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Types for tame p-adic groups

By JEssicA FINTZEN

Abstract

Let k£ be a non-archimedean local field with residual characteristic p.
Let G be a connected reductive group over k that splits over a tamely
ramified field extension of k. Suppose p does not divide the order of the
Weyl group of G. Then we show that every smooth irreducible complex
representation of G(k) contains an s-type of the form constructed by Kim—
Yu and that every irreducible supercuspidal representation arises from Yu’s
construction. This improves an earlier result of Kim, which held only in
characteristic zero and with a very large and ineffective bound on p. By
contrast, our bound on p is explicit and tight, and our result holds in
positive characteristic as well. Moreover, our approach is more explicit in
extracting an input for Yu’s construction from a given representation.
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304 JESSICA FINTZEN

1. Introduction

The aim of the theory of types is to classify, up to some natural equiv-
alence, the smooth irreducible complex representations of a p-adic group in
terms of representations of compact open subgroups. For GL, it is known that
every irreducible representation contains an s-type. This theorem lies at the
heart of many results in the representation theory of GL,, and plays a key role
in the construction of an explicit local Langlands correspondence for GL,, as
well as in the study of its fine structure. One of the main results of this paper
is the existence of s-types for general p-adic groups and the related exhaustion
of supercuspidal representations under minimal tameness assumptions. These
tameness assumptions arise from the nature of the available constructions of
supercuspidal representations for general p-adic groups.

To explain our results in more detail, let k denote a non-archimedean local
field with residual characteristic p and let G be a connected reductive group
over k. Before introducing the notion of a type, let us first discuss the case of
supercuspidal representations, the building blocks of all other representations.
Since the constructions below of supercuspidal representations for general re-
ductive groups G assume that G splits over a tamely ramified extension of k,
we will impose this condition from now on. Under this assumption, Yu ([Yu01])
gave a construction of supercuspidal representations as representations induced
from compact mod center, open subgroups of G(k) generalizing an earlier con-
struction of Adler ([AdI98]). Yu’s construction is the most general construction
of supercuspidal representations for general reductive groups known at present
and it has been widely used to study representations of p-adic groups, e.g.,
to obtain results about distinction, to calculate character formulas, to suggest
an explicit local Langlands correspondence and to investigate the theta corre-
spondence. However, all these results only apply to representations obtained
from Yu’s construction. In this article, we prove that all supercuspidal repre-
sentations of G(k) are obtained from Yu’s construction if p does not divide the
order of the Weyl group W of G. This result was previously shown by Kim
([Kim07]) under the assumption that k has characteristic zero and that p is
“very large.” Note that Kim’s hypotheses on p depend on the field k£ and are
much stronger than our requirement that p { |W|; see [Kim07, § 3.4]. The few
primes that divide the order of the Weyl group of G are listed in Table 1, and
we expect that this assumption is optimal in general when also considering
types as below for the following reason. Yu’s construction is limited to tori
that split over a tamely ramified field extension of k. If p does not divide the
order of the Weyl group of G and G splits over a tamely ramified extension
(our assumptions), then all tori split over a tame extension. However, if one
of these assumptions is violated, then, in general, the group G contains tori
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TYPES FOR TAME p-ADIC GROUPS 305

that do not split over a tame extension (for some non-split inner forms of split
groups of type A,,n > 2,D;,l > 4 prime, or Fg, the condition on the prime
number is slightly weaker; see [Fin19, Th. 2.4 and Cor. 2.6] for the details).
We expect that we can use these tori to produce supercuspidal representa-
tions (of Levi subgroups) that were not constructed by Yu. Examples of such
representations are provided by the construction of Reeder and Yu ([RY14]),
whose ingredients exist also when p | |W| (whenever they exist for some large
prime p); see [FR17] and [Finl5].

In order to study arbitrary smooth irreducible representations, we recall
the theory of types introduced by Bushnell and Kutzko ([BK98]): By Bern-
stein ([Ber84]) the category R(G) of smooth complex representations of G(k)
decomposes into a product of subcategories R*(G) indexed by the set of in-
ertial equivalence classes J of pairs (L, o) consisting of a Levi subgroup L of
(a parabolic subgroup of) G together with a smooth irreducible supercuspidal
representation o of L(k):

R(G) =[] R(G).

s5€7

Let s € J. Following Bushnell-Kutzko ([BK98]), we call a pair (K, p)
consisting of a compact open subgroup K of G(k) and an irreducible smooth
representation p of K an s-type if for every irreducible smooth representation
7 of G(k), the following holds:

7 lies in R*(G) if and only if 7|k contains p.

In this case the category R*(G) is isomorphic to the category of (unital left)
modules of the Hecke algebra of compactly supported p-spherical functions on
G(k). Thus, if we know that there exists an s-type for a given s € J, then we
can study the corresponding representations R*(G) using the corresponding
Hecke algebra. We say that a smooth irreducible representation (m, V) of
G(k) contains a type if there exists an s-type (K, p) for the class s € J that
satisfies (m, V) € R*(G); i.e., m|x contains p.

Using the theory of G-covers introduced by Bushnell and Kutzko in [BK98],
Kim and Yu ([KY17]) showed that Yu’s construction of supercuspidal repre-
sentations can also be used to obtain types by omitting some of the conditions
that Yu imposed on his input data. In this paper we prove that every smooth
irreducible representation of G (k) contains such a type if k is a non-archimedian
local field of arbitrary characteristic whose residual characteristic p does not
divide the order of the Weyl group of GG. This excludes only a few residual
characteristics, and we expect the restriction to be optimal in general as ex-
plained above. If k has characteristic zero and p is “very large,” then Kim and
Yu deduced this result already from Kim’s work ([Kim07]).
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306 JESSICA FINTZEN

Our approach is very different from Kim’s approach. While Kim proves
statements about a measure one subset of all smooth irreducible representa-
tions of G(k) by matching summands of the Plancherel formula for the group
and the Lie algebra, we use a more explicit approach involving the action of
one parameter subgroups on the Bruhat—Tits building. This means that even
though we have formulated some statements and proofs as existence results,
the interested reader can use our approach to extract the input for the con-
struction of a type from a given representation.

To indicate the rough idea of our approach, we assume from now that p
does not divide the order of the Weyl group of G, and we denote by (m, V;)
an irreducible smooth representation of G(k). Recall that Moy and Prasad
(MP94], [MP96]) defined for every point x in the Bruhat—Tits building #(G, k)
of G and every non-negative real number a compact open subgroup G, C
G(k) and a lattice g, C g in the Lie algebra g = Lie(G)(k) of G such that
Ger 4Gy s and gz C gz 5 for r > s. Moy and Prasad defined the depth of
(m, Vz) to be the smallest non-negative real number r; such that there exists a
point x € B(G, k) so that the space of fixed vectors VﬂGI’”Jr under the action
of the subgroup G, + = s, Gzs is non-zero. In [MP96] they showed
that every irreducible depth-zero representation contains a type. A different
proof using Hecke algebras was given by Morris ([Mor99], announcement in
[Mor93]). More generally, Moy and Prasad showed that (m, V) contains an
unrefined minimal K-type, and all unrefined minimal K-types are associates of
each other. For ry = 0, an unrefined minimal K-type is a pair (G0, x), where
X is a cuspidal representation of the finite (reductive) group Ggo/Ggo+. If
r1 > 0, then an unrefined minimal K-type is a pair (Ggr,,X), where x is a
nondegenerate character of the abelian quotient G, /G4 r,+. While the work
of Moy and Prasad revolutionized the study of representations of p-adic groups,
the unrefined minimal K-type itself determines the representation only in some
special cases. Our first main result in this paper (Theorem 6.1) shows that
every smooth irreducible representation of G(k) contains a much more refined
invariant, which we call a datum. A datum is a tuple

('75’ (Xi)lfiﬁnv (p07 VPO))

for some integer n, where © € B(G, k), X; € g* for 1 < i < n satisfying certain
conditions and (pg, Vj,) is an irreducible representation of a finite group (which
is the reductive quotient of the special fiber of the connected parahoric group
scheme attached to the derived group of a twisted Levi subgroup of G); see
Definitions 4.1 and 4.2 for the details. Our datum can be viewed as a refinement
of the unrefined minimal K-type of Moy and Prasad as follows. To a datum
(@, (Xi)1<i<n, (po, Vpy)) We associate a sequence of subgroups G O Hy O Hy D

- D Hy, D Hpy1, which are (apart from allowing H; = Gj) the derived
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TYPES FOR TAME p-ADIC GROUPS 307

groups of twisted Levi subgroups G = G1 D G2 D --- D Gy D Gp41, and real
numbers 1 > rg > --- > r, > 0 such that for 1 < i < n, the element X; yields
a character y; of

(Hi)a; i | (Hi)ay v == Lie(H;) (k) r, / Lie(H; ) (K ) rit C Qari /@it

for a suitable point z; € Z(H;, k). If G is semisimple, for simplicity, then
(Ggy .5 Xx1) is an unrefined minimal K-type of depth 71 contained in (m, V;),
and the pair ((H;)z,r;, Xi) is an unrefined minimal K-type of depth r; for H;.

The existence of a maximal datum for any irreducible representation of
G(k) is a key ingredient for producing the input that is needed for the con-
struction of types as in Kim—Yu ([KY17]). In order to exhibit a datum
in a given representation, we require the elements (X;)i<i<pn in the datum
(@, (Xi)1<i<n, (P, Vpy)) to satisfy a slightly stronger condition than the non-
degeneracy necessary for an unrefined minimal K-type. We call our conditions
generic; see Definition 3.5. This condition ensures that the deduced input for
Yu’s construction is generic in the sense of Yu ([YuOl, § 15]) and at the same
time it is crucial for the proof of the existence of the datum. The existence
of a datum in (, V) is proved recursively, i.e., by first showing the existence
of a suitable element X7, then finding a compatible element X5, and then X3,
etc., until we obtain a tuple (X;)i<i<, and finally exhibit the representation
(po,Vpy). The existence of X; can be considered as a refinement of the exis-
tence of an unrefined minimal K-type by Moy and Prasad and relies on the
existence result of generic elements proved in Proposition 3.12. When con-
structing the remaining part of the datum we need to ensure its compatibility
with X7 and rely on several preparatory results proved in Section 5. At this
step the imposed conditions on the elements X; become essential.

The final crucial part of this paper is concerned with deducing from the
existence of a datum in Theorem 7.12 that every smooth irreducible represen-
tation of G(k) contains one of the types constructed by Kim—Yu and, simi-
larly, that every irreducible supercuspidal representation of G(k) arises from
Yu’s construction; see Theorem 8.1. This requires using the elements X; from
the datum to provide appropriate characters of the twisted Levi subgroups
Gi (2 <i < n+1) and using (po,V,,) to produce a depth-zero supercusp-
idal representation my of Gp41(k). We warn the reader that the depth-zero
representation of G41(k) is in general not simply obtained by extending and
inducing (po, Vp,). The relationship between pg and my requires the study of
WEeil representations and can be found in Section 7, in particular in Lemma 7.8.
The main difficulty lies in showing that a potential candidate for the depth-
zero representation my of Gpi1(k) is supercuspidal, which is the content of
Lemma 7.10.
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308 JESSICA FINTZEN

We conclude the paper by mentioning in Corollary 8.3 how to read off
from a maximal datum for (m, V) if the representation (r, V;) is supercuspidal
or not.

We would like to point out that the exhaustion of supercuspidal represen-
tations and the existence of types for arbitrary smooth irreducible represen-
tations have already been extensively studied for special classes of reductive
groups for which other case-specific tools are available, e.g., a lattice theoretic
description of the Bruhat—Tits building and a better understanding of the in-
volved Hecke algebras. In 1979, Carayol ([Car79]) gave a construction of all
supercuspidal representations of GL,,(k) for n a prime number. In 1986, Moy
([Moy86]) proved that Howe’s construction ([How77]) exhausts all supercus-
pidal representations of GL, (k) if n is coprime to p. Bushnell and Kutzko
extended the construction to GL,, (k) for arbitrary n and proved that every ir-
reducible representation of GL, (k) contains a type ([BK93], [BK98], [BK99]).
As mentioned above, these results play a crucial role in the representation the-
ory of GL, (k). Based on the work for GL,,(k), Bushnell and Kutzko ([BK94])
together with Goldberg and Roche ([GR02]) provide types for all Bernstein
components for SLy, (k). For classical groups, Stevens ([Ste08]) has recently
provided a construction of supercuspidal representations for p # 2 and proved
that all supercuspidal representations arise in this way. A few years later,
Miyauchi and Stevens ([MS14]) provided types for all Bernstein components
in that setting. The case of inner forms of GL,, (k) was completed by Sécherre
and Stevens ([SS08], [SS12]) around the same time, subsequent to earlier re-
sults of others for special cases. (For example, Zink ([Zin92]) treated division
algebras over non-archimedean local fields of characteristic zero and Broussous
([Bro98]) treated division algebras without restriction on the characteristic.)
The existence of types for inner forms of GL, (k) plays a key role in the explicit
description of the local Jacquet—Langlands correspondence.

Structure of the paper. In Section 2, we collect some consequences of the
assumption that the residual field characteristic p does not divide the order
of the Weyl group of G. Section 3 concerns the definition and properties
of generic elements and includes an existence result for generic elements. In
Section 4, we introduce the notion of a datum and define what it means for
a representation to contain a datum and for a datum to be a maximal datum
for a representation. The proof that every smooth irreducible representation
of G(k) contains a datum is the subject of Section 6. Several results that are
repeatedly used in this proof are shown in the preceding section, Section 5. In
Section 7, we use the result about the existence of a datum to derive that every
smooth irreducible representation of G (k) contains one of the types constructed

This content downloaded from
152.3.43.45 on Tue, 07 Sep 2021 20:46:53 UTC
All use subject to https://about.jstor.org/terms



TYPES FOR TAME p-ADIC GROUPS 309

by Kim and Yu, and, in Section 8, we prove analogously that every smooth
irreducible supercuspidal representation of G(k) arises from Yu’s construction.

Conventions and motation. Throughout the paper, we require reductive
groups to be connected. All representations are smooth complex representa-
tions unless mentioned otherwise. We do not distinguish between a represen-
tation and its isomorphism class. As explained in the introduction, by type we
mean an s-type for some inertial equivalence class s.

We will use the following notation throughout the paper: k is a non-
archimedean local field (of arbitrary characteristic), and G is a reductive group
over k that will be assumed to split over a tamely ramified field extension of k.
We write f for the residue field of k and denote its characteristic by p. We
fix an algebraic closure k of k, and all field extensions of k are meant to be
algebraic and assumed to be contained in k. For a field extension F of k, we
denote by F'™ its maximal unramified field extension (in k). We write O for
the ring of integers of k, P for its maximal ideal, 7= for a uniformizer, and
val : k = Z U {oo} for a valuation on k with image Z U {oc}. If F is an
(algebraic) field extension of k, then we also use val to denote the valuation on
F that extends the valuation on k. We write Op for the ring of integers in F
and Pp for the maximal ideal of Op.

Throughout the paper we fix an additive character ¢ : & — C* of k of
conductor P.

If F is a field extension of a field F (e.g., of k or f) and H is a scheme
defined over the field F', then we denote by Hg or H Xy E the base change
H Xgpecr Spec E. If A is an F-module, then we write Ag for A @ E and
A* for the F-linear dual of A. For X € A* and Y € Ap, we write X(Y) for
(X®1)(Y),(X®1) e A*®p FE ~ (Ag)*. If a group acts on A, then we let it
also act on A* via the contragredient action.

In general, we use upper case roman letters, e.g., G, H,G;, T, ..., to denote
linear algebraic groups defined over a field F', and we denote the F-points of
their Lie algebras by the corresponding lower case fractur letters, e.g., g, b, g;, t.
The action of the group on its Lie algebra is the adjoint action, denoted by
Ad, unless specified otherwise. If H is a reductive group over F', then we
denote by HY its derived group. We write G, and G,, for the additive
and multiplicative group schemes over Z or over the ring or field that becomes
apparent from the context. If S is a split torus contained in H (defined over F),
then we write X*(S) = Homp (S, G,,) for the characters of S defined over F,
X.(S) = Homp(Gyy,, S) for the cocharacters of S (defined over F'), ®(H,S) C
X*(S) for the roots of H with respect to S, and if S is a maximal torus,
then ®(H, S) C X.(S) denotes the coroots. We might abbreviate ®(Hg, T') by
®(H) for a maximal torus 7" of Hy if the choice of torus 7' does not matter.
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310 JESSICA FINTZEN

We use the notation (-,-) : X.(S) x X*(S) — Z for the standard pairing,
and if S is a maximal torus, then we denote by & € ®(H,S) the dual root
of @ € ®(H,S). For a subset ® of X*(5) ®z R (or X.(S) ®z R) and R a
subring of R, we denote by R® the smallest R-submodule of X*(S) ®z R (or
X.(S) ®z R, respectively) that contains ®. For x € X*(S) and A € X, (5), we
denote by dx € Homp(Lie(S), Lie(Gy,)) and dA € Homp(Lie(Gyy,), Lie(S)) the
induced morphisms of Lie algebras.

If (7,V) is a representation of a group @, then we denote by V< the
elements of V' that are fixed by Q. If Q' is a group containing @ as a subgroup
and ¢ € @', then we define the representation (77, V) of ¢'Qq ™" by 9n(q) =
m(¢ " 'qq) for all ¢ € ¢Qq' ™"

Finally, we let R = RU {r + |7 € R} with its usual order, i.c., for r and
s € R with r < s, we have r < r+ < s < s+.

Acknowledgments. The author thanks Stephen DeBacker, Wee Teck Gan,
Tasho Kaletha, Ju-Lee Kim and Loren Spice for discussions related to this
paper, as well as Jeffrey Adler, Anne-Marie Aubert, Stephen DeBacker, Tasho
Kaletha, Ju-Lee Kim, Gopal Prasad, Vincent Sécherre and Maarten Solleveld
for feedback on some parts of an earlier version of this paper. The author is
also very grateful to the referee for a careful reading of the paper and helpful
comments and suggestions. The author thanks the University of Michigan, the
Max-Planck Institut fiir Mathematik and the Institute for Advanced Study for
their hospitality and wonderful research environment.

2. Assumption on the residue field characteristic

Recall that k£ denotes a non-archimedean local field with residual charac-
teristic p and G is a connected reductive group over k. We assume that G is
not a torus. We already know all the smooth, irreducible, supercuspidal rep-
resentations of a torus. They are simply the smooth characters of the torus.
Moreover, Yu ([YuO1]) works in his construction of supercuspidal representa-
tions only with tori of G that split over a tame extension. Hence we make the
following assumption throughout the paper.

Assumption 2.1. We assume that G splits over a tamely ramified extension
of k and p { |W|, where W denotes the Weyl group W of G(k).

By [Finl9], Assumption 2.1 implies that all tori of G are tame. For ab-
solutely simple groups other than some non-split inner forms of split groups
of type A,,n > 2,D;,l > 4 prime, or Fg, this assumption is also necessary
(and in the excluded cases only minor modifications on the assumption on p
are necessary); see [Finl9, Th. 2.4 and Cor. 2.6] for details.

We collect a few consequences of our assumption for later use.
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TYPES FOR TAME p-ADIC GROUPS 311

LEMMA 2.2. The assumption that p t |W| implies the following:

(a) The prime p does not divide the order of the Weyl group of any Levi
subgroup of (a parabolic subgroup of) G-

(b) The prime p is larger than the order of any bond of the Dynkin diagram
Dyn(G) of Gy, i.e., larger than the square of the ratio of two root lengths
of roots in ®(G).

(c) The prime p is not a bad prime (in the sense of [SS70, 4.1]) for & :=
®(Q); i.e., Z®/ZD has no p-torsion for all closed subsystems ®q in ®.

(d) The prime p is not a torsion prime (in the sense of [Ste75, 1.3 Def.])
for ® := ®(G) (and hence also not for ®(Q)); i.e., Z&/Zdqy has no
p-torsion for all closed subsystems ®g in P.

(e) The prime p does not divide the index of connection (i.e., the order of
the root lattice in the weight lattice) of any root(sub)system generated
by a subset of a basis of (G).

Proof. Part (a) is obvious, Parts (b), (¢) and (d) can be read of from
Table 1. Part (e) follows from the fact that the index of connection of ®(G)

divides |W| ([Bou02, V1.2, Prop. 7]). O

type | Ap(n>1)|B,(n>3)|Cr(n>2)|D,(n>3)
W] (n+1)! 2" . nl 2" . nl 2n=1. pl
bad - 2 2 2

torsion - 2 - 2
type Eg E; Eg Fy Ga
(W] |27-3%.5|210.3%.5.7[21.35.52.7|27.32|22.3
bad 2,3 2,3 2,3,5 2,3 123

torsion 2,3 2,3 2,3,5 2,3 2

Table 1. Order of Weyl groups ([Bou02, VI.4.5-VI1.4.13]); bad
primes ([SS70, 4.3]) and torsion primes ([Ste75, 1.13 Cor.]) for
irreducible root systems

3. Almost strongly stable and generic elements

Let E be a field extension of k. We denote by #(G, F) the (enlarged)
Bruhat-Tits building of Gg over E, and we sometimes write % for Z(G, k).
For x € #(G,E) and r € R>g, we write G(E),,, for the Moy—Prasad filtration
subgroup of G(FE) of depth r, which we abbreviate to G, for G(k)z,r, and we
set G(E)r = Uzenc,p) G(E)a,y. For r € R, we denote by (gg)s,r and (gp);,
the Moy-Prasad filtration of gp = Lie(GE)(E) and its dual gj,, respectively.
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312 JESSICA FINTZEN

We set (98)r = Uzes(c,p) (08)er and (98)7 = Uses(c,p)(98): - Recall that
it X € (gg);,, then X((95)s,(—r)+) C Pr and X((9g)z,—r) C Op. For conve-
nience, we define our Moy—Prasad filtration subgroups and subalgebras with
respect to the valuation val of E that extends the normalized valuation val
of k, i.e., in such a way that by [Adl98, Prop. 1.4.1] (which applies because G
splits over a tamely ramified extension) we have

(1) (88)zr NG = gy

for all r € R. We denote by G, the reductive quotient of the special fiber
of the connected parahoric group scheme attached to G at z, i.e., G, is a
reductive group defined over § satisfying G, (fr) = G(F)z,0/G(F)qz,04 for every
unramified extension F' of k with residue field fr. We also refer to G, as “the
reductive quotient of G at x.” For any r € R, the adjoint action of G(k"); 0 on
(ggur )z, induces a linear action of the algebraic group G, on V,, := gam/ggﬁjﬂr
and therefore also on its dual V',

For X € g3, — {0} and = € #A(G, E), we denote by dg(z,X) € R the
largest real number d such that X € (g};)s,qd, and we set dg(x,0) = co. We
call dg(z, X) the depth of X at x. We define the depth of X over E to be
de(X) = supyepG,p) de(r,X) € RUoco. If E =k, then we often write
d(z, X) for di(xz, X) and d(X) for di(X). Note that if X € g*, then dy(z, X) =
dr(z,X) and dg(X) = dg(X) by our choice of normalization.

Recall that if V is a finite dimensional linear algebraic representation of
a reductive group H defined over some field F, then X € V(F) is called
semistable under the action of H if the Zariski-closure of the orbit H(F).X C
V(F) does not contain zero, and is called unstable otherwise. We introduce
two slightly stronger notions for our setting.

Definition 3.1. Let X € g*. We denote by X the map Ve—d(z,x) =
gz,fd(ac,X)/gz:,(fd(x,X))+ - f induced from X : 92, —d(z,X) — 0.
o We say that X is almost stable if the G-orbit of X is closed.

e We say that X is almost strongly stable at x if X is almost stable and
X e (Va,—d(z,x))" is semistable under the action of G.

LEMMA 3.2. Let X € g* — {0} be almost strongly stable at x. Then
d(z, X) = d(X).

Proof. Suppose d(z, X) < d(X), and write r = d(z, X). Then by [AD02,
Cor. 3.2.6] (together with their remark at the beginning of Section 3), the
coset X + g, is degenerate, i.e., contains an unstable element. Hence X is
unstable by [MP94, 4.3. Prop.]. (While Moy and Prasad assume simply con-
nectedness throughout their paper [MP94], it is not necessary for this claim.)
This contradicts that X is almost strongly stable and finishes the proof. [
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Definition 3.3. Let H be a reductive group over some field F'. A smooth,
closed subgroup H' of H is called a twisted Levi subgroup if there exists a finite
field extension E over I such that H' x g FE is a Levi subgroup of a parabolic
subgroup of H xp F.

LEMMA 3.4. Let X € g* be almost stable (under the contragredient of the
adjoint action of G). Then the centralizer Centq(X) of X in G is a twisted
Levi subgroup of G.

Proof. 1t suffices to show that CenthkE(X ) is a Levi subgroup of Gy,
because Centg(X) xj k = Cent, 7(X). Since p does not divide the order of
the Weyl group of G, we can Gy-equivariantly identify g7 with gz (see [AR0O,
Prop. 4.1], Lemma 2.2(e) and Lemma 2.2(b)). Using this identification to
view X in g, by [Bor91, 14.25 Prop.], every X is contained in the Lie algebra
of a Borel subgroup B = TU for T a maximal torus and U the unipotent
radical of B (defined over E) Hence we can write X = X + X,,, where X, €
Lie(T)(k) and X,, € Lie(U)(k), and there exists a one parameter subgroup
A G,, = TC CentGE(Xs) such that lim;0 A(t).X,, = 0, and therefore
limy_,0 A(t).X = X,. Since X is almost stable, this implies that X is contained
in the G(k)-orbit of X, and therefore X is semisimple, hence X = X,. In
other words, X is in the zero eigenspace in g% of T. Since p is not a torsion
prime for ®(G) (Lemma 2.2(d)) and p does not divide the index of connection
of ®(G) (Lemma 2.2(e)), we obtain by [Yu0l, Prop. 7.1. and 7.2] (which is
based on [Ste75]) that the centralizer Centg, (X) of X in Gf is a connected
reductive group whose root datum is given by (X*(T),®x, X.(T), dx) with
Ox = {a € ®(Gy,T) |X(da( ) = 0)} and ®x = {&|a € ®x}. Note that dx
is a closed subsystem of ® (i.e., Z&x N = <I)X) Since Z®/Zd is p-torsion
free by Lemma 2.2(c), we have by = Qdy NP and hence Dy = QPx N .
By [Bou02, VI.1, Prop. 24] there exists a basis A for ® containing a basis Ax
for ®x. Thus CentGE(X) is a Levi subgroup of Gy. O

Definition 3.5. We say that an element X € g* is generic of depth r at x
€ B(G, k) if X is almost stable and if there exists a tamely ramified extension
E over k and a split maximal torus T' C Centg(X) xj E such that

e x € J(T,E)N HA(G, k), where o/ (T, E) denotes the apartment of T' in
HB(G, E);

e X e g;kc,r (i'e" X(gx,(fr)+) - P>;

o for every a € ®(G,T), we have X(H,) = 0 or val(X(H,)) = r, where
H, = da(1); and

o if X(H,)=0forall o € ®(G,T), then d(z,X) =r

Note that H, = da(1) # 0, because p does not divide the index of con-
nection of ®(G) by Lemma 2.2(e). We will see in Corollary 3.7 below that if
X is generic of depth r at x, then d(z, X) = r.
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LEMMA 3.6. Let X € g* be generic of depth v at x. Then for every (split)
mazimal torus T C Centg(X) X k, we have

o X(Hy) =0 for all o € ®(Centg(X),T); and
o val(X(H,)) =7 for alla € (G, T) — ®(Cent(X),T).

Moreover, for all v € ®(G,T), we have X((g5)a) = 0, where (gz)a denotes the
a-root subspace of gz.

Proof. Choose a Chevalley system {z, : G, = Gy|a € ®(G,T)} with
corresponding Lie algebra elements {X, = dzq(1) o € ®(G,T)}. Since T C
Centg(X) xi k, we have X (X,) = X(Ad(#)(Xa)) = a(t)X(X,) for all t €
T'(k), and hence X (X,) =0 for all & € (G, T). Thus X ((gz)a) = 0.

Since the split maximal tori of Centg(X) xj k are conjugate in Cente (X))
X k, we have X(H,) = 0 or val(X(H,)) = r for a € ®(G,T). By [Yu0l,
Prop. 7.1], we have a € ®(Cent(X),T) if and only if X (H,) = 0; see also the
proof of Lemma 3.4. O

COROLLARY 3.7. Let X € g* — {0} be generic of depth r at x. Then
d(z, X)=d(X) =r.

Proof. Let E be a tame extension of k and T a split maximal torus of
Centg(X) xi E such that © € &/(T, E). By Lemma 2.2(e) the element H,, is
of depth zero for all « € ®(G, T). Hence d(z, X) = dg(z, X) = r by Lemma 3.6
(or by definition if X (H,) =0 for all a€ ®(G,T)). If y € B(GE, E),s€R and
X €(g%;)y,s, then [YuOl, Lemma 8.2] implies that X restricted to Lie(T")(E) lies
in Lie(T)*(E)s. Since X has depth d(z, X) = r when restricted to Lie(T')(FE),
we deduce that dp(y, X) < r. Hence d(X) = d(z, X) = r. O

COROLLARY 3.8. Let X € g* — {0} be generic of depth r at x. Then X
is almost strongly stable at x.

Proof. Suppose X is not almost strongly stable at z. Then X € O / Ot
is unstable. Since f is perfect, by [Kem78, Cor. 4.3] there exists a non-trivial
one parameter subgroup X : G,, — G, in the reductive quotient G, of G at x
(defined over f) such that lim;_,o A(t).X = 0. Let S be a maximal split torus
of G, containing A\(G,,). Then there exists a split torus S (defined over Oy)
in the parahoric group scheme P, of G at x whose special fiber is S and whose
generic fiber S is a split torus in G. This allows us to lift X to a one parameter
subgroup A : G, — S C G. Let &/(S,k) be the apartment of S (i.e., the
apartment of a maximal torus in G that contains S). Then 7 (S, k) contains z
and is the affine space underlying the real vector space X, (S)®zR. If € > 0 is
sufficiently small, we obtain X € g7, , ... Hence d(X) > r, which contradicts
Corollary 3.7. O
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Remark 3.9. Recall that if G’ is a Levi subgroup of (a parabolic subgroup
of) G, then we have an embedding of the corresponding Bruhat—Tits buildings
B(G' k) — B(G, k). Even though this embedding is only unique up to some
translation, its image is unique. Since we assume that all tori of G split over
tamely ramified extensions of k, every twisted Levi subgroup of G becomes a
Levi subgroup over a finite tamely ramified extension of k. Hence using (tame)
Galois descent, we obtain a well-defined image of Z(G’, k) in B(G, k) = £ for
every twisted Levi subgroup G’ of G. In the sequel, we might identify Z(G’, k)
with its image in %.

Remark 3.10. Since p does not divide the index of connection of ®(G)
(Lemma 2.2(e)), Adler and Roche ([AR00, Prop. 4.1]) provide a non-degener-
ate, G-equivariant, symmetric bilinear form B : gxg — k such that the induced
identification of g with g* identifies g, with g, for all z € #(G,k),r € R.
Moreover, B stays non-degenerate when restricted to the Lie algebra of any
twisted Levi subgroup of G.

Using the bilinear form from Remark 3.10 to view (g')* = (Lie(G’)(k))* as
a subset of g* for G’ a twisted Levi subgroup of G, we have the following lemma,
which is a translation of a result by Kim-Murnaghan ([KM03, Lemma 2.3.3])
into the dual setting.

LeMMA 3.11 (Kim-Murnaghan). Letr € R,z € &, andlet X € g3, C g*
be generic of depth v at x. Denote Centg(X) by G' and Lie(Centg(X))(k)
byg. If X' e (¢)f, Cg* andy € B(G, k) — B(G', k), then d(y, X + X') <
d(X).

Proof. Suppose X # 0 as the statement is trivial otherwise. Let F be a
tame extension of k and T a split maximal torus of Centg(X) xj E such that
x € (T, E). By the definition of the bilinear form B in the proof of [AROO,
Prop. 4.1] (a sum of scalings of killing forms together with a bilinear form on
the center) together with Lemma 3.6, the generic element X corresponds to an
element X of t = Lie(T)(k) C g, hence of t, = tNg, . Moreover, it follows from
the definition of the bilinear form that da(X) = X (H,). Hence Lemma 3.6
implies that X is a good semisimple element of depth 7. (See [Ad198, Def. 2.2.4]
for the definition of “good semisimple element.”) Since Centg(X) = Centg(X)
and X' corresponds to an element in g, under the identification of g* with
g, the lemma follows from [KMO03, Lemma 2.3.3], because B preserves depth.
(Note that Kim and Murnaghan impose in [KM03] much stronger conditions
on G and k, in particular that k£ has characteristic zero. However the required
Lemma 2.3.3 holds also in our setting by the same proof and observing that
Corollary 2.2.3 and Lemma 2.2.4 in [KMO03] (which are used in the proof of
[KM03, Lemma 2.3.3]) follow from results of Adler and Roche (JAR00]) that
are valid in our situation by our Lemma 2.2.) O
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To state the following main result in this section more conveniently, we fix
a G-equivariant distance function d : (G, k) x B(G, k) — R>( on the build-
ing (G, k), which is the restriction of a distance function dg : #(G, E) x
PB(G,E) — R for some tame extension E of k over which G splits that
satisfies |a(z — y)| < dg(x,y) for all maximal split tori Tg of G, all x,y €
o (Tg, E) and all o € ®(Gg,Tg). (This normalization will only become rele-
vant in the proof of Theorem 6.1 below.)

PROPOSITION 3.12. Let 7 € R and x € AB. If X € g* is almost strongly
stable at x with d(z,X) = r, then for every ¢ > 0, there exists ¥’ € B with
d(x,2') < € such that X € g, ., the coset X + g}, .. contains an element

X that is generic of depth r at 2', and the points x and ©' are contained in
PB(Cent(X), k) C B.

Proof. Let T be a maximal torus of Centz(X) and E a tame extension of
k over which T splits. Choose a point y in & (T, E)NA(G, k). If a € ®(G,Tk)
and X, € (95)a, then X(X,) = X(Ad(t)X,) = a(t) X (X,) for all t € T(E),
hence X(X4) = 0. Thus the depth of X at y is equal to the depth of X
restricted to t = Lie(T")(k). On the other hand, by [Yu0l, Lemma 8.2], the
assumption that X € g7, implies that X restricted to t lies in t7. Hence
d(y,X) > r. Since r = d(X) by Lemma 3.2, we deduce that d(y, X) = r.

Claim. X +g;, ., contains a generic element of depth 7 at y.

Proof of claim. Let &y C ® := ®(G,Tg) be the collection of coroots &
for which val(X(H,)) > r. Note that &, is a closed subsystem of & (i.e.,
ZdoNd = &). Since Zd/Zd is p-torsion free by Lemma 2.2(c), we also have
by = QPyNP. Moreover, since X and T are defined over k, the set @ is stable
under the action of the Galois group Gal(E/k). Let Y C gp = Lie(G)(E)
be the E-subspace spanned by {H,|& € i)o}. By the above observations
about ®, the subspace Y is Gal(E/k)-stable, and if H, € Y, then & € ®y.
Define

Vi = {Z € Lie(T)(E) | da(Z) = 0Ya € ¥}

Then Y7 is a Gal(E/k)-stable complement to Y in Lie(T)(F), and we set

Yi=Yro P (9p)a
ac®(G,T)
Then Y is a Gal(E/k)-stable complement to Y in gg, and we define X’ € g%,
by
X' (Z+2Y=X(Z) forall ZeY,Zzt e Yt

Since Y and Y* are Gal(E/k)-stable and X is defined over k, the linear func-
tional X’ is Gal(F/k)-invariant and hence defined over k; i.e., we can view X’
as an element of g*.
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Let Ag be a basis for @, and let A a basis for ® containing Ag. (Such
a A exists by [Bou02, VI.1, Prop. 24].) For & € A, we denote by &, € Q®
the fundamental coweight corresponding to «, i.e., (Wq, @) =1 and (W4, 8) =0
for 5 € A — {a}. Similarly, for @ € Ay, let @2 € Q®y be the fundamental
coweight with respect to the (co-)root system ®y. By Lemma 2.2(e), we have
Ga € Z [ﬁ} $ and @ € Z [ﬁ] $y. Denote by Hy, (& € A) and Hyo,
(o’ € Ap) the image of ¥, and @, under the linear map 7 [ﬁ] ® — Lie(T)(E)
obtained by sending o to Har (o' € ®). Then we have

. = 0 mod Y+ for & € A — Ay,
g Hpyo mod Y+ for & € A.

For 8 € ®, we have 3 = D ach <B, a> Wa, and hence we obtain

(2) Hg = Z <B,a> H;,A = Z <B,a> Hgo  mod Y+t
aeA aelAy

Recall that <B, a> are integers for & € A and that the index of the coroot lat-
tice Z® in the coweight lattice Z[w, | & € o] is coprime to p by Lemma 2.2(e).
Hence ) sca, <B, o) Hgy is contained in the Og-span of {H, | & € ®g}. Thus,
by the definition of ®g, we obtain val(X’(Hg)) > r for all 3 € ®. In ad-
dition, X’ vanishes on the center of gp and on Dococr)(88)a; because
these subspaces are contained in Y*. Hence, by Lemma 2.2(e), we have
val(X'((g2)y.0)) C Rs.

Using that the Moy—Prasad filtration behaves well with respect to base
change (equation (1)), we obtain

val(X'(gy,—r)) C val(X'((9£)y,—r)) C Rx>—r +val(X'((gE)y,0)) C Rso.

Thus X' € gf,,, and X = X — X' € X + g}, with val(X(Hy)) = r for
& ¢ @y and XV(H&) =0 for & € .

In order to prove the claim, it remains to show that the orbit of X is closed.
Since p 1 |W|, we can G-equivariantly identify g* with g as in Remark 3.10.
Since T is in Centg(X) and acts trivially on X', the torus T also centralizes
X =X — X', and hence X € Lie(T)(F) under the identification of g* with g.
Thus X is semisimple, and therefore its G-orbit is closed ([Bor91, 9.2]). Hence
XeX+ g,r+ 1s generic of depth r at y.

To finish the proof of the proposition, recall that d(z, X+ X =d(z,X) =
r o= d(y,)N() = d()N() (by Corollary 3.7). We write G' = Centg(i) and
¢’ = Lie(G')(k). Since X’ has depth greater than r at y and vanishes on
Dococr)(98)a; it lies in (¢);, C g*. Hence we deduce from Lemma 3.11

that # € 2(G',k). Thus there exists a maximal torus T in G’ C G with
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T € sz(f), and, by Lemma 3.6, the element X is generic of depth r at .
fXeX+ 93,4+, then we are done by choosing 2’ = x and observing that
- X.

Hence it remains to consider the case that X ¢ X+g; 4 Thend(z,X') =
d(x, X —?) =r <d(y,X') < d(X'). Viewing these as depths for B(G', k), we
deduce from [ADO02, Cor. 3.2.6] (together with their remark at the beginning of
Section 3) that the coset X'+ (g'); ., is degenerate, i.e., contains an unstable
clement. Hence X’ € (g, _,/0/; (_r);)* is unstable by [MP94, 4.3. Prop.].
Since f is perfect, by [Kem78, Cor. 4.3] there exists a non-trivial one parameter
subgroup A : G, — G/, in the reductive quotient G/, of G at x (defined over §)
such that lim;_,0 A(¢).X’ = 0. As in the proof of Corollary 3.8, we let S be
a maximal split torus of G/, containing A\(G,,), and we let S be a split torus
(defined over Of) in the parahoric group scheme P/, of G’ at x whose special
fiber is S and whose generic fiber S is a split torus in G’. This allows us to
consider ) as an element \ of X,(S). Let 7 (S, k) be the apartment of S (i.e.,
the apartment of a maximal (maximally split) torus Tg C G’ containing S).
Then (S, k) contains x and is the affine space underlying the real vector
space X.(S)®zR. If € > 0 is sufficiently small, then X’ € g}, , ., and X = X
mod g;+€)\7r+. Let E' be a tamely ramified extension of k over which T splits.

Then 2’ := x4+ e\ € & (T, E'YNAB(G, k), and since Ts C G’ = Centg(X), the
element X is generic at 2’ of depth r (by Lemma 3.6). O

<=

Aside 3.13. The claim proved within the proof of Proposition 3.12 is the
dual statement of [Finl9, Th. 3.3] and could be deduced from the latter as
well. We decided to give an independent (but analogous) proof so that the
reader has the option to see what assumptions on p enter the claim at which
point and observe that in many cases slightly weaker assumptions on p suffice.

4. The datum

In this section we define the notion of a datum of G and what it means
for a datum to be contained in a smooth irreducible representation of G(k).
In Section 6 (Theorem 6.1) we will show that every irreducible representation
contains such a datum. From this result we will deduce in Section 7 (Theo-
rem 7.12) and Section 8 (Theorem 8.1) that every irreducible representation
contains a type of the form constructed by Kim-Yu ([KY17]) based on Yu’s
construction of supercuspidal representations ([Yu01]) and that Yu’s construc-
tion yields all supercuspidal representations.

Definition 4.1. Let n € Z>o. An extended datum of G of length n is a
tuple
(@, (ri)1<i<n, (Xi)1<i<n, (Gi)1<i<nt15 (P0s Vo))
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where

(a) 11 >1rg > -+ > ry > 0 are real numbers;

(b) Xi€g;_,, \gikm+ for 1 <i<m;

(c) G=G12G2 2G5 2D -+ 2 Gpyq are twisted Levi subgroups of G;

(d) = € B(Gn+1, k) C B(G, k);

(e) (po,Vp,) is an irreducible representation of (G, )z.0/(GF)) 40+
satisfying the following conditions for all 1 < ¢ < n:

(1) X; € g: = Lle(Gl)(k)* C g%

(if) X; is generic of depth —r; at z € B(G;, k) as element of g} (under the

action of G;);

(111) Gi+1 = Centci (Xz)

A truncated extended datum of G of length n is a tuple

(@, (ri)1<icn, (Xi)i<i<n, (Gi)i<i<n+1)
of data as above satisfying (a) through (d) and (i) through (iii).

Note that a truncated extended datum of G of length 0 consists only
of a point = € Z(G, k) and the group G, and an extended datum of G of
length 0 consists only of a point = € B(G, k), the group G, and an irreducible
representation of (G), o/(G9"), 0. We are mainly interested in extended
data of positive length.

Definition 4.2. Let n € Z>p. A datum of G of length n is a tuple
(@, (Xi)1<i<n, (po, Vp,)) consisting of a point x € HA(G, k), elements X; € g*
for 1 <4 < n and an irreducible representation (po, Vpo) of

n der n der
(CentG (Z Xi>> (k) N Gap / (CentG (Z Xi>> (k) N G
i=1 =1

for which there exist real numbers 11 > ro > --- > 1, > 0 and a sequence
of twisted Levi subgroups G = G; 2 G2 2 G35 2 -+ 2 Gy of G such that
(.’E, (Ti)lgign; (Xi)lgigna (Gi)1§i§n+17 (po, VPO)) is an extended datum.

A truncated datum of G of length n is a tuple (z, (X;)1<i<n) consisting of
a point € (G, k) and elements X; € g* for 1 < i < n for which there exist
real numbers 1 > r9 > -+ > r, > 0 and a sequence of twisted Levi subgroups
G=G1 2G22 G322 Gpyy of G such that

(@, (i) 1<i<ns (Xi)1<i<n, (Gi)1<i<n+1)
is a truncated extended datum.

Given a truncated datum (z, (X;)1<i<n) or a datum (x, (X;)1<i<n, (P0; Vpy))
of G of length n, we denote by (z, (73)1<i<n, (Xi)1<i<n, (Gi)1<i<n+1) the unique
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truncated extended datum containing it or by

(z, (ri)1<i<n, (Xi)1<i<n, (Gi)i1<i<nt1, (P0, Vi)

the unique extended datum containing it, respectively, as in Definition 4.2.

Remark 4.3. There are two main differences between a datum and the
input for Yu’s construction in [YuO1]. The first difference is that we only work
with elements X; € g* and not with characters of G;+1(k). The second differ-
ence is that (po, V,,) is an irreducible representation of (G%,)4.0/(GI )z 0+
that might not be cuspidal. The representation (po, V},) is more a place holder
at this point that appears in some sense naturally in Section 6, and from which
we have to extract a cuspidal representation that forms the input for Yu’s con-
struction in Section 7 (Lemmas 7.8 and 7.10). Thus our datum can be viewed

as a skeleton of the input for Yu’s construction.
For later convenience, we note the following lemma.

LeMMA 4.4. If (z, (X;)1<i<n) 15 a truncated datum of G, and y is a point
of B(Gnt1,k) C B(G, k), then (y, (Xi)i<i<n) 5 also a truncated datum of G.

Proof. This follows from Lemma 3.6. O

In order to relate a truncated datum (z, (X;)i<i<n) or a datum

(z, (Xi)1<i<n, (po, Vi)

to representations of G(k), we introduce the following associated groups for
1<i<n+1:

o Hy:=G1if G1 = Gy and Hy := G if G; # Go;

e H; := G?er for i > 1;

o (Hi)pi = Gopy N Hi(k) = (Hi)g, 5 for 7 € Rog :=Rso U {r + | r € Rx},
where z; denotes the image of x € B(G;, k) in B(H;, k). In order to define

r ~

another subgroup (H;), 5 of G(k) for ¥ > 7 > £ > 0 (7,7 € I@) and 1 <
i < n, we choose a maximal torus T of G,y such that z € &/ (T, E), where E
denotes a finite tamely ramified extension of k over which T splits. Then we

define
(Gi)x,?f’ .= G(k) N <T(E)% UQ(E)%;’ Uﬁ(E)w,?’ |a S (I)(GZ,T) C @(G,T)a
Bed(GyT)— ®(Gi1,T)),

where Uy (E),, denotes the Moy—Prasad filtration subgroup of depth r (at x)
of the root group U, (E) C G(E) corresponding to the root «, and

(Hi)z i = Hi(k) 0 (Gi)a -

Note that (Gi)xﬂ?ﬂm is denoted (G411, Gi)(k)zif,?’ in [Yu01]. Yu ([YuO1, pp. 585
and 586]) shows that this definition is independent of the choice of T and E.
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We define the subalgebras b;, (h;),# and (h;), 75 of g analogously. For conve-
nience, we also set r,+1 = 0.

Definition 4.5. Let (, V) be a smooth irreducible representation of G(k).

A datum (z, (X;)1<i<n, (po, Vp,)) of G is said to be contained in (m, V) if

i<n H;)z,r, .
VWUIS nt1((Hi)arit) contains a subspace V' such that

® (T|(H,41)000 V') is isomorphic to (po, V),) as a representation of

(Hn+1)x,0/(Hn+1):r,O+7

and
. (Hi)z,ri,%-s-/(Hi)z,m-s- o~ (hi)x7”%+/(hi)z’”+ acts on V' via the character
poX; for 1 <i<n,
where we recall that ¢ : k — C* is an additive character of k£ of conductor P
that is fixed throughout the paper.
Similarly, (m, V) is said to contain a truncated datum (z, (X;)1<i<n) if

Ur<i<n (He)a,r;+) : . : .
Vyp ==Y contains a one dimensional subspace on which

(Hi)xmi,%—‘,-/(Hi)ﬂfJ'i“r = (hl)x7r“%+/(hl)ﬂf7rz+
acts via po X; for 1 <i < n.

The data that we are going to use to extract a type from a given repre-
sentation are the following.

Definition 4.6. Let (7, V;) be a smooth, irreducible representation of G(k).
We say that a tuple (x, (X;)1<i<n, (P0; Vp,)) s a mazimal datum for (m, Vy) if
(@, (Xi)1<i<n, (Po; Vpy)) is a datum of G that is contained in (, V) such that if
(', (Xi)1<i<n'» (P> V) is another datum of G' contained in (7, Vz), then the
dimension of the facet of B(Gp41, k) that contains z is at least the dimension
of the facet of B(G,+1,k) that contains .

5. Some results used to exhibit data

In order to prove that every irreducible representation of G(k) contains a
datum, we first prove a lemma and derive some corollaries that we are going
to repeatedly use in the proof of the existence of a datum in Section 6. (The
reader might skip this section at first reading and come back to it when the
results are used in the proof of Theorem 6.1.)

LEMMA 5.1. Letxz € B(G,k), r € Rsg, and let X € g*—{0} be generic of
depth —r at x. Write G' = Centg(X), ¢’ = Lie(G')(k), and let T be a mazimal
torus of G' that splits over a tamely ramified extension E of k and such that
e d(T,E)NB(G, k). We set t=Lie(T)(k), '=gN (@ae@(G’,TE)(gE)a) cyg
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and v = gn (EBae@(G,TE)—@(G’,TE)(gE)a>7 and we denote by i* the subspace

of elements in g* that vanish on t® v =g'. Then
(a) The map fx : " — g* defined by Y — (Z — X([Y,Z])) is a vector
space isomorphism of v onto j*, and fx(*" Ngy,) =" Ngk .., for

r e R.
(b) Let d be a real number such that § < d < r. For every 0 < e < %1, if
Ceij*n 9;,7(d+e)’ then there exists g € Gpr—q—c C Gzo4+ such that

(i) Ad(9)(X + O)lg., = Xlg,.;
(ii) Ad(Q) (X + C)'t”ﬁgzyd_*_ =0= X‘t”ﬂgz,d_*_;
(ili) if (7, V) is a representation of G(k) and V' is a subspace of Vy on
which the group

G(R) (VT (E) s UalB) (104 Us(E)arilor € (G, Tp) — &(C', Tp),
B e DG, Tr))

acts trivially and that is stable under the action of a subgroup H of
G’der(k)ﬁGx7(2d_r+2e)+, then g~ 1Hg preserves V' and (97|, V') =
(T‘—‘H7 V/)v

where Ad denotes the contragredient of the adjoint action.

Proof. (a) Let Y € v”. Recall that [(gr)a, (8£)s] C (9E)ats for o, €
®(G,Tg), a # —f (where (gp)ats = {0} if a + 5 ¢ ®(G,TE)). Hence, if
Z €t/ then [Y, Z] € ¢/, and X([Y, Z]) = 0 by Lemma 3.6. Similarly, if Z € t,
then [Y, Z] € ¢, and X([Y, Z]) = 0. Thus the image of the linear map fx is
contained in j* C g*.

Choose a Chevalley system {z, : G, = Gg|a € ®(G,Tg)} for Gg with
corresponding Lie algebra elements {X, = dzo(1) | € ®(G,Tg)}. Then for
a € (G, Tg)—®(G', Tg), we have [X,, X_o] = H, = d@(1). Hence, extending
fx linearly to v’ ® F, the element fx(X,) in j* ®; E is a map that sends
Xg to cd_qp for B € ®(G,Tg) — ®(G',Tk) for some constant ¢ € E with
val(c) = val(X (H,)) = —r, by Lemma 3.6. From this description, we see that
d(z, fx(Xa)) = —r—d(z,X_o) = —r — (—a(z)) = a(x) — r while d(z, X,) =
a(z). Thus fx (v @k E N (gE)z,) =i" @k BN (85)z—r, and hence fx (v N
Oz) = 3 N (9")z,m—r because E is tamely ramified over k. In particular,
fx : v —j* is a vector space isomorphism.

(b) By (a), there exists Y € " of depth > r —d — e > 0 such that
C = X([Y,]). Let exp denote a mock exponential function from g, ,_4— to
Gy r—d—c as defined in [AdI98, §1.5]; i.e., if Y = Zaeé(G’TE)_¢(G,7TE) aa X, for
some a, € F, then

exp(Y) = H Ta(aq) mod G(E):Jc,2(r—d—e)
a€®(G,T)-2(G"TE)

This content downloaded from
152.3.43.45 on Tue, 07 Sep 2021 20:46:53 UTC
All use subject to https://about.jstor.org/terms



TYPES FOR TAME p-ADIC GROUPS 323

(viewing exp(Y') € G(k) inside G(E)) for some fixed (arbitrarily chosen) order
of the roots ®(G,Tg) — ®(G',Tg). We set g = (exp(—Y))~!. Note that
Y € gy r—d—e implies that z4(—aq) € G(E)gr—d—e.

Let Z € g, for some 7’ € R. Then by [AdI98, Prop. 1.6.3], we have

Ad(g™")(2)=Z +[-Y, Z] mod g, i2(r—a—e)-

Hence, using that g € Gy r—g—c, X € 95 _,,C € g} (d+e) Y € gz r—q—e and
€< %, we obtain
Ad(g)(X +C)(2) = X(Ad(g™)(2)) + C(Ad(g™1)(2)) = X(2) for Z € ga.,
and
Ad(9)(X +C)(Z) = X(Ad(g™")(2)) + C(Ad(g~")(2))
=X(Z+[-Y,Z)+C(Z2)=X(2)
for Z € " N gy a4 (using C = X([Y,])).
To prove the remaining claim, observe that for
heHC G/(k) n Gl‘,(Zd*’l"‘rQC)«‘r?
a € ®(G,Tg) — ®(G',Tg) and xq(an) € G(E)zr—d—,

we have x4 (aq)h2o(as) "t = h - u for some u in
(Ua(E)y (a1e+ | o € (G, Tg) — (G, Tp)),
and hence
ghg™' =h -/ mod G(E)y,+
for some v’ in (Uo (E)y (4o + | @ € ®(G, Tg) — ®(G', Tg)). Thus w(ghg™') and
w(h) agree on V. O

COROLLARY 5.2. Let n be a positive integer and (z, (X;)1<i<n) be a trun-
cated datum of length n — with corresponding truncated extended datum

(z, (ri)1<i<n, (Xi)1<i<n, (Gi)1<i<nt1)-

Let 1 < j < n. Choose a maximal torus T of Centy,(X;) C Hj that splits
over a tame extension E of k and such that x € o/ (T, E) N HB(H;, k). Write
t; = Lie(T})(k). Let (m,Vx) be a representation of G(k). Let d,e € R such that
¥ <d<rjand ri—d
Ulfigj(H’i)l‘ﬂ”i+ . 3
Vi on which (HZ)$T1%+/(HZ)JCH+ o~ (hi)x,m%+/(hi)w7”+ acts via
@ o X; for 1<i<j—-1 and (Hj)z,rjfe,dJr/(Hj):r,rj—&- = (hj)z:,rjfe,de/(bj)x,rj—i-
acts via p o (X; + C) for some C € (b})y,—(41e) that is trivial on t; + bji1.
Then there exists g € (Hj)yr;—d—e such that

) V7 = nlg)v? € Vs

> ¢ > 0. Suppose that V' is a nontrivial subspace of
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(i) (Hi)x,ri,l;+/(Hi)ﬂc,Ti+ = (hi)x,n,%+/(hi)x,m+ acts on V" via p o X; for
1<i<j—1:

(111) (H )z 'rJ,dJr/( )J: rit+ — (h])z T],d+/(hj)I T+ acts on V" via ¥ o Xja

(iv) any subgroup H of (Hji1)e,(2d—r;+2¢)+ that stabilizes V' also stabilizes

V" and (7|g, V") ~ (7|g, V).

Proof. Let g € (Hj)s,r,—d—e be as constructed in the proof of Lemma 5.1(b)
applied to the group H; with generic element X; of depth ;. Hence (7|g, V")
~ (7|g, V') by Lemma 5.1(b)(iii). Note that g_l((Hi)xﬁJr)g = (H;)g,r+ for
1< i< j Thus V" c vorsssi®dert g o (), recall that g=! =
Haco(m,. (1)) m)-0(Cent, (X)) @ Ta(—aa)g" with g" € H;(E)g2r,~2d-2 and
To(—aa) € Hj(E)yy;—d—. Hence for h € (H;),,. i for 1 <1i < j we have
g thg = h mod (H;), it (G —d—e) with 7; —d — e > 0, and therefore
(Hi):z,ri,%Jr/( i)ﬂ?ﬂ”ﬁ‘ = (b ):c i 7+/( i):r ri+ acts on V" via poX;. In addi-
tion, we have g~ (H;), rd+g C (H Jarj—edt- Since (Hj)er,—e.dt/(Hj)zr;+ =
(05),r;—e.dt/(B)zr;+ acts via po(X;+C) on V', we obtain from Lemma 5.1(b)
that (Hj)s T],dJr/( i)a it = ~ (b)), 7"J7d+/(bj)z rji+ acts on V" via po X;. O

COROLLARY 5.3. Let n be a positive integer, and let (x, (X;)i1<i<n) be a
truncated datum of length n — with corresponding truncated extended datum

(z, (ri)1<i<n, (Xi)1<i<n, (Gi)1<i<nt1)-

Let T be a mazimal torus of Gni1 such that x € o/ (T, E), set t = Lie(T)(k),
and let (m,Vy) be a representation of G(k). Let 0 < e < ™ such that for
all 1 <1 < n, we have (H-)W,_E’ Ny = (Hl)zm%-s- Suppose that V' is a

Ur<icn (Hi)a,r;
nontrivial subspace of Vi == mrit

() 0/ (i  (00) 70/ (0i)ers

via 7 is given by ¢ o (C; + X;) for some C; € (b;)! —(Tite)
(tN ;) + bhiy1 for all 1 <i < n. Then there exists g e G, 2, C Gz o+ such
that
(1) V// = ( )V/ C VU1<'L<n(H )z Tﬁr’
(ii) (Hi)z,ri,5’+/( Hi)zr+ =~ (hi)z,ri,%+/(bi)z,m+ acts on V" wvia p o X; for
1<t <n;
iii) any subgroup H of (Hp41)z,2¢+ that stabilizes V' also stabilizes V" and
+ +
(7T|H7VN) — (T(‘H7 )

Proof. Since (H;), .. niy = (Hi) o, iy for all 1 < ¢ < n, we can apply

on which the action of

that is trivial on

Corollary 5.2 successively for Jj=12,...,n withd = 5, %,..., 3, respec-

tively. We obtain g =g, -... g1 € (Hn)w,T—e .o (Hy), 22— C Gy, rn_e such
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Ui<i<j— ((HL)I,TZ ) .
that 7(g)V’ C Vy ==/ *’ and the action of (Hl)m”%Jr/(Hl)g”Hr ~
(hi)xﬂ,%Jr/(f)i)LE’”Jr on 7(g)V’ via 7 is given by ¢ o X; for 1 <4 < n, and the
action of any subgroup H of (Hy41)g2¢+ that stabilizes V' also stabilizes V"
and (7|g, V") ~ (7|, V). O

COROLLARY 5.4. Let n be a positive integer, and let (x, (X;)i1<i<n) be a
truncated datum of length n — with corresponding truncated extended datum

(, (ri)1<i<n, (Xi)1<i<n, (Gi)1<i<n+1)-

Let (7, Vy) be a representation of G(k). Let 0 < e < " such that (Hp)zr,—2¢ =

i Hz xT,r;
(Hn)zr,. Suppose that V' is a nontrivial subspace of VWU19§”( it on

which the action of (H;), . i [(Hi)zri+ = (0i)y,. miy/(Di)ar+ via 7 is given
T 2

by po X; for all 1 < i < n—1, and the action of (Hp)zr,/(Hp)zrm+ =

(0n)z,rn/(Bn)zrn+ via m is given by ¢ o X,. Then there exists a subspace

U q n(Hi)z,u
V" C Vs " such that (Hi)y g, 7y /(Hi)a it = (0i) g, 70/ (00)arit
acts on V" wvia po X; for 1 <i < n.

Proof. Let T be a maximal torus of Gy4+1 with Lie algebra t = Lie(T') (k).

Let d = max(%, 7, — 3¢). Note that the commutator

H (Hi)x,ri’%+(Hn)Iyrn7 (Hn)x,rn,d-i-
1<i<n—1

acts trivially on V' and hence we can replace V' without loss of generality by
7((Hn)zn,d+)V'. Since (Hp)zrn—2¢ = (Hp)ar,, the action of (Hy)gr,—cdt
on V' factors through (Hp)gr,—cd+/(Hn)zr.+ and, after replacing V' by a
subspace if necessary, is given by ¢ o (X, + C3) for some C3 € (bh,): —(rn—20)

that is trivial on t N b, + hrt1. Applying Corollary 5.2 for j = n and d =

max (%, r, — 3€), we obtain g3 € (Hy)z, such that w(g3)V’' C VWUISiS"(Hi)z’Ti+,

the group (I{i)m’ri’%Jr/(Hz»)m,m.Jr o~ (hi)x’”%Jr/(hi)szr acts on 7(g3)V’' via
polX; for1<i<n—1and (Hn)x,rn,d—i—/(Hn)w,rnJr =~ (bn)x,rn,d+/(bn)x,rn+ acts
on 7(g3)V’ via po X,,. Replacing V' by 7(g3)V’ and using the same reasoning,
we can apply Corollary 5.2 for j =n repeatedly with d=r, —4e, r, — be, r, —
6e,...,rn— (N —1)-€,7, — N -¢, % (and replacing V' at each step if necessary),
where N is the largest integer for which N -e < 7. After the final step

i H’L x,r; .
we obtain a subspace V" C VTFU19S"( St o0 which (Hi)x’”%Jr/(Hi)z,th

~ (hi)y . ﬁ+/(f)i)z,ri+ acts via p o X; for 1 <i <mn. [l
3Ty

6. Every irreducible representation contains a datum

THEOREM 6.1. Let (7, Vy) be a smooth irreducible representation of G(k).
Then (7, Vy) contains a datum.
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Proof. The strategy of this proof consists of recursively extending the
length of a truncated datum contained in (7, V) until a certain function f
defined below is zero. We then show how to turn this truncated datum into a
datum that is contained in (m, V;).

More precisely, for the recursion step, we let j be a positive integer such
that (7, V) contains a truncated datum (z;_1, (X;)1<i<j—1) of G of length j—1.
We will then show that (7, Vy) contains a truncated datum (x;, (X;)i<i<;)
of G of length j and repeat the recursion or that (m, V) contains a datum
(wj—1, (Xi)1<i<j—1, (po, Vpy)) and the proof is finished. Since G; C G;—; for
i > 2, the recursion has to terminate after finitely many steps.

The base case of the recursion is given by j7 = 1, in which case we let
xo = xj—1 be an arbitrary point of # = %(G, k) and denote by rg = rj_; the
depth of (7, V) at .

To perform the recursion step, let j be a positive integer such that (7, V;)
contains a truncated datum (z;_1, (X;)i1<i<j—1) of G of length j —1, and write
B; = B(Gj,k) C B, where the inclusion of Bruhat-Tits buildings is as
explained in Remark 3.9. We define a function f : %; — Rxq U oo as follows:
For y € %;, we set f(y) to be the smallest non-negative real number r; such
that

e the truncated datum (y, (X;)i1<i<j—1) is contained in (m, Vy);

e there exists X; € (g;);, _,, almost stable, where g; = Lie(G;)(k); and
Ur<i<i—1((Hi)y,r;+)

L C Vi

=Ty
o there exists V;
satisfying the following two properties:

(a) for 1 <i < j—1, the group
(Hi)ymi,%i-;-/(Hi)y,nJr = (hi)y,ri,%-q-/(bi)y,rﬁr

associated to (y, (X;i)1<i<j—1) acts on Vj_1 via ¢ o X; (this condition is

automatically satisfied for j = 1); and

(H]')yﬂ“j+ . P / .
(b) Viii contains a nontrivial subspace V; such that if r; > 0, then

(Hj)y,r; /(Hj)yri+ = (05)yr;/(05)y,r;+ acts on V] via p o Xj.
If such a real number r; does not exist, then we set f(y) = oo.

Note that (y, (X;)1<i<j—1) is a truncated datum of G by Lemma 4.4. More-
over, f is well defined, because the Moy—Prasad filtration is semi-continuous
and for every r € R, every (g;);, ,4-coset contains an almost stable element.
(For example, take an element dual to a semisimple element under the non-
degenerate bilinear form B provided by [AR00]; see Remark 3.10.) In addition,
by our assumption, f(z;—1) < rj—1 (because if j > 1, we could take X; = 0
for 7; = rj_1). In the case j = 1, the real number f(y) is simply the depth of
(m,Vz) at y.
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LEMMA 6.1.1.
(i) f(g.x) = f(zx) for all v € Bj and g € Gj(k).
(ii) The subset f~Y(Rxo) of B; is open in B; and the function f : B; —
R U oo is continuous on f~H(Rxo).
(iii) The subset f~1(R>q) of B; is closed in B, hence equal to B;.

Proof of Lemma 6.1.1.

Proof of part (i). Observe that X; (1 < i < j) and G; (1 < i < j) are
stabilized by G;(k), hence the G;(k)-invariance of f follows.

Proof of part (ii). If j = 1, then f(x) is the depth of 7 at x, and the
claim is true. Hence we assume j > 1. Let (z,(X;)i<i<j—1) be a truncated
datum contained in (7, Vy), X; € (g;)% _f(z) almost stable and ViC Vi C

Vﬂulfiﬁjfl((m)wﬁ) satisfying conditions (a) and (b) above. If f(z) > 0, then

set 7; = f(x), otherwise let 0 < r; < rj_; be arbitrary. For 1 < i < j —1,
let d; < r; be a positive real number such that (Gi)zr,—a; = (Gi)zr,- Note
that d; > 0 exists for 1 < ¢ < j — 1 by the semi-continuity of the Moy—Prasad
filtration.

Let min{%,%ﬂ <i<j—1}>€>0, and let y € B; with d(z,y) < e.
Let T' be a maximal torus of G; that splits over a tamely ramified extension
E of k such that « and y are contained in & (Tg, E). Then (y, (X;)i<i<j—1)
is a truncated datum by Lemma 4.4. By the normalization of the distance
d on the building %, we have |a(z —y)| < d(z,y) < € for all « € (G, Tg).
Hence, since X; vanishes on g; N GBaE@(Gi,TE) g(E)q for 1 < i< j—1, we have

i<j—1((Hi)y,r;
Vj/ - VWUlg <s=1((Hi)y.rit) and the commutator

H (Hi)ym_di L_,_(Hj)yﬂ"ﬁea H (Hi), 4 7'i+(Hj)y7Tj+€

=%, A y,ri— 2, L

1<i<j—1 202 1<i<j—1 202

is contained in [ [;.;; ;1 ker(p o X;)|(m,) (Hj)z,r;+- Hence, adjusting V/
TS z,T

y :
ymﬁ%,%Jr)V;), the action of

i g+
if necessary (to a subspace of m([[;<;<;_1(H;)

(Hi)y o de oo [(Hi)yrir = (0a) v /D)yt
via 7 on V} is given by
o (Ci+ X;)
for some C; € (h;)* being trivial on (t N ;) + hiyq for all 1 < ¢ <

y,—(F+e)
j — 1. Moreover, X; € (g;);,r; C (8;)},—r,—c> and the action of (Hj)y,r;+e
on Vi, factors through (Hj)yr;te/(Hj)y oy +e)+ = (07)yrj+¢/ (05)y,r+e)+> 00
which it is given by ¢ o X; (which, as an aside, yields the trivial action).
By Corollary 5.3, there exists g € Gy"‘]‘i—l C Gy,o+ such that 7(g)V] C
’ 2

—€
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V;J1§¢§j—1((H¢)y,ri+), the action of (Hl)yn%+/(Hl)y”+ o~ (hi)y7ri,%+/(bi)y7ri+
on m(g)V] via 7 is given by ¢ o X; for 1 < i < j — 1, and the action of
(Hj)y,rj+e C (Hj)yzer on m(g)V] factors through (Hj)yr+e/(Hj)y, (rj4e)+ =
(05)y.rs4+¢/ (07)y,(r;+e)+ and is given by ¢ o X;. Thus f(y) < r;j + €. Hence the
set f71(Rxo) is open in %;.

Moreover, if f(z) = 0, then this implies that f is continuous on f~(Rxo),
because f(y) > 0 and r; > 0 can be chosen arbitrarily small in this case.

It remains to prove continuity around @ in the case f(z) = r; > 0. Sup-
pose f(y) < rj —¢, and let X} € (gj);;’_(rj_s)Jr be almost stable satisfying
condition (b) above. Note that (Gi)y,n.,% = (Gy)y,r, for 1 <i < j—1. Hence,
by the same reasoning as above (switching = and y), we deduce that f(x) < r;,
a contradiction. Thus f(y) > r; — € and f is continuous on f~1(Rxo).

Proof of part (iii). Suppose y € %, is in the closure of f~!(R>¢), and let
d > 0 be sufficiently small such that for all » € R>gq with Gy, # Gy, we
have Gy ,—q = Gy,. Let 2 > € >0 and z € f~}(Rx() with d(z,y) < e. Then
Gay # Gy py implies Gy r_gyoe = Gop (if r € R>4_9), hence Gx,r—% = Gar,
and G o+ = Gxg. Thus we can apply the proof of part (ii) to deduce that

f(y) is finite. |:lLemmaL 6.1.1

Since f is Gj(k)-equivariant, continuous, bounded below by zero, and the
fundamental domain for the action of G;(k) on %; is bounded, there exists a
point z; € %; such that f(z;) < f(z) for all z € B;. Define r; = f(x;), and
note that r; < f(z;—1) < rj_1.

We distinguish two cases.

Case 1: r; > 0. Let (z;, (Xi)1<i<j—1) be a truncated datum contained
in (m,Vz), X; € (g;);,, almost stable and V] C V1 C Vﬂulgigjfl((Hi)z'r”)
satisfying the conditions (a) and (b) above.

LEMMA 6.1.2. The element X; of g; is almost strongly stable at x; € B;.

Proof of Lemma 6.1.2. Suppose X; is not almost strongly stable. Since
X; is almost stable, this implies that X; € ((gj)z;.r;/(8))e;r+)* is unstable.
Thus, by [Kem78, Cor. 4.3] there exists a non-trivial one parameter subgroup
A Gy — (Gj)zj in the reductive quotient (Gj);cj of G; at z; such that
lim; o X(t).fj = 0. This means 73 is trivial on the root spaces corresponding
to roots a with (o, A} < 0. Let . be a split torus of the parahoric group
scheme (]P’j)gﬁj of G such that .#} is a maximal split torus of (G;),, contain-

ing A(G,,) and such that .%; is contained in a maximal torus Tj C G; that
splits over a tame extension E of k and whose apartment &7 (Tg, E) N %} con-
tains z;. Let A : G,, — /% be the one parameter subgroup corresponding
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TYPES FOR TAME p-ADIC GROUPS 329

to X. Then for € > 0 small enough, we have (Hj)z,4err; C (Hj)a;r; and
X; € (gj):ﬁex,—ry where z; + e\ € &/ (Tg, E) N %;. Moreover, the im-
age of X, in (gj):ﬁd\ 7rj/(9j):j+e>\ _r,4 I8 trivial. Let 7; > & > 0 such
that the subgroup (Hj)szrE)\Wj,g equals (Hj)zj+eA,rj and therefore acts triv-
ially on Vj/. Analogously to the first part of the proof of Lemma 6.1.1(ii),

for e sufficiently small, there exist d; > 0 for 1 < i < j — 1 such that

Ut<i<j—1((Hi)z+exrm+)
we have Vj’ c Ve = J :

Ui<i<j—1((Hi)a, +ex,r; .
Ve rsigi 1 ((Hidejrer +)) the action of

and (after potentially adjusting V, C

(Hi)xj-‘re)\,ri—%‘%{-/(Hi)IjJFE)"”JF ~ (hi)xj—i-e)\,ri—%,%+/(hi)z.i+€A’ri+

via 7 on V] is given by ¢ o (C; + X;) for some C; € (b;) being

*
szre)\,f(%Jre)
trivial on (t N b;) + hiy1 for all 1 < i < 4, the group (Hj)z;terr;—s acts
trivially on V/, and (z; + e\, (Xi)1<i<j—1) is a truncated datum. Assuming

€ is sufficiently small and applying Corollary 5.3 (or if j = 1, set g = 1), we

Ur<i<j—1((Hi)z 4+ex,r; .
obtain g € Gy, 1ex 0+ such that w(g)V] C Vr tigi=1 (o +), the action of

(Hi)zj+e>\,ri,%+/(Hi)xj+ek,n+ & (bi)1j+€>\,ri7%+/(f)i)xj+g)\7m+ on 7(g)V] via m
is given by po X; for 1 <4 < j—1, and the action of (Hj)z;+exr;—6 on m(g)V]
is trivial. Hence f(xj+€e\) <r;—6 < rj = f(z;), which contradicts the choice
of z;. Thus X; is almost strongly stable. Hhemma 6.1.2

Now we can show that, after changing z; and X if necessary, we obtain
a truncated datum of G of length j that is contained in (7, V).

LeEMMA 6.1.3. There exists a choice of x; and X; as above such that
(x4, (Xi)i<i<j) is a truncated datum contained in (7, Vy).

Proof of Lemma 6.1.3. Let x; and X; be as in Lemma 6.1.2. Let € > 0
be sufficiently small (as specified later). By Proposition 3.12 (applied to G;)

there exist y € #; C % and X € X; + (85, (—r)+ such that d(zj,y) < e,

the element X is generic of depth —r; at y, and z; and y are contained in
A (Centg, (X),k) C %;. Note that for e sufficiently small, we have (H}),, C
(Hj)z;,r; and the action of (Hj)y,; on V] factors through (Hj)y,r;/(Hj)a;r;+
on which it is given by X;. Since X -Xe (hj);(_er_’ this difference is trivial

on (h;)y,r;- Therefore the action of (Hj)y,r;/(Hj)z;r;+ on V] is also given by X,
and, in particular, it factors through (H;), ,,/(H;)ys;+. Moreover, the tuple
(v, (Xi)1<i<j—1) is a truncated datum by Lemma 4.4. Substituting X; by X
and applying Corollary 5.3 (if j > 1) as in the proofs of Lemmas 6.1.1 and 6.1.2
and possibly substituting V by m(g)V] for some g € Gy 0+, we can achieve that
(a) and (b) above are satisfied at the point y. This implies that f(y) = r;.
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330 JESSICA FINTZEN

Note that (y, (Xi)i<i<j) is a truncated datum. (If j > 2, then G; #
Centg, (X;), because otherwise X;(h;) = 0 and hence f(x;) would not be
minimal.) By Corollary 5.4 this truncated datum is contained in (7, V;).

|:lLemma 6.1.3

This finishes the recursion step. Since G; C G;_1 for j > 2, after repeating
this construction finitely many times we obtain an integer n and a truncated
datum (zn, (X;)1<i<n) contained in (7, Vz) with 41 = 0; i.e., we move to the
second case.

1<j Hi T 5,7
Case 2: r; = 0. Let V}’ be the maximal subspace of VWulS < ((Hdejorit)

satisfying (a) and (b) above. Note that (H;)z; 0 stabilizes V], because (H})z;,0
centralizes X; and stabilizes (Hi)ggj,,aﬂr and (Hi)gcj’ri%Jr for 1 < i < j. Let
(po, Vp,) be an irreducible (Hj)z;0/(Hj)z;04-subrepresentation of V} viewed
as a representation of (Hj)mﬁo/(Hj)zﬁng. Then (zj, (Xi)1<i<j—1, (P0; Vpy)) is
a datum contained in (7, V). O

Remark 6.2. In the next section we will use the existence of a maximal
datum for a given representation (m, V) to deduce the existence of a type for
(m, Vz). Note however that a datum itself might not determine the Bernstein
component; i.e., a given datum might be a maximal datum for representa-
tions in different Bernstein components. If one is interested in determining the
Bernstein component uniquely, one has to enhance the datum slightly (to a
representation of (M, 11)z, where M, 11 is a Levi subgroup of G,,+1 that we are
going to attached to x and G441 in Section 7, page 331). Such an enhancement
determines the Bernstein component uniquely by [KY17, 10.3 Th.], which is
based on the work of Hakim—Murnaghan [HMO08] for supercuspidal representa-
tions. The assumption required in Hakim—Murnaghan was removed by Kaletha
in [Kall9, Cor. 3.5.5].

7. From a datum to types

Let (7, Vy) be a smooth irreducible representation of G(k), and let

('75’ (Xi)lﬁiﬁm (p07 VPO))

be a maximal datum for (, V), which exists by Theorem 6.1. In this section
we show how to use this datum in order to exhibit a type contained in (7, V;).
In order to do so we will define characters ¢; : Git1(k) — C of depth r;
for 1 <4 < n and a depth-zero representation of a compact open subgroup
Kg, ., of Gyi1(k) that contains (Gy11)z,0. We will prove that these objects
satisfy all necessary conditions imposed by Kim and Yu ([KY17]) so that Yu’s
construction ([YuO1]) yields a type. In Theorem 7.12 we will conclude that the
resulting type is contained in (7, V).
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Recall that Moy and Prasad ([MP96, 6.3 and 6.4]) attach to « and Gp41
a Levi subgroup M, of G,11 such that © € B(My,11,k) C B(Gpi1,k) and
(Mp41)z,0 is a maximal parahoric subgroup of M,,1(k) with

(MnJrl)x,O/(MnJrl)x,OJr ~ (Gn+1)m,0/(Gn+l)z,0+o

We denote by (M;,11), the stabilizer of © € B(My41,k) in My41(k). Then we
define following Kim and Yu ([KY17, 7.1 and 7.3]) the group Kg, ., to be the
group generated by (Mp41)s and (Gpi1)z,0-

Let V' be a subspace of V; as provided by Definition 4.5 for the da-
tum (x, (X;)1<i<n, (Po, Vp,)) contained in (m, V), and let V be the irreducible
Ka, , -subrepresentation of V; containing V’. Note that any ¢ € Kg, , C
(Gry1)s centralizes X; for 1 < ¢ < n and hence stabilizes (H;)gr,+ (1 <@ <
n+1). Thus V is contained in unlsignﬂ((Hi)x’”J’).

Moreover, let T be a maximal torus of M, 11 C G,41 whose apartment
contains . Then, for t € T(k)o+ and g € K¢ we have tgt~lg7! €

(Hp+1)z,0+- Hence, if v € V is an element such that T(k)o+ preserves C - v,
then T'(k)o+ also preserves C - gv and acts on both spaces via the same char-

n+1?

acter. Since V' is an irreducible K¢, ,,-representation, we deduce that T'(k)o4
acts on V' via some character ¢r (times identity).

Before using ¢ to define the characters ¢;, we recall Lemma 3.1.3 of
[Kall9].

LeEmMA 7.1 ([Kall9]). If r € Ryg and1 - A - B — C — 1 is an
exact sequence of tori that are defined over k and split over a tamely ramified
extension of k, then

1— A(k)y — B(k)r = C(k)r — 1
1S an exact sequence.

COROLLARY 7.2. Let v € Ry and 1 < j < n+ 1. Then (Gj)z,r is
generated by T'(k), and (Hj)g,r.

Proof. Note that T'N H; is a maximal torus of H; ([Conl4, Exam. 2.2.6]).
Then by Lemma 7.1 the map T'(k), — (T'/T N H;)(k), = (G;/H;)(k), is sur-
jective, and hence T'(k), also surjects onto G;(k)zy/H;j(k)syr C (Gj/Hj)(E),.
(That Gj(k)., maps to (Gj/H;)(k), can be seen by considering a tame exten-
sion over which T splits.) O

Now we define ¢; recursively, first for ¢ = n, theni=n—1,n—2,...,1.
Suppose we have already defined ¢y,...,¢;41 of depth r,,... 711 for some
1 < j <n (j =n meaning no character has been defined yet) such that

T Hy )00 = PrlTR)NH 1104 - - Pit1l TN (H11)0 04 - 1dyy 0D V.
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332 JESSICA FINTZEN

Then we let ¢ = 1 - Pnl7p,, - ...¢>j+1|;(1k)0+, which is trivial on T'(k) N
(Hj+1)z04+ = (TN Hjz1)(k)o+ and on T(k) N (Hj)zr;+ = (T N Hj)(Kk)r,+. By
Lemma 7.1 we have (Gj+1/Hj+1)(k‘)0+ ~ T/(T N Hj+1)(k)0+ ~ T(kj)o+/(T N
Hji1)(k)ot+. Hence ¢ defines a character of (Gjt1/Hj+1)(k)o+ that extends
via Pontryagin duality to some character % of (Gj41/Hjt+1)(k). Restricting 5;
to the image of Gj11(k), we obtain a character of Gj11(k) that we also denote
by q~5; Note that QE; is trivial on Hj;1(k) and $;|T(k)0+ coincides with ¢
Similarly, the character ¢ gives rise to a character qZ;; of (G;/H j)(k)rj+A that
can be extended and composed to yield a character (also denoted by (b;) of
Gj(k) that is trivial on H;(k) and coincides with 5; on T(k)pq. If j =1,
we may and do choose (;32 to be the trivial character. We define ¢; = (Eg .
(é})_lbj“(k)- Then ¢; has depth r; (because by considering a tame extension
that splits the torus T', we see that Gj+1(k)zr;+ maps to (Gj11/Hj1)(k)r;+ =~
T(k)rj+/(T N Hj+1)(k:)rj+; or use Corollary 7.2) and

TP (B (H a0 = OnlTUNH ) w0r - - PilTUIN(H )00y - 1dy o0 V.

LEMMA 7.3. For 1 < j < n, the character ¢; : Gji1(k) — C* satisfies
the following properties:

(i) ¢; is trivial on (Gjt1)e,r,+ and on Hjiq1(k);
(ii) ¢j‘(H_7)z,rij_7+1(k) factors through

(Hj)ar; NGit1 (k) (Hj)ar;+ NGir1 (k) 2= ((05)ar; N8541)/ ((05)a.r;+ N8j41)

and is given by @ o Xj‘(bj)z,1»jﬂgj+1§

(ili) ¢; is Gj-generic of depth rj (in the sense of [YuOl, §9]) relative to x;
and B

(iv) the group (Gni1)w0+ acts on'V via 1<« il (Gpir)aos -

Proof. Part (i) follows immediately from the above construction.

For part (ii), note that using Corollary 7.2 we see that (H;).»,NGj+1(k) =
Hj(k) NV (Gji1)e,r, is generated by T'(k),, N H;(k) and (Hj11)z,r;- Since ¢; is
trivial on Hj1(k) and coincides with ¢ on T'(k),; N H;(k), the claim follows
from the properties of V' in Definition 4.5.

For part (iii), note that by part (ii) there exists Y € (g;+1); _,, such that
Y'is trivial on b; and ¢jl(c,,,),,,, 1s given by the character of

(Gj+1)w,rj/(Gj+1)x,rj+ = (gj-&-l):r,rj/(gj-&-l)x,rj—&-

arising from ¢ o (Y + Xj;). Since Y is trivial on bhj, the element Y is fixed
under the dual of the adjoint action of Gj11 on gj;1. Hence by the definition
of Gj41, the group G11 centralizes Y + X ;. Moreover, if T is a maximal torus
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of Gj11, and o € (G}, T3) — ®(Gj41, T3), then H, € (b;); and hence
val((Y + X;)(Hy)) = val(X;(Ha)) = —7,

where the last equality follows from Lemma 3.6. Since p is not a torsion prime

for the dual root datum of G; by Lemma 2.2(a), (d) and (e) (applied to the

dual root datum of G;), the character ¢; is Gj-generic of depth 7; by [Yu0l,
Lemma 8.1].

Part (iv) follows from the observation above that ¢1|7x),, = ¢T'¢"|;(lk)o+'

. gi)2|;(1k)0+ and that (Hp41)g04+ acts trivially on % together with Corol-

lary 7.2. O

COROLLARY 7.4. The irreducible representation

—1 [
H ¢'L |KGn+1 ’ 7T|KGn+17V
1<i<n
of Ka,,, is trivial on (Gpy1)eo0r and its restriction to (Hyy1)z0 contains
(po, Vyy) as an irreducible subrepresentation.

Proof. This is an immediate consequence of Lemma 7.3(i) and (iv) and
the definition of V. O

Recall our convention that by “type” we mean an s-type for some inertial
equivalence class s € J. In order to obtain a type for our representation (7, V;)
of G(k) using the construction of Kim and Yu in [KY17] we denote by 7, the
depth of the representation (7w, Vy), i.e., rpr =r1 if n > 1 and r, =0 if n = 0,
and we make the following definitions:

C—j (Gn+1,G ...,GQ,GlzG) ifGQ#GlornZO,
i1, Gy G3,Gy =G)  if Gy = Gy,

(G
(FpyTn—1,...,72,71,77) if Go # G1 or n =0,
(T Tn—1,-- ,7’2,7"1) ifG2:G1,

(

5= {éf) Pty P2, 01,1)  if Go # Gyoor n =0,
(Dns -1, P2, 61) if Go = Gh,
K =Kg,,,(Gn)ym - (G1), e
Koy = (Gn+1)z,0+(Gn)x,7" o (Gl) Ra%
Ky = (Gni1)a04 (G, -+ (Gh)p g
K¢y = (Hog1)a01 (Hn)g -+ (H1)y m1s
K = (Hpt1)z,04 (Hn) g, 4 - (Hl) e
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LEMMA 7.5. We have the following identities:

Gn+1 x,0+ Hn x, . (H1>z)L1+ = (Gn+1>x,0+Kfa

= ( )20+ (Hp) g, x

Koy = (Gn+l)x,0+(Hn)w,7" - (Hy), Tl—(Gn+1)m,o+K(ﬁa
= ( )z,0+ (Hn)
( )0+ (

m‘j

Hn+1 z,0+ Hn z,r 7771 ce (Hl)m,rl,%’

H
K+ = (Hpy1 z,0+ Hn)m R (Hl)m,rl,%Jr'

Proof. The first two lines follow from Corollary 7.2. It is clear that

K({i D (Hn+1)$,0+(Hn):ﬂ,rn,% o (Hl)z 1, 2

In order to prove the fourth identity, it remains to show that

(Hi)x,%+ - (Hn+1)z,0+(Hn)x,r”,%n+ T (Hl)xﬂ’%_‘r

for all n +1 > ¢ > 1, where we recall that r,41 = 0. We show this by

induction. For ¢ = n + 1, the statement is obvious, so assume n > ¢ > 1

and that the statement holds for i + 1. Then (H;i1), niy C (Hiv1), it C

(Hnt1)2.0+ (Hn)a o4 - (H1) gy, n1 4, and it suffices to prove that (H )17%+
= (Hi)xﬂ)%Jr(HiH)m,%Jr, or, equlvalently,

(03)y 4 /D) = (02)y ey + (1)1 )/ (Bi)er

This follows by taking Gal(E/k)-invariants of the following equality (of abelian
groups with Gal(FE/k)-action):

(0i(E))y 7 4/ (0i(E))ar,
= (0i(E)) g, 7/ B0i(E)) s © (i1 (B)) i 1/ (Bi1 (B))ars

where F is a tamely ramified extension of k over which G;11 and Gj split. The
third identity is proved analogously. O

Let pyy be an irreducible representation of K¢, , such that PYu|(Gn 1)e0
factors through (Gr41)2,0/(Gnt1)e,0+ and contains a cuspidal representation
of (Gn+1)z,0/(Gnt1)z0+ - By Lemma 7.3 (iii) and [KY17, 7.3 Rem.]! the tuple

'Remark 7.3. in [KY17] explains how to get the 5-tuple ¥ (using the notation from
[KY17]) from our 5-tuple. The authors mention in this remark that as a last step one “can
then extend/modify ¢ to a family {¢} which is s-generic.” However, by doing so one might
have to change our point z (which is denoted by y in [KY17]) to a nearby point in the
building. In order to keep working with & we will not perform this last modification. As a
consequence the requirement of {¢} being §-generic in Condition D2 of [KY17, 7.2] might not
be satisfied. However, we can still carry out Yu’s construction with our tuple.
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(C_j,a?,f', pyu,(;) satisfies Conditions D1, D3, D4 and D52 in [KY17, 7.2]. Us-
ing this tuple we can carry out Yu’s construction ([YuOl, §4]) as explained in
[KY17, 7.4] to obtain a representation of K that we denote by (7x, Vz, ). (Note
that p # 2 by our assumption that p { [W| and that G is not a torus.) By con-
struction, the representation 7x is of the form pYu®/<é¢;, where pyy also denotes

the extension of py, from K¢, ,, to K that is trivial on (Gn>z%n e (Gl)z’%,
and (/-ed;, V) is a representation of K that depends only on (C_j,ﬁ 5), i.e., not
on the choice of py, ([Yu01, §4] or [Kim07, 12.4]). In particular, (7x |k, , Vrx)
does not depend on pyy.

We denote by ¢; (1 < i < n) the character of KGn+1(Gi+1)x,0Gx,%+
defined in [Yu01, §4], i.e., the unique character of K¢, ,, (Gi+1)I7OGI’%+ satis-

fying the following:

L4 ¢i|KGn+1 (GH»I)J:,O = ¢i|KGn+1 (Gi+1)a:,0'
* dilc L factors through
z, g5

Gori /Gt = 87 /92t = (001 O )y re /(851 O )it

= (@i1)p, 5/ (Gt ) et = (Git1)y iy /(Gig1)arits

on which it is induced by ¢;. Here t” is as defined in Lemma 5.1, i.e.,
v = 9N Boca(G,rm)-0(Gis, 1) (8E)a for some maximal torus T' of Giyq
that splits over a tame extension E of k, and the map gj1 1 ® v/ — gi11
sends t” to zero.
Then Yu proves in [YuOl, Prop. 11.4] that (G;),,. = ((Gi):ﬂr~ riy N ker(@))
i Tir 5
is a Heisenberg p-group with center (Gi)x’”%Jr/ ((Gi)mm’%Jr N ker(gbi)). Let
(wi, Vi, ) denote the Heisenberg representation of this Heisenberg p-group with
central character ;) e Then we observe from the construction of
R
(m(;, V) and [YuOl, Th. 11.5] that <K$|K0+,VK) is irreducible and that the
underlying vector space Vi is @i, Vi,,. If n =0, then the empty tensor prod-
uct is meant to be a one dimensional vector space. In that case (x ¢;| Kot» Vi)
is the trivial one dimensional representation. The restriction of (k 3 Vi) to
(Gz)xn% for 1 < i < n is given by letting (G;)

r; act via the Heisenberg
Z,r,5

representation w; O i STy i i, M ker Ai wi central cnaracter
tati f(Gi),, Gi) gy, iy Nk th central charact
DY AN

q3¢|(Gi) n, on V., and via qASj|(Gi) ., on V. for j #i.
7,5 T ;

2z
T

2Ju-Lee Kim confirmed that “relative to z for all x € Z(G")” in Condition D5 in [KY17,
7.2] should be “relative to y” (using the notation of [KY17]).
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LEMMA 7.6. There exists an irreducible K, -subrepresentation of the rep-
resentation (7|x,, V') that is isomorphic to any one-dimensional K -subrep-
resentation of (7 |k, Vay)-

Proof. By [YuOl, Prop. 4.4], the representation (7mx|x.,Vry) is 6 :=
[Li<i<n bil i L-isotypic. Let (7|, , V") be an irreducible K -subrepresentation
of (mlg,, V' C (W\K+,V). By Lemma 7.3(iv), the group (Gp+1)z,04 acts on
V" via 6. Moreover, by Lemma 7.3(i) and (ii) the restriction 9‘(Hi)m

ﬂ”i,%Jr

for 1 < i < n factors through (HZ)ITI%Jr/(HZ)mZJr ~ (hi)z,ri7%+/(bi)x7m+;

where it is given by ¢ o X; (by the last line of Lemma 3.6). Hence the group

(H;),,, ri, acts on V" via 6 for 1 < i < n. Since (Gypi1)z0+ together with
sty 2

(Hi)xﬂ,%% 1 <i < mn, generate Ky by Lemma 7.5, we are done. O

We denote by N the kernel in K of 0|Kf =[li<i<n ¢i|Kf~

LEMMA 7.7. If n > 0, then Kgi/NH is a Heisenberg p-group with center
K1 /NH
i .
Ifn=0, then K{I /N = KIT/NH.

Proof. Note that [Kf , K] c KI and
[Kg, Ki'] (Hnt1)a,0+ (Hn)ary+,p 4 (HU) gy g C N*.
Thus the center of K¢ /N contains K /N and we have a pairing (a,b) =
0(aba='b~") on K /KH x K{1 /K!. Note that
Ko /K ~ (H1)g iy 0/ (H1) gy 11y @ o @ (Hn)ay,, 7/ (Hn)a it

2
It is easy to check (as done in the proof of [Kim07, Prop. 18.1]) that (-,-) is
the sum of the pairings (-,-); on (HZ)MZ%/(Hz)ml%Jr defined by (a,b); =
bi(aba~b~1). By [Yu0l, Lemma 11.1], the pairing (-,-); is non-degenerate
1 <i < n, and hence the pairing (-,-) is non-degenerate. Thus the center of
K /NH is contained in K /N and therefore equals K /N, Moreover,
the image of 0| is {c € C|c? = 1}, which implies that K /N has order p.
The remainder of the proof works completely analogous to Yu’s proof ([Yu01,
Prop. 11.4]) that the group (Hl)ml%/ ((Hz)xn%“r N ker(éi)) is a Heisenberg
p-group with center (HZ)zn%wr/ ((Hi)z,n_%+ ﬂker(i)ﬁ) for 1 <i < n. We
outline the proof as a convenience for the reader and refer to [YuOl, Prop. 11.4]
for details: We first prove the statement over a tame extension F over which
Gny1 is split, and we denote by K{! (E), K['(E) and N(E) the corresponding
groups constructed over E. By [Yu0l, Lemma 10.1] and the above observations
(over E), it suffices to exhibit subgroups Wy and W, of K\ (E)/N*(E) that
have trivial intersection with the center and whose image in K (E)/K{!(E)
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form a complete polarization. This can be achieved by using positive and
negative root groups, respectively. To conclude that Kéﬂ_ /N is a Heisenberg
p-group, we then embed K¢\ /N* into K (E)/N*(E), observe that by above
its image K{' /K¢ in K{! (E)/K{!(E) is a non-degenerate subspace, and apply
[Yu01, Lemma 10.3].

The second half of the lemma follows immediately from the definition of
K@’ﬂ_ and K f . O

—~

Let (w|k,V) be the irreducible K-subrepresentation of (m, V) that con-
tains V.

LEMMA 7.8. There exists an irreducible representation (p,V,) of K that
is trivial on Koy such that (p ® kg Vp® Vi) ~ (7|k, V).

Proof. Since Koy = Gx,0+K£_ (Lemma 7.5) and G0+ C K4 acts on
Vg via 0], o, (times identity) by [YuO1l, Prop. 4.4], we deduce from the irre-
ducibility of (k q;| Ko.» Vi) mentioned above that also its restriction (s $| Kl Vi)
to K{! is irreducible. Recall that (N$|K$,V,§) factors through KL /N and
KH acts via the character 6| KN (times identity). By Lemma 7.7 and the
theory of Heisenberg representations there exists a unique irreducible rep-
resentation of K{I factoring through KL /N and having K /N act via
the character 6 KU (times identity). On the other hand, Lemma 7.6 and
the observation that [K{ ,K.] ¢ N imply that (7r|Kéf+,/‘7) contains an
irreducible K(ﬁ—subrepresentation on which K acts via the character 0|x,
(times identity), and which therefore is isomorphic to (x $| KoL V) as a K{I -
representation. Moreover, since Koy = K +K(ﬁ_, we deduce from the K -action
that (7|k,,,V) contains an irreducible Ko -subrepresentation isomorphic to
(n$|K0+, Vi). Hence, by [Kim07, Prop. 18.5] (or rather the analogous statement
in our setting that is proved in the same way), the irreducible representation
(m|k,V) of K that extends (m$|K0+7VK) is of the form (p ® kg Vo ® Vi) for
some irreducible representation (p, V) of K that is trivial on Ko ]

7 . - . i<n Hz' x,r;
COROLLARY 7.9. The subspace V is contained in VWUIS <ot (Hie, 1+), and

the action of the group (HZ)$T1%+/(H1)ZH+ o~ (f)i)gc,ri,%+/(hi)z,n+ onV via
w is given by the character p o X; for 1 <1i <n.
Proof. Let 1< i< n. We have (H;),, n, C Ky and (Hyy1)z04 C Ky,
sTiy g

and by Lemma 7.8 the representation (7|x, , V') is f-isotypic. As we saw in the
proof of Lemma 7.6, the character 9\( H), ., factors through
I,T'i, 2

(Hi)$7ri7%+/(Hi)I,7‘i+ = (bi)$7ri,%+/(hi)1,ri+7

on which it is given by ¢ o X;, and 0|y, , ), ,, is trivial by Lemma 7.3(i). O

x,04
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LEMMA 7.10. The irreducible components of the (Gni1)z.0/(Gnt1)a,0+-

representation (P|(Gn+1) V,) provided by Lemma 7.8 are cuspidal.

x,07

Remark 7.11. Readers familiar with Kim’s work may expect that we could
mainly cite [Kim07] for the proof of Lemma 7.10. However, contrary to the
claim in [Kim07, Prop. 17.2(2)], the representation p|(q,, ), , ® "¢?|(Gn+1)z,o ®
[Ti<icn @ 1|(Gn +1)a0 ight not necessarily be cuspidal when viewed as a rep-
resentation of (Gp+41)z,0/(Gnt1)z,0+. Since the proof of the above mentioned
proposition in [Kim07] is not correct, we provide a different and independent
proof of Lemma 7.10.

Proof of Lemma 7.10. Suppose (p',V,y) is an irreducible subrepresenta-
tion of (pl(G,,1).00 Vp) that is not cuspidal (viewed as a representation of
(Grn+1)2,0/(Gnt1)z,0+). Then there exists (the f-points of) a unipotent rad-
ical U; of a (proper) parabolic subgroup of the reductive group (with f-points)
(Gn41)2.0/(Gny1)e0+ = (Gny1)z(f) such that o'y, contains the trivial repre-
sentation of U;. Denote by V7 a subspace of Vy on which U; acts trivially.
By [CGP15, Cor. 2.2.5 and Prop. 2.2.9] there exists a one parameter sub-
group A : Gy = (Gpg1)s such that Up={g€ (Gn+1)x(f) |limeo A(t).g=1}.
Let A : G,;, — Gp41 denote a lift of A that factors through a maximally
split maximal torus T of G471 whose apartment </ (T) contains z. (See
the proof of Lemma 6.1.2 for more details about such a lift.) Let s’ =
gl (Grit)ao © [Ti<i<n ¢;1|(Gn+l)w,07 which is trivial on (Gp41)z,0+ (by either
combining Corollary 7.4 with Lemma 7.6 or by using the proof of Lemma 7.6)
and therefore can also be regarded as a representation of (Gp+1)z,0/(Gn+1)z,0+
and hence of Uj. Recall that (w;, Vi) denotes the Heisenberg representation
of (Gi)x,m%/ (<Gi)1,'f‘i7%+ ﬁker(@)) with central character (the restriction

of) qgi, and that the vector space V underlying the representation of ' is
R V- By the construction of Yu ([Yu0l, §4, p. 592 and Th. 11.5]), the
representation ' is defined by letting (Gp+1)z,0/(Gn+t1)z,0+ act on each of
the tensor product factors V,,, in @;-; Vi, by mapping (Gni1)2,0/(Gni1)z0+
to the symplectic group Sp(V;) of the corresponding symplectic space V; :=
(Gﬁ)xn%/(Gz)mm%+ with pairing defined by (a,b); = ¢;(aba~'b~1) and com-
posing with a Weil representation. The map from (Gp+1)z,0/(Gn+1)z,0+ t0
Sp(V;) is induced by the conjugation action of (Gp41)z,0 o0 (Gi)z,ri,%‘

Let E be a tamely ramified extension of k over which T splits, and define
for 1 < i < n the space ViJr to be the image of

G(k)N <Ua(E)z% | € ®(G;,T) = ®(Git1,T), Ma) > 0)
in V;, the space Vio to be the image of
G(k)n <Ua(E)x% |a € ®(G;,T) — B(Git1,T), Ma) =0)
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in V;, and V;~ to be the image of
G(k)N <Ua(E)z% la € B(Gi,T) — ®(Git1,T), Aa) < 0)

in V;. Then V; = Vz—+ ® Vi0 ® V,~, the subspaces Vf and V- are both to-
tally isotropic, the orthogonal complement of Vf is Vf @ V;»O, and Vi0 is a
non-degenerate subspace of V;. Let P; C Sp(V;) be the (maximal) parabolic
subgroup of Sp(V;) that preserves the subspace Vf. Note that the image of Us
in Sp(V;) is contained in P;. Let U;; be the image of

U; == G(k)n <Ua(E)x’%- | € ®(G;,T) — ®(Git1,T), Ma) > 0)

in the Heisenberg group (Gj),, . i/ ((Gi)x i N ker(@)). Then by Yu’s con-
Tir 5 Tir 5
struction of the special isomorphism

Ji + (Gi)g e/ ((Gz‘)z,ri,% Nker(d:)) — V¥

in [YuO1, Prop. 11.4], where Viji is the group V; xF,, with group law (v, a).(v', a’)
= (v+v,a+a'+5(v,0v');), and since A(Gy,) C T, we have j;(U;5) = V;* x0. By
[Gér77, Th. 2.4.(b)]? the restriction of the Weil-Heisenberg representation V,,,
(via j; 1) to P;xU; s contains a subrepresentation VUSi on which U; 5 acts trivially
and on which the action of P; is as follows: By [Gér77, Lemma 2.3.(c)] there
exist surjections p} : P, - GL(V;") and p? : P, — Sp(V;?). Then the action of
P; on Vbii is the tensor product of p} composed with a (quadratic) character x
of GL(V;") and p? composed with a Weil representation of Sp(V"). Note that
the image of U; in GL(V;") (by composing U; — P; with p} : P, - GL(V;")) is
unipotent and hence contained in the commutator subgroup of GL(V;"). Thus
X o p; is trivial on the image of U;. Moreover, the image of U in Sp(V,%) (by
composing U; — F; with the surjection p? : P — Sp(V?)) is contained in
a minimal parabolic subgroup of Sp(V,?) ([BT71, 3.7. Cor.]) and hence also
in a parabolic subgroup PP of Sp(V,?) that fixes a maximal totally isotropic
subspace of V?. By [Gér77, Th. 2.4.(b)] the Weil representation V, restricted
to P contains a one dimensional subrepresentation V) on which the action
of P? factors through a character of P?/U(P?), where U(P?) denotes the
unipotent radical of P?. Since the image of U; is unipotent and hence its image
in P?/U(P?) (which is isomorphic to a general linear group) is contained in
the commutator subgroup of P?/U(P?), the group U; acts trivially on V.

3As Loren Spice pointed out, the statement of [Gér77, Th. 2.4.(b)] contains a typo.
From the proof provided by [Gér77] one can deduce that the stated representation of
P(Ey,j)H(E%,j) (i-e., the pull-back to P(Ey, j)H(EF,j) of a representation of SH(Eo, jo)
as in part (a’)) should be tensored with x*+ x 1 before inducing it to P(E4,j)H(E,j) in
order to define 71 (using the notation of [Gér77]).
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Let V" denote the subspace ®1<i<n V) of @1<i<nVi, = Vi. Let U,ﬁl be
the preimage of Uj in (Hj41)s,0 under the surjection

(Hn-i-l)x,o - (Hn+1)m,0/(Hn+1>x,O+~

Since ¢; is trivial on Hy,41(k) for all 1 < ¢ < n (Lemma 7.3(i)), the action of the
group UﬁH via p® kg on the subspace Vl;,’ @ V! of V,®V, is the trivial action.
& V,.i) to (Gl)
5 act via the Heisenberg representation w; on V,,, and

Moreover, recall that the restriction of (k e, for1 <i<nis

given by letting (G;)

T,Ti5

via QASj|(Gi)z _oon Vi, for j # i. By Lemma 7.3(i) and the definition of gi;j,

R
the character ¢; is trivial on (H;)

in (H;) acts trivially via p @ k5 on Vi@ V.
If € > 0 is sufficiently small, then we have

P for j # i. Hence U; (which is contained

ri)
T,y

(Hos1)atero+ C ((Hos)oor Upka) and (Hi)ypo g, iy © ((Hi)yyy i Ui)

for 1 < ¢ < n, where z+e€\ arises from the action of e\ on x € &7 (T'). Since p®
Kz is by the definition of p isomorphic to a K-subrepresentation of (7|x, V), we
obtain a non-trivial subspace V" of V: on which (Hi)ere)\,m,%+/(Hi):r+e/\,n+ ~
(hi)x+€)\’ri’%+/(bi)Iﬂ)\,Tﬁ acts via p o X; for 1 <7 < n and that is fixed by
(Hp41)zter0+- Since x + e € &7/ (T), the tuple (x + e, (Xi)i1<i<n) is a trun-
cated datum by Lemma 4.4, and by the same arguments as in Case 2 of the
proof of Theorem 6.1, we can extend it to a datum (z+eX, (X;)1<i<n, (00, V),))
contained in (7, Vy). However, since Uj was non-trivial (and e > 0 sufficiently
small), the dimension of the facet of B(G,1, k) that contains = + €\ is larger
than the dimension of the facet of #(Gy1,k) that contains z. This is a
contradiction to the choice of (z, (X;)i<i<n, (po, Vj)), i-€., to the assumption
that (x, (Xi)1<i<n, (P0, Vpy)) is a maximal datum for (m,V;) (as in Defini-
tion 4.6). O

In order to prove that (m,V;) contains a type as constructed by Kim and
Yu in [KY17], we introduce some additional notation following [KY17, 2.4].
We denote by Zs(M,+1) the maximal split torus in the center of M, and by
M; the centralizer of Zs(My41) in G; for 1 < i < n. We say (compare [KY17,
3.5. Def]) that the resulting commutative diagram of embeddings (where the
embeddings are chosen as explained in Remark 3.9)

B(Mpi1,k)—— B(Mp, k)—— . . —— B(M;,k)

o ] R

B(Csr, k) s B(G, k) T B(G1, k)
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is (5, 2, ..., ) -generic relative to x if

D (A ((Gi)y i /(G ) — dim(Mi) 2 /(M) 1)) =0,

where we recall that r,.1 = 0. Note that this property is independent of the
choice of embeddings in diagram (3).%

THEOREM 7.12. Let (7, Vy) be a smooth irreducible representation of G(k).
Then (7, Vy) contains one of the types constructed by Kim—Yu in [KY17].

Proof. By Theorem 6.1, the representation (m, V) contains a datum. Let
(x, (Xi)1<i<n, (P, Vp,)) be a maximal datum for (m, V) such that the non-
negative number Y27 (dim((Gi)x’% (Gi)yyys) —dim((Mi), ri /(Mi), D)
is minimal among all possible choices of maximal data for (w,Vy). Perform-
ing the constructions above (page 333 and Lemma 7.8) we obtain a tuple
(é,x,ﬁ '0|KGn+1 , q?) and an associated representation (7x,Vy.) = (p® Kg V,
® Vi) as constructed by Kim and Yu that is contained in (, V). It remains
to show that (K, ) is a type, i.e., that all the requirements that Kim and Yu
impose on the tuple (@, T, T, p|KGn+1 , $) for the construction of types are sat-
isfied. By Lemmas 7.3(iii) and 7.10 it therefore remains to show that diagram
(3) is (™4, &, ..., B)-generic relative to 2. Suppose that this is not the case.
Then, by [KY17, 3.6 Lemma(b)] and the definition of the Moy—Prasad filtra-
tion, there exists A € X, (Zs(My+1)) such that if € > 0 is sufficiently small, then
diagram (3) is (™, %, ..., 5)-generic relative to x + eX and (Gi)ere)\,% C
(GZ)I% and (Gi)zterr; € (Gi)ay, for 1 < i < n+ 1. Note that this im-

plies that (Gn41)z+ex0 = (Gnt1)z,0 and (Gni1)atero+ = (Gnt1)z,0+ because
A € Xi(Zs(Mn+1)) and (Mp11)a,0/ (Mnt1)2,0+ =~ (Gnt1)2,0/ (Gngt)a,0+ by def-
inition of M,11. Using the notation of the proof of Lemma 7.10 the image of
(Gi)erE)\yri’%Jr in the Heisenberg group (Gl)zn%/((Gz)zn%+ N ker(¢;)) =
3 (Vi x Fy) is j; Y(ViT x F,), where V; is the totally isotropic subspace
((Gl)x-‘re/\ﬂ"“%—‘r(GZ)I,T‘“%"‘)/(GZ)I,T“%-F Of ‘/;’ = (Gl)x7r’tl%/(GZ)xvrl7%+. FOI“
1 <1< n,let Véi be a subspace of the Heisenberg representation V,,, on which
V.t acts trivially, and denote by V; the subspace ®1<j<n Vi, of ®@1<j<nVi,

= V. Then the action of (H;) i on V, ® V! factors through
2

T4eNT;,

(Hi)z—&-e)\,m,%+/(Hi)ff+€/\ﬂ”i+ = (hi)x+€)\77~i,%+/(hi)x—&-e/\,ri-i-

“While our point z is a point of #(G, k) that is viewed as a point of B(M;, k) and B(Gi, k)
via the above embeddings, Kim and Yu ([KY17]) fix a point in Z (M1, k) and consider its
image in #(M;, k) and %B(Gs, k). Hence the genericity property in [KY17, 3.5. Def.] does
depend on the embeddings.
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on which it is given by the character ¢ o X; for 1 < ¢ < n. Moreover,
(Hng1)z+er0+ = (Hnt1)z,0+ acts trivially on V, ® V.. Hence (by Lemma 4.4
and the same arguments as those in Case 2 of the proof of Theorem 6.1) we
obtain a maximal datum (z + e, (Xi)1<i<n, (Pp, V,,,)) for (m, V) with
D (Am((Gi) g 2/ (Gi)gperzps) = dm((Ma) g n 7/ (M) r 54)) = 0.
i=1
This contradicts that

0 < > (dim((Gi)y,ze/(Gi)yzes) = dim((Mi),, o /(M) 1))
=1

was minimal among all possible choices of maximal data for (7, Vy). 0

Remark 7.13. Theorem 7.12 has been derived by Kim and Yu ([KY17,
9.1 Th.]) from the result about exhaustion of Yu’s supercuspidal represen-
tations by Kim ([Kim07]) under much more restrictive assumptions than our
Assumption 2.1. First of all they require the local field k to have characteristic
zero, and secondly their assumption on the residual characteristic p is much
stronger than ours, i.e., far from optimal; see [Kim07, § 3.4].

8. Exhaustion of supercuspidal representations

Recall that we assume throughout the paper that G splits over a tame
extension and p t |[W]|. Under these assumptions, we obtain the following
corollary of Section 7.

THEOREM 8.1. FEwvery smooth irreducible supercuspidal representation of
G(k) arises from the construction of Yu ([Yu01)).

Proof. Let (m, V) be a smooth irreducible supercuspidal representation of
G(k). By Section 7, in particular Theorem 7.12, we can associate to (m, Vi)
a tuple (C_j,a:,F,p|KGn+1,q§) such that (7, V) contains the type (K, 7g) asso-
ciated to it by Kim—Yu following Yu’s construction. Let M, 1 be the Levi
subgroup of G,,4+1 attached to x and G,41 as in Section 7, page 331. We recall
that Zg(M,,+1) denotes the maximal split torus of the center Z(M,,+1) of M, 41,
and that M is the Levi subgroup of G that is the centralizer Centg(Zg(Mp+1))
of Zg(Mp+1) in G. Kim and Yu ([KY17, 7.5 Th.]) show that the type (K, 7x)
is a cover of a type for the group Mj. Hence, since (7, Vy) is supercuspidal,
we have M; = G. This implies that Zg(M,+1) is contained in the center of
G. Hence Z(Gpn+1)/Z(G) is anisotropic, where Z(Gp11) and Z(G) denote the
centers of G,,41 and G, respectively, and M,11 = Gp+1. Instead of working
with Kq, ., = (Gny1)e in Section 7, we could have equally well performed all
constructions for the stabilizer (G+1)[y) of the image [z] of  in the reduced
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Bruhat-Tits building of G, 11 (by replacing (My,41)x by (Mp+1)[z) everywhere)

to obtain a representation (p, V) of K = (Gni1)) (G )z’ - (G1),, o such

7’”
% Vr) of K associated to (G, 7,7 Gn+1)m’¢> by
Yu is contained in (7|7, Vz). Since Mpy1 = Centg, ,(Zs(Mnt1)) = Gni,

that the representation (7

the compactly induced representation ind G(k) ] is irreducible su-

(¢ V'«+1)[z]
percuspidal (by [MP96, Prop. 6.6]). Hence (G,x,r7ﬁ|(gn+1)[m],¢) satisfies all
the conditions that Yu requires for his construction of supercuspidal represen-

(Gnt+1)[a)

tations ([YuO1, § 3]), and ind%(k) 77z is the corresponding irreducible supercus-
pidal representations ([YuO1, Prop. 4.6]). By Frobenius reciprocity, we obtain
a non-trivial morphism from (ind%(k) Wﬁ,il’ld%(k) Vz.) to (m, V), and hence
these two irreducible representations are isomorphic. O

Remark 8.2. The exhaustion of supercuspidal representations by Yu’s con-
struction has been known under the assumption that k has characteristic zero
and p is a sufficiently large prime number thanks to Kim ([Kim07]). We refer
the reader to [Kim07, § 3.4] for the precise conditions for p being “sufficiently
large.” These assumptions are much stronger than p { |W|.

The proof of Theorem 8.1 also shows how to recognize if a representation
is supercuspidal by only considering a maximal datum for this representation.

COROLLARY 8.3. Let (m,Vz) be a smooth irreducible representation of
G(k), and let (z,(X;)1<i<n, (po, Vp)) be a mazimal datum for (mw,Vy). Then
(m, V) is supercuspidal if and only if x is a facet of minimal dimension in
B(Gri1,k) and Z(Gry1)/Z(G) is anisotropic, where Gpy1=Centg (3 i, X;).

Proof. The point x is a facet of minimal dimension in #(G,41, k) if and
only if M,+1 = Gp41. Hence we have seen in the proof of Theorem 8.1 that
(m, Vz) being supercuspidal implies the other two conditions in the corollary.
The proof of Theorem 8.1 also shows that the other two conditions are sufficient
to prove that (m,V}) is supercuspidal. O
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