and the
cost. Further, instrumentation error can lead to additional knowledge
gaps. Parameter uncertainty is typically managed by assigning proba-
bility distribution to the parameters, such as the rate parameter in a
Poisson probability model used to model the occurrences of hurricanes
(e.g., [98]). This type of uncertainty can be in the class of aleatory un-
certainty when the parameter is an observable but random quantity,
such as a hurricane wind speed when used to forecast electric-power
outages (e.g., [34]).

Of the types of modeling uncertainty discussed in this paper,
parameter uncertainty appears to be the type most commonly addressed
in the interdependent infrastructure literature, albeit it is still uncom-
mon. For example, Barker and Haimes [4] describe a multi-objective
approach to evaluate the uncertainty in the “parameters of interde-
pendency” using an inoperability input-output model (IIM). Moreover,
[5] quantifies implications of uncertainty from expert-elicited proba-
bility distributions using IIM for an interdependent set of economic and
infrastructure sectors.

3.2.2. Model output uncertainty and model structural uncertainty
Definition (model output uncertainty): Uncertainty about the dif-

ference between the model output, f(Z), and the actual outcome, Y, for

parameters, Z. This difference is also called the model error, f(Z) - Y.
Definition (model structural uncertainty): The difference between

Type of Modeling Definition Example Uncertainty Possible Sources of Uncertainty Type of Uncertainty
Uncertainty Metrics
Parameter Uncertainty about the values of the P(Z<2) Inaccurate and incomplete data Epistemic (aleatory if the
uncertainty parameters, Z, of a model f parameter is subject to
random variation)
Model output Uncertainty about the difference between  P(f(Z) - Y < d) Incomplete knowledge about the values of the model Epistemic
uncertainty the model output, f(Z) and the actual parameters that permeate through the model;
outcome, Y assumptions, simplifications, approximations
introduced in the model
Model structural Uncertainty about the difference between Assumptions, simplifications, approximations Epistemic
uncertainty the model output f(Ze) given the true JP((Z)-Y<d|Z=2) introduced in the model
parameter Z. and the actual outcome, Y  dH(2), where H(z) = P
Z<2
Completeness Uncertainty about the completeness of the ~ Not commonly Incomplete knowledge of the system, phenomena and/  Epistemic
uncertainty parameter vector Z quantified or processes involved
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the model output f(Z;.) given the true parameters, Z;,, and the actual
outcome Y. This difference is also called the conditional model error f
Zirue) - Y.

Example: Consider again the interconnected water and power system
subject to hurricanes described above. The model, f(Z;, Z; | Z4), could
predict the number of customers who will lose water supply given a
wind speed, Zy4. If this is done in advance of a storm, wind speed, Zy, is an
estimate. However, Y can later be observed. It is likely that |f(Z3, Z3 | Z4)
- Y| > 0 due to the uncertainty in the parameter vector Z = (Z3, Zy, Za),
but the magnitude of this difference is uncertain before event A occurs.

Model structural uncertainty is slightly different. Even if the
parameter values, including the true wind speed, Zar,., were known a
priori, it is likely that |f(Z1gue Zatrue | Zatrue) - Y| > 0 due to structural
inaccuracies in the model. That is the model, which is a simplified
representation of the system, possesses errors. This could be due to
erroneous or limiting assumptions made by the modeler or computa-
tional limits. This is akin “metadoxastic uncertainty” in Murphy et al.
[70] and, in principle, should influence the level of confidence we have
in our models.

Discussion: The adage by George Box “All models are wrong, but
some are useful,” describe these uncertainties well. Both model output
uncertainty and model structural uncertainty are influenced by as-
sumptions and judgments made by the researcher that may not be true,
and by simplifications and approximations introduced in the model.
That is, the structure of the model and the complex process it represents
is not perfectly accurate. This could be due to human error and the
modeler being unaware of how to appropriately compose the model, or
potentially due to volitional uncertainty and the modeler bringing their
own judgements and assumption about alternatives into the process
[70]. Additionally, parameter uncertainty due to incomplete knowledge
contributes to model output uncertainty when these parameter un-
certainties permeate through the model. Because all models have
structural deficiencies, both model output uncertainty and model
structural uncertainty are types of epistemic uncertainty. These types of
uncertainty are handled in different ways. The researcher could leverage
different modeling techniques to answer the same question, or the
researcher could relax some assumptions and identify their influence of
the assumption on outcomes. Similarly, the researcher could potentially
gain access to more computational resources, which would allow them
to run more granular models.

Note that model output uncertainty and model structural uncertainty
are evaluated before observing the outcome Y. Thus, when the risk
assessment is carried out and f(Z) is used to predict Y, the outcome of Yis
uncertain.

Still, there are no articles in the interdependence infrastructure
modeling literature that directly address model output or model struc-
tural uncertainty. However, there are a myriad of articles that accom-
plish this indirectly. Take the entire body of work that uses Shelby
County, TN - a county in the United States that is especially prone to
floods and earthquake - as a case study (e.g., [24,33,43,46,116]). All of
these models examine network robustness and recovery strategies for
different modeling assumptions and approaches. They thus acknowl-
edge that no one model accurately predicts all outcomes.

3.2.3. Completeness uncertainty

Definition: Uncertainty about the completeness of the parameter
vector Z.

Example: Consider again the interconnected water and power system
in a hurricane-prone region. An operator or researcher may be interested
in developing a model, f(Z), to predict the performance of the water
system, Y, given a hurricane. The parameter vector Z reflects relevant
sources of risk, such as the age of the water system, the exposure of the
power system, and the intensity of the hurricane. However, the vector Z
is incomplete. There will always be aspects that are excluded (e.g.,
squirrels chewing through an electrical line [66]). This is in part due to
modeling limitations, and in part because of knowledge gaps or
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ignorance regarding key phenomena [11]. Completeness uncertainty
reflects the uncertainty about both the number of factors that are
missing in the model and the contribution those missing factors have on
the outcome.

Discussion: Completeness uncertainty is a type of epistemic uncer-
tainty. It results from incomplete knowledge about the system, phe-
nomena, and/or random processes and their contribution to the
outcomes. It is common to distinguish between known and unknown
completeness uncertainty. There are often reasons to exclude some
known events, interactions, or other factors in a model. These reasons
could include limited resources, a lack of tradition for including, etc.
[10]. This is an instance of known completeness uncertainty. On the
other hand, there may be unaccounted factors because they are un-
known to the risk analyst. For obvious reasons, these elements are
excluded from modeling efforts and results in unknown completeness
uncertainty. The interdependent literature largely avoids this topic. Liu
and Song [56], a literature review on urban critical infrastructure net-
works, discuss how both coupled networks and instances of “unknown
unknowns” are pressing challenges in the field. They argue that
resilience-based design approaches - ones that emphasize adaptation
over redundancy - may help to ameliorate some of these problems.

3.3. The relationship between system uncertainty and modeling
uncertainty

System uncertainty and modeling uncertainty are separate concepts,
though the fact that they both exist likely influences how we understand
and report on the other. The former is inherent with all complex systems
while the latter reflects how the researcher understands, interprets, and
then mathematically downscales the complex system. They are, how-
ever, interdependent themselves (see Figure 1). System uncertainty
(should) influence model design and thus model uncertainty. Der Kiur-
eghian and Ditlevsen (2009) offers rich reflection and insight on how
aleatory uncertainty in complex systems (e.g., material properties in
their case) quickly becomes a form of epistemic uncertainty once
measured and modeled [21]. They argue that the lines between aleatory
and epistemic uncertainty can become muddled during the modeling
process (see Section 3.1 in Der Kiureghian and Ditlevsen (2009) for a
longer exposition of this idea). Linking model uncertainty to system
uncertainty, if the purpose of models is to learn from them and to ulti-
mately make enhancements to the system, then the decisions that are
made using models will influence system uncertainty. Exactly how
system and modeling uncertainty are related in practice is an open
question, and is to some extent related to broader philosophical ques-
tions about the role models play in science [28].

System
Uncertainty

Modeling
Uncertainty

Figure 1. Conceptual relationship between system uncertainty and modeling
uncertainty
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4. Treatment of uncertainty in the literature

Various methods have been developed to model interdependencies
of infrastructure networks facing disruptions, including empirical ap-
proaches (e.g., [92]), network-based approaches (e.g., [1,27,31,36]),
simulation and agent-based approaches (e.g., [8,26,104]) and Leontief
input-output approaches (e.g., [4,35,115]), among many others [77]. In
this section, we briefly review the body work in each of these categories
and discuss if and how they incorporate uncertainty.

4.1. Empirical approaches

Empirical approaches use observed data sto make inferences about
underlying phenomena. Thus, in a way, empirical approaches either
implicitly or explicitly acknowledge the presence of uncertainty because
they use data to make a best guess at the “true” values of the underlying
process. These methods regularly rely on observations following
extreme disruptions (e.g., an earthquake) because doing so otherwise
requires an often-infeasible detangling of functioning components and
interactions [50]. However, as discussed in Duenas-Osorio and Kwa-
sinski [25], a major drawback to date of these approaches is the “lack of
measured coupling strengths under diverse operating conditions.”
Essentially, by only taking one snapshot of the system, it is impossible to
understand the magnitude of uncertainty within the system and the
diversity of system responses.

The body of literature that leverages operational data remains rela-
tively small compared with the larger body of research devoted to
network modeling [48,92]. While the datasets are often challenging to
obtain, when combined with emerging data science techniques (e.g.,
[116]), they hold tremendous potential for exposing previously un-
known complex interactions [96]. McDaniels et al. [63] develops an
archetypical framework for empirical observations; continuing and
expanding work in this vain may facilitate modern data exploratory
approaches and reveal more about the range of outcome possibilities.
However, additional consideration should be given to expanding the set
of dependency archetypes to include the roles that individuals, in-
stitutions, and governance systems have in shaping dependencies and
how the dependencies evolve over time.

4.2. Network models

In network-based approaches, components of the infrastructure are
mathematically represented by nodes that are connected by directed
edges (i.e., links with a specific direction). Edges can be within one
network or between different networks to represent interdependencies.
Within these approaches, topology-based methods provide tangible in-
sights on the performance of an infrastructure, they are computationally
efficient and they require less data on system characteristics in com-
parison to flow-based methods which require more information and
provide more realistic descriptions of network operations [51,83]. Both
methods, however, present limitations in assessing the uncertainty of
interdependencies due to computational and modeling constraints [39,
76]. A few studies consider probabilistic methods to overcome these
limitations. Probabilistic extensions include conditional probabilities
used to measure the strength of an interdependency and model
cascading failures [38] and Bayesian network approaches combined
with minimum link set to model interdependencies based on the access
to repair resources [43,89]. While these extensions model uncertainty at
the system level, the topology of the network in these studies is pre-
defined and assumed to be the same, thus adding additional modeling
uncertainty. Recent work considers dynamic network models to capture
uncertain and dynamic interdependencies [116].

4.3. Simulation and agent-based models

A logical extension to network models is to imbed them within a
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simulation model to explore how the model performs over a range of
parameters. This class of models are among the more relevant models for
quantifying the implications of uncertainty. The approach can focus on
uncertainty stemming from the hazard or operational environment
exclusively (e.g., [26,90]), and can additionally include the actions of
individuals or organizations, for example in repair sequences (e.g., [8,
42]). The latter approach is often composed of agent-based models
(ABMs). Interdependent Markov-chains have also been used more
recently with success to probabilistically relate two or networks (e.g.,
[85]).

Simulation models have especially explored the effects of physical,
spatial, and temporal uncertainty (e.g., [12,106]). To some extent, via
ABMs, they have been extended to consider the actions of individuals (e.
g., [88]). This somewhat limited body of work focuses mostly on oper-
ational and governance uncertainties (e.g., [78,104]), and informational
and socio-economic uncertainty have had minimal exploration in these
platforms (e.g., [44]). Similarly, these models generally view the source
of uncertainty to stem from parameters - either the true value of a
deterministic parameter is unknown or the parameter itself is uncertain
(e.g., [42]). While useful, the modeling approaches should be expanded
more often to consider whether the structure of the model possesses
inaccuracies and the impact this could have (e.g., [59]).

4.4. Inoperability Input-Output Models

The original input-output (I-O) model [52,65] has been transformed
to assess how decreased functionality, or inoperability, in an infra-
structure can propagate to a number of other interconnected industry
sectors [91]. Further extensions of the inoperability input-output model
(IIM) include a discrete-time dynamic version, dynamic inoperability
input-output model (DIIM), to quantify the temporal propagation of the
disruption and the recovery process [54] and the multiregional IIM
(MRIIM) to capture spatial characteristics of a cascading disruption
[17]. The approach has been extensively used to model the cascading
effect of disruptions in multiple sectors. Applications include trans-
portation systems (e.g., [81]), inventory management (e.g., [29]),
power grid (e.g., [58]), and others (e.g., [102]). The method has also
been adapted to model cascading failure across civil infrastructure sys-
tems [36].

Considerations of uncertainty have been addressed by using a
probabilistic formulation of DIIM Leontief input-output [75], combining
IIM with an extreme event uncertainty model [5], and applying an un-
certain demand-driven approach [115]. These extensions make the
implicit assumption that inoperability propagation is governed by the
uncertainty of the parameter characterizing the function linking both
systems. Another approach is adapting IIM to model cascading failures
across civil infrastructure systems [36] or modeling the uncertainty of
the interdependency matrix as a function of infrastructure stochastic
recovery process [7], accounting for multiple sources of uncertainty.

5. Discussion, steps forward, and conclusions

Significant evidence points to uncertainty being vastly understudied
in interdependent infrastructure. This is potentially concerning for
decision-makers who are likely to be uninformed to the degree of vari-
ability inherent within models. It also makes it impossible for them to
decide whether more resources should be spent on improving system
reliability or improving our knowledge about the system. In this section,
we finalize the discussion though next steps and other considerations for
the field, including how the field can learn from other disciplines to
incorporate uncertainty.

5.1. Reconceptualization of infrastructure

The significant majority of the interdependent infrastructure litera-
ture focuses on hard infrastructure (e.g., electric-power systems,
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transportation systems) and less on soft infrastructure (e.g., hospitals,
governance systems) and the people these systems serve. Among the
next frontiers for interdependent infrastructure models will be how
physical infrastructure interacts with less tangible, but no less impor-
tant, soft systems to support societal functioning. This will require a
highly interdisciplinary approach with scientists from many fields (e.g.,
[60]). The field of disaster science has laid the foundation to enable
convergence research, and put forth recommendations including (1)
setting a research agenda that is problem-focused and solutions-based,
(2) embracing multidisciplinary perspectives and interdisciplinary
problems, (3) identifying useful boundary objects [84,86].

5.2. The human dimension

A major source of uncertainty in infrastructure stems from humans.
Everything from individual demand to how groups govern adds uncer-
tainty. Until recently, individuals have been treated as a monolithic
body seeking a collectively “optimal” solution, with the perspective
usually being that of utility owner or a regulator (e.g., [51]). Recent
studies have shown that a more nuanced approach with a broader set of
objectives is warranted, both within the field of interdependent infra-
structure systems, and more broadly [18,60]. After extreme events, for
example, user demand can drastically change especially as individuals
briefly adapt to disruptions [22]. Restoration strategies could account
for the ability of sub-populations to adapt, and prioritize repairs ac-
cording to local need. Policy and regulations similarly should account
for the impact that humans have on (and the vulnerability that some
subpopulations possess) when creating system guidelines and other
regulatory procedures.

5.3. Intersection of types of uncertainty

While this paper makes mention of it, an underexplored concept is
that in any given situation, there are multiple types of uncertainty that
interact. The mechanisms through which this occurs and the implica-
tions of this (e.g., the degree to which this amplifies uncertainty) is
worthy of its own investigation. This may be especially important when
there are interaction effects that could result in unexpected emergent
behavior. Take, for instance, the intersectionality of socio-economic
uncertainty and governance uncertainty. The uncertainty of economic
interdependencies lies, in part, in the dynamic behavior of supply
chains. Each actor in the systems may respond differently to external
shocks and stimuli, and could result in emergent behavior. Ultimately,
supply chains are governed in part by trade agreements - a top-down
global force that potentially constrains the actions of each actor.
Knowledge of such agreements and economic sectors can reduce un-
certainty; however, there is also inherent uncertainty in factors that
influence trade agreements and their cascading effect on supply chains
and economic sectors.

This concept is additionally important because the interaction effects
may mask the root source of the uncertainty. For example, a researcher
may attribute uncertainty to the passage of time, but the true cause of
the uncertainty is changes to how the system is being governed and how
this forces operations to evolve over time.

5.4. Learning from other fields

The field of interdependent infrastructure is not the only field to
explore interacting elements and to consider the role of uncertainty. In
the climate and global change literatures, models used to gain insight
into the interdependence of natural and social systems have greatly
increased in complexity. This is because many relevant questions require
investigating dynamics across multiple spatial levels over long-time
scales. As a result, modeling uncertainty has been a topic of interest,
in particular model output and structural model uncertainty [82,108].
One methodology that has been developed that might have applicability
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to interdependent infrastructure modeling is model intercomparison
[111]. In an intercomparison exercise, multiple modeling groups use
their models to answer the same question with parameters Z set to be as
similar as possible. As a result, variation in model output can be isolated
to structural differences among models, some of which are artifacts of
practical modeling assumptions and some of which are due to differ-
ences in expert knowledge and judgment as embedded in modeling
choices. Once model outputs are produced, guided desliberative pro-
cesses are undertaken to identify output differences, discuss possible
sources of uncertainty, and design further experiments to refine esti-
mates of and sources of uncertainty. In the arena of interdependent
infrastructure, number case studies have focused on Shelby County,
Tennessee to evaluate variants of similar problems (e.g., [24,43,46,
116]). In principle, the field could leverage this array of models to
address a particular risk question to isolate the role and sources of model
output and structure model uncertainty, and possibly other forms of
uncertainty.

5.5. Unraveling and communicating uncertainty

Zio and Aven [120] highlight the challenges related to the repre-
sentation and communication of uncertainty through a discussion on
smart grids. To help demystify uncertainty, they strongly encourage
researchers to make a simplistic representation or an “architecture”
through which to describe the relationship among elements that each
possess uncertainty, even if quantification of the uncertainty is impre-
cise. This architecture, they argue, is both useful for decision-makers to
understand how uncertainty propagates, but also for researchers to
understand relationships and to decide how to structure the models. This
should be conceptually straightforward for interdependent infrastruc-
ture when the components of the architecture are known, along with the
relationship among the components. However, complications could
emerge when some forms of uncertainty, such as informational uncer-
tainty or operational uncertainty or other forms of epistemic uncer-
tainty, are present. It is possible that the researcher does not have a clear
sense of how uncertainty in ones system propagates to other systems,
though possible and mostly likely linkages should be conveyed.

6. Conclusion

As evidenced by the ever-increasing body of literature, significant
advances have been made in the modeling space for interdependent
infrastructure. Further, governments have made investments in under-
standing how systems interact and are taking steps to fortify these
linkages - oftentimes for national security reasons (e.g., NIPP 2013 [20];
the proposal of The European Programme for Critical Infrastructure
Protection [55]). Interestingly, while this body of knowledge goes into
significant depth in some areas (e.g., optimization), the treatment of
uncertainty lacks a thoughtful and cohesive approach. To address this,
we identify and provide the language to discuss the types of uncertainty
that are present in the field of interdependent infrastructure and reflect
on how the research has addressed this uncertainty to date. Our study
suggests that the analysis has mostly been conducted in an ad hoc
manner. By discussing uncertainty through a structured framework, it
both enables researchers to simply identify the types of uncertainty
present in their system and provides them with the motivation to
address it. When researchers present findings that include sources of
uncertainty, it informs decision-makers with the limits of system un-
derstanding, and potentially guides them to whether more resources are
needed to better understand the system (i.e., reduce epistemic uncer-
tainty) or to improve system reliability (i.e., reduce aleatory
uncertainty).
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