

A direct interareal feedback-to-feedforward circuit in primate visual cortex

Caitlin Siu¹, Justin Balsor¹, Sam Merlin^{1,2}, Frederick Federer¹, and Alessandra Angelucci^{1,*}

¹ Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.

² Present address: Medical Science, School of Science, Western Sydney University, Campbelltown, NSW 2560 Australia

* Corresponding author.

Corresponding author's address:

65 Mario Capecchi Drive
Salt Lake City, UT 84132, USA
Tel: (801) 5857489

Email: alessandra.angelucci@hsc.utah.edu

32

33

34 The mammalian sensory neocortex consists of hierarchically organized areas reciprocally
35 connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical
36 computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits
37 between pairs of cortical areas. However, whether such corticocortical loops exist remains
38 unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively
39 to a single higher-level area. However, it is unclear whether FB-projection neurons show similar
40 area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using
41 viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show
42 that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but
43 not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second
44 motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and
45 suggest that FB can rapidly and selectively influence the activity of incoming FF signals.

46

47

48

49

50

INTRODUCTION

In the neocortex, sensory information is processed within hierarchically-organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits^{1,2}. FF connections carry information from lower to higher-level areas. As information ascends through the cortical hierarchy, neuronal receptive fields (RFs) become tuned to increasingly complex stimulus features, and an increasingly abstract representation of sensory inputs is achieved. FF connections are reciprocated by FB connections sending information from higher to lower areas. This hierarchy is further organized into parallel processing streams, so that cortical areas within each stream are functionally specialized to process specific attributes of a sensory stimulus^{3,4}. Reciprocal FF-FB connections between pairs of cortical areas are found throughout the neocortex of all mammalian species, suggesting they carry out a fundamental computation, but their role remains poorly understood.

Traditional feedforward models of sensory processing postulate that FF connections mediate the complexification of RFs, and that object recognition occurs largely independently of FB signals ⁵⁻⁷, the latter purely serving attentional selection. In contrast, several theories of hierarchical computation postulate that most of the computational work of the cortex is carried out by information going back and forth over looped FF-FB circuits between pairs of interconnected areas ⁸⁻¹⁶. The exact computation performed by these loops depends on the specific theory, but many of these theories require FF-FB loops to occur between neurons in different areas processing similar stimulus attributes, albeit at different levels of abstraction. Whether this anatomical organization of FF-FB loops indeed exists in the cortex remains unclear. It is well established that most cortical areas possess reciprocal FF and FB connections ^{17,18}. However, since each area projects to, and receives inputs from, multiple areas, it is less clear whether FF and FB connections selectively contact the neurons that are the source of their reciprocal areal input, or rather unselectively contact different projection neurons in their target area. It is also unclear whether these cortico-cortical loops occur via direct monosynaptic contacts between FF and FB projection neurons, or indirectly via local excitatory or inhibitory neurons, or both. Recent studies have shown that in mouse primary visual cortex (V1), only a fraction of cortical projection neurons form area-specific monosynaptic FF-FB loops ¹⁹, and that these loops may only occur between deep layer neurons ²⁰. It remains unknown whether similar rules of cortico-cortical connectivity apply to higher mammals.

In cats and primates, inter-areal FF projections are highly area-specific, much more so than in rodents. For example, only a small percent of FF-projecting V1 neurons send a common input to multiple extrastriate areas via bifurcating axons²¹⁻²³. However, it is less clear whether FB projections show similar area specificity, and whether they influence FF projection neurons directly or indirectly. On the one hand, previous reports that neurons in extrastriate cortex sending FB projections to V1 and the secondary visual area (V2) contain substantial amounts of axonal bifurcations^{21,24-26} and form diffuse terminations²⁷⁻²⁹ suggest that FB may not selectively contact the neurons that are the source of their areal input. On the other hand, recent demonstrations of clustered and specific FB terminations in primate V1³⁰ (see also³¹) suggest the opposite.

To address this question, here we adapted viral-mediated monosynaptic input tracing methods³² to label the inputs to V1 neurons sending FF projections to V2 in macaque visual cortex. If FB connections did not selectively contact the neurons that are the source of their areal

96 FF input, one would expect to find inputs to V1 neurons projecting to V2 ($V1 \rightarrow V2$) to arise from
97 multiple extrastriate areas known to project to V1. If, on the other hand, FB connections to V1
98 were area-specific, one would expect to find FB inputs to $V1 \rightarrow V2$ cells to arise only from V2.
99 Consistent with the latter scenario, here we find that $V1 \rightarrow V2$ neurons receive monosynaptic
100 inputs from V2 FB neurons, but not from neurons in other extrastriate areas known to also send
101 FB projections to V1. We also find evidence for direct corticocortical FB-to-FB contacts. These
102 results suggest that FB can rapidly and selectively influence the activity of incoming FF signals,
103 and support the existence of area-specific FF-FB loops in the primate early visual cortex.

104

105

106

RESULTS

107

108

109

Monosynaptic Input Tracing in Macaque Cortex

110

111

Figure 1 about here

112

113

114 We adapted viral-mediated monosynaptic input tracing or TRIO (TRacing Inputs and Outputs
115 ^{32,33}) to identify, in macaque visual cortex, direct presynaptic inputs to $V1 \rightarrow V2$ neurons. We
116 used an intersectional viral strategy based on three different viral vectors injected at different
117 times (Fig. 1a; see Methods). Specifically, we injected in V1 a mixture of two Cre-dependent
118 adeno-associated viruses serotype 9 (AAV9), one carrying the gene for the avian tumor virus
119 receptor A (TVA receptor for EnvA) fused with the red fluorescent protein mCherry (AAV9-
120 CAG-FLEX-TVAmCherry), the other carrying the gene for the optimized rabies virus
121 glycoprotein (oG ³⁴) (AAV9-CAG-FLEX-oG-WPRE). After about 3 weeks, necessary for the
122 AAV genome to concatemerize (i.e. generate multiple bound copies of its genome), a canine
123 adenovirus type 2 carrying Cre-recombinase (CAV2-CMV-Cre ^{33,35}) was injected in V2 at
124 retinotopic locations matched to those of the V1 injections. CAV2 is a retrograde vector that
125 rapidly transcribes Cre-recombinase in local V2 neurons and $V1 \rightarrow V2$ neurons projecting to the
126 CAV2 injection site in V2, reaching maximum expression in 5-7 days. In the presence of Cre, in
127 V1 only the $V1 \rightarrow V2$ cells previously infected with AAV9-FLEX vectors express mCherry (thus,
128 turning red; Fig. 1a), TVA and oG. About one week after the CAV2 injections, EnvA-
129 pseudotyped, G-deleted rabies virus (RVdG) carrying the gene for green fluorescent protein
130 (eGFP) (EnvA-RVdG-eGFP) was injected in V1 at the same location as the AAV9 injections.
131 Since the EnvA ligand binds exclusively to the TVA receptor, which is not otherwise native in
132 the primate brain, RVdG can only infect cells that express TVA. This results in the expression of
133 GFP in TVA-expressing $V1 \rightarrow V2$ cells, which become double labeled in red and green (yellow
134 “starter” cells in Fig. 1a). Moreover, the presence of oG in the starter cells, allows RVdG
135 complementation and retrograde monosynaptic spread of the rabies virus, with consequent GFP
136 expression in the presynaptic input cells, which turn green (Fig. 1a). As the input cells do not
137 express oG, RVdG cannot further spread trans-synaptically beyond these neurons. To identify
138 the V1/V2 border and ensure retinotopic overlap of the injections in V2 and V1, we used *in vivo*
139 intrinsic signal optical imaging (OI) as guidance, and made 2-3 injections of the AAV9 and
140 RVdG vectors in V1, and 1-2 injections of CAV2-Cre in V2 as schematically shown in Figure 1b

141 (see Methods). The V1 injections spanned all cortical layers, while the V2 injections were
142 centered in layer (L)4, where the bulk of V1 FF projections terminate. Injection sites in V1 and
143 V2 for an example case (MK405) that received 3 AAV and *RVdG* injections in V1 and 2 CAV2
144 injections in V2 (Supplementary Table 1) are shown in Figs. 2-3.

145

146

147

148 Figure 2a shows low power images of the V1 injection sites in a tangential section
149 through V1 L2/3 stained for cytochrome oxidase (CO) after being imaged under fluorescent
150 illumination. In CO staining, pipette tracks can often be identified as discolorations visible across
151 multiple sections. In the CO-stained section (Fig. 2a top panel), 5 distinct small pipette tracks are
152 visible (black arrows), of which, the top three correspond, under fluorescence illumination, to
153 *RVdG*-GFP injections, and the bottom two to AAV injections (Fig. 2a bottom panel). A third
154 separate AAV injection is not discernible in CO, likely because it overlapped with the *RVdG*
155 injection. As mCherry expression in V1 can only occur in cells that co-express Cre-recombinase,
156 the larger cluster of mCherry-labeled cells (red) visible at and around the middle AAV injection
157 site indicates this injection was in good retinotopic overlap with the CAV2-Cre injection sites in
158 V2. Instead, the sparse red label nearby the medial and lateral AAV injections indicates these
159 injections were not well matched retinotopically to the V2 injection sites. In contrast to mCherry,
160 some GFP expression can occur independently of Cre (due to small amounts of local TVA
161 “leak”), but only locally at the injection site (see Results below for a more extensive discussion
162 of TVA leak). This explains why all three *RVdG* injections are visible, even if the medial and
163 lateral injections were not in good retinotopic overlap with the V2 injection sites. Double-labeled
164 (yellow) cells are only visible nearby the middle injections, where the *RVdG* and AAV injection
165 sites overlap (Fig. 2b-c). As the V1 injection sites encompassed all layers, in addition to L2/3,
166 double-labeled cells were also found in all other layers known to project to V2, namely 4A-B, 5
167 (Fig. 2d-e) and 6 (Fig. 2d,f).

168

169

170

171 Figure 3 shows the V2 injection site for the same example case. The injection site (Fig.
172 3a-b black arrow) is recognizable as a region of small damage and CO discoloration along the
173 pipette track, as well as by the presence of mCherry-labeled axon terminals of V1 → V2 neurons
174 in L4 and lower 3 within about 1 mm of the V2 pipette track (Fig. 3, and Supplementary Figs.
175 1,3b). The mCherry fiber label in V2 also confirmed the retinotopic overlap of the V2 and V1
176 injections. In the example case, the above injection protocol resulted in GFP-labeled input cells
177 within V1 (Figs. 2, 7a-c) and in V2 (Fig. 3), with no GFP label observed in other cortical or
178 subcortical structures. In V2, GFP-labeled cells were located in the layers known to send FB
179 projections to V1, namely the superficial layers, where they appeared to be more numerous in
180 L3, and the deep layers, where they appeared to be more numerous in L5 (Fig. 3 and
181 Supplementary Fig. 1).

182 We next describe the quantitative analyses of the distribution of double-labeled cells in
183 V1 and of GFP-labeled cells in V2 for all cases.

184

185

Figure 2 about here

186

187 **V1→V2 Neurons Receive Area-Specific Monosynaptic FB Inputs**

188

189

190 To label monosynaptic inputs to V1→V2 neurons, we performed TRIO experiments using the
191 protocol described above in 3 macaque monkeys (Supplementary Table 1).192 Figure 4a shows the laminar distribution of double-labeled (yellow) cells in V1 for each
193 case. Supporting the cell specificity of our viral approach, in all cases yellow cells were located
194 only in the layers known to project to V2, i.e. the superficial and deep layers, but not L4C, which
195 does not project out of V1. In all cases, the vast majority of yellow cells resided in the superficial
196 layers, consistent with the known laminar origin of V1-to-V2 projections which arise
197 predominantly (96-98%) from the superficial layers^{36,37}. There were small variations in the
198 distribution of yellow cells across cases. In case MK405, all layers known to send outputs to V2
199 contained yellow cells, but 90% of them resided in L2/3. In cases MK382 and MK379, instead,
200 yellow cells were located in all V2-projecting layers except L6, and while also more abundant
201 (~80%) in the superficial layers, a significant fraction (~20%) was located in L5. The majority of
202 superficial layer yellow cells were located in L2/3 in cases MK379 and MK405, while they were
203 more evenly distributed across superficial layers in case MK382. Across the population, on
204 average 62.2±16.5% of V1→V2 yellow cells were located in L2/3, and 85% were located in the
205 superficial layers (Fig. 4b).206 We measured the spatial spread of the yellow cells in the tangential domain of V1 along
207 an axis parallel to the V1/V2 border, pooled across layers (Fig. 4c; see Methods). The maximum
208 cortical spread of yellow cells in V1 ranged between 1.78 and 3.75 mm (mean±sem: 3±0.62 mm)
209 depending on the size of, and overlap between, the viral injection sites (see Supplementary Table
210 1). After removing the tails of the distributions (2.5% of cells at the extreme of each
211 distribution), the spread ranged between 1.75 and 2.75 mm (mean ± s.e.m: 2.42±0.33 mm).

212

213

214

Figure 5 about here215 In all 3 cases we found GFP-labeled cells in V2 superficial and deep layers, i.e. the layers
216 of origin of FB connections to V1. We quantified the distribution of these cells across V2 layers
217 for each case (Fig. 5a). Because the border between V2 L2 and L3 is not easily identifiable in the
218 tangential sectioning plane, we did not attempt to distinguish between these two layers. In two
219 cases (MK405 and MK382), GFP-labeled cells were found in almost similar amounts in
220 superficial and deep layers. Instead, in case MK379 the majority of GFP-labeled cells were in
221 deep layers. In all cases, GFP-labeled cells in deep layers were located in both L5 and 6, but
222 were much more numerous in L5. The L5 origin of these FB inputs is further demonstrated in a
223 series of tangential sections in Supplementary Fig. 1. In two cases, a few GFP labeled cells were
224 also found in V2 L4; these amounted to only 3 cells in MK405 (0.5% of total V2 GFP label) and
225 20 cells in MK379 (1.7% of V2 GFP label). As L4 in primate early visual cortex is not a source
226 of FB projections²⁹, these GFP-labeled cells in V1 L4 are unlikely to represent FB inputs to V1;
227 their likely origin is discussed in a later section of the Results. Across the population, on average
228 54.3±10.2% (s.e.m.) of GFP-labeled V2 cells were located in L5, 4.9±0.6% in L6 and
229 40.1%±10.1% in L2/3 (Fig. 5b).

230 We measured the spatial spread of GFP-labeled cells across the tangential domain of V2,
231 along an axis parallel to the V1/V2 border, pooled across layers (Fig. 5c; see Methods). The
232 spatial spread of the V2 FB inputs was very extensive, ranging between 5.7 and 13.5 mm (mean
233 max spread across the 3 cases 9.9 ± 2.28 mm). After removing the tails of the distribution, the
234 range of spread was 4-7.8 mm (mean \pm sem: 5.6 ± 1.12 mm). For each case we calculated a ratio of
235 the spatial spread of the V2 FB inputs to that of the V1 \rightarrow V2 starter cells. The latter ranged
236 between 2.8 mm and 3.9 mm (mean \pm s.e.m: 3.3 ± 0.32 mm) or, after removing the tails of the
237 distributions, 1.8 mm and 2.8 mm (mean \pm s.e.m: 2.3 ± 0.29 mm). Thus, the spread of the V2 FB
238 inputs is about 2-3 times the size of the V1 region to which they project. These results are
239 consistent with previous reports that V2 FB neurons convey information from a larger region of
240 visual space to their target V1 cells³⁸.

241 The population average ratio of total number of V2 GFP-labeled input neurons to total
242 number of V1 \rightarrow V2 starter cells (pooled across layers) was 8.7 ± 6.98 ; the average ratio of GFP-
243 labeled V2 FB cells in each layer to the total number of V1 \rightarrow V2 starter cells pooled across V1
244 layers was 2.1 ± 1.2 for L2/3, 6.1 ± 5.4 for L5, and 0.3 ± 0.3 for L6 (Fig. 5d). The variability in this
245 ratio across cases was due to case MK379, for which there were about 23 total V2 FB input cells
246 per V1 starter cell, while this ratio was about 2:1 for the other two cases. The possible source of
247 this variability is discussed in the following section of the Results.

248

249 **Figure 6 about here**

250

251 As V1 receives FB connections not only from V2, but also from higher extrastriate
252 cortical areas, including MT, V3, V4, and V6^{18,29,39}, to determine whether FB contacts with
253 V1 \rightarrow V2 neurons are area-specific, we searched for fluorescent label throughout cortex anterior
254 to V2, excluding only prefrontal cortex. In two cases (MK405 and MK382), we found no GFP-
255 labeled cells in cortex anterior to V2, while in the third case (MK379), we found a total of 7
256 GFP-labeled cells in extrastriate cortex anterior to V2 (in areas V3, V3A and MT),
257 corresponding to 0.6% of the total number of GFP-labeled FB cells in cortex anterior to V1 (Fig.
258 6). These results indicate that monosynaptic FB contacts with V1 \rightarrow V2 neurons are highly area
259 selective, and support the existence of highly specific FF-FB loops. In the next section of the
260 Results we present evidence supporting the interpretation that the few GFP-labeled FB neurons
261 found outside of V2 in case MK379 may not be direct FB inputs to V1 \rightarrow V2 neurons, but rather
262 contact V2 cells sending FB projections to V1.

263

264 **Control Experiments**

265

266 There are two limitations to the TRIO method that need to be addressed: the local TVA “leak”,
267 and the possibility of retrograde AAV infection. Both are discussed in the following section.

268 It has been well-documented in mouse models that small amounts of TVA-mCherry can
269 “leak” out at the injected site and become expressed in cells in the absence of Cre^{32,33,40}. Due to
270 the high sensitivity of TVA, this small leak is sufficient to lead to EnvA-RVdG-GFP infection of
271 cells expressing TVA, but too low for mCherry to be detected. These RVdG-infected cells can,
272 thus, express GFP in a Cre-independent fashion. This explains why some GFP label was always
273 observable at the injected V1 site, even in the absence of red label, when the injections were not
274

275 in good alignment with the AAV and/or CAV2 injections (as for the lateral and medial injections
276 in Fig. 2a). Importantly, however, TVA leak does not lead to trans-synaptic RVdG infection, as
277 the latter requires high levels of oG expression to occur. In order to minimize the amount of local
278 TVA leak, we reduced the concentration of the AAV9-Flex-TVAmCherry virus relative to that
279 of the AAV9-Flex-oG, from 1:1 (in case MK379) to 3:7 (in the remaining cases; see
280 Supplementary Table 1). To ascertain that the GFP label in V2 and extrastriate cortex described
281 in the Results above was, in fact, Cre-dependent, as well as to determine the amount and extent
282 of local Cre-independent GFP expression in macaque cortex using our protocol, we performed
283 control experiments (n=2) in which CAV2-Cre was omitted from the TRIO injection protocol
284 described in Fig. 1a. These cases received a single injection of the AAV and RVdG viruses,
285 separated by 3-5 weeks (see Supplementary Table 1), in volumes that were matched to those
286 used for the actual experiments. These controls demonstrated that Cre-independent GFP
287 expression due to TVA leak only occurs nearby the location of the injection site, with 86% of the
288 labeled cells, in one control case, and 80% in the other case, being located within 400 μ m of the
289 injected site (Supplementary Fig. 2). Only 16 out of 117 (13.7%) artifactual GFP-labeled cells
290 were located beyond 400 μ m of the injection site center, in one case, and only 89 of 449 (19.8%)
291 cells in the second control case (Supplementary Fig. 2c,d). These controls allowed us to establish
292 that all of the inputs arising from outside V1, and the vast majority of the intra-V1 inputs arising
293 from beyond 400 μ m from the injection site were dependent on CAV2-Cre, indicating that our
294 approach is well suited to study long-distance inputs. As the local GFP inputs at the injected
295 RVdG injection site is contaminated by artifactual label, we omitted from counts GFP-labeled
296 cells within 400 μ m radius of each V1 injection site, in our quantitative analysis of the intra-V1
297 inputs to V1 \rightarrow V2 cells (described in the next section of the Results).

298 A second limitation of the TRIO method is retrograde infection of neurons by AAV9
299 vectors, which, although much less efficient than anterograde infection, is known to occur⁴¹.
300 Thus, V2 neurons sending FB projections to the V1 AAV9 injection sites could potentially be
301 infected by one or both AAV vectors; if these V2 neurons are also retrogradely co-infected by
302 CAV2-Cre, via axon collaterals to the injected V2 site, then TVA-mCherry and/or oG can be
303 expressed in these cells. Moreover, RVdG can potentially infect these TVA-expressing V2 FB
304 cells at their V1 terminals⁴², resulting in double-labeled cells (yellow) in V2. Importantly, only
305 if these cells co-express sufficient levels of oG, can trans-synaptic RVdG infection occur, and
306 lead to GFP expression in their presynaptic partners. In other words, retrograde infection of V2
307 FB neurons by only 3 of the vectors (CAV2-Cre, AAV-Flex-TVA-mCherry and RVdG-GFP) is
308 sufficient to double-label these cells, but infection by all 4 vectors (the 3 above plus AAV-Flex-
309 oG) must occur for the double-labeled cells to act as starter cells. Lower AAV injection volumes
310 and shorter post-RVdG injection survival times can effectively reduce the efficiency of
311 retrograde AAV infection and trans-synaptic expression of GFP from these retrogradely infected
312 cells⁴². Across our sample (n=3 cases), in the case that received the smaller AAV injection
313 volumes (MK382, Supplementary Table 1) we found double-labeled cells only in V1. In the case
314 that received larger AAV injection volumes but shorter post-RVdG injection survival time
315 (MK405, Supplementary Table 1), 2% of double-labeled cells were found in V2 (of which 75%
316 were in L2/3 and 25% in L5; Supplementary Fig. 3a-d). Finally, in the case that received larger
317 AAV injection volumes and longer post-RVdG injection survival time (MK379, Supplementary
318 Table 1), 17% of the total number of double-labeled cells were located in V2 L5 (Supplementary
319 Fig. 3d). Double-labeled cells in V2 were found at distances up to 1.7 mm from the injection site

320 in V2 (average mean distance \pm s.e.m.: 845 ± 174.35 μm ; average median \pm s.e.m.: 758 ± 194.1 μm ;
321 Supplementary Fig. 3e); their overall cortical extent along the tangential domain of V2 was 1.9
322 mm (MK379) and 2.6 mm (MK405), thus smaller than the spread of double-labeled cells in V1
323 (3.8 mm in MK379, 3.5 mm in MK405). Consistent with the interpretation that the double-
324 labeled cells in V2 are V2 \rightarrow V1 FB cells sending collaterals to the V2 injected site, and thus
325 retrogradely infected from both V1 and V2, we found no double-labeled cells in V2 layers that
326 are not the source of FB projections to V1, such as L4.

327 While these double-labeled cells in V2 could represent a second source of starter cells,
328 and thus a potential confound in our study, several lines of evidence suggest that in two of the
329 three cases all, or the vast majority of, the GFP label was presynaptic to the V1 \rightarrow V2 starter cells,
330 while in the third case (MK379) a small fraction of the GFP label in V1 and V2, and all the
331 sparse GFP label outside V1 and V2 was pre-synaptic to the V2 starter cells. This evidence is
332 discussed below. In case MK382, which only had double-labeled cells in V1, any GFP label
333 within V1 (>400 μm from the injected site) and outside V1 could unequivocally be interpreted as
334 input to the double-labeled V1 \rightarrow V2 neurons. This case, therefore, demonstrates the existence of
335 area-specific monosynaptic V2 FB inputs to V1 \rightarrow V2 cells. Four observations suggest that in
336 case MK405 there was no significant trans-synaptic RVdG infection from the V2 double-labeled
337 cells, perhaps because only a subset of the few double-labeled cells was co-infected by the AAV-
338 Flex-oG vector. First, since cortical neurons receive the majority of their inputs from their
339 neighbors⁴³, “real” starter cells are expected to be surrounded by GFP-labeled cells, representing
340 their local inputs. Indeed, this was typically observed for starter cells in V1 in all cases (e.g. Fig.
341 2b), and starter cells in V2 in case MK379, in which every double-labeled cell in V2 was
342 surrounded by GFP-labeled neurons within 150 μm of its location (Supplementary Fig. 4a,c). In
343 contrast, in MK405 only 5 of 11 double-labeled cells in V2 were surrounded by at least one GFP
344 labeled cell within 150 μm distance, (Supplementary Fig. 4b-c). Second, because in case
345 MK405 the majority of the V2 double-labeled cells were located in L2/3 (Supplementary Fig.
346 3d), and these layers receive most of their local interlaminar inputs from L4^{44,45}, real starter cells
347 in V2 L2/3 are expected to produce GFP label in L4. Instead, we found only 3 GFP-labeled cells
348 in V2 L4 (0.4% of total V2 GFP label) in this case (Fig. 5a), suggesting most of the V2 double-
349 labeled cells did not act as starter cells. In contrast, in case MK379, where all V2 double-labeled
350 cells were located in L5, which receives inputs from L4⁴⁴, a larger, albeit still small, number of
351 GFP-labeled cells were found in L4 (n= 20 cells, 1.7% of the total V2 GFP label; Fig. 5a). Third,
352 in case MK405, the laminar distribution of GFP-labeled cells in V2 was virtually identical to that
353 of case MK382 (Fig. 5a), in which all GFP label was pre-synaptic to the V1 starter cells. In
354 contrast, in case MK379, V2 GFP label was strongly biased to L5 (Fig. 5a), i.e. the layer where
355 all the V2 double-labeled cells resided (Supplementary Fig. 3d); this suggests that at least some
356 of the GFP-labeled cells in L5 in case MK379 were pre-synaptic to the V2 starter cells. Lastly, in
357 case MK405, unlike case MK379, we found no GFP label outside V1 and V2. As V2 receives
358 projections from extrastriate areas anterior to it³⁹, the lack of GFP label in higher extrastriate
359 areas indicates that no trans-synaptic RVdG infection of long-distance inputs to the V2 double-
360 labeled cells occurred in case MK405. We interpret the GFP-labeled cells in extrastriate cortex
361 anterior to V2, in case MK379, as pre-synaptic inputs to the V2 \rightarrow V1, rather than V1 \rightarrow V2,
362 starter cells. This is because GFP labeled cells in higher extrastriate cortex were only found in
363 this case, which had a larger fraction of double-labeled cells in V2. Moreover, the extrastriate
364 areas showing GFP label, i.e. V3, V3A and MT, all project to V2^{18,29,39}, but of these areas only

365 V3 and MT project to V1, thus at least the GFP-labeled cells in V3A must have been pre-
366 synaptic to the V2 starter cells. This suggests the existence of cascading FB-to-FB projections
367 connecting higher areas to V1 via a single synapse within V2.

368

369

370 **V1→V2 Neurons Receive the Majority of Monosynaptic Cortical Inputs from Within V1**

371

372

373

Figure 7 about here

374 In all three cases, we found many GFP-labeled input cells within V1 (e.g. Fig. 7a-c). As
375 discussed above, because the GFP label at the *RVdG* injection sites was contaminated by Cre-
376 independent artifactual label, due to TVA leak, in our quantitative analyses of the intra-V1 GFP
377 label, we omitted from counts GFP-labeled cells within 400 μ m radius of each V1 injection site.
378 Thus our analysis of V1 inputs only included the long-range inputs ($>400\mu\text{m}$). In all cases, GFP-
379 label $> 400 \mu\text{m}$ from the injection sites was found in all V1 layers except L1 (Fig. 7d). In each
380 case, the laminar distribution of long-range V1 inputs closely matched the laminar location of the
381 V1→V2 starter cells. Thus, in cases MK405 and MK379, the majority of V1 inputs were located
382 in L2/3, where most of the V1→V2 starter cells were also located (Fig. 4a), but in case MK382,
383 where L2/3 and 5 had more similar percentages of starter cells (Fig. 4a), similar amounts of
384 labeled intra-V1 horizontal inputs were found in both layers. On average across the population,
385 $46.9\pm7.3\%$ of V1 horizontal inputs arose from L2/3, followed by L5 ($23.7\pm7.5\%$) (Fig. 7e). This
386 is consistent with the well-known prominence of intra-laminar horizontal connections in V1 L2/3
387 and L5^{46,47}. Our counts of GFP labeled intra-V1 long-range inputs included some cells labeled
388 artifactually as a result of TVA leak, as our control experiments demonstrated that 14-20% (14-
389 89 cells) of artifactual GFP label occurred at distances $>400 \mu\text{m}$ from the injected *RVdG* sites
390 (see above and Supplementary Fig. 2). However, given the large numbers of GFP-labeled cells
391 counted in V1 at $>400 \mu\text{m}$ distances (range: 2,569-10,688 cells) the potential inclusion of 14-89
392 artifactual cells to these counts is negligible.

393 The maximum tangential spread of the V1 long-range inputs ranged between 6.4 and
394 10.3mm (mean max spread \pm s.e.m: $8.73\pm1.17 \text{ mm}$). After eliminating the tails of the
395 distributions, this range was 2.8-5 mm (mean \pm s.e.m.: $3.8\pm0.65 \text{ mm}$) (Fig. 7f). For each case we
396 calculated a ratio of the spatial spread of the V1 inputs to that of the V1→V2 starter cells. This
397 ratio ranged between 2.5 and 3.6 (mean \pm s.e.m: 3.03 ± 0.32) or, after removing the tails of the
398 distributions, 1.4 and 1.8 (mean \pm s.e.m: 1.6 ± 0.13). Thus, the spread of V1 inputs is about 1.6-3
399 times the size of the V1 region to which they project. The ratio of the V2 FB spread to that of the
400 V1 input spread averaged 1.1 ± 0.13 (or 1.5 ± 0.06 after removing the tails), indicating the cortical
401 spread of long-range intra-V1 inputs was only slightly less extensive than the spread of V2 FB
402 inputs to the same cells. However, when considering the larger RFs and lower magnification
403 factor in V2 compared to V1, the visuotopic extent of V2 FB is larger than that of intra-V1
404 inputs (see Discussion). These results are consistent with previous reports on the relative spatial
405 spread of V1 horizontal connections and FB connections from V2 to V1³⁸.

406 On average across the population, V1→V2 starter cells received $91.6\pm3.1\%$ of their total
407 long-range cortical monosynaptic inputs from other V1 cells, with only $8.4\pm3.1\%$ arising from
408 V2 (Fig. 7g). For the different cases, however, this percentage varied with the percent of V1
409 versus V2 starter cells. Specifically, in cases MK405 and MK382, where 98% and 100%,

410 respectively, of starter cells were located in V1, 93% and 96%, respectively, of their
411 monosynaptic inputs arose from within V1. Instead, in case MK379, where 83% of starter cells
412 were located in V1 and 17% in V2, a lower percent (85%) of GFP-labeled inputs were located in
413 V1, supporting our interpretation above that some fraction of the GFP-labeled V2 input cells, in
414 this case, were presynaptic to the V2 starter cells rather than to the V1→V2 cells. Overall, these
415 results indicate that monosynaptic FB inputs to V1→V2 neurons are sparse.
416
417

418 **Monosynaptic Inputs from the Thalamus**

419
420 **Figure 8 about here**
421
422 V1 receives subcortical inputs from the lateral geniculate nucleus (LGN) of the thalamus^{48,49}, as
423 well as the pulvinar⁵⁰, a higher-order thalamic nucleus. We asked whether any of these inputs
424 make direct synaptic contacts with V1→V2 cells. In two cases, MK405 and MK382, we found
425 no GFP-labeled cells in either the LGN or the pulvinar, suggesting that thalamic inputs undergo
426 intra-V1 processing before being relayed to V1 corticocortical output cells. In contrast, in case
427 MK379, we found a small percent of GFP-labeled input cells (0.22% of total) in the LGN (n=14
428 cells) and pulvinar (n=4 cells; Fig.8). In the LGN, 86% of input cells were found in the
429 parvocellular (Parvo) layers, 14% in the magnocellular (Magno) layers, and none in the
430 koniocellular (Konio) layers (Fig.8a-c, g). As input cells in the LGN were found only in this
431 case, and this is the only case that had a significant fraction of “real” starter cells in V2, and
432 because V2 is known to receive a small number of direct inputs from LGN⁵¹, it is likely that the
433 GFP-labeled cells in the LGN, in this case, represent direct monosynaptic geniculate inputs to the
434 V2→V1 starter cells. This would suggest the existence of direct geniculate inputs onto V2 cells
435 sending FB connections to V1. Because extrastriate geniculate inputs have been shown to arise
436 primarily, albeit not exclusively, from the Konio layers⁵¹⁻⁵³, we immunoreacted the LGN for
437 calbindin, a neurochemical marker of the Konio geniculate channel⁵⁴. None of the GFP-labeled
438 cells co-expressed calbindin, suggesting they may not be Konio cells (Fig. 8a-c). We found only
439 4 GFP-labeled cells in the lateral subdivision of the pulvinar (Fig. 8d-f), the latter identified as a
440 region of sparser calbindin expression compared to its neighboring inferior subdivision⁵⁵. Based
441 on the same rationale as for the GFP-labeled LGN cells, it is likely that the GFP-labeled cells
442 found in the pulvinar, in this case, represent direct inputs to the starter cells in V2 that send FB to
443 V1.
444
445

446 **DISCUSSION**

447
448 **Figure 9 about here**
449
450 Using TRIO labeling in macaque visual cortex, we have demonstrated the existence of area-
451 specific monosynaptic FB contacts with FF-projection neurons. Specifically, we have shown that
452 V1 neurons sending FF projections to V2 receive direct monosynaptic inputs from V2 FB
453 neurons, but not from neurons in other extrastriate areas known to project to V1. FB-to-FF inputs
454 occur in both superficial and deep V1 layers, although our approach did not allow us to

455 determine the differential contribution of superficial and deep layer FB neurons to the V1
456 termination layers. These direct interareal FB inputs represent only a tiny fraction of the total
457 long-range cortical inputs to V1 cortical projection neurons, which overwhelmingly arise from
458 within V1. We also found evidence for the existence of direct monosynaptic interareal FB-to-FB
459 contacts relaying topdown information from higher extrastriate areas to V1, via a single synapse
460 in V2. Finally, we found sparse direct inputs from the Parvo and Magno LGN layers and lateral
461 pulvinar to V2 L5 neurons sending FB projections to V1 (Fig. 9).

462 It is well established that in the primate visual cortex, most V1 cortical projection neurons
463 send FF projections to only a single area²¹⁻²³, but it was unclear whether FB is also area specific
464 and whether it influences FF afferents directly or indirectly. Our results demonstrate that in
465 primate V1, FF-projection neurons receive direct monosynaptic FB inputs selectively from the
466 area to which they project. We found monosynaptic inputs to V1→V2 neurons from V2, but
467 inputs from other extrastriate areas known to project to V1 were either absent or extremely
468 sparse. Henrich et al.⁵⁶ recently reported that the probability of rabies virus trans-synaptic spread
469 at each synapse is about 30%; thus, the number of labeled input neurons increases with the
470 number of synapses formed by presynaptic neurons onto a given starter cell, providing an
471 indirect measure of the functional strength of a projection. Thus, the absence of labeled
472 presynaptic neurons in extrastriate cortex anterior to V2 strongly suggests that such projections
473 are either absent or so much sparser than the projection from V2 that our method failed to reveal
474 them. These findings support the existence of highly area-specific FB-to-FF contacts in primate
475 V1. This is in contrast with results from mouse V1, where about 80-88% of FF projection
476 neurons project to one or two higher visual areas^{19,57}, but only about 50% of their monosynaptic
477 FB contacts arise from the same areas to which they project¹⁹. Moreover, recent evidence
478 suggests that in mouse a bias to form area-specific monosynaptic excitatory FF-FB loops may be
479 limited to deep layer neurons²⁰, while our results in macaque demonstrate area-selective FB-to-
480 FF contacts in both V1 superficial and deep layers. These findings strongly support the existence
481 of area-, and thus, functionally-specific, FF-FB loops in primate cortex.

482 Several previous studies have shown, albeit mostly qualitatively, that the V2 deep layer
483 FB projections to V1 arise predominantly from L6, and less so L5^{18,25,29,39}. In contrast, here we
484 found the vast majority of deep layer FB to arise from L5. Even allowing for the possibility of
485 some errors in the laminar assignments of cells located near the L5/6 border, given the tangential
486 sectioning plane used in our study, the bulk of the V2 deep layer GFP label clearly lay in L5.
487 However, unlike previous studies which labeled all V2 FB projections to V1, we selectively
488 labeled the FB projections to V1→V2 cells. Thus, our findings suggest laminar specialization in
489 the deep layer FB projections, with FB from L5 contacting preferentially V1→V2 neurons.

490 Our findings support several theories advocating looped computations between FF and
491 FB connections⁸⁻¹⁶. The specific nature of the computations performed by these loops vary with
492 the specific theory. For example, in predictive coding theory, FB signals represent a prediction of
493 the external world, based on sensory data and prior experience; this prediction is compared with
494 incoming sensory data, and the prediction error, carried by FF-projecting “error units”, ascends
495 up the cortical hierarchy and refines the higher level predictions^{8,9,58}. In terms of their
496 architecture, predictive coding schemes require both excitatory and inhibitory looped interactions
497 of FB inputs with lower-level “error units” to signal mismatches between predictions and
498 sensory inputs^{59,60}. Importantly, these looped interactions must be area-specific and occur
499 between FF and FB units encoding similar features. Our findings of area-specific monosynaptic

500 FB contacts with FF-projecting neurons, together with recent evidence of stream-specific V2 FB
501 projections to V1³⁰, support the area and functional specificity of FF-FB loops required by
502 predictive coding theories. Moreover, these FB-to-FF contacts could provide an anatomical
503 substrate for excitatory FB interactions with the lower-level error units (so called “negative error
504 units”) required by predictive coding⁶⁰. Alternatively, direct FB-to-FF contacts could underlie
505 the “precision” FB signals of predictive coding models^{59,60}. In the latter, the precision FB circuit
506 is distinct from the prediction circuit, and provides a modulatory or gating FB signal that sets the
507 weight or precision of the prediction error. Whether the direct FB-to-FF contacts we have found
508 serve to compute prediction errors or modulate their precision, ultimately depends on whether
509 such contacts occur on the basal or apical dendrites, respectively, of V1→V2 cells⁵⁹. Both kinds
510 of FB contacts can potentially occur, the former in L5/6, and the latter in L1/2, where FB
511 connections mostly terminate³⁰. However, our method did not allow us to determine in which
512 V1 layers these monosynaptic FB contacts occur.

513 An additional key component of predictive coding models is the inhibitory FB interaction
514 with the lower-level error units (so called “positive error units”), which requires FB contacts
515 with inhibitory neurons. Moreover, experimentally FB has been shown to cause both facilitation
516 and suppression of neural activity in lower-level areas⁶¹⁻⁶³. Thus, the direct FB-to-FF
517 connections we have found here could underlie the facilitatory effects of FB, but direct or
518 indirect contacts with inhibitory neurons are necessary to mediate the FB suppressive effects
519 found experimentally and postulated by predictive coding. Indeed, direct FB contacts with
520 inhibitory neurons have been demonstrated in both mouse⁶⁴⁻⁶⁶ and primate⁶⁷ visual cortex.
521 Therefore, the monosynaptic FB-FF contacts we have found in this study represent just one of
522 several motifs of FB connectivity in primate cortex.

523 Our approach did not allow us to determine whether the V1→V2 neurons receiving the
524 direct FB contacts directly target the same V2 neurons that are the source of their FB input.
525 Notably, these direct FF-FB contacts are not required by predictive coding schemes. To the
526 contrary, several of the proposed schemes view FF inputs from lower-level error units indirectly
527 affecting their looped prediction FB units, via contacts with local neurons making recurrent
528 connections with each other^{59,68}. This intra-areal recurrent processing between local expectation
529 units serve to generate, maintain, and refine the internal predictions, which are then passed on to
530 the FB units for relay to lower-level areas. Moreover, the termination of FF pathways from V1
531 predominantly in L4 and lower 3 of V2, and the origin of V2 FB pathways in layers 2/3 and 5/6
532²⁹ would make direct FF-to-FB contacts less probable than indirect ones.

533 A different theory postulates that fast recurrent FB-FF processing between adjacent
534 hierarchically-organized areas serves to facilitate object recognition, particularly when incoming
535 sensory inputs are ambiguous, degraded or noisy¹². In these models, these local FB signals are
536 fast, operating during the initial FF process. The area-specific monosynaptic FB-to-FF contacts
537 we have found here represent an ideal anatomical substrate for fast and specific facilitatory FB
538 modulation of incoming FF signals, and are also consistent with evidence that FB acts on the
539 early part of the FF-driven response⁶⁹.

540 We found that FB inputs to V1→V2 neurons arise from a cortical region extending on
541 average 9.9 mm, approximately 2-3 times larger than the size of their V1 target zone, and similar
542 in cortical extent to the spread of long-range intra-V1 horizontal inputs (8.7 mm; 1.5-3 times the
543 size of their target V1 zone). These results are qualitatively consistent with previous reports³⁸
544 that V2 FB connections to a V1 column extend on average 6.4 mm (reaching up to 9.4mm), and

545 are similar to the average cortical extent of V1 horizontal connections to the same column (mean
546 7.9 mm, max 9.5 mm). However, the same study demonstrated that, due to the larger RF sizes
547 and lower magnification factor in V2 compared to V1, the visuotopic extent of V2 FB
548 connections is larger than that of V1 horizontal connections to the same V1 column. Specifically,
549 while V2 FB connections convey information from a visual field region about 4-6 times the size
550 of the aggregate RFs of their target V1 cells, the visuotopic extent of horizontal connections is
551 only 2-4 times the aggregate RF size of their target V1 cells³⁸. Qualitatively similar results were
552 recently reported for FB connections in mouse visual cortex⁷⁰, suggesting that a feature of FB
553 connections conserved across species is their ability to convey information from distant visual
554 field locations to their postsynaptic neuronal targets. This feature has been proposed to underlie
555 contextual modulations from outside the classical receptive field⁷¹.

556 Our results demonstrate that FF-projecting V1 neurons only receive a small fraction of
557 their direct long-range (>400μm) cortical inputs from FB neurons, the majority of which,
558 instead, arise from neurons within V1, particularly in L2/3 and L5, where intralaminar horizontal
559 connections are known to be most prominent⁴⁶. While it is well established that cortical neurons
560 receive the majority (79%) of their inputs from neurons within the same cortical area⁴³, this is
561 the first demonstration in primate cortex that this connectivity rule also applies specifically to
562 cortical projection neurons.

563 At least in the dorsal stream of visual processing, we found evidence for a second motif
564 of FB connectivity, namely inter-areal FB-to-FB neuron contacts (Fig. 9). These chains of FB
565 connections may serve to convey fast FB modulations, possibly related to the processing of
566 object motion, from higher cortical areas V3, V3A and MT to V1, via V2. Alternatively, given
567 that area V3 and MT also send direct inputs to V1, these FB inputs to V2 may serve to
568 specifically modulate V2 FB inputs to V1. These FB-to-FB circuits represent a sparse projection,
569 as we only found a total of 7 neurons in higher extrastriate areas potentially projecting to 11 L5
570 V2→V1 cells.

571 The same V2→V1 FB cells that received direct FB inputs from higher extrastriate areas
572 of the dorsal stream, also received a small direct FF input from the LGN and lateral pulvinar
573 (Fig. 9). We found GFP-labeled neurons in the LGN and pulvinar only in the one case that
574 showed labeled starter cells in V2 L5, suggesting these thalamic inputs target, and thus can
575 directly influence the activity of, these V2→V1 L5 FB neurons. It is well known that V2
576 receives a sparse direct projection from the LGN, which has been postulated to be part of a
577 retino-colliculo-thalamic pathway to extrastriate cortex^{43,51}. However, while this projection, as
578 well as direct geniculate projections to other extrastriate areas, arise predominantly from
579 calbindin-positive or CaMKII-positive Konio geniculate neurons terminating in L4 and 5⁵¹⁻⁵³,
580 here we find these direct LGN-to-V2 FB contacts arise from calbindin-negative cells in the Parvo
581 and Magno LGN layers. While lack of calbindin immunoreactivity suggests neurons giving rise
582 to these projections may not belong to the Konio system, it has been noted that this system is
583 heterogeneous and also includes neurons that are calbindin and CaMKII-negative^{52,53}. We
584 cannot exclude that at least some of the Parvo LGN inputs were, instead, presynaptic to the
585 starter V1 cells in L4A, as Parvo-to-L4A projections exist⁷²; this would indicate the existence of
586 direct geniculate inputs to L4A output cells. However, we believe this is unlikely, because two of
587 our cases with starter cells in L4A, but few or no starter cells in V2, showed no labeled input
588 cells in the LGN. Similarly, as the lateral pulvinar in addition to V2 also projects to L1-2 of
589 V1^{44,50}, it is possible, although unlikely, that the pulvinar inputs we observed here were instead

590 presynaptic to the apical dendrites of the starter cells in V1 L2-4B or L5. This would suggest that
591 the pulvinar can directly affect the activity of V1 cortical output cells. Finally, as Magno
592 afferents only terminate in V1 L4C and 6, and there were no starter cells in these V1 layers, it is
593 unlikely the sparse Magno inputs found in our study represent direct inputs to V1 output cells.
594

595

596

METHODS

597

598

599

Experimental Design

600 We performed monosynaptic input tracing or TRIO to label monosynaptic inputs to V1→V2
601 neurons (starter cells) in macaque monkey visual cortex. The method consisted of targeting
602 injections of 3 different viral vectors to V1 or V2, identified *in vivo* by intrinsic signal optical
603 imaging (OI). Resulting labeled starter cells and input cells were mapped throughout V1, V2,
604 extrastriate cortex and thalamus, and their laminar and tangential distributions were analyzed
605 quantitatively.

606

607

Animals

608 We made a total of 25 viral injections in five adult (3-5 yrs old) female cynomolgus macaque
609 monkeys (*Macaca fascicularis*). Three animals were used for regular TRIO experiments and 2
610 for control experiments. All procedures involving animals were approved by the Institutional
611 Animal Care and Use Committee of the University of Utah and conformed to the guidelines set
612 forth by the USDA and NIH.

613

614

Surgical Procedures

615 Animals were pre-anesthetized with ketamine (10 mg/kg, i.m.). An i.v. catheter was inserted, and
616 the animals were intubated with an endotracheal tube, placed in a stereotaxic apparatus, and
617 artificially ventilated. Anesthesia was maintained with isoflurane (1–2.5%) in 100% oxygen,
618 and end tidal CO₂, blood oxygenation level, electrocardiogram, and body temperature were
619 monitored continuously. I.V. fluids were delivered at a rate of 5/cc/kg/hr. The scalp was incised,
620 a large craniotomy and durotomy (about 15-20 mm mediolaterally and 6-8 mm
621 anteroposteriorly) were made to expose the lunate sulcus, area V2 and parts of V1 (e.g. Fig. 1b).
622 A clear sterile silicone artificial dura was placed on the cortex, and the craniotomy was filled
623 with a sterile 3% agar solution and sealed with a glass coverslip glued to the skull with Glutures
624 (Abbott Laboratories, Lake Bluff, IL). On completion of surgery, isoflurane was turned off and
625 anesthesia was maintained with sufentanil citrate (5–10 µg/kg/h, i.v.). The pupils were dilated
626 with a short-acting topical mydriatic agent (tropicamide), the corneas protected with gas-
627 permeable contact lenses, the eyes refracted, and optical imaging was started (see below). Once
628 the V1/V2 border was functionally identified (1-4 hrs. of imaging), the glass coverslip, agar and
629 artificial dura were removed, and 2-3 injections of AAV9 vectors (see below) were made in V1
630 using surface blood vessels as guidance. On completion of the injections, new artificial dura was
631 placed on the cortex, the native dura was sutured over the artificial dura, the craniotomy was
632 filled with Gelfoam and sealed with sterile parafilm and dental cement, the skin was sutured, and
633 the animal was recovered from anesthesia. Animals survived 21-24 days post-injections, and

634 then were prepared for a second surgical procedure and anesthetized with isofluorane as
635 described above. The scalp was re-incised at the same site as the prior incision, the artificial dura
636 was removed, and 1-2 injections of the CAV2 vector (see below) were made in V2, using as
637 guidance the surface blood vessels and functional OI maps obtained in the first surgical
638 procedure (Fig. 1b). The animals were recovered as described above, and after a 2-11-day
639 survival time underwent a third surgical procedure during which multiple injections of the RVdG
640 vector (see below) were made at the same locations as the previously made AAV injections in
641 V1, again using blood vessels as guidance. Animals survived an additional 9-12 days, during
642 which a terminal 2-3 day OI experiment was performed to obtain additional functional maps. At
643 the conclusion of the OI experiment the animal was sacrificed with Beuthanasia (0.22 ml/kg, i.v.)
644 and perfused transcardially with saline for 2-3 min, followed by 4% paraformaldehyde (PFA) in
645 0.1M phosphate buffer for 20 min.

646

647 **Optical Imaging**

648 Acquisition of intrinsic signals was performed under red light illumination (630 nm) during the
649 first survival surgery and, then, again during a terminal procedure, using the Imager 3001 and
650 VDAQ software (Optical Imaging Ltd, Israel). We imaged for orientation and retinotopy, as
651 these functional maps allow identification of the V1/V2 border. Orientation maps were obtained
652 by presenting full-field, high contrast (100%), pseudorandomized, achromatic drifting square-
653 wave gratings of eight different orientations at 1.0-2.0 cycles/ $^{\circ}$ spatial frequency, moving back
654 and forth at 1.5 or 2/ $^{\circ}$ /sec in directions perpendicular to the grating orientation. Responses to the
655 same orientations were averaged across trials, following baseline correction, and difference
656 images were obtained by subtracting the responses to two orthogonally oriented pairs.
657 Retinotopic maps were obtained by subtracting responses to monocularly presented oriented
658 gratings occupying complementary adjacent strips of visual space, i.e. masked by 0.5-1/ $^{\circ}$ gray
659 strips repeating every 1-2/ $^{\circ}$, with the mask reversing in position in alternate trials. Baseline
660 correction for both the orientation and retinotopic maps was performed in 3 different ways and
661 the approach that provided the best maps was selected for analysis: 1) the baseline (pre-stimulus)
662 was subtracted from the single condition response (i.e. the images recorded during stimulation of
663 one stimulus orientation); 2) the single condition response was divided by the baseline; 3) the
664 single condition response was divided by the “cocktail blank” (i.e. the average of responses to all
665 oriented stimuli or all retinotopic stimuli)^{73,74}. The V1/V2 border can be identified in the
666 retinotopic maps by the presence of stripes of activity in V1, which are absent in V2 (using the
667 specific stimulus parameters indicated above, which are optimized for V1, but not V2). V2 can
668 be identified in the orientation maps by larger orientation domains compared to V1, and the
669 characteristic “stripy” pattern of orientation domains (e.g. Fig. 1b right). In each case, reference
670 images of the surface vasculature were taken under green light (546 nm) illumination, and used
671 *in vivo* as reference to position pipettes for viral vector injections (e.g. Fig. 1b Left), and post-
672 mortem to align the *in vivo* maps with histological tissue sections.

673

674 **Injection of Viral Vectors**

675 For TRIO experiments, we made a total of 21 injections of 4 different viral constructs in 3
676 macaques (MK379, MK382, MK405). The viral vectors were: AAV9-CAG-FLEX-

677 TVAmCherry (titer: 4.69×10^{13} GC/ml; Salk Institute Viral Core GT3), AAV9-CAG-FLEX-oG-
678 WPRE (titer: 3.52×10^{13} GC/ml; Salk Institute Viral Core GT3), E1-deleted-CAV2-CMV-Cre-
679 SV40polyA (titer: 4.6×10^{12} pp/ml; Montpellier Vector Platform, CNRS, France) and EnvA-
680 RVdG-eGFP (titer range: 4.69×10^7 - 5.45×10^8 TU/ml; Salk Institute Viral Core GT3). All viruses
681 were slowly pressure injected at a rate of 6-15nl/min, using a picospritzer (World Precision
682 Instruments, FL, USA) and glass micropipettes (25-50 μ m inner diameter). The two AAV9
683 vectors were mixed at 1:1 or 3:7 ratio and loaded into the same glass micropipette, and 2-3
684 injections of the mixture were made into V1, 1-1.3mm posterior to the V1/V2 border and spaced
685 mediolaterally (i.e. in a row parallel to the V1/V2 border) 1-1.1 mm apart (Fig. 1b Left). These
686 injections were aimed at involving all V1 layers by pressure ejecting half of the total volume at a
687 cortical depth of 800-1200 μ m from the pial surface and, after a 5-10 min pause, retracting the
688 pipette to a depth of 400-600 μ m and ejecting the remaining volume. The pipette was left in
689 place for an additional 5-10 min before being retracted from the brain, to avoid backflow of
690 solution. After about 21 days, 1-2 injections of the CAV2 vector were made into V2, 1-1.1 mm
691 anterior to the V1/V2 border and, when 2 injections were made, they were spaced 200-300 μ m
692 anteroposteriorly (Fig. 1b Left). V2 injections were made as described above for the V1
693 injections, but were aimed at cortical L4-6 (depths 700 μ m and 1,000 μ m). After 2-11 days
694 survival, 2-3 injections of the RVdG vector were made into V1 at the same locations and depths
695 as the previously made AAV injections, whose location relative to the surface vasculature had
696 been recorded onto the *in vivo* images obtained during the first surgery. The larger number of
697 injections in V1 allowed us to achieve a larger coverage with the AAV and RVdG vectors, to
698 ensure that at least one of these injections was retinotopically matched to the location of the V2
699 injection site. Survival times were optimized to achieve maximal expression of each vector in
700 primate cortex, while minimizing its potential toxicity. Injection parameters (volumes, numbers,
701 depths) and inter-injection survival times for each animal are reported in Supplementary Table 1.
702

703 **Control Injection Cases**

704 A total of 4 viral injections were made in 2 additional animals (MK380, MK381) for control
705 experiments, to determine the amount and extent of Cre-independent GFP expression caused by
706 TVA leak. In each animal, one injection each of the AAV9 and RVdG vectors were made in the
707 motor cortex, using the same viral constructs, injection parameters, depth locations and survival
708 times (Supplementary Table 1) as used for the regular TRIO experiments, but in these control
709 experiments the CAV2-Cre injection was omitted.
710

711 **Histology**

712 Areas V1 and V2 were separated from the rest of the visual cortex, by making a cut along the
713 fundus of the lunate sulcus. The block was post-fixed for 1 hour in 4% PFA between glass slides,
714 to gently flatten the cortex parallel to the imaged area, cryoprotected in 30% sucrose, and frozen-
715 sectioned at 40 μ m on a sliding microtome in a plane tangential to the imaged surface of V1 and
716 V2. Sections were wet-mounted, scrutinized for fluorescent label and, selected sections (2 of
717 every 3 section) containing label were imaged for fluorescent GFP and mCherry label. After
718 imaging, every third section was reacted on the glass slide for cytochrome oxidase (CO), to
719 reveal layers and areal boundaries, and the sections were re-imaged under bright field

720 illumination.

721 The remainder of the brain, with the frontal pole removed, was post-fixed overnight in
722 4% PFA, cryoprotected and sectioned sagittally at 70 μ m. A full series of sections was wet-
723 mounted and imaged for fluorescent label. Sections containing fluorescent label were stained for
724 myelin using the Gallyas method ⁷⁵, to aid in the identification of extrastriate areas and areal
725 boundaries, and stained for fluorescent Nissl to identify cortical layers and subcortical nuclei.
726 Furthermore, to identify the pulvinar subdivisions and the koniocellular layers of the LGN,
727 selected sections containing fluorescent label were immunoreacted for Calbindin as follows.
728 Sections were incubated in primary antibody (1:5000 monoclonal mouse anti-Calbindin D-28k;
729 Swant, Switzerland) for 72 hours at 4°C, and then reacted with a secondary antibody tagged to a
730 near-infrared fluorophore (1:200 donkey anti-mouse IgG-AF647; Jackson ImmunoResearch, PA,
731 USA).

732

733 Data Analysis

734

735 *Label Imaging*

736 We searched for fluorescent label in every section throughout the cortex (except for the
737 prefrontal cortex) and thalamus. We then imaged at regular intervals (2 of every 3 sections) two
738 full series of sections throughout the regions containing labeled cells. Tissue sections were
739 simultaneously imaged for both GFP and mCherry fluorescence, and the sections immunoreacted
740 for Calbindin and stained for Nissl were additionally imaged for Alexa 647 and DAPI,
741 respectively. Imaging was performed on a Zeiss Axio Imager.Z2 fluorescent microscope
742 connected to an Apotome 2, using a 10X objective and an AxioCam 506 mono camera (Zeiss,
743 Germany). Image files were created and analyzed using Zen 2.6 Blue Software (Zeiss,
744 Germany). Sections were imaged using uniform camera exposure times and LED intensity.
745 Imaged sections were scrutinized for fluorescent label and the regions containing double-labeled
746 (green and red) starter cells were re-imaged at higher magnification, using a 20x objective and
747 the Apotome to obtain z-stacks in 1-2 μ m z-steps, so as to verify cells classified as double-
748 labeled. CO and Gallyas stainings were imaged under bright field illumination, using the same
749 microscope and a 10x objective. All images were post-processed in Zen using the “stitching
750 algorithm” to align individual image tiles and minimize tiling artifacts. Images used for figures
751 were exported directly from Zen files, and brightness or contrast were uniformly increased or
752 decreased in Adobe Photoshop across the entire image in each channel.

753

754 *Cell Counts*

755 Imaged sections were aligned in a sequential stack through the depth of the cortex (for
756 tangentially-sectioned V1/V2 blocks), or in a mediolateral stack (for sagittally-sectioned tissue)
757 using Adobe Photoshop, by registering the radial blood vessels. The aligned image stacks were
758 then transferred to Neurolucida Software (Microbrightfield Bioscience, VT, USA) for cell
759 plotting and counting, and for drawing layer boundaries based on CO and Nissl stains. For each
760 section containing label, we plotted and counted all GFP-labeled (green) input cells (excluding
761 only GFP-labeled cells in V1 located at distances <400 μ m from each injection site center), and

762 all double-labeled (yellow) cells. For V1 and V2, we imaged and counted two full series of
763 sections, while for thalamus and the rest of the cortex we counted every labeled cell in every
764 section that contained label. We defined “input” cells as cells exclusively labeled with GFP
765 showing morphological and size characteristics of neurons. Double-labeled cells were defined as
766 somata expressing both GFP and mCherry in the same imaging z-plane, with the two labels
767 perfectly overlapped. Since GFP and TVAmCherry are differently distributed inside neurons, the
768 former filling the soma and the latter binding to the cell membrane, we allowed for the
769 possibility that GFP and mCherry-labeled cells did not show identical shapes. Each cell was
770 additionally assigned a layer location, and number of cells in each layer as well as the percentage
771 of total GFP or double-labeled cell counts in each layer were determined (Figs. 4a,5a,7d,
772 Supplementary Fig. 3d). We then averaged these percentages across the 3 cases for each layer
773 and estimated the s.e.m. (Figs. 4b,5b,7e). For each case, we also calculated a ratio of the number
774 of GFP-labeled V2 input cells in each layer to the total number of V1 double-labeled cells
775 (across all V1 layers), and then averaged these ratios across cases by V2 layer (Fig. 5d). We
776 divided by the total number of V1 double-labeled cells, as our method does not allow us to
777 determine to which layers the V2 FB cells project. Finally, for each case we estimated the
778 percent of total GFP-labeled V1 and V2 input cells that arose from V2 versus V1, and then
779 averaged those values across cases (Fig. 7g). Plots of cell counts and population statistics were
780 generated in RStudio 1.4.1103.

781
782

783 *Spatial Extent of Label*

784 We quantified the spatial spread of GFP-labeled cells within the tangential domain of V1 (Fig.
785 7f). This was done by counting GFP labeled neurons within 250 μ m bins along an axis parallel to
786 the V1/V2 border, encompassing the full tangential extent of the GFP label, and excluding GFP
787 neurons within 400 μ m of a RVdG injection site. We pooled data across layers and injection sites
788 because our method did not allow us to determine to which starter cell each input cell projects. In
789 a similar fashion, we measured the spread of the GFP-label in the tangential domain of V2 along
790 an axis parallel to the V1/V2 border (Fig. 5c), as well as the overall spread of the double-labeled
791 cells in V1 (Fig. 4c) and V2. Spatial spread data was plotted (using RStudio) as histograms of the
792 number of cells as a function of cortical extent, with zero on the x axis indicating the most
793 medial location of the labeled field and the largest number the distance of the most lateral
794 location of the labeled field from its medial edge (zero). For the two control cases, instead, we
795 measured the distance of each GFP-labeled cell from the center of the injection site
796 (Supplementary Fig. 2c-d). The injection site was identified a points of damage or discolorations
797 in CO staining, visible across multiple serial sections, and its center was marked in each section
798 containing label. We performed a similar analysis also for the double-labeled cells in V2 to
799 determine their location relative to the center of the V2 injection site (Supplementary Fig. 3e).
800 This data was plotted as histograms of the number of cells as a function of distance from the
801 injection site center, as well as violin plots to illustrate the probability density distribution of
802 spatial spreads.

803
804

DATA AVAILABILITY

805 The data that support the findings of this study are available from the corresponding author upon
806 reasonable request. Source data are provided with this paper.
807

808
809
810
811
812

813 **REFERENCES**

814

- 815 1. Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in
816 the visual cortex. *Trends Neurosci.* **6**, 370-375 (1983).
- 817
- 818 2. Markov, N. T. & Kennedy, H. The importance of being hierarchical. *Curr. Opin. Neurobiol.*
819 **23**, 187-194 (2013).
- 820
- 821 3. Ungerleider, L. G. & Mishkin, M. Two cortical visual systems. In: *Advances in the analysis*
822 *of visual behavior* (ed^eds Ingle, D. J., Mansfield, J. W., Goodale, M. A.). MIT Press
823 (1982).
- 824
- 825 4. Nassi, J. J. & Callaway, E. M. Parallel processing strategies of the primate visual system.
826 *Nat. Rev. Neurosci.* **10**, 360-372 (2009).
- 827
- 828 5. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional
829 architecture in the cat's visual cortex. *J. Physiol. (Lond.)* **160**, 106-154 (1962).
- 830
- 831 6. Marr, D. *Vision. A computational investigation into the human representation and*
832 *processing of visual information.* . Freeman, W.H. and Company (1982).
- 833
- 834 7. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object
835 recognition? *Neuron* **73**, 415-434 (2012).
- 836
- 837 8. Mumford, D. On the computational architecture of the neocortex. II. The role of cortico-
838 cortical loops. *Biol. Cybern.* **66**, 241-251 (1992).
- 839

840 9. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation
841 of some extra-classical receptive-field effects. *Nat. Neurosci.* **2**, 79-87 (1999).

842

843 10. Friston, K. The free-energy principle: a unified brain theory? *Nat. Rev. Neurosci.* **11**, 127-
844 138 (2010).

845

846 11. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. *J. Opt. Soc.
847 Am. A Opt. Image. Sci. Vis.* **20**, 1434-1448 (2003).

848

849 12. Wyatte, D., Jilk, D. J. & O'Reilly, R. C. Early recurrent feedback facilitates visual object
850 recognition under challenging conditions. *Front Psychol* **5**, 674 (2014).

851

852 13. Rolls, E. T. The representation of information in the temporal lobe visual cortical areas of
853 macaques. In: *Advanced neural computers* (ed^^(eds Eckmiller, R.). Elsevier (1990).

854

855 14. Poggio, T. A theory of how the brain might work. In: *Proc. Cold Spring Harbor Symp.*
856 (ed^^(eds) (1990).

857

858 15. Deacon, T. Holism and associationism in neuropsychology: an anatomical synthesis. In:
859 *Integrating theory and practice in clinical neuropsychology* (ed^^(eds Perecman, E.).
860 Erlbaum (1988).

861

862 16. Carpenter, G. & Grossberg, S. A massively parallel architecture for a self-organizing neural
863 pattern recognition machine. *Comp. Vision Graphics Image Proc.* **37**, 54-115 (1987).

864

865 17. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate
866 cerebral cortex. *Cereb. Cortex* **1**, 1-47. (1991).

867

868 18. Markov, N. T., *et al.* Anatomy of hierarchy: feedforward and feedback pathways in macaque
869 visual cortex. *J. Comp. Neurol.* **522**, 225-259 (2014).

870

871 19. Kim, E. J., *et al.* Extraction of Distinct Neuronal Cell Types from within a Genetically
872 Continuous Population. *Neuron* **107**, 1-9 (2020).

873

874 20. Young, H., Belbut, B., Baeta, M. & Petreanu, L. Laminar-specific cortico-cortical loops in

875 mouse visual cortex. *BioRxiv* doi.org/10.1101/773085, (2019).
876

877 21. Bullier, J., Kennedy, H. & Salinger, W. Branching and laminar origin of projections between
878 visual cortical areas in the cat. *J. Comp. Neurol.* **228**, 329-341 (1984).
879

880 22. Sincich, L. C. & Horton, J. C. Independent projection streams from macaque striate cortex to
881 the second visual area and middle temporal area. *J. Neurosci.* **23**, 5684-5692. (2003).
882

883 23. Ferrer, J. M., Kato, N. & Price, D. J. Organization of association projections from area 17 to
884 areas 18 and 19 and to suprasylvian areas in the cat's visual cortex. *J. Comp. Neurol.* **316**,
885 261-278 (1992).
886

887 24. Rockland, K. S. & Van Hoesen, G. W. Direct temporal-occipital feedback connections to
888 striate cortex (V1) in the macaque monkey. *Cereb. Cortex* **4**, 300-313 (1994).
889

890 25. Kennedy, H. & Bullier, J. A double-labeling investigation of the afferent connectivity to
891 cortical area V1 and V2 of the macaque monkey. *J. Neurosci.* **5**, 2815-2830 (1985).
892

893 26. Rockland, K. S. & Knutson, T. Feedback connections from area MT of the squirrel monkey
894 to areas V1 and V2. *J. Comp. Neurol.* **425**, 345-368 (2000).
895

896 27. Stettler, D. D., Das, A., Bennett, J. & Gilbert, C. D. Lateral connectivity and contextual
897 interactions in macaque primary visual cortex. *Neuron* **36**, 739-750. (2002).
898

899 28. Maunsell, J. H. R. & Van Essen, D. C. The connections of the middle temporal visual area
900 (MT) and their relationship to a cortical hierarchy in the macaque monkey. *J. Neurosci.* **3**,
901 2563-2586. (1983).
902

903 29. Rockland, K. S. & Pandya, D. N. Laminar origins and terminations of cortical connections
904 of the occipital lobe in the Rhesus monkey. *Brain Res.* **179**, 3-20 (1979).
905

906 30. Federer, F., Ta'afua, S. F., Merlin, S., Hassanpour, M. S. & Angelucci, A. Stream-specific
907 feedback inputs to the primate primary visual cortex. *Nature Comm.* **12**, 228 (2021).
908

909 31. Shmuel, A., *et al.* Retinotopic axis specificity and selective clustering of feedback

910 projections from V2 to V1 in the owl monkey. *J. Neurosci.* **25**, 2117-2131 (2005).
911

912 32. Callaway, E. M. & Luo, L. Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies
913 Viruses. *J. Neurosci.* **35**, 8979-8985 (2015).
914

915 33. Schwarz, L. A., *et al.* Viral-genetic tracing of the input-output organization of a central
916 noradrenaline circuit. *Nature* **524**, 88-92 (2015).
917

918 34. Kim, E. J., Jacobs, M. W., Ito-Cole, T. & Callaway, E. M. Improved monosynaptic neural
919 circuit tracing using engineered rabies virus glycoproteins. *Cell Reports* **15**, 692-699 (2016).
920

921 35. Bru, T., Salinas, S. & Kremer, E. J. An update on canine adenovirus type 2 and its vectors.
922 *Viruses* **2**, 2134-2153 (2010).
923

924 36. Sincich, L. C., Jocson, C. M. & Horton, J. C. V1 interpatch projections to V2 thick stripes
925 and pale stripes. *J. Neurosci.* **30**, 6963-6974 (2010).
926

927 37. Federer, F., Ichida, J. M., Jeffs, J., Schiessl, I., McLoughlin, N. & Angelucci, A. Four
928 projections streams from primate V1 to the cytochrome oxidase stripes of V2. *J. Neurosci.*
929 **29**, 15455-15471 (2009).
930

931 38. Angelucci, A., Levitt, J. B., Walton, E., Hupé, J. M., Bullier, J. & Lund, J. S. Circuits for
932 local and global signal integration in primary visual cortex. *J. Neurosci.* **22**, 8633-8646.
933 (2002).
934

935 39. Rockland, K. S. & Pandya, D. N. Cortical connections of the occipital lobe in the rhesus
936 monkey: interconnections between areas 17, 18, 19 and the superior temporal sulcus. *Brain*
937 *Res.* **212**, 249-270 (1981).
938

939 40. Lavin, T. K., Jin, L., Lea, N. E. & Wickersham, I. R. Monosynaptic Tracing Success
940 Depends Critically on Helper Virus Concentrations. *Front. Synaptic. Neurosci.* **12**, 6 (2020).
941

942 41. Green, F., *et al.* Axonal transport of AAV9 in nonhuman primate brain. *Gene Ther.* **23**, 520-
943 526 (2016).
944

945 42. Lavin, T. K., Jin, L. & Wickersham, I. R. Monosynaptic tracing: a step-by-step protocol. *J. 946 Chem. Neuroanat.* **102**, 101661 (2019).
947

948 43. Markov, N. T., *et al.* Weight consistency specifies regularities of macaque cortical networks. 949 *Cereb Cortex* **21**, 1254-1272 (2011).
950

951 44. Lund, J. S., Hendrickson, A. E., Ogren, M. P. & Tobin, E. A. Anatomical organization of 952 primate visual cortex area VII. *J. Comp. Neurol.* **202**, 19-45 (1981).
953

954 45. Valverde, F. The organization of area 18 in the monkey. A Golgi study. *Anat. Embryol. (Berl)* **154**, 305-334 (1978).
955

956

957 46. Lund, J. S., Angelucci, A. & Bressloff, P. C. Anatomical substrates for functional columns 958 in macaque monkey primary visual cortex. *Cereb. Cortex* **13**, 15-24 (2003).
959

960 47. Rockland, K. S. & Lund, J. S. Intrinsic laminar lattice connections in primate visual cortex. 961 *J. Comp. Neurol.* **216**, 303-318. (1983).
962

963 48. Hendrickson, A. E., Wilson, J. R. & Ogren, M. P. The neuroanatomical organization of 964 pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and 965 New World primates. *J. Comp. Neurol.* **182**, 123-136 (1978).
966

967 49. Blasdel, G. G. & Lund, J. S. Terminations of afferent axons in macaque striate cortex. *J. 968 Neurosci.* **3**, 1389-1413 (1983).
969

970 50. Rezak, M. & Benevento, L. A. A comparison of the organization of the projections of the 971 dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to 972 primary visual cortex (area 17) in the macaque monkey. *Brain Res.* **167**, 19-40 (1979).
973

974 51. Bullier, J. & Kennedy, H. Projection of the lateral geniculate nucleus onto cortical area V2 975 in the macaque monkey. *Exp. Brain Res.* **53**, 168-172 (1983).
976

977 52. Rodman, H. R., Sorenson, K. M., Shim, A. J. & Hexter, D. P. Calbindin immunoreactivity in 978 the geniculo-extrastriate system of the macaque: implications for heterogeneity in the 979 koniocellular pathway and recovery from cortical damage. *J. Comp. Neurol.* **431**, 168-181 980 (2001).

981

982 53. Sincich, L. C., Park, K. F., Wohlgemuth, M. J. & Horton, J. C. Bypassing V1: a direct
983 geniculate input to area MT. *Nat. Neurosci.* **7**, 1123-1128 (2004).

984

985 54. Diamond, I. T., Fitzpatrick, D. & Schmechel, D. Calcium binding proteins distinguish large
986 and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago
987 and the tree shrew (*Tupaia belangeri*). *Proc. Natl. Acad. Sci. U. S. A.* **90**, 1425-1429 (1993).

988

989 55. Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. Visual cortical
990 projections and chemoarchitecture of macaque monkey pulvinar. *J. Comp. Neurol.* **419**, 377-
991 393 (2000).

992

993 56. Henrich, M. T., *et al.* Determinants of seeding and spreading of alpha-synuclein pathology
994 in the brain. *Sci. Adv.* **6**, (2020).

995

996 57. Han, Y., *et al.* The logic of single-cell projections from visual cortex. *Nature* **556**, 51-56
997 (2018).

998

999 58. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **364**, 1211-1221 (2009).

1000

1001

1002 59. Shipp, S. Neural Elements for Predictive Coding. *Front. Psychol.* **7**, 1792 (2016).

1003

1004 60. Keller, G. B. & Mrsic-Flogel, T. D. Predictive Processing: A Canonical Cortical
1005 Computation. *Neuron* **100**, 424-435 (2018).

1006

1007 61. Nurminen, L., Merlin, S., Bijanzadeh, M., Federer, F. & Angelucci, A. Top-down feedback
1008 controls spatial summation and response amplitude in primate visual cortex. *Nature Commun.* **9**, 2281 (2018).

1009

1010

1011 62. McAdams, C. J. & Reid, C. R. Attention modulates the responses of simple cells in monkey
1012 primary visual cortex. *J. Neurosci.* **25**, 11023-11033 (2005).

1013

1014 63. Vidyasagar, T. R. Gating of neuronal responses in macaque primary visual cortex by an
1015 attentional spotlight. *Neuroreport* **9**, 1947-1952 (1998).

1017 64. Shen, S., *et al.* Distinct organization of two cortico-cortical feedback pathways. *BioRxiv*
1018 doi.org/10.1101/2020.02.27.968792, (2020).

1019

1020 65. Yang, W., Carrasquillo, Y., Hooks, B. M., Nerbonne, J. M. & Burkhalter, A. Distinct
1021 balance of excitation and inhibition in an interareal feedforward and feedback circuit of
1022 mouse visual cortex. *J. Neurosci.* **33**, 17373-17384 (2013).

1023

1024 66. Zhang, S., *et al.* Long-range and local circuits for top-down modulation of visual cortex
1025 processing. *Science* **345**, 660-665 (2014).

1026

1027 67. Anderson, J. C. & Martin, K. A. C. The synaptic connections between cortical areas V1 and
1028 V2 in macaque monkey. *J. Neurosci.* **29**, 11283-11293 (2009).

1029

1030 68. Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P. & Friston, K. J.
1031 Canonical microcircuits for predictive coding. *Neuron* **76**, 695-711 (2012).

1032

1033 69. Hupé, J. M., James, A. C., Girard, P., Lomber, S. G., Payne, B. R. & Bullier, J. Feedback
1034 connections act on the early part of the responses in monkey visual cortex. *J. Neurophysiol.*
1035 **85**, 134-145. (2001).

1036

1037 70. Marques, T., Nguyen, J., Fioreze, G. & Petreanu, L. The functional organization of cortical
1038 feedback inputs to primary visual cortex. *Nat. Neurosci.* **21**, 757-764 (2018).

1039

1040 71. Angelucci, A., Bijanzadeh, M., Nurminen, L., Federer, F., Merlin, S. & Bressloff, P. C.
1041 Circuits and mechanisms for surround modulation in visual cortex. *Ann. Rev. Neurosci.* **40**,
1042 425-451 (2017).

1043

1044 72. Lund, J. S. Organization of neurons in the visual cortex, area 17, of the monkey (Macaca
1045 mulatta). *J. Comp. Neurol.* **147**, 455-496 (1973).

1046

1047 73. Bonhoeffer, T. & Grinvald, A. Optical imaging based on intrinsic signals: the methodology.
1048 In: *Brain mapping: the methods* (ed^(eds Toga, A. W., Mazziotta, J. C.). Academic Press
1049 (1996).

1050

1051 74. Shmuel, A. & Grinvald, A. Functional organization for direction of motion and its
1052 relationship to orientation maps in cat area 18. *J. Neurosci.* **16**, 6945-6964 (1996).
1053

1054 75. Gallyas, F. Silver staining of myelin by means of physical development. *Neurol. Res.* **1**, 203-
1055 209. (1979).
1056
1057
1058
1059

1060

ACKNOWLEDGMENTS

1061 We thank Kesi Sainsbury for technical assistance, Matthew Spurrier, Porter Babcock, Gabriella
1062 Rasmussen, and Alexander Ingold for help with imaging tissue sections. Supported by grants
1063 from the National Institute of Health (R01 EY026812, R01 EY019743, BRAIN U01 NS099702),
1064 the National Science Foundation (IOS 1755431, EAGER 1649923), and The University of Utah
1065 Neuroscience Initiative, to A.A., a grant from Research to Prevent Blindness, Inc. and a core
1066 grant from the National Institute of Health (EY014800) to the Department of Ophthalmology,
1067 University of Utah.

1068

AUTHOR CONTRIBUTIONS

1069 Conceptualization: C.S., S.M., F.F., A.A. Investigation: C.S., J.B., S.M., F.F. A.A. Data
1070 Analysis: C.S., J.B. Writing-Original Draft: C.S., A.A. Writing-Review/Editing: all authors.
1071 Visualization: C.S. Supervision & Funding Acquisition: A.A.
1072

1073

COMPETING INTERESTS STATEMENT

1074 The authors declare no competing interests.
1075

1076

1077
1078
1079

FIGURE LEGENDS

1080 Figure 1. Monosynaptic input tracing in macaque visual cortex: experimental design.

1081 (a) Viral injection timeline and experimental design. Left: V1→V2 neurons express mCherry
1082 (red cells), TVA and oG, after double infection with AAV9-vectors (injected in V1) and CAV2-
1083 Cre (injected in V2). Right: After additional infection with EnvA-RVdG-eGFP (injected at the
1084 same V1 sites as AAV9), V1→V2 neurons previously infected with AAV9 additionally express
1085 eGFP, becoming double-labeled (yellow starter cells). After trans-synaptic RVdG-eGFP
1086 infection, V1 and V2 cells presynaptic to the V1 starter cells express eGFP (green cells). Cells
1087 that are not co-infected with both CAV2 and AAV9 remain unlabeled. (b) Injection plan. In vivo
1088 OI of V1 and V2 in one example case (MK405). Left: Image of the cortical surface vasculature
1089 encompassing V1 and V2. Solid white contour: V1-V2 border based on the orientation map. The
1090 surface vasculature is used as reference to target viral injections to matching retinotopic positions
1091 in V1 and V2. To ensure retinotopic overlap of the V1 and V2 injections, multiple AAV (up to 3)
1092 injections (red dots), spaced about 1 mm medio-laterally, are made in V1, and up to 2 CAV2
1093 injections (white dots), spaced about 300 μ m anteroposteriorly, are made in V2. RVdG injections
1094 (green dots) are targeted to the same locations as the AAV injections, using as guidance images
1095 of the surface vasculature taken at the time of the AAV injections. Right: Orientation difference
1096 map of V1 and V2 obtained by subtracting responses to achromatic luminance gratings of two
1097 orthogonal orientations. Orientation and other functional maps are used to identify the V1/V2
1098 border, so as to target injections to the appropriate areas. For example, in the orientation map, V2
1099 can be distinguished from V1 due to its “stripy” pattern and larger orientation domains. M:
1100 Medial; P: posterior. Scale bar: 1 mm. Optical maps in (b) are representative of 3 independent
1101 cases.

1102

1103 Figure 2. V1 injection sites.

1104 (a) Case MK405. Image of a single tangential section through V1 L2/3 stained for CO (Top)
1105 after being imaged for mCherry and GFP fluorescence (Bottom). The merged channel shows
1106 double-labeled (yellow) “starter” V1→V2 cells. Arrows point to the V1 injection sites in both
1107 sections. The region inside the white box is shown at higher magnification in panel (b). Scale
1108 bar: 500 μ m. (b) Higher magnification of the V1 region inside the box in panel (a). Red cells:
1109 V1→V2 neurons co-infected with CAV2 and AAV9-TVAmCherry, but not with RVdG. Yellow
1110 cells: starter V1→V2 cells double-labeled due to triple infection with CAV2-Cre, AAV9-
1111 TVAmCherry and RVdG-GFP. Of these double-labeled cells only those that were additionally
1112 infected by AAV9-oG act as “starter” cells. Green cells: cells sending monosynaptic input to the
1113 starter V1→V2 cells (but some local V1 green label is due to TVA “leak” – see Results and
1114 Supplementary Fig. 2). Scale bar: 100 μ m. Cells in the boxed region are shown at higher
1115 magnification in panel (c). (c) Higher magnification of 3 double-labeled V1→V2 cells
1116 (arrowheads) shown under mCherry (Left) or GFP fluorescence (Middle), and merged (Right).
1117 Scale bar: 50 μ m. (d) Image of a single tangential section through V1 L4C-6 stained for CO
1118 (Top) and imaged for fluorescent signals (Bottom) in the same case as in (a-c). Yellow cells
1119 inside the small and large white boxes are shown at higher magnification in panels (e) and (f),

1120 respectively. Dashed contours delineate layer boundaries, and layers are indicated at the top.
1121 Scale bar: 500 μ m. (e-f) V1 \rightarrow V2 starter cells (arrowheads) in L5 (e) and L6 (f), shown under
1122 mCherry (Top) or GFP (Middle) fluorescence, and merged (Bottom). Scale bars: 20 μ m. Results
1123 in (a-f) are representative of injection sites made in 3 independent cases with similar results.
1124

1125 Figure 3. V2 injection sites and resulting GFP-label in V2

1126 Case MK405. (a) Image of a tangential sections through V2 L1-4 stained for CO (Top) after
1127 being imaged for mCherry and GFP fluorescence (Middle). The middle panel shows the merged
1128 fluorescent channels. Arrows: V2 injection sites; white arrowheads point at some GFP-labeled
1129 input neurons. Red fibers are the terminals of V1 \rightarrow V2 neurons in L3-4. Solid white contour:
1130 V1/V2 border (V1 is below the border). Region inside the white box is shown at higher
1131 magnification in the bottom panel. Other conventions as in Fig. 2. Bottom: higher magnification
1132 of GFP-labeled V2 input cells in L3, shown under GFP or mCherry fluorescence, and merged, as
1133 indicated. Scale bar: 100 μ m. (b) Same as in panel (a), but for a tangential section through V2 L1-
1134 6 showing denser GFP label in L5. Scale bars in (a-b): 500 μ m (Top, Middle), 100 μ m (Bottom).
1135 Supplementary Fig. 1 shows additional images illustrating the distribution of GFP label across
1136 V2 layers. Results in (a-b) are representative of injection sites made in 3 independent cases with
1137 similar results.
1138

1139 Figure 4. Laminar and tangential distribution of double-labeled “starter” cells in V1.

1140 (a) For each of the 3 cases, we show the percentage (left column) and the number (right bar
1141 graph) of V1 \rightarrow V2 double-labeled cells across V1 layers. (b) Average percent of double-labeled
1142 cells across V1 layers for the population (n= 668 cells in 3 independent animals). Error bars:
1143 s.e.m. (c) Distribution of double-labeled V1 cells across the tangential domain of V1, collapsed
1144 across layers, for each case. Zero represents the location of the most medial double-labeled cell
1145 and the bin with the largest number represents the most lateral location of double-labeled cells.
1146

1147 Figure 5. Laminar and tangential distribution of monosynaptic V2 FB inputs to V1 \rightarrow V2 cells.

1148 (a) Percent and number of GFP-labeled cells across V2 layers for each of the three cases. (b)
1149 Population average percent \pm s.e.m. of GFP-labeled cells across V2 layers (n=2,090 cells in 3
1150 independent animals). (c) Distribution of GFP-labeled cells across the tangential domain of V2
1151 pooled across layers. Other conventions as in Fig. 4. (d) Population average ratio of V2 input
1152 cells in each layer to the total number of V1 \rightarrow V2 starter cells (pooled across layers; n=3
1153 independent animals). Error bars: s.e.m.
1154

1155 Figure 6. Case MK379: FB inputs from higher extrastriate cortex.

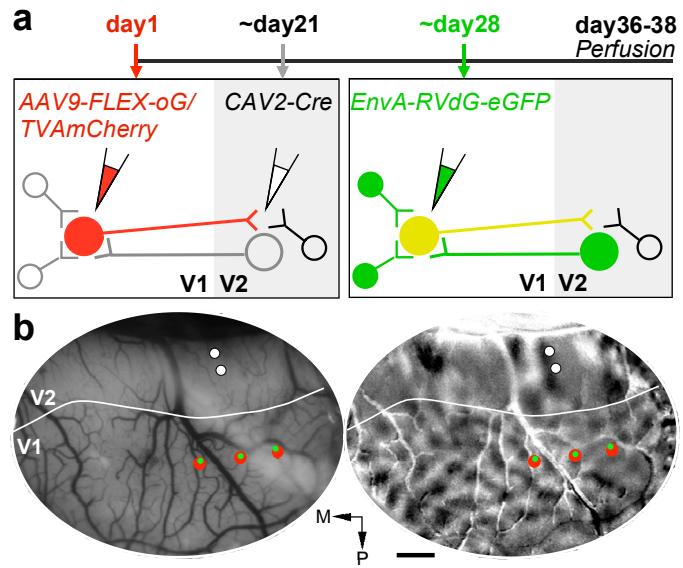
1156 (a) Image of a sagittal section through extrastriate cortex encompassing the anterior bank of the
1157 lunate sulcus (LS), the prelunate gyrus and the banks of the superior temporal sulcus (STS),
1158 stained for myelin using the Gallyas method to reveal areal borders (solid black lines). P:
1159 posterior; V: ventral. (b) Higher magnification of the MT region inside the black box in (a) in an
1160 adjacent section imaged for GFP and mCherry fluorescence and merged. A single GFP-labeled
1161 pyramidal cell is visible in L5 (inside white box), and shown at higher magnification in (e). (c)
1162 Same as in (a) but for a different section. (d) Higher magnification of the V3d/V3A region inside
1163 the white box in (c) viewed under fluorescence. A single GFP-labeled cell is visible in L6 of
1164 dorsal V3 (V3d) (inside white box), and shown at higher magnification in (f). (e-f) GFP-labeled

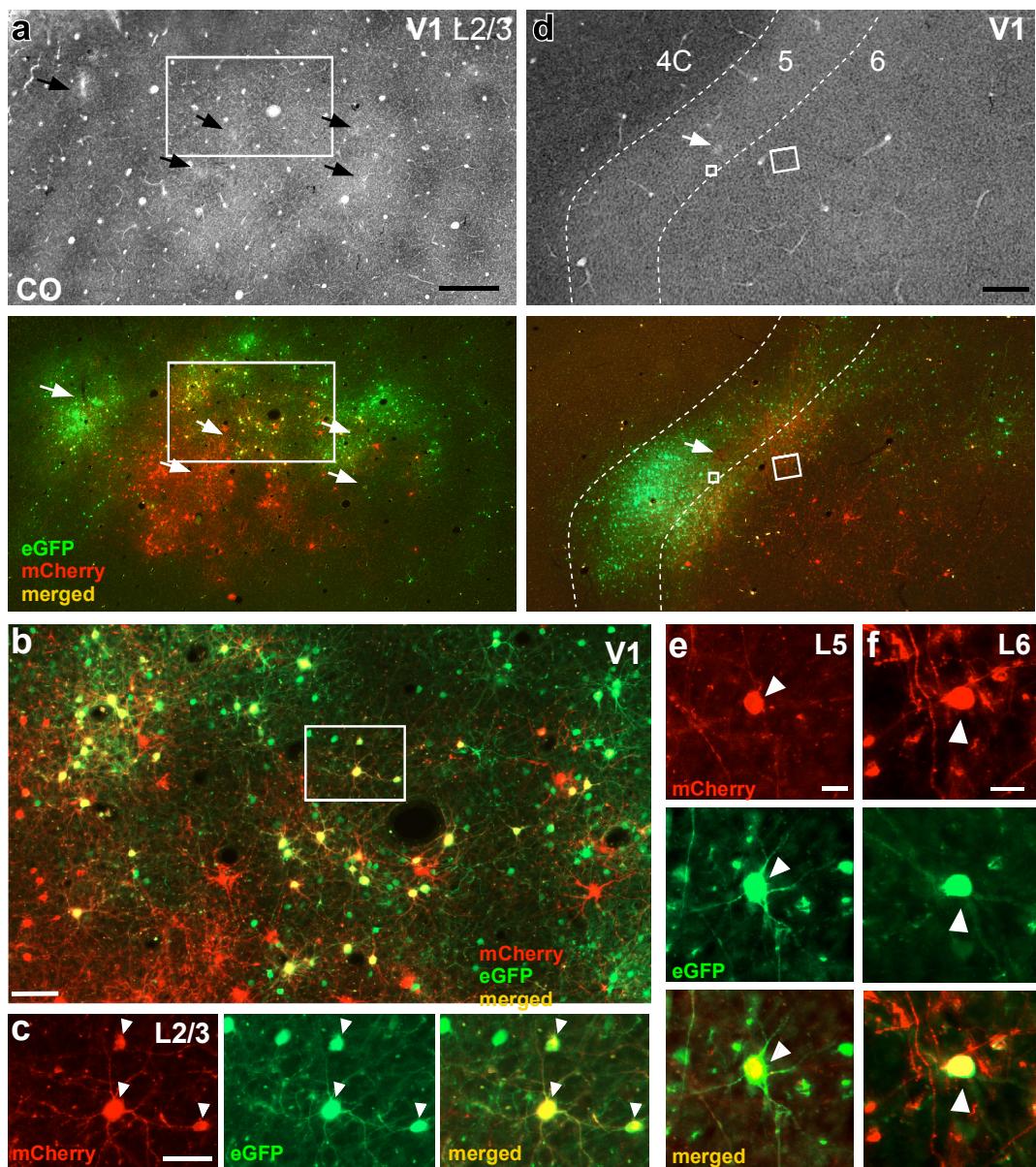
1165 cells in MT L5 and V3d L6, respectively. Scale bars: 1 mm (a-c), 250 μ m (b,d), 20 μ m (e-f). (g)
1166 Number of GFP-labeled cells in higher extrastriate areas.

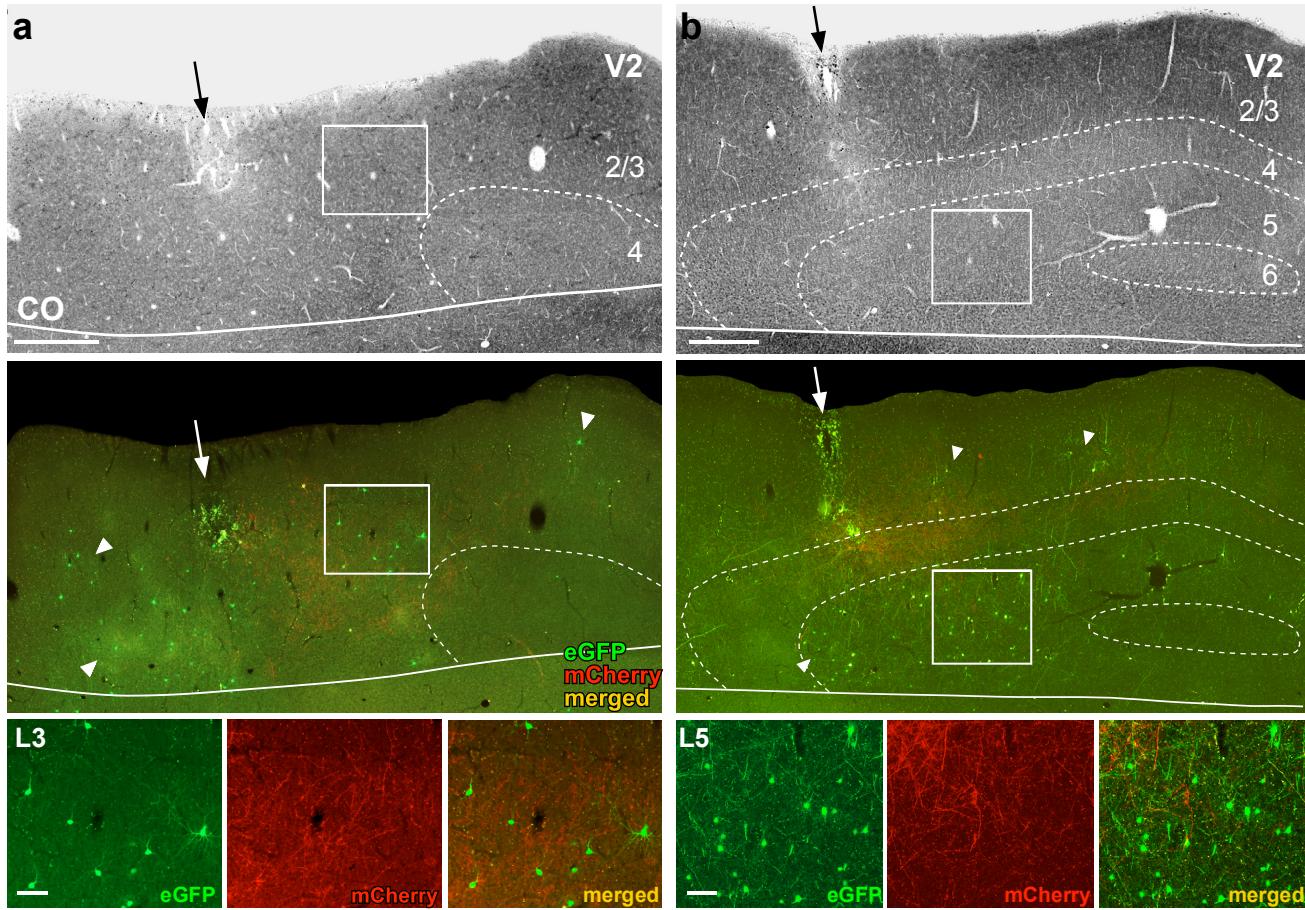
1167
1168 Figure 7. Laminar and tangential distribution of long-range V1 inputs.

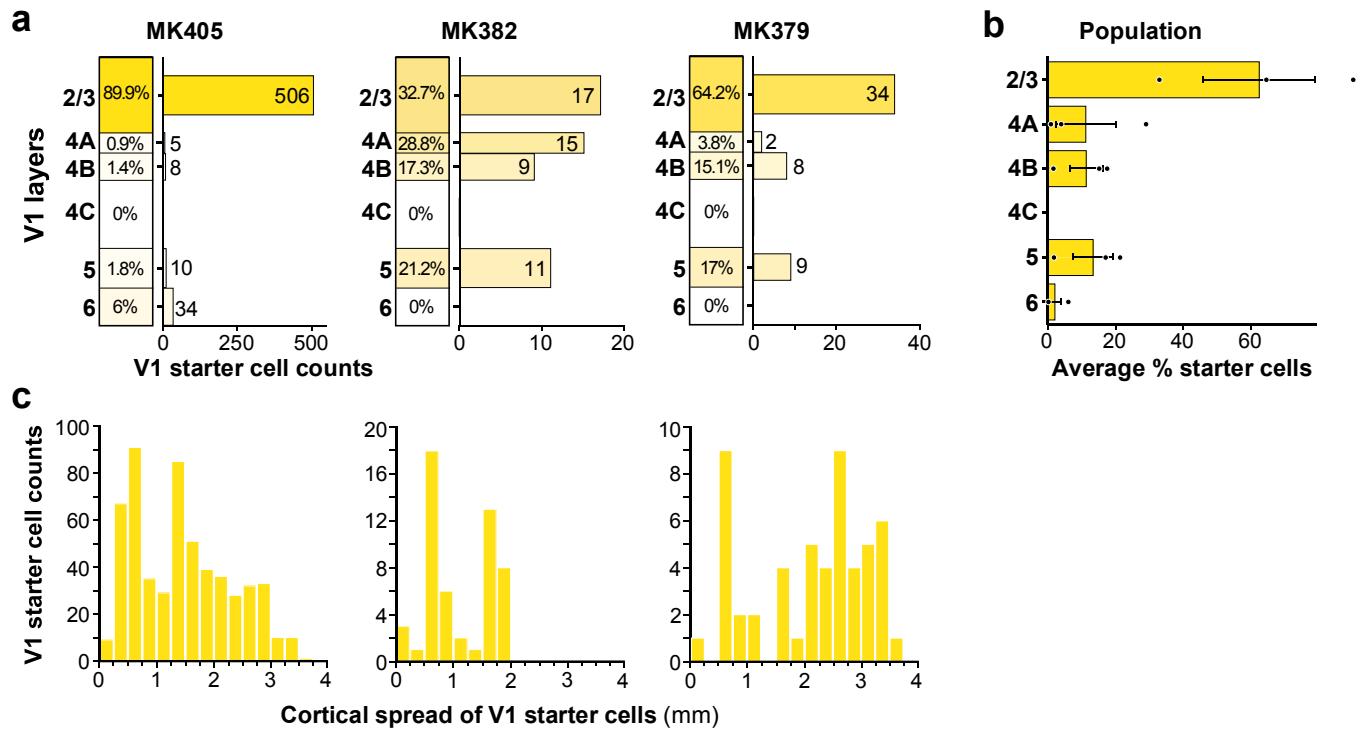
1169 (a) Case MK405. Image of a single tangential section through V1 L2/3-4C stained for CO (Left)
1170 after being imaged for mCherry and GFP fluorescence (Right). The merged channel shows
1171 plenty of GFP-labeled V1 input cells (green) in L2/3, 4A, 4B and 4C away from the injection
1172 sites (arrows). The locations of the injection sites were determined in more superficial sections
1173 where the CO discoloration was more visible than in the indicated section. The region inside the
1174 boxes are shown at higher magnification in (b and c). Other conventions are as in Fig. 2. Scale
1175 bar: 500 μ m. (b-c) GFP-labeled V1 input cells in L2/3 (b) and L4B (c), shown under GFP (Left)
1176 or mCherry (Middle) fluorescence, and merged (Right). Scale bars: 50 μ m. Results in (a-c) are
1177 representative of V1 GFP label in 3 independent TRIO experiments. (d) Percent and number of
1178 long-range V1 input cells across layers for each of the three cases. (e) Average percent \pm s.e.m.
1179 of V1 input cells across V1 layers for the population. (f) Tangential spread of V1 input cells for
1180 each case (GFP-labeled cells within 400 μ m of each V1 injection site were omitted from the
1181 counts). (g) Average percent of cortical inputs arising from V2 versus V1 for the population
1182 (n=20,369 cells in 3 independent animals). Error bars: s.e.m. Results in (a-c) are representative
1183 of injection sites made in 3 independent cases with similar results.

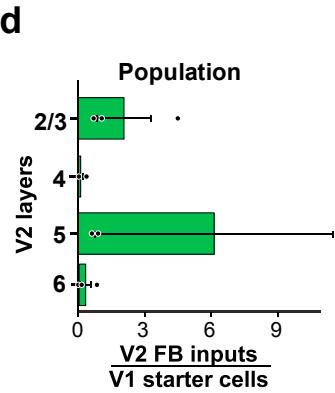
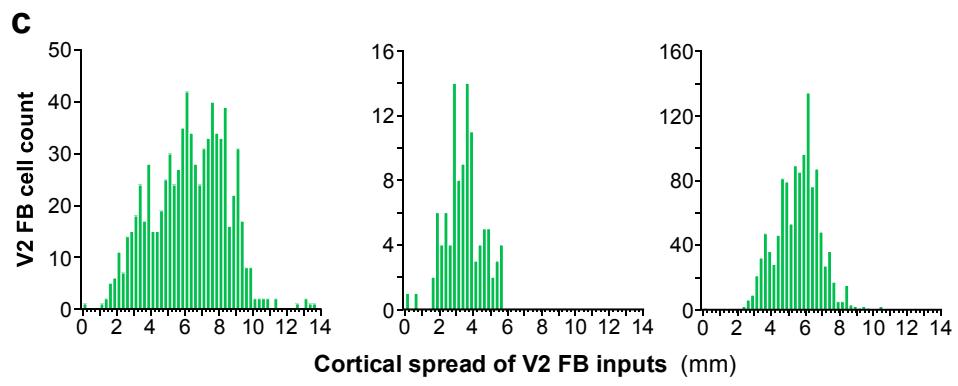
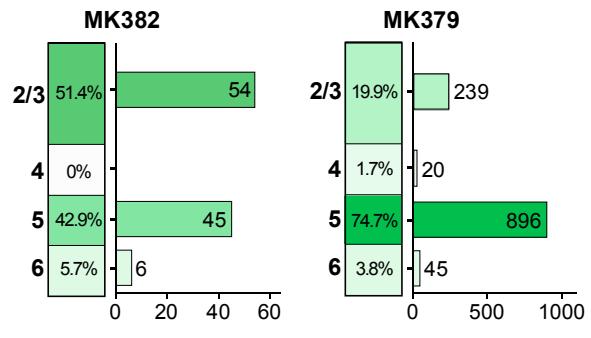
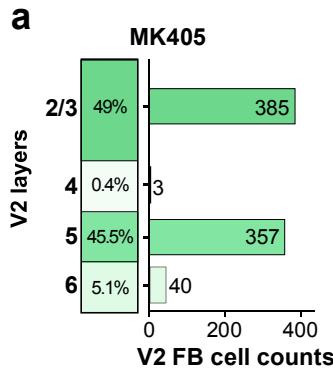
1184
1185
1186 Figure 8. Thalamic input cells.


1187 (a) Case MK379. Image of a single parasagittal section through the LGN viewed under GFP
1188 fluorescence (Left), stained for fluorescent Nissl (Middle Left), immunostained for Calbindin-
1189 Alexa647 (Middle Right), and with all 3 channels merged (Right). The GFP-labeled cells inside
1190 the top and bottom white boxes are shown at higher magnification in (b) and (c), respectively.
1191 The parvocellular (P3-6) and magnocellular (M1-2) LGN layers are labeled. A: anterior; V:
1192 ventral. Scale bar: 250 μ m. (b-c) GFP-labeled LGN input cells in the P3 (b) and M1 (c) layers
1193 shown in the same 3 channels as the top panels and with all channels merged (Right). White
1194 arrowheads point to the location of GFP-labeled neurons, yellow arrowheads point to calbindin-
1195 positive cells. The GFP-labeled cells are not calbindin-positive. Scale bars: 50 μ m. (d) Image of
1196 a sagittal section through the LGN and pulvinar, with all 3 fluorescent channels (GFP, calbindin
1197 and Nissl) merged. The cells inside the white box are shown at higher magnification in (e). PL:
1198 lateral pulvinar; PI: inferior pulvinar; LV: lateral ventricle. Scale bar: 1 mm. (e) A GFP-labeled
1199 input cell (white arrowhead) in the PL imaged under the same 3 channels as for the LGN cells
1200 and with all channels merged (Bottom Right). Yellow arrowhead in each panel points to the
1201 location of a calbindin-positive cell (red). The GFP-labeled cell is not calbindin-positive. Scale
1202 bar: 50 μ m. (f) Number of GFP-labeled cells in the thalamic nuclei. (g) Number of GFP-labeled
1203 cells in the LGN layers.


1204
1205 Figure 9. Summary circuit model.


1206 Schematics of the FB circuit motifs discovered in this study. Triangles: pyramidal cell somata;
1207 circles: thalamic cell somata; arrows: axonal projections (thickness indicates projection
1208 magnitude). All axonal projections in this scheme are excitatory and terminate onto excitatory
1209 cells. Some V2 FB neurons (left V2 blue cell) make monosynaptic contacts with V1 neurons


1210 projecting to V2 (green pyramidal cell). The latter receive the majority of their long-range
1211 cortical inputs from other pyramidal neurons within V1 (red cell). Some V2 neurons in L5 (right
1212 V2 blue cell) sending FB to V1 receive monosynaptic inputs from FB neurons in higher
1213 extrastriate areas (blue cell in extrastriate cortex), as well as sparse inputs from the LGN and
1214 lateral pulvinar (round green cells).





1215

