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Multi-layer hierarchical structures

Jianlin Xia∗

Abstract. In structured matrix computations, existing rank structures such as hierar-
chically semiseparable (HSS) forms admit fast and stable factorizations. However, for
discretized problems, such forms are restricted to 1D cases. In this work, we propose
a framework to break such a 1D barrier. We study the feasibility of designing multi-
layer hierarchically semiseparable (MHS) structures for the approximation of dense
matrices arising from multi-dimensional discretized problems such as certain integral
operators. The MHS framework extends HSS forms to higher dimensions via the inte-
gration of multiple layers of structures, i.e., structures within the dense generator rep-
resentations of HSS forms. Specifically, in the 2D case, we lay theoretical foundations
and justify the existence of MHS structures based on the fast multipole method (FMM)
and algebraic techniques such as representative subset selection. Rigorous numerical
rank bounds and conditions for the structures are given. Representative subsets of
points and a multi-layer tree are used to intuitively illustrate the structures. The MHS
framework makes it convenient to explore multidimensional FMM structures. MHS
representations are suitable for stable direct factorizations and can take advantage of
existing methods and analysis well developed for simple HSS methods. Numerical
tests for some discretized operators show that the appropriate inner-layer numerical
ranks are significantly smaller than the off-diagonal numerical ranks used in standard
HSS approximations.

1 Introduction

Rank structured matrices have been widely used for the fast direct solution of some in-
tegral and differential equations, especially elliptic problems. See [1, 5, 8, 9, 12, 15, 29, 32,
37, 38, 41] for a partial list of references. A basic idea of these methods is to approximate
certain dense (intermediate) matrices or fill-in by rank structured forms. Such dense
matrices include discretized integral operators, inverses of discretized PDEs, and Schur
complements in the direct factorizations of some sparse matrices. PDE/integral equation
theories together with linear algebra techniques have been used to show the existence of
the rank structures. That is, appropriate off-diagonal blocks of these dense matrices have
small numerical ranks.
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Several rank structured representations have been designed for the approximation of
these dense matrices. Among the most widely used ones are hierarchical structured rep-
resentations such asH [4],H2 [5], and hierarchically semiseparable (HSS) matrices [8,42].
H/H2 matrices and matrices based on the fast multipole method (FMM) are applicable
to 2D and 3D cases. However, factorizations of such matrices usually involve recur-
sion or inversion [6, 15] and their numerical behaviors such as stability are unclear. The
HSS form mainly aims at 1D cases, and is essentially a special H2 form that explores
the weak admissibility [19]. It is based on simple domain bisections and is thus easier
to implement and analyze. It is also widely accessible to the general scientific comput-
ing community. In particular, efficient, stable, and scalable HSS operations (especially
ULV-type factorizations [8, 42]) are available. Moreover, the hierarchical approximation
accuracy and backward stability of HSS methods are well studied [33, 34]. For more
general sparse problems, the applicability of HSS matrices can be extended via the inte-
gration into sparse matrix techniques such as nested dissection [11] and the multifrontal
method [10].

Existing HSS-based structured direct solvers work well for 1D discretized integral
equations and 2D discretized elliptic PDEs. However, the efficiency is usually less sat-
isfactory for higher dimensions. It is possible to still approximate the dense matrices
corresponding to two dimensions by HSS forms. Although this simplifies the implemen-
tation, the performance of the relevant matrix operations is far from optimal for large
sizes due to the large off-diagonal numerical ranks.

In some recent studies, additional structures within some HSS approximations have
been explored. In fact, it has been noticed that, in some applications, the dense blocks
(called generators) that define the HSS forms are also structured [9, 18, 39, 43, 45]. By tak-
ing advantage of such structures, it is possible to design multi-dimensional structured
algorithms for dense discretized matrices just based on simple HSS methods. For exam-
ple, in a fast selected inversion algorithm [44], some diagonal and off-diagonal blocks of
the inverse of a sparse matrix are approximated by HSS and low-rank forms, respectively.
For some 2D discretized integral operators, the method in [9] exploits the inner structures
with the aid of some integral equation techniques.

In this work, we lay theoretical foundations for a multi-layer hierarchically semisep-
arable (MHS) structure for multiple dimensions and design an MHS representation. We
show the feasibility of using MHS forms to approximate some dense discretized matri-
ces. We exploit multiple layers of hierarchial or tree structures under the general FMM
framework. For some discretized matrices on 2D domains, if HSS forms are used for the
approximation, we show that the dense generators have inner HSS or low-rank structures
similarly to the work in [9]. Unlike the method in [9], we consider general FMM inter-
actions between all the subdomains resulting from nested bisection based on algebraic
methods. A structure-preserving rank-revealing factorization [17, 45] is used to produce
subsets of representative points in the mesh during off-diagonal compression. These rep-
resentative points facilitate the study of inner structures. In [9], some boundary mesh
points essentially play the role of representative points. Here, more general represen-
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tative points at multiple hierarchical levels are used and help to justify the existence of
inner structures following the FMM ideas.

Rigorous numerical rank bounds for relevant matrix blocks are given. This is based
on a generalization of the usual concept of well-separated point sets. Unlike most FMM
studies that estimates rank bounds based on the numbers of terms in degenerate se-
ries expansions, here we give concrete numerical rank bounds for numerically low-rank
blocks. This makes it clear to understand the storage and efficiency of the structured
forms.

Following all the rank studies, a systematic definition of the MHS representation is
then given. It has a multi-layer tree structured form. We analyze the storage of the MHS
form. Under some conditions, the storage is nearly linear in the matrix size N and is
lower than a direct HSS approximation. The MHS representation is also more general
than a related structured form in [9].

The MHS framework makes it very convenient to explore multi-dimensional FMM
structures. There are two major benefits. One is that it enables to take advantage of
well-developed HSS methods to design fast and stable MHS operations, especially direct
factorizations that are previously difficult with existing multi-dimensional rank struc-
tures. The multi-layer framework enables us to repeatedly perform simple structured
operations such as HSS or low-rank ones so as to keep MHS algorithms convenient to
design and analyze. This makes it feasible to avoid HSS inversion and recompression
in [9] and avoid potentially unstable recursive operations in [6,15] when designing multi-
dimensional structured factorizations. We mention some hints for designing efficient
MHS algorithms.

Another benefit is that existing complexity, accuracy, and stability studies for HSS
methods can be readily generalized to MHS methods, which avoids tedious technical
analysis and guarantees the efficiency and reliability of MHS methods. For example, it
has been shown in [33, 34] that the HSS structure has a natural stability enhancement
benefit in the sense that numerical errors propagate only by O(logN) times along some
tree paths. With the use of multi-layer tree structures in MHS forms, this is still the
situation so that we can expect nice stability for MHS algorithms.

We verify the feasibility of MHS structures via some numerical tests. For discretized
kernel matrices where the kernel functions have degenerate approximations when eval-
uated at well-separated points in two dimensions, an HSS approximation would have
maximum off-diagonal rank (called HSS rank) growing quickly with the matrix size N,
while in the MHS approximation, a rank bound for the structure measurement (called
MHS rank) stays about the same or only grows very slowly. For reasonable N, the MHS
ranks are significantly smaller than the HSS ranks.

The outline of the paper is as follows. We first generalize the concept of separated sets
and discuss representative subset selection in Section 2. The design of MHS structures
is shown in detail in Section 3, followed by some potential ideas for designing MHS
algorithms in Section 4. Section 5 shows the numerical tests. The following is a list of
some notation.
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• For a set of points Ω, |Ω| denotes its cardinality.

• For a binary tree T , its nodes are labeled with a single index, say, i. The sibling and
parent of i are denoted sib(i) and par(i), respectively. root(T ) denotes the root of
T .

• For a matrix A and index sets I and J, A|I and A|:×J denote submatrices of A consist-
ing of its rows and columns selected by I and J, respectively, and A|I×J corresponds
to the selection of row and column entries based on I and J, respectively.

• Sometimes, the Matlab notation 1 : n is used to mean 1,2,.. .,n.

• σj(C) denotes the jth largest singular value of a matrix C.

• As usual, the notation O(·) is used to avoid extra notation for constants that do not
depend on parameters such as matrix sizes.

2 Generalization of separated sets, representative subset selec-
tion, and numerical rank estimation

In this section, we generalize the concept of well-separated sets and introduce the notion
of representative subset selection in the FMM context. Furthermore, we give relevant
numerical rank estimates for discretized kernel matrices where the kernel functions have
degenerate approximations when evaluated at well-separated points. These serve as pre-
liminaries for our later design of the MHS structure.

2.1 Generalization of well-separated sets

Consider the discretization of a kernel function φ of the form φ(|y−z|), where y and z are
points inside certain domains and |y−z| is the distance between y and z. Some examples
of φ are 1

|y−z| ,
1

|y−z|2 , and log|y−z|. Suppose Ω1 and Ω2 are two sets of points. We look at
the numerical rank of the following discretized matrix:

K=
(
φ(|yi−zj|)

)
yi∈Ω1,zj∈Ω2

. (2.1)

For convenience, we refer to K in (2.1) as an interaction (matrix) between Ω1 and Ω2.
In the FMM, two sets Ω1 and Ω2 are generally considered well separated if their

distance is greater than or equal to their diameters so that φ(|y−z|) for y∈Ω1 and z∈
Ω2 can be approximated by a series with a finite number of terms to reach any given
accuracy [2,16]. Correspondingly, the matrix K in (2.1) has a small numerical rank. More
specifically, we define separated sets in the following way, which slightly relaxes the
usual concept of separated sets.
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Definition 2.1. (Separated sets) Use the notation δ(y0,Ω1) to denote the radius of a set Ω1
with respect to a center y0 in the following sense:

δ(y0,Ω1)= max
yi∈Ω1

|y0−yi|.

A set Ω2 is α-separated from Ω1 for a constant α> 1 if there exists a point y0 ∈Ω1 such
that for all points z∈Ω2,

|z−y0|≥α·δ(y0,Ω1).

Since we assume a fixed constant α> 1 is used for all our studies, we often just say two
sets are separated.

Remark 2.1. (Kernel expansion assumption) For convenience, in all the following discus-
sions, we assume φ(|y−z|) has a finite-term degenerate expansion with respect to a relative
tolerance ε for y and z respectively in two sets that are α-separated. That is,

φ(|y−z|)=
r0

∑
i=1

fi(y)gi(z)+e, (2.2)

where the approximation error satisfies, for an appropriate constant µ,

|e|≤ µ

αr0
|φ(|y−z|)|≤ ε|φ(y−z)|, (2.3)

Remark 2.2. Here, we focus on shift-invariant kernel functions φ(|y−z|) just for conve-
nience. It makes K symmetric so as to eliminate some technical details when we derive
the essential ideas. Moreover, such functions frequently arise from some PDE/integral
equation problems. For some cases, actual forms of the error bound (2.3) have been de-
rived [2, 16, 28, 30]. Note that our ideas do not rely on specific forms of φ(|y−z|) and
can be extended to the case φ(y−z) or smooth functions φ(y,z) that allow degenerate
approximations for well-separated y and z variables.

With the kernel expansion assumption, the matrix K in (2.1) corresponding to sepa-
rated sets Ω1 and Ω2 can be approximated by a matrix of small rank, with the entrywise
relative error ε. On the other hand, r0 in (2.2) is not exactly the so-called numerical rank
of K. To rigorously consider the numerical rank, we state a precise definition of ε-rank as
follows. Some ε-rank estimates will then be given later.

Definition 2.2. The numerical rank or ε-rank of a matrix K is the number of singular values
of K that are greater than ε‖K‖2 for a tolerance ε, as often used in low-rank approximation
methods.

Remark 2.3. Clearly, K has ε-rank at most r if σr+1(K)≤ εσ1(K). Thus, if K can be approx-
imated by a rank-r matrix with 2-norm absolute accuracy no larger than ε‖K‖2, then K
has ε-rank at most r according to the Eckart-Young theorem.
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Then consider more general cases where Ω1 and Ω2 are not well separated. For exam-
ple, suppose Ω1 and Ω2 are 2D sets as in Figure 1(a). (Later, we do not strictly distinguish
a domain and a set. In our figures, we usually only draw a domain to indicate a set.) The
two sets are not separated. In the FMM, the sets are further partitioned. We can get a
subset Ω̃1 of Ω1 as in Figure 1(b) so that we can choose y0∈ Ω̃1 as shown and verify that
Ω̃1 and Ω2 are α-separated for a constant α> 1. For example, if Ω1 and Ω2 are two unit
squares, then δ(y0,Ω1)≤

√
10
4 , and for any z∈Ω2,

|z−y0|≥
3
4

√
2≥α·δ(y0,Ω1), with α≈1.34.

y0

(a) Two sets in 2D that are not well separated (b) Separated sets after partitioning one set

Figure 1: Separation of two sets in two dimensions.

After this, the set Ω1\Ω̃1 can be repeatedly partitioned in a similar way. This is gen-
erally done for O(log|Ω1|) times in the FMM. Thus, the numerical rank of K in (2.1) is
related to O(log|Ω1|). Later for convenience, we say that Ω1 and Ω2 are weakly or loga-
rithmically separated, as consistent with the weak admissibility in [19].

Definition 2.3. (Logarithmically-separated sets) A set of points Ω1 is logarithmically α-
separated from another set Ω2 with respect to a constant α> 1 if Ω1 can be partitioned
into O(log|Ω1|) subsets that are all α-separated from Ω2, except for possibly a constant
number of subsets containing O(1) points.

Thus, in Figure 1(a), Ω1 is logarithmically separated from Ω2. Similarly, it can be
verified that in each example in Figure 2, Ω1 is logarithmically separated from Ω2.

We then give estimates for the actual numerical ranks of some interaction matrices.

Lemma 2.1. Suppose φ has a finite-term degenerate expansion with respect to a fixed relative
tolerance ε and (2.2)–(2.3) hold.

• If two sets Ω1 and Ω2 are α-separated with α>1, then the discretized matrix K in (2.1) has
ε-rank (at most) r0=

⌈
logα

µ
√

n
ε

⌉
or

r0=O(logn)+O(|logε|), (2.4)

where n=min{|Ω1|,|Ω2|}.
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(a) One example (b) Another example

Figure 2: Examples of logarithmically-separated sets in two dimensions, where the points in Ω1 correspond to
a narrow band.

• If Ω1 can be partitioned into l subsets each α-separated from Ω2, then K has ε-rank (at
most) r1= lr0 or

r1=O(l logn)+O(l |logε|). (2.5)

For the two cases, K also has (
√

nε)-ranks O(|logε|) and O(l |logε|), respectively.

Proof. If Ω1 and Ω2 are α-separated, according to (2.2)–(2.3),

K=UVT+E, with

U=( f j(yi))yi∈Ω1,j=1:r0 , V=(gj(zi))zi∈Ω2,j=1:r0 , |Eij|≤
µ

αr0
|Kij|.

This means

‖E‖2≤‖E‖F≤
µ

αr0
‖K‖F≤

µ
√

n
αr0
‖K‖2.

Setting µ
√

n
αr0 = ε yields σr0+1(K)≤‖E‖2≤ ε‖K‖2. This gives r0 in (2.4) since µ is a constant.

If we relax the tolerance to be
√

nε, then the numerical rank becomes O(|logε|).
Then suppose Ω1 can be partitioned into l subsets Ω1k, k = 1,.. .,l, each α-separated

from Ω2. Accordingly, K can be partitioned into block rows

Kk =
(
φ(|yi−zj|)

)
yi∈Ω1k ,zj∈Ω2

, k=1,.. .,l. (2.6)

Similarly, we have

Kk =UkVk
T+Ek, with ‖Ek‖F≤

µ

αr0
‖Kk‖F. (2.7)

Thus,

K=UVT+E, with

U=diag(U1,. . .,Ul), V=
(

V1 ··· Vl
)

, E=

 E1
...

El

,
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where without loss of generality, we suppose the order of the submatrices follows the
order of the set partition. Then

‖E‖2≤‖E‖F =

√√√√ l

∑
k=1
‖Ek‖2

F≤
µ

αr0

√√√√ l

∑
k=1
‖Kk‖2

F =
µ

αr0
‖K‖F≤

µ
√

n
αr0
‖K‖2. (2.8)

Setting µ
√

n
αr0 =ε still yields r0 as in (2.4), and since U has column size lr0, we have σlr0+1(K)≤

‖E‖2≤ ε‖K‖2. K then has ε-rank at most r1= lr0.

Remark 2.4. In previous studies, r0 is typically decided based on the entrywise approxi-
mation error of K so that r0 in (2.4) is O(|logε|). Here, we are interested in an estimate of
the actual numerical rank of K, which yields the additional logn term in (2.4). Although
this may look pessimistic, the numerical ranks are usually very small in practice. In addi-
tion, the extra logn term does not substantially impact the global performance of relevant
algorithms due to a rank pattern study in [36].

Remark 2.5. In the O(·) notation in (2.4) and (2.5), the hidden constants only depend
on fixed α and µ. This will be the case for all our rank estimates. In our results, any
dependence on matrix sizes will be explicitly indicated.

The second part of the proposition essentially shows an accumulative effect of numer-
ical ranks. In particular, numerical ranks of K related to logarithmically-separated sets
look like the following.

Corollary 2.1. Suppose φ has a finite-term degenerate expansion with respect to a fixed relative
tolerance ε and (2.2)–(2.3) hold.

• If Ω1 and Ω2 are logarithmically α-separated, then K has ε-rank (at most) r1=O(r0 logm)
with r0 in (2.4) or

r̃1=O((logm)(logn))+O((logm)|logε|).
where m= |Ω1|, n=min{|Ω1|,|Ω2|}.

• If Ω1 can be partitioned into s subsets each logarithmically α-separated from Ω2, then K
has ε-rank (at most) r̃2=O(sr0 logm).

Proof. If Ω1 and Ω2 are logarithmically α-separated, suppose Ω1 can be partitioned into
l̃=O(logm) subsets Ω1k, k=1,.. ., l̃, which are all α-separated from Ω2, except for possibly
a constant number of subsets containing O(1) points. For any such subset Ω1k not α-
separated from Ω2, as in the proof of Lemma 2.1, we can set Uk = I, Vk = Kk, Ek = 0 so
that (2.7) still holds. Thus, the proof of Lemma 2.1 for (2.8) still holds, so that σl̃r0+1(K)≤
‖E‖2≤ ε‖K‖2 with r0 as in (2.4).

If Ω1 can be partitioned into s subsets Ω1k, k=1,.. .,s, each logarithmically α-separated
from Ω2, we can see that (2.8) still holds. Thus, we can pick r̃2=O(sr0 logm) with r0 as in
(2.4) so that σr̃2+1(K)≤‖E‖2≤ ε‖K‖2.
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2.2 Structure-preserving rank-revealing factorization and representative sub-
set selection

For a matrix such as K in (2.1) with a small numerical rank r̂0, a rank-revealing factor-
ization may be used to compute a low-rank approximation to it. Since we are interested
in exploring additional structures within the low-rank approximation, we suppose K11 is
an r̂0×r̂0 invertible submatrix of K that has the maximum volume (determinant in modu-
lus) [14,31] among all r̂0×r̂0 submatrices. According to [14], we can get an approximation

K≡Π1

(
K11 K12
K21 K22

)
ΠT

2 ≈UBVT, with (2.9)

U=Π1

(
K11
K21

)
, B=K−1

11 , VT =
(

K11 K12
)

ΠT
2 ≡K|I, (2.10)

where U and VT correspond to selected columns and rows of K, respectively, and Π1 and
Π2 are permutation matrices. (2.9) can be written in another form:

K≈UK|I, with U=Π
(

I
E

)
, E=K21K−1

11 . (2.11)

This clearly shows the fact that K|I corresponds to selected rows of K. A numerically sta-
ble way to find (2.9) or (2.11) is the strong rank-revealing QR (SRRQR) factorization [17],
which results in E with entries bounded by a small constant. The factorization (2.11)
is also called an interpolative decomposition [20] or structure-preserving rank-revealing
(SPRR) factorization [45].

For convenience, we call K|I in (2.10) representative rows from K, following the termi-
nology in [18]. For K from (2.1), I corresponds to selected points in Ω1. Therefore, (2.11)
can be understood as the selection of representative points (similar to terms in [3, 31]). In
another word, I is a representative subset (also called skeleton in [9,21]) from Ω1. If Ω1 and
Ω2 are well separated, we can then get the approximation (2.11) with small r̂0.

If Ω1 is logarithmically separated from Ω2, suppose Ω1 can be partitioned into l =
O(log|Ω1|) subsets Ω1k, each separated from Ω2. Then we can approximate K as follows:

K≡

 K1
...

Kl

≈UBVT, with (2.12)

U=diag(U1,. . .,U1), B=diag(B1,. . .,Bl), V=
(

V1 ··· Vl
)

,

where Ui,Bi,Vi have forms like in (2.10). In particular, VT still corresponds to selected
rows of K. Thus, (2.12) can still be understood as the selection of a subset of representative
points from Ω1.

Corresponding to Lemma 2.1, we can estimate the accuracy of the approximations
(2.9) and (2.12) as follows.
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Proposition 2.1. Suppose φ has a finite-term degenerate expansion with respect to a fixed
relative tolerance and (2.2)–(2.3) hold.

• If Ω1 and Ω2 are α-separated, then for sufficiently large m≡max{|Ω1|,|Ω2|}, K11 in
(2.9) can be chosen to have size

r̂0=O(logm)+O(|logε|), (2.13)

so that the approximation (2.9) has error bound ε‖K‖2.

• If Ω1 can be partitioned into l subsets, each α-separated from Ω2, and K has the ap-
proximation in (2.12) corresponding to (2.6), then for sufficiently large m≡max{|Ω1|,
|Ω2|}, B in (2.12) can be chosen to have size

r̂1=O(l logm)+O(l |logε|), (2.14)

so that the approximation (2.12) has error bound ε‖K‖2.

Proof. Suppose Ω1 and Ω2 are α-separated. For K11 in (2.10) with the maximum vol-
ume among all r̂0× r̂0 submatrices of K, according to [14], ‖K22−K21K−1

11 K12‖max≤ (r̂0+
1)σr̂0+1(K). Then

‖K−UBVT‖max≤ (r̂0+1)σr̂0+1(K).

Let n=min{|Ω1|,|Ω2|}. From the proof of Lemma 2.1, we have σr̂0+1(K)≤ µ
√

n
αr̂0
‖K‖2≤

µ
√

m
αr̂0
‖K‖2. This means,

‖K−UBVT‖2≤m‖K−UBVT‖max≤
µ(r0+1)m3/2

αr̂0
‖K‖2.

Thus, by choosing, say, r̂0=
⌈
2logα

µm
ε

⌉
, we have

‖K−UBVT‖2≤ ε(
⌈

2logα

µm
ε

⌉
+1)/(

µm1/2

ε
)≤ ε‖K‖2,

for sufficiently large m.
If Ω1 can be partitioned into l subsets, each α-separated from Ω2, and K has the ap-

proximation in (2.12) corresponding to (2.6), then choose Bk to be the inverse of the r̂0×r̂0
submatrix of Kk with the largest volume. Accordingly,

‖Kk−UkBkVT
k ‖max≤

µ(r̂0+1)
√

m
αr̂0

‖Kk‖2.

Thus,

‖K−UBVT‖2≤m‖K−UBVT‖max=mmax
k
‖Kk−UkBkVT

k ‖max

≤ µ(r̂0+1)m3/2

αr̂0
‖Kk‖2≤

µ(r̂0+1)m3/2

αr̂0
‖K‖2.

Again, by choosing r̂0=
⌈
2logα

µm
ε

⌉
as in (2.13) or r̂1 as in (2.14), we get the approximation

of K in (2.12) with ‖K−UBVT‖2≤ ε‖K‖2.
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This proposition indicates that, to take advantage of the numerical low-rankness of
K, we may use an SPRR factorization to select the number of representative points equal
to the ε-ranks given in the proposition.

Remark 2.6. Later for convenience, we will not write ε in the rank estimates since it is
fixed. Thus, (2.13) becomes r̂0=O(logm) and (2.14) becomes r̂1=O(log2 m). For example,
we may simply say a matrix has ε-rank O(logm).

When Ω1 and Ω2 are not separated and, say, are located within two adjacent boxes
like in Figure 3(a), then we can partition Ω1 into subsets Ω1,i at multiple levels, as done in
the FMM. Suppose the subsets are located within boxes at lmax levels, with the boundary
level or level lmax right adjacent to Ω2. For convenience, suppose each box at level lmax
has a constant size h. Level lmax−1 also consists of boxes of size h. Also, suppose the
partition is fine enough so that the number of points within each box at these two levels
is a constant. The box sizes increase for boxes away from the boundary. That is, a box at
level l has size twice of that at level l+1. (Here for simplicity, we assume all the points
are uniformly distributed. Otherwise, adaptive partitioning of the sets would be needed.)
Then each box at levels lmax−1,lmax−2,.. . is well separated from Ω2, so that representative
points can be selected from it, as also done in [9]. (In practice, all the points within a box
at levels lmax and lmax−1 can be considered as representative points.) The process yields
a sequence of representative points.

(a) Representative points at different levels (b) Representative subset tree

Figure 3: Representative points in Ω1 in the study of the interaction between Ω1 and Ω2 in the FMM and the
corresponding representative subset tree for organizing the points. The locations of the representative points
(marked as black dots) are for illustration purpose only.

Following the selection of representative points like in Figure 3, the collection I of all
the representative points within Ω1 is also said to be a representative subset of Ω1 (with
respect to Ω2). The process for selecting I involves the partitioning of Ω1 into appropri-
ate subsets Ω1i as in the FMM (see Figure 3(a)) followed by the SPRR factorization of the
interaction between Ω1i and Ω2. For convenience, this process of selecting the represen-
tative subset I is denoted by

I=RS(Ω1|Ω2). (2.15)

Also, we call Î≡Ω1\I the residual subset of I in Ω1.



12 Jianlin Xia / CSIAM Trans. Appl. Math., x (202x), pp. 1-34

2.3 Proper ordering of representative subset

In Figure 3(a), the points in the representative subset I are located at lmax = O(log|I|)
hierarchical levels. We can organize these points with the aid of a binary tree, called a
representative subset tree, where each node corresponds to the box enclosing subset Ω1i
and the representative points Ii =RS(Ω1i|Ω2). A larger box at level l−1 and two smaller
adjacent boxes at level l define a parent-children relationship. The boxes at level lmax are
associated with the leaves. See Figure 3(b). For convenience, we use I(l) to denote all the
representative points at level l of the tree, called the l-th slice of I, so that

I=
lmax⋃
l=1

I(l), with I(l)=
⋃

i at level l

Ii. (2.16)

In our design of MHS structures later, it is important to order the points within I in an
appropriate way so as to obtain desired rank structures. Here, we order them following
the postorder of the representative subset tree. This ensures that the representative points
within each slice I(l) are ordered consecutively in a uniform way.

Definition 2.4. (Proper order) If the points in I are ordered following the postorder of the
corresponding representative subset tree, we say that I is properly ordered.

3 MHS structures

We now lay the foundation for MHS structures and show the design of MHS representa-
tions.

3.1 HSS structures and motivation for MHS structures

The HSS structure is an efficient tool to study the mutual interactions for points inside
1D domains [8]. One way to define an HSS form is as follows [42]. In an HSS form, an
N×N matrix H is partitioned into a block 2×2 form, and the partition is then recursively
done on the two diagonal blocks. This can be organized through a binary tree T called
HSS tree. The resulting off-diagonal blocks at all hierarchical levels are represented or
approximated by low-rank forms.

In particular, assume i is a node of T with two children c1 and c2. In an HSS repre-
sentation, i is associated with some matrices Di,Ui,Vi,Ri,Wi,Bi (called HSS generators).
These generators are hierarchically defined as

Di≡H|Ii×Ii =

(
Dc1 Uc1 Bc1VT

c2

Uc2 Bc2VT
c1

Dc2

)
, Ui =

(
Uc1 Rc1

Uc2 Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
, (3.1)

whether Ii is the index set for Di in H and satisfies the hierarchical relation Ii =Ic1∪Ic2 .
For the root node k, Ik={1: N}. It can be seen that U and V are also basis matrices of the
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blocks H|Ii×(Ik\Ii) and H|(Ik\Ii)×Ii
, called HSS blocks. The maximum rank or numerical

rank of all the HSS blocks is called the HSS rank of H.
HSS matrices can be constructed based on direct compression, randomized sampling,

or analytical strategies. See [7, 22, 24, 35, 45] for some examples.
The HSS structure has some significant benefits, include its simplicity, well-established

fast and stable operations, and the convenient error and stability analysis. However, the
structure focuses on 1D problems. For higher dimensions, it becomes less effective due
to the high HSS ranks. On the other hand, many subblocks of the discretized matrix
may still have small numerical ranks following the idea of the FMM, as indicated in the
previous section.

Here, we seek to design multi-dimensional structures still based on HSS forms, so as
to keep the structure simple and to take advantage of existing HSS algorithms and anal-
ysis. This involves the study of the interior structures within the HSS generators, so as to
establish a new structure consisting of multiple layers of hierarchical forms. To illustrate
this, we consider the discretization of a kernel φ over a 2D set Ω with the assumption in
Remark 2.1, and the discretized matrix is

A=(φ(|yi−yj|))yi ,yj∈Ω. (3.2)

(The diagonal entries Aii may be specified otherwise.) Let N= |Ω|. The matrix A is N×N
and symmetric.

3.2 Outer layer structures

In the design of MHS structures, there are two layers of trees for the 2D case, an outer
layer and an inner layer. To explore the outer layer tree structure, we use nested bisection
to partition the domain/set Ω into a sequence of subdomains. That is, the domain is
split into two subdomains, and each subdomain is recursively split. This is similar to
the usual nested dissection partitioning [11], but does not involve a separator of points.
A postordered binary tree T called nested bisection tree is then set up, where each leaf
corresponds to a bottom level subdomain and each nonleaf node corresponds to an upper
level domain or the union of the subdomains associated with its children. See Figure 4.
Here, we suppose the root corresponds to the entire set Ω and is at level 0 and the leaves
are at the largest level. Also for convenience, suppose all the subdomains at the same
level of T include the same number of points.

Remark 3.1. In particular, if Ω is an M×M uniform mesh, we assume the nested bisection
is done with alternating cuts along the horizontal and vertical directions so that each
subsect Ωi for a node i at level l of the nested bisection tree T includes O(M2

l ) points with

Ml =M/2bl/2c. (3.3)

This is just for the convenience of studying the matrix structures below.
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1 2

i j

3

k

1 2

(a) Nested bisection of a domain (b) Nested bisection tree

Figure 4: Nested bisection of a domain and the corresponding nested bisection tree T.

After the application of nested bisection to the points in Ω, we reorder the matrix A in
(3.2) following the ordering of the leaves of T. Later, we suppose A is already reordered.
Then construct an HSS approximation to A by compressing the HSS blocks A|Ωi×(Ω\Ωi)

and A|(Ω\Ωi)×Ωi
for each subset Ωi ⊂Ω. This is done via the study of the interactions

between Ωi and its exterior or complement Ω\Ωi. (Here, we abuse notation and use
A|Ωi×(Ω\Ωi) to mean the submatrix corresponding to interaction between Ωi and Ω\Ωi,
although strictly speaking, Ωi and Ω\Ωi are not index subsets for A.)

For example, consider Ωi in Figure 5(a) and its interaction with Ω\Ωi. Similarly to
Figure 3, Ωi is partitioned into multiple levels of boxes of different sizes. The sizes of
the boxes double when their locations are farther away from the boundary by one level.
These boxes not inside the boundary level are well separated from Ω\Ωi. Suppose there
are m boxes along the boundary level, then the total number of boxes inside Ωi that are
well separated from Ω\Ωi is O(m). We can then select representative points from each
box. The collection of these points is a representative subset Ii in Ωi (Figure 5(b)).

Ii

(a) A subdomain Ωi within Ω (b) Representative subset Ii

Figure 5: Study of the interaction between Ωi and Ω\Ωi for a subdomain Ωi⊂Ω.
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For convenience, we introduce the following notation.

• For a subset Ωi⊂Ω, we use Ω̂i≡Ω\Ωi to denote the complement of Ωi in Ω.

• Like in (2.15), Ii⊂Ωi denotes the representative subset within a set Ωi with respect
to Ω̂i:

Ii =RS(Ωi|Ω̂i). (3.4)

• Îi =Ωi\Ii denotes the residual subset of Ii in Ωi.

• Πi denotes an appropriate permutation matrix like in (2.9).

In the following, we give detailed studies of the interactions among different subdo-
mains of Ω so as to explore the rank structures in the off-diagonal blocks of A in (3.2). The
basic procedure is similar to the HSS construction in [42], but with the off-diagonal com-
pression replaced by representative subset selection. After the nested bisection ordering,
we can write

A=

(
A|Ω1×Ω1 A|Ω1×Ω̂1

AΩ̂1×Ω1
A|Ω̂1×Ω̂1

)
Ω1
Ω̂1

.

The submatrix A|Ω1×Ω̂1
corresponds to the interaction between Ω1 and Ω̂1. According to

the representative subset section, we can get a low-rank approximation like in (2.11):

A|Ω1×Ω̂1
≈U1 A|I1×Ω̂1

, with U1=Π1

(
I

E1

)
. (3.5)

The basis matrix U1 is thus obtained.
Suppose Ω2⊂Ω is the sibling set of Ω1 in nested bisection. That is, Ω1 and Ω2 corre-

spond to a pair of sibling nodes in the tree in Figure 4. Just like above, we can obtain a
representative subset I2⊂Ω2 (Figure 6(a)), so that

A|Ω2×Ω̂2
=
(

A|Ω2×Ω1 A|Ω2×Ω̂3

)
≈U2 A|I2×Ω̂2

, with U2=Π2

(
I

E2

)
, (3.6)

where Ω̂3 is the complement of the parent set Ω3=Ω1∪Ω2.
We can then write A as

A=

 A|Ω1×Ω1 A|Ω1×Ω2 A|Ω1×Ω̂3

A|Ω2×Ω1 A|Ω2×Ω2 A|Ω2×Ω̂3

A|Ω̂3×Ω1
A|Ω̂3×Ω2

A|Ω̂3×Ω̂3

 Ω1
Ω2

Ω̂3

,

As in symmetric HSS constructions, it is natural to let

D1=A|Ω1×Ω1 , D2=A|Ω2×Ω2 , B1=A|I1×I2 , (3.7)
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I1 I2 I3

(a) Representative subsets in Ω1 and Ω2 (b) Representative subset in Ω1∪Ω2

(c) The upper level (d) Representative subset at the upper level

Figure 6: Study of the interactions between some sets and their complements in Ω.

so that

D3≡
(

A|Ω1×Ω1 A|Ω1×Ω2

A|Ω2×Ω1 A|Ω2×Ω2

)
≈
(

D1 U1B1UT
2

U2B2UT
1 D2

)
. (3.8)

The choice of B1 is due to the selection of the representative subsets so that it is just a
submatrix of A [18, 24].

In HSS construction, the next step is to conduct compression associated with the par-

ent node 3 so as to find a nested basis matrix U3=

(
U1

U2

)(
R1
R2

)
for

A|Ω3×Ω̂3
≡
(

A|Ω1×Ω̂3

A|Ω2×Ω̂3

)
.

U3 results from the interaction between Ω3 and Ω̂3. To find
(

R1
R2

)
, we need to study the

interaction between I1∪I2 and Ω̂3. That is, we select a representative subset I3 from I1∪I2.
In Figure 6(a), we can see that some representative points in I1 and I2 becomes interior
points located within some boxes well separated from Ω̂3. We just need to further select
representative points from these points and keep the other representative points in I1∪I2.
See Figure 6(b). This representative subset selection produces(

R1
R2

)
=Π3

(
I

E3

)
.

When we move to upper levels, similar procedures apply. See Figures 6(c–d) and
7(a–b). This is repeated for all the nodes (except root(T)) of the nested bisection tree T
(Figure 4), so as to produce an HSS approximation to A.



Jianlin Xia / CSIAM Trans. Appl. Math., x (202x), pp. 1-34 17

(a) Representative subsets within some (b) Representative subset
subdomains at a certain level at an upper level

Figure 7: Representative subsets at upper levels.

Clearly, the number of points within each representative subset Ii is directly related to
the numerical rank of the HSS block A|Ωi×Ω̂i

. Thus, we have the following result which
is consistent with the FMM.

Lemma 3.1. Suppose Ω is an M×M uniform mesh with the nested bisection tree T generated
as in Remark 3.1. Then for sufficiently large M, the HSS block A|Ωi×Ω̂i

associated with node i at
level l of T has ε-rank

r̃l =O(Ml logM), (3.9)

where Ml is given in (3.3).

Proof. During the process of finding Ii as in (3.4), Ωi can be partitioned into O(Ml) sub-
domains, each α-separated from Ω̂i. See Figure 5(b) for an illustration. According to
Proposition 2.1, with the numerical rank r̃l in (3.9), the resulting approximation from the
representative subset selection can reach a relative 2-norm approximation accuracy ε for
A|Ωi×Ω̂i

.

3.3 Inner layer structures

In Lemma 3.1, the HSS rank of A is as large as O(MlogM)=O(
√

N logN). Then an HSS
approximation to A is generally not very effective. For example, it costs around O(N3/2)
flops to factorize it [36]. To improve the efficiency, we study the inner-layer structures or
the structures within the HSS generators from the previous subsection.

We set a switching level ls for the nodes of the nested bisection tree T, so that if a
node is at a level above ls, we exploit the inner structures of the HSS generators. Thus,
the generators below ls are treated as in the regular HSS case. This avoids operating on
blocks that are too small, and also ensures that the outer HSS generator sizes are large
enough for the asymptotic inner-layer rank estimates to hold. We can establish a two-
layer tree T from T, which has outer-layer nodes from levels 0 to ls of T. A node i at
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level ls of T is treated as a leaf of T and Di is treated as an HSS form generator. The
off-diagonal numerical ranks of Di satisfy Lemma 3.1 and the HSS tree of Di is simply
the subtree of T associated with i, which is an inner-layer tree. The nonleaf nodes of T
are also associated with inner-layer trees, as shown next.

3.3.1 Structures within the B generators

First, we show the structures within the Bi generators. According to the previous discus-
sions, Bi has the form (see, e.g., (3.7))

Bi =A|Ii×Ij , (3.10)

where j=sib(i). Note that Bi may be a rectangular matrix, while the work in [9] sets it to
be square and further needs it to be invertible. The work in [9] also uses boundary points
as representative points for selecting Bi from A. Here, the representative subsets Ii and Ij
are more general. See Figure 8(a) for an illustration of Ii and Ij. To facilitate the study of
the interior structures within Bi, we split Ii and Ij as:

Ii = Īi∪(Ii\Īi), Ij = Īj∪(Ij\Īj), (3.11)

where Īi corresponds to representative points located within those subdomains of Ωi that
have larger sizes farther away from the interface between Ωi and Ωj, similarly to those
subdomains generated in Figure 3. Īj can be similarly understood. Figure 8(b) illustrates
Īi and Īj. In (3.11), for convenience, we also suppose Īi is ordered before Ii\Īi and Īj is
ordered before Ij\Īj. Then Bi in (3.10) can be written as

Bi =

(
A|Īi×Īj

A|Īi×(Ij\Īj)

A|(Ii\Īi)×Īj
A|(Ii\Īi)×(Ij\Īj)

)
. (3.12)

We would like to show that Bi can be approximated by an HSS form when Īi and Īj
are properly ordered. Similarly to Figure 3, the points within Īi can be organized with the
aid of a representative subset tree. A postorder of the nodes in this tree are then applied
so as to obtain a proper order of Īi as in Definition 2.4. Īj is similarly ordered. See Figure
8(b). We would like to show A|Īi×Īj

can be approximated by an HSS form.

Remark 3.2. An HSS approximation to A|Īi×Īj
needs a consistent strategy to order and

partition Īi and Īj so as to generate the HSS partition. For example, assume Ω is an M×M
uniform mesh with the nested bisection tree T generated as in Remark 3.1. Then we
suppose Īi and Īj are always partitioned simultaneously by straight cuts perpendicular
to the interface between Ωi and Ωj. See Figure 8(c). In the proper ordering of Īi and Īj,
we also make sure that any off-diagonal block A|Īi,1×Īj,2

of A|Īi×Īj
always corresponds to

Īi,1 and Īj,2 lying on the opposite sides of one of those straight cuts.

Based on these, we have the following result.
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Ii Ij

(a) Representative subsets Ii and Ij

Ii
-

Ij
-

Ii,1
-

Ij,2
-

(b) Īi and Īj (marked as solid dots) (c) Partitioning of Īi and Īj

Figure 8: Study of the interactions between Īi and Īj for siblings i and j of T.

Theorem 3.1. Suppose φ has a finite-term degenerate expansion with respect to a fixed relative
tolerance and (2.2)–(2.3) hold. Assume Ω is an M×M uniform mesh with the nested bisection
tree T generated as in Remark 3.1. Let Ωi and Ωj be a pair of sibling subsets at level l of T and Ii
and Ij be representative subsets selected from Ωi and Ωj, respectively, like in (3.4). Assume Ii and
Ij are partitioned and ordered as in (3.11) and Īi and Īj are further properly ordered as in Remark
3.2. Then Bi in (3.10) can be approximated by an HSS form with HSS rank O(log3 Ml) with Ml
in (3.3), so that each approximated HSS block of Bi has relative approximation accuracy ε.

Proof. With (3.11), Bi looks like (3.12). We first show A|Īi×Īj
can be approximated by an

HSS form with HSS rank O(log3 Ml) so that each approximated HSS block has relative
approximation accuracy ε. Following the partitioning in Remark 3.2, suppose the one
level of partitioning of Īi and Īj looks like

Īi = Īi,1∪ Īi,2, Īj = Īj,1∪ Īj,2. (3.13)

A|Īi×Īj
can be then written as

A|Īi×Īj
=

(
A|Īi,1×Īj,1

A|Īi,1×Īj,2

A|Īi,2×Īj,1
A|Īi,2×Īj,2

)
.

It is sufficient to show that the ε-rank of A|Īi,1×Īj,2
is O(log3 Ml) and it is similar to study

other HSS blocks of A|Īi×Īj
.
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According to the proof of Lemma 3.1, |Īi|=O(Ml). The points within Īi,1 are located
at O(logMl) slices or levels of the representative subset tree associated with Īi. Each such
slice is logarithmically separated from Ij,2. Setting l=O(log2 Ml) in Proposition 2.1 yields
that A|Īi,1×Īj,2

has ε-rank O(log3 Ml).
We then look at the second block column A|Ii×(Ij\Īj)

in (3.12). Similarly, Ij\Īj includes
O(logMl) levels or slices, each logarithmically separated from Ii. Thus, Proposition 2.1
means A|Ii×(Ij\Īj)

has ε-rank O(log3 Ml).
Overall, we can see that Bi in (3.12) can be approximated by an HSS form with HSS

rank O(log3 Ml) so that each approximated HSS block has relative approximation accu-
racy ε.

Thus, the generator Bi has an inner HSS structure. Remark 3.2 essentially also pro-
vides a way to generate the HSS tree for Bi. This HSS tree then serves as an inner-layer
tree associated with node i of T . Note that essentially we only need to approximate the
(1,1) block in (3.12) by an HSS form and then the (2,2) block by a low-rank form. Ap-
proximating the entire B matrix by an HSS form is more general and is easier to present
with fewer details. In practical implementations, some B generators may involve black-
box permutations and it may not be necessary to distinguish such different types of (1,1)
and (2,2) blocks.

3.3.2 Structures within the R generators

Next, we show the structures within Ri and Rj with j= sib(i). Let p=par(i). The parent
domain is Ωp=Ωi∪Ωj. Due to the lower level compression, the compression of A|Ωp×Ω̂p

reduces to the compression of A|(Ii∪Ij)×Ω̂p
. The SPRR factorization leads to

A|(Ii∪Ij)×Ω̂p
≈
(

Ri
Rj

)
A|Ip×Ω̂p

, with
(

Ri
Rj

)
=Πp

(
I

Ep

)
Ip
Îp

, (3.14)

where the identity matrix corresponds to the representative subset Ip from Ii∪Ij, and Ep

corresponds to the residual subset Îp =(Ii∪Ij)\Ip.
Like in Figure 6, some boxes near the boundary of Ωi and Ωj become well separated

from Ω̂p. For convenience, we use Ĩp to denote the subset of representative points in
Ii∪Ij that are inside those boxes, and call Ĩp the compressible subset. See Figure 9(a). Also,
denote the representative subset of Ĩp with respect to Ω̂p by

Ǐp =RS(Ĩp|Ω̂p), (3.15)

so that
Ip =((Ii∪Ij)\Ĩp)∪ Ǐp. (3.16)

Then we have
Îp =(Ii∪Ij)\Ip = Ĩp\Ǐp.
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That is, to obtain Ip from Ii∪Ij, we replace Ĩp by its representative set Ǐp. The points that
we drop from Ĩp form the residual subset Îp.

(a) Compressible subset Ĩp (b) Ip

(marked as ⊗) in Ii∪Ij (with Ĩp replaced by Ǐp)

Figure 9: Forming the representative subset Ip from Ii∪Ij by replacing the compressible subset Ĩp by its

representative subset Ǐp with respect to Ω̂p.

We then study the structure of Ep in (3.14). Suppose m= |Ip|. The SPRR factorization
finds an m×m invertible submatrix of A|(Ii∪Ij)×Ω̂p

, denoted A|Ip×Jp (Jp⊂ Ω̂p), whose de-
terminant is sufficiently large. That is, the selection of the representative subset Ip returns
a numerical column basis matrix for A|(Ii∪Ij)×Ω̂p

:

Πp

(
I

Ep

)
A|Ip×Jp =Πp

(
A|Ip×Jp

Ep A|Ip×Jp

)
, (3.17)

which is also a submatrix of A|(Ii∪Ij)×Ω̂p
. As in (2.11),

Ep =A|Îp×Jp
(A|Ip×Jp)

−1.

We show A|Îp×Jp
is numerically low rank so that Ep can be approximated by a low-rank

form.

Theorem 3.2. Suppose the conditions in Theorem 3.1 holds. Let m = |Ip| and A|Ip×Jp be the
m×m invertible submatrix of A|(Ii∪Ij)×Ω̂p

with the largest determinant among all of its m×m

submatrices. Then A|Îp×Jp
has ε-rank O(log3 m).

Proof. We show this with the aid of the compressible subset Ĩp as illustrated in Figure
9(a). Notice Ĩp⊂Ωp and Jp⊂ Ω̂p. Just like in Figure 3, using a representative subset tree,
we can organize the points in Ĩp into O(log|Ĩp|) slices, each logarithmically separated
from Ω̂p and also Jp. Setting l=O(log2 m) in Proposition 2.1 yields that A|Ĩp×Jp

has ε-rank

O(log3 m). Accordingly, A|Îp×Jp
has ε-rank O(log3 m) since it is a submatrix of A|Ĩp×Jp

.

Theorems 3.1 and 3.2 indicate that, if Ω is an M×M uniform mesh, then A in (3.2)
can be approximated by an HSS form with structured generators. The results can be
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extended to more general point sets with similar strategies. We have only shown the
analysis for uniform meshes since it is easier to rigorously characterize the conditions
and conclusions.

In addition, although the ε-rank O(log3 m) may not look so small, its impact on the
overall cost and storage is not significant due to a rank pattern study in [36] since m is
level dependent. It is also possible to further reduce the bound to O(log2 m) if we take ad-
vantage of certain common basis matrices. This is not critical and we use a conservative
bound O(log3 m) to avoid some technical details.

3.4 MHS representation

To systematically take advantage of the inner-layer structures within the HSS generators,
we define the MHS representation as follows. Here for generality purpose, the represen-
tation is defined for a general nonsymmetric form, although most our other discussions
are for symmetric forms just for convenience.

Definition 3.1. A multi-layer hierarchically semiseparable (MHS) matrix is an HSS matrix
whose generators are further HSS, MHS, or low-rank matrices. In particular, a two-layer
MHS matrix A with a corresponding MHS tree T is recursively defined as follows. T in-
cludes two layers of postordered binary trees. The outer-layer tree has nodes i=1,2,.. .,k,
where k is the root. Each node i is associated with HSS generators Di,Ui,Vi,Ri,Wi,Bi.
Furthermore, the generators are structured as described below.

1. All the generators Di associated with the leaves i of T are in HSS forms.

2. All the Bi generators associated with the nodes i 6= k of T are in (rectangular) HSS
forms.

3. All the R,W generators used to construct the generators Ui,Vi associated with non-

leaf nodes i 6=k of T as in (3.1) are in the forms of
(

Rc1

Rc2

)
=Πi

(
I

Ei

)
and

(
Wc1

Wc2

)
=

Θi

(
I
Fi

)
, respectively, where c1 and c2 are the children of i, Πi and Θi are permu-

tation matrices, and Ei and Fi are low-rank matrices.

Each node i of T is associated with an inner-layer HSS tree for the Di and/or Bi
generators. All the inner-layer HSS generators and the low-rank forms of Ei and Fi are
called the MHS generators. The outer HSS rank is the maximum of the sizes from the
smaller dimension of each Bi generator of the outer HSS form. The MHS rank of A is the
maximum of the HSS ranks of all the leaf level Di generators, the HSS ranks of all the Bi
generators, and the ranks of all Ei,Fi.

Thus, a two-layer MHS structure is an outer-layer HSS structure with an extra inner
layer of HSS or low-rank structures. This is also called an HSS2D structure in our earlier
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report [39] and is similar to (but more general than) the 2D HSS form in [9]. See Figure
10 for an illustration. Here by an MHS structure, we usual mean the two-layer one.
Similar considerations can be given for higher dimensions via the use of multiple layers.
The basic idea is to “lift” low-rank forms to HSS forms, HSS forms to two-layer MHS
forms, two-layer MHS forms to three-layer MHS forms, etc. The process would be much
more technical than the two-layer case. The two-layer MHS structure is sufficient for
practical computations such as the approximation of dense Schur complements in the
direct factorizations of 3D discretized elliptic PDEs.

For notational consistency, suppose the MHS tree has ls outer levels, with the root at
level 0. When we say a node of T is at level l, we mean the outer level l.

1 2

3

4 5B1

B2

R1,W1

D1,U1,V1
D2,U2,V2

(   )R2

R1

D1
U1

B1

......

......

B3

((
U1

U2

( (
( (

......

......

D2

D4

......

......

D5

( (
( (

( (
( (((( (

( (
(a) MHS tree (b) MHS structure

Figure 10: An MHS matrix corresponding to a two-layer MHS tree, where some outer-layer HSS generators are
marked and the inner layer trees in (a) are for the structured outer D,B generators.

Remark 3.3. We make some remarks on certain practical issues about the generators in
the definition.

1. Permutations may also be involved in the leaf level Di generators and the Bi genera-
tors in order for them to have HSS forms. This is to accommodate possible reorder-
ing of the corresponding representative points. The permutations do not interfere
with the off-diagonal rank structures, since the off-diagonal basis matrices U,V also
involve permutations.

2. The Bi generators may be non-square matrices, which is different from the strategy
in [9] where Bi needs to be not only square but also invertible.

3. For a leaf i, there is no restriction on the structure of the Ui,Vi generators, which are
formed based on the generators associated with the inner HSS generators of Di.
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4. The outer HSS rank of A is just a way to measure the HSS rank of A when it is
considered as a usual HSS form.

5. The number of outer levels ls can be adjusted so as to roughly optimize the perfor-
mance for different situations. An example is shown below.

The storage of an MHS form A can be counted as follows. Let N be its size, r be its
MHS rank, and r̃ be its outer HSS rank and also the size of all outer B generators. Choose
ls so that the Di generator for any outer-layer leaf i has size O(r̃). With these uniform rank
bounds, each HSS form Di or Bi generator needs storage O(rr̃). The storage is similar for
each structured Ri or Wi generator. The outer HSS tree has O(N

r̃ ) nodes. Thus, the total
storage is

σ=O(rr̃ ·N
r̃
)=O(rN).

In particular, when A is used to approximate A in (3.2) with Ω an M×M uniform
mesh, we can choose ls so that the Di generators for the outer HSS form has size

Ns≡O(
N
2ls

)=O(N1/2). (3.18)

In this way, following a rank pattern study in [36], the storage for each Di generator is
O(Ns logNs)=O(N1/2 logN). Based on Theorems 3.1 and 3.2, the storage for each B,R,W

generator is O
((

N
2l

)1/2
log4 N

2l

)
. Thus, the total storage is

σ=2lsO(N1/2 logN)+
ls

∑
l=1

2lO

((
N
2l

)1/2

log4 N
2l

)
=O(N logN)+O(N1/22ls/2 log4 N)=O(N logN),

where (3.18) is used. In comparison, the (outer) HSS form needs storage

σ=
O(logN)

∑
l=1

2lO
(

N
2l log2 N

)
=O(N log3 N).

In practice, when the HSS and MHS structured forms are used for some matrix opera-
tions, the difference in the costs is even more significant than the difference in the stor-
age, which is typically the case for structures with different numbers of hierarchical lay-
ers [10, 40, 41].

4 Design of MHS algorithms

Due to the multi-layer structure, it is convenient to reuse some basic ideas and algorithms
in HSS methods to design MHS algorithms such as construction, factorization, solution,
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and multiplication. Since the focus of this work is the design of the MHS structure, we
just briefly mention the design of some algorithms, mainly the construction of an MHS
approximation A to the matrix A in (3.2) and some related practical issues. The actual
implementations will be left to other work.

In MHS constructions, we can first construct the outer-layer representation following
the derivation procedure in Section 3 and then explore the inner-layer structures. The
method can be based on either analytical or algebraic approaches.

An analytical MHS construction can be designed if a kernel expansion in (2.2) is
known. We can construct the outer HSS form following the procedure in [7], where
relevant off-diagonal basis matrices are analytically constructed based on the kernel ex-
pansion. We may also use an idea of analytical compression based on the so-called proxy
point method [9, 25, 46, 47].

More specifically, for a leaf i of T , find an initial numerical column basis Ũi for A|Ωi×Ω̂i

based on the kernel expansion. Ũi is then converted into the generator Ui in a form like in
(2.11) via an SPRR factorization. This enables to identify the representative subset Ii. For

a nonleaf node p with children i and j, find a numerical column basis Ũp for

(
A|Ii×Ω̂p

A|Ij×Ω̂p

)
.

As mentioned in Section 3.3.2, this only needs to be done on A|Ĩp×Ω̂p
. The representative

subset selection (3.15) yields Ǐp and then Ip in (3.16). The representative subset selection
also gives Ep in (3.14).

Next, we find the inner structures. For the Di generators associated with a leaf i, the
inner-layer structures are directly from the outer HSS construction. For the generators
Bi ≡ A|Ii×Ij associated with a node i, the kernel expansion can be used to find an HSS
approximation to Bi with the method in [7]. For the R generators in (3.14), a low-rank
approximations to Ei may be computed quickly if the sets like Jp in (3.17) can be quickly
identified. Otherwise, we may use direct compression.

In the analytical construction, the main costs include the following.

• The cost to construct the outer HSS form via the algorithm in [7] is ∑
O(logN)
l=1 O(2lr̃2)=

O(r̃N), which is O(N1.5 logN) based on Lemma 3.1 if Ω is an M×M uniform mesh.
However, this cost is mainly for evaluating the entries of the generators which are
either from A (for Bi in (3.10)) or have some parameterized forms (since the nu-
merical basis matrices Ũi are scaled Vandermonde matrices [7]). Thus, this cost
can be absorbed into the later costs for constructing inner-layer structures when the
structured outer generators are used.

• The cost to compute SPRR factorizations for all the basis matrices Ũi is ∑ls
l=1O(2lr̃3)=

O(r̃32ls). If Ω is an M×M uniform mesh, Lemma 3.1 can be used to get the cost of
O(N2 log3 N) due to (3.18). However, this may be further reduced due to the struc-
tures in Ũi. If we take advantage of the scaled Vandermonde form of Ũi, a low-rank
approximation may be quickly computed based on methods in [13, 18, 26, 27, 43].
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This can reduce to cost to ∑ls
l=1O(2lr̃2) =O(r̃22ls), which becomes O(N1.5 log2 N).

Furthermore, Lemma 3.1 actually indicates r̃ is level dependent. Based on (3.9), this
cost should actually be

ls

∑
l=1

O(2lr̃2
l )=

ls

∑
l=1

O
(

2l
(

M/2bl/2c
)2

log2 M
)
=O(M2 log3 M)=O(N log3 N).

• The cost to find inner-layer structures for the Ei matrices is ∑ls
l=1O(2lr2r̃), or if the

scaled Vandermonde structured of Ũi is considered, ∑ls
l=1O(2lrr̃). This cost is then

just a low-order term as compared with the cost in the previous item.

• The cost to find inner structures for the Bi generators is ∑ls
l=1O(2lrr̃), which is also

a low-order term as compared with the cost in the second item.

Overall, when we fully take advantage of the structures, the complexity of the MHS
construction can be reduced to nearly O(N), although the actual algorithm implementa-
tion needs to take careful of many technical details.

Algebraic MHS construction strategies can also be designed. Explicit HSS construc-
tions in [42] may be used and are expensive. However, it can serve as a black-box con-
struction method. A faster way is to use a randomized HSS construction in [24, 45] to-
gether with the FMM for matrix-vector multiplications.

It is still an open problem to construct MHS approximations to problems with small
MHS ranks in nearly O(N) complexity using only algebraic techniques. Note that ran-
domized HSS construction for problems with small HSS ranks and fast matrix-vector
multiplications can already reach nearly linear complexity [22–24, 45]. This may provide
some hints for linear complexity randomized MHS constructions.

Remark 4.1. There are some practical issues to pay attention to. Since Πp results from a
representative subset selection from Ii∪Ij, it only separates Ii∪Ij into sets Ip and Îp, but
does not guarantee that Ip is properly ordered as needed for the HSS approximation of
A|(Ip∪Îp)×(Ip∪Îp)

. Thus, we also reorder the set Ip based on either graph reordering meth-
ods or the geometric connectivity in the mesh so as to reveal the HSS structure. For con-
venience, we assume Πp also includes such internal reordering. In practical implementa-
tions, for simplicity, the proper ordering for Ip and other sets may be based on the reverse
Cuthill-McKee (RCM) method. Note that Ii∪Ij is also reordered accordingly. Since Bi is

given by A|Ii×Ij as in (3.10), it is more convenient to approximate ΠT
p

(
Bi

BT
i

)
Πp by

a square HSS form. This will be useful when we consider the MHS factorization in [40].

Other MHS algorithms can also be designed. For example, A multi-layer MHS factor-
ization procedure can be designed based on repeated elimination of representative points
like the methods in [21,38]. The factorization at each layer follows the frameworks in HSS
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ULV factorizations and even the multifrontal methods. The entire factorization procedure
involves many steps and the details will be given in [40].

It is clear that we can take advantage of existing HSS methods in designing MHS
algorithms. Furthermore, the multi-layer tree structure makes it convenient to analyze
the resulting MHS algorithms. For example, the backward stability analysis for some HSS
methods in [33, 34] relies on the idea that the numerical errors only propagate O(logN)
times along HSS trees. Here with MHS trees, this is still the situation, so we should expect
to still see nice stability behaviors for MHS methods. In fact, by replacing operations on
some large dense generators by structured ones, the stability is likely to get even better.
This will be investigated in detail in future work.

5 Numerical experiments

To verify the existence and effectiveness of MHS structures, we consider some discretized
matrices A as in (3.2). Since the main purpose of this work is to confirm the feasibility
of MHS approximations, we consider kernel functions φ in (3.2) that are known to be
suitable for FMM methods. This paves the way for studying more sophisticated functions
in the future. Once the MHS structure is verified, it will be feasible to solve relevant linear
systems by direct solvers instead of iterative ones.

We report some rank bounds, storage, and representative subset selection to show the
feasibility of MHS approximations. The following measurements are used.

• r̃: numerical measurement of outer HSS rank when A is approximated by an HSS
form.

• r: numerical measurement of MHS rank.

• σ: storage for the structured matrix approximation in terms of the number of nonze-
ros in the generators.

The rank measurements r̃ and r are decided based on appropriate generator sizes of
the resulting structured forms. For example, if E is approximated by a compressed form
GHT, the column size of G is used as the rank measurement for E. To measure r̃, we
find the smaller of the row and column sizes of each outer B generator and then pick the
maximum of all these sizes. To measure r, we are more conservative. We find the row
and column sizes of all the inner-layer B generators and the rank measurements for all
the E generators and then take the maximum.

Example 5.1. First, consider φ to be the 2D Laplace free-space Green’s function and

Aij =

{
1, i= j,

h2

2π log|yi−yj|, i 6= j,

where yj’s are points on a uniform grid in the domain [−1,1]×[−1,1] with M points in
each direction.
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We inspect whether A can be approximated by compact MHS forms for a given toler-
ance. More specifically, we look at the inner structures within an outer HSS approxima-
tion to A, as discussed in Section 3.3. Accordingly, to show the advantage of MHS struc-
tures over HSS structures, we also report the results when A is directly approximated
by an HSS form (which is just the outer-layer HSS form of the MHS approximation).
Relevant partitions and ordering follow Remarks 3.1 and 3.2. To get an initial numeri-
cal column basis Ũi for A|Ωi×Ω̂i

, a proxy point method is used with sufficient accuracy.
However, in all rank-revealing factorization steps, a relative tolerance τ=10−6 is used. To
simplify implementations, the inner-layer HSS approximations to the D,B generators are
obtained with the HSS construction in [42] using the tolerance τ. The matrix size N=M2

ranges from 1282 to 20482. The number of outer HSS levels ls varies accordingly.
As shown in Table 1, when the mesh dimension M doubles, the HSS rank r̃ roughly

doubles, which is consistent with Lemma 3.1. On the other hand, the MHS rank r re-
mains about the same. For N = 20482, r̃ is almost 40 times as large as r. This shows the
feasibility and effectiveness of inner rank structures within the outer generators which
are otherwise considered dense in regular HSS methods.

Table 1: Example 5.1. Rank measurements and storage of MHS approximations as compared with those of
HSS approximations.

N 1282 2562 5122 10242 20482

ls 6 8 10 12 14

Rank measurement
r̃ (HSS) 247 472 898 1710 3302
r (MHS) 80 80 80 83 84

Storage σ
HSS 5.60e06 2.74e07 1.30e08 5.76e08 2.53e09
MHS 6.35e06 2.69e07 1.12e08 4.45e08 1.78e09

The storage for the MHS and HSS approximations is also given Table 1 and is further
plotted in Figure 11. It indicates that the MHS forms have nearly O(N) storage. In ad-
dition, if the resulting MHS approximations are used for linear system solutions based
on the algorithm in [40], we can observe solution accuracies around O(10−6). Since our
focus is not on the algorithms, we do not report the actual solution performance.

Remark 5.1. The comparison in the storage of MHS and HSS approximations is not as
significant as the rank comparison due to multiple reasons. First, the HSS/MHS rank
measurements are for the worst case generator sizes. Some outer B generators have sizes
much smaller than r̃ so that the inner structures do not significantly reduce the stor-
age. (However, note that the cost of factorizations is often dominated by the cost for few
largest matrices, which is why we expect the difference in the factorization cost to be
much larger.) Nevertheless, the storage difference is expected to be more significant for
larger N. Next, as mentioned in Remark 4.1, in the MHS approximations, we store the

HSS approximation of ΠT
p

(
Bi

BT
i

)
Πp which has some zeros in the generators. For
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Figure 11: Example 5.1. Storage of MHS approximations as compared with HSS ones.

generality, these zeros are treated as dense in our storage count for the MHS form. This
overestimates the MHS storage a little bit.

Example 5.2. Then we consider φ as the 3D Laplace free-space Green’s function, and the
matrix A is given by

Aij =

{
1, i= j,

− h2

4π
1

|yi−yj| , i 6= j.

The other setups are the same as in the previous example.

In this case, unlike the previous example where representative points cluster near the
boundaries of a domain like in [9], the SPRR factorization yields representative points
that may also be away from the boundaries. This can be observed from Figure 12, which
illustrates representative subsets Ii and Ij corresponding to two sibling subdomains Ωi
and Ωj in one mesh, respectively. The figure also shows the representative subset Ip
selected from Ii∪Ij.

(a) Ii (b) Ij (c) Ii∪Ij (d) Ip

Figure 12: Example 5.2. Some examples of representative subsets in a mesh (zoomed in), and the selection of
Ip from lower level representative subsets Ii and Ij, where j=sib(i), p=par(i).

For one mesh, Figure 13 plots the collections of representative subsets for all the nodes
at some outer levels of the MHS tree. They correspond to collections of so-called reduced
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matrices in the ULV-type factorization in [38] and can also be considered as a generaliza-
tion of the skeletons in [21]. This is consistent with Figures 6 and 7 and clearly shows
how the residual subsets Îi at each level are eliminated during the formation of the upper
level representative subsets. The figure can also be viewed as a sparsification of the mesh.
This will be useful for understanding the MHS factorization process in [40].

(a) l=3 (b) l=2 (c) l=1 (d) l=0

Figure 13: Example 5.2. Collections of representative subsets at some outer levels l of the MHS tree, where
the mesh is 128×128.

The rank structures are reported in Table 2. Although the MHS ranks in this case
are higher than in the previous example, they are still much smaller than the outer HSS
ranks. Note that the ordering of the representative points impacts the measured MHS
ranks, as mentioned in Remark 4.1. We expect to be able to further reduce the MHS rank
measurements with improved ordering strategies. On the other hand, the rank structure
in Theorem 3.2 is less dependent on the ordering. Thus, we also report the maximum of
the measured numerical ranks of the Ei matrices for the nodes i of T , denoted rE. This
bound is a more precise measurement of the intrinsic structures within the off-diagonal
basis generators. rE is quite smaller than r in Table 2.

Table 2: Example 5.2. Rank measurements and storage of MHS approximations as compared with those of
HSS approximations.

N 1282 2562 5122 10242 20482

ls 6 8 10 12 14

Rank measurement
r̃ (HSS) 377 743 1471 2932 5893
r (MHS) 99 136 201 384 510

rE (MHS) 99 114 131 139 152

Storage σ
HSS 8.50e06 4.70e07 2.45e08 1.22e09 5.95e09
MHS 1.06e07 4.84e07 2.09e08 8.74e08 3.58e09

The storage for the MHS and HSS approximations is also given Table 2 and is further
plotted in Figure 14. The difference in the storage is more significant than in the previous
example. We expect the difference to be even larger for bigger matrix sizes.
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Figure 14: Example 5.2. Storage of MHS approximations as compared with HSS ones.

6 Conclusions

In this work, we have given theoretical foundations for the design of the MHS struc-
ture. The MHS structure extends the HSS structure to multiple dimensions by recur-
sively incorporating HSS and low-rank structures into the generators of outer-layer HSS
forms. Based on FMM and algebraic methods for selecting representative points, we
have shown the existence of MHS structures within the approximation of some multi-
dimensional discretized dense matrices. The multi-layer design makes it convenient to
explore multi-dimensional FMM structures by taking advantage of existing HSS algo-
rithms and analysis. In particular, it facilitates the design of fast and stable multi-layer
hierarchical factorizations.

The work provides a proof-of-concept study for multi-layer hierarchical structures.
The MHS structure in two dimensions can be used approximate some 2D discretized
integral equations or dense Schur complements in some 3D discretized PDEs, which can
lead to direct solvers with nearly linear complexity. Further optimization of the ordering
strategies for the representative points is expected to be done. We also expect to inspect
more practical discretized problems. Efficient algorithms and implementations will be
developed for the purpose of large-scale dense and sparse direct solutions for multi-
dimensional problems. Some developments will be included in [40].
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