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Abstract— Human dexterity far exceeds that of modern
robots, despite a much slower neuromuscular system. Under-
standing how this is accomplished may lead to improved robot
control. The slow neuromuscular system of humans implies
that prediction based on some form of internal model plays a
prominent role. However, the nature of the model itself remains
unclear. To address this problem, we focused on one of the most
complex and exotic tools humans can manipulate—a whip. We
tested (in simulation) whether a distant target could be reached
with a whip using a (small) number of dynamic primitives
whose parameters could be learned through optimization. This
approach was able to manage the complexity of an (extremely)
high degree-of-freedom system and discovered five optimal
parameters of a single movement that achieved the task. An
internal model of the whip dynamics was not needed for
this approach, thereby significantly relieving the computational
burden of task representation and performance optimization.
These results support our hypothesis that composing control
using dynamic motor primitives may be a strategy which
humans use to enable their remarkable dexterity. A similar
approach may contribute to improved robot control.

I. INTRODUCTION

Tool-use is a hallmark of human behavior. The dexterity

required to handle a broad range of tools has been widely

recognized as a distinctively human characteristic [1]–[5].

Despite extensive research attempting to realize comparable

dexterity in robots, the remarkable performance of humans

has yet to be replicated, and a comprehensive theoretical

framework remains to be established. A paradox emerges

when we recognize that humans vastly out-perform modern

robot technology despite low-bandwidth actuators, a high

level of noise, and long latencies in neural communication

within the neuromuscular system [6].

How does the human system perform so well despite its

limitations? Rather than achieving motor skills based on real-

time supervision and intervention from the central nervous

system (CNS), the slow neuromuscular system implies that

prediction based on some form of “internal model” plays a

prominent role in human motor control [7]–[11]. In robotics,

optimization is widely used for task planning, and optimiza-
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tion based on an internal model has successfully accounted

for the coordination of simple reaching movements.

Although prediction is widely accepted as a key aspect

of human motor control, the nature of the internal model

itself remains unclear. To address this problem, we focused

on one of the most complex and exotic tools which humans

can manipulate—a whip. A whip is a flexible object with

non-uniform mechanical properties that interacts with a

compressible gas up to the supersonic regime. A compe-

tent engineering-style model to describe the whip dynamics

requires nonlinear partial differential equations of infinite

order [12], [13]. Due to what Richard Bellman called the

“curse of dimensionality”, the computational complexity of

using optimization with an engineering-style model of whip

dynamics is essentially unmanageable, taxing even modern

super-computers. Nevertheless, apparently indifferent to this

daunting complexity, humans can learn to manipulate a whip,

sometimes with apparent ease, with some experts reaching

an impressive level of spatial and temporal accuracy with the

tip of the whip [14], [15].

This observation suggests that the CNS employs a fun-

damentally different approach than optimization based on

an engineering-style model. Specifically, we suggest that

humans simplify the task by composing motor control using

dynamic motor primitives [16]–[20]. This term refers to

dynamic behaviors that manifest as stable attractors of the

(nonlinear) neuromechanical system. They are conceived as

dynamic “building blocks” that may be combined to produce

complex behavior. Three classes of dynamic primitives have

been identified—submovements, oscillations and mechanical

impedances, the latter to manage physical interaction—

though there may be others.

We hypothesize that human motor control uses an internal

representation that is solely encoded in terms of the pa-

rameters of dynamic primitives. Encoding motor tasks via

parameterized dynamic primitives may dramatically simplify

the control of complex object manipulation. Using opti-

mization as a model of learning, this parameterization may

enable convergence (or accelerate it) without encountering

limitations due to the “curse of dimensionality”.

This study tested (in simulation) whether a target could

be reached with a whip using a (small) number of dynamic

primitives, whose parameters were learned through optimiza-

tion. We found that this approach was able to identify a

single upper limb movement which approximated a distant

target with a whip. This result supports our hypothesis that

composing actions using dynamic motor primitives may be a

strategy underlying human’s remarkable dexterity. A similar

approach may contribute to improved robot control.
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II. METHODS

The research presented in this paper used the simulation

software MuJoCo [21], which provided a controlled environ-

ment to test our working hypothesis. For all of the MuJoCo

simulations, the semi-implicit Euler method was chosen as

the numerical integrator with a time step of 0.1 millisecond.

A. Modeling

The model used in the MuJoCo simulation consisted of

two main parts: an N-node model of a whip (the object being

manipulated) and a model of the human upper limb (the

manipulator).

1) Model of a whip: An N-node “lumped-parameter”

model was developed to approximate the continuum dy-

namics of a whip. It consisted of a finite sequence of

serially-connected planar sub-models. Each sub-model was

composed of three lumped-parameter elements: an (ideal)

point mass, a linear torsional spring and a linear torsional

damper. The point-mass m [kg] was suspended from a single

degree-of-freedom pivot with length l [m]. The pivot, a

rotational joint, was equipped with a linear torsional spring

and a linear torsional damper, with coefficients k [N ·m/rad]
and b [N ·m · s/rad], respectively. N of these identical planar

sub-models were serially connected to comprise the N-node

whip model. The parameters (N, l, m, k, b) will be called

the “whip parameters” of the model.

2) Model of the human upper limb: The human upper

limb was modeled as a two-bar open-chain linkage. The

fingers, hand and wrist (everything distal to the wrist joint)

were excluded from this model. The shoulder and elbow were

modeled as single degree-of-freedom rotational joints. The

shoulder joint axis was fixed in space, and the movement

of the upper limb model was confined to the sagittal plane.

Independently controlled torque actuators were mounted co-

axially with the shoulder and elbow joints. The two limb

segments were taken to be non-uniform cylinders, i.e. the

center of mass and the geometric center of the segment were

not identical. Assuming right-handedness, the geometrical

and inertial parameters for each limb segment were derived

from a computational model by Hatze [22], and detailed

values are presented in Table I.

3) Combined model (whip + upper limb): The discretized

N-node whip model was planarly connected to the two-

segment upper limb model with a single degree-of-freedom

rotational joint. No stiffness or damping elements were

included for this rotational joint, i.e. a freely-rotating hinge

was used for the connection. Summarizing, the combined

model simulated a sequential open-chain planar mechanism

with N +2 degrees-of-freedom.

B. Validation of the MuJoCo Simulator

To assess the reliability of the MuJoCo simulator, the total

(kinetic+potential) energy of a lossless N-node whip model

was computed. The lossless model was created by setting

the torsional damping coefficient b to zero for the N sub-

models. The simulation started with the whip in an equilib-

rium configuration, at rest hanging vertically downward. A

single degree-of-freedom linear actuator, driven by a position

controller with high proportional gain, moved the top of the

modeled whip in a horizontal motion from rest with the

following movement profile p(t):

p(t) =
A

2

{

1− cos

(

2π

w
· (t − t0)

)}

(1)

where A [m] is the amplitude of the motion profile, t0 [s] is

the time when the motion started and w [s] is the duration of

the motion; t [s] is the time variable defined in the domain

[t0, t0 +w]. For times before and after this interval, the top

of the whip remained at rest, i.e. p(t) = 0.

For 5 minutes, the total energy of the lossless whip model

was computed at each time step. The potential and kinetic

energy of the whole system were called using innate MuJoCo

functions.

C. Analysis of a Linearized Whip Model

Nonlinear Euler-Lagrange equations of motion were lin-

earized about rest in the vertically-downward position, yield-

ing the following state-space representation:

~̇x = A~x :=

[

0n×n In×n

−M−1
w (Kw +Gw) −M−1

w Bw

][

~q

~̇q

]

(2)

where Mw,Bw,Kw,Gw ∈ R
n×n are matrices of inertia,

damping, stiffness and gravitational effects, respectively;

0n×n, In×n ∈ R
n×n are the zero and identity matrices, respec-

tively; the vector ~q ∈ R
n denotes joint angles in relative

coordinates; dots denote derivatives with respect to time;

A∈R
2n×2n is the state matrix and~x ∈R

2n is the state vector.

To study the effect of damping b on the whip dynamics,

the real (dissipative) and imaginary (oscillatory) components

of the eigenvalues of matrix A were evaluated for different

values of damping b. To check whether the dynamic behavior

of the whip shown in the simulation of Sec. II-B was

consistent with the eigenvalue analysis, the angle data of

the Nth joint (i.e. the angle of the last sub-model of the

whip model) were extracted with a sampling frequency of

500Hz. Using the Fast Fourier Transform (FFT) of the

Numpy python library, a spectral analysis was conducted on

a segment of the data.

D. Experimental Estimation of Realistic Whip Parameters

Physical parameters of a commercially available 6-foot

bullwhip were identified. The distal parts of the whip (fall

and cracker) were removed, and 10 customized reflective

markers were mounted at equal distances along its main part,

a thong of 1.8m length. The top of the handle was attached

to a pivot, and the whip was freely suspended. The tip of

the whip was manually displaced 20cm horizontally from

equilibrium and released to initiate small oscillations. Twelve

Oqus cameras (Qualisys, Goetheborg, Sweden) recorded the

3D position of whip markers for 20 seconds at a sampling

rate of 500Hz.

The 2D horizontal position of those markers was used to

measure the frequency f [Hz] of the oscillation. All analyses

were conducted using MATLAB (Mathworks Inc., Natick,
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MA). The dominant frequency values were averaged across

markers. With the identified frequency f , the exponential de-

cay time-constant τdecay [s] of the oscillation was calculated,

using the position of the marker at the tip of the whip.

Since the trace of oscillation was not aligned with the x

and y axis of the Qualisys Cartesian coordinate frame, the

position data were rotated so that the starting position of

the marker resided on the x axis. The rotated x position vs.

time was curve-fit with the following function c(t) to find

the coefficient of exponential decay τdecay:

c(t) =Ce−t/τdecay sin(2π f t +φ) (3)

where C [mm] is the amplitude and φ [rad] is the phase offset

of the sine function. The values of C, τdecay and φ which

minimized the sum of squared errors with the experimental

data were searched. The mass m and length l parameters of

the whip model were derived from the measured mass f [Hz]
(0.3kg) and length (1.8m) of the actual whip. Based on the

frequency f and the exponential decay time-constant τdecay,

the stiffness k and damping b values of the whip model were

computed to yield the same damped oscillation. The whip

model with parameters derived from the experimental data

will be called the “experimentally-fitted” whip model.

E. Control of the Upper Limb

1) Impedance controller: To account for physical inter-

action between the upper limb and the whip, the model

included an impedance controller. The two-joint manipulator

muscle model from Flash [23] was adopted and reconfigured:

~τ = K(~φ −~θ)+B(~̇φ − ~̇θ)+~τG (4)

In this equation, K ∈ R
2×2 is a constant joint stiffness

matrix, B ∈ R
2×2 is a constant joint damping matrix, both

representing the neuromuscular mechanical impedance of the

upper limb [24]; vector ~τ(t) = [τ1(t), τ2(t)]
T denotes the net

torque input on each joint; subscripts 1 and 2 denote shoulder

and elbow, respectively; vector ~τG(t) = [τ1,G(t), τ2,G(t)]
T

denotes the torque required for gravity compensation; vector
~θ(t) = [θ1(t), θ2(t)]

T denotes the actual joint angle trajec-

tory defined in relative angle coordinates; vector ~φ(t) =
[φ1(t), φ2(t)]

T represents a motion command from the CNS

as a “zero-torque” trajectory, i.e. neglecting gravitation ef-

fects, if the actual joint angle trajectory ~θ exactly matches

the zero-torque trajectory ~φ , no torque will be exerted by the

actuators. Gravitational effects were compensated with ~τG,

so that the actual upper limb posture ~θ could exactly match

the zero-torque posture ~φ when the whole model is at rest.

The neuromuscular mechanical impedance parameters K and

B were chosen to be positive definite symmetric matrices,

and joint damping B was chosen to be proportional to joint

stiffness K, such that B = βK where β is a time-constant.

Detailed values for K and B were borrowed from Flash [23],

and are listed in Table I.

2) Zero-torque trajectory: The zero-torque trajectory of

the upper limb model followed a rest-to-rest minimum-jerk

profile [25] in joint coordinates:

φ1(t) = φ1,i +(φ1, f −φ1,i) · (10τ3
−15τ4 +6τ5)

φ2(t) = φ2,i +(φ2, f −φ2,i) · (10τ3
−15τ4 +6τ5)

(5)

where τ := t/D is a normalized time variable defined

on the domain [0, 1]; D is the duration of a single upper

limb movement; t is time and subscripts i and f denote

the initial and final postures, respectively. For times greater

than the duration D (i.e. t > D), the zero-torque trajectory

of the shoulder and elbow joint remained at φ1, f and φ2, f ,

respectively.

3) Implementation: In the simulation, ~φ(t) was deter-

mined by 5 movement parameters: (φ1,i, φ2,i, φ1, f , φ2, f , D).

At every time step, the actual joint angle ~θ and angular

velocity ~̇θ for each joint were called from the simulation.

Based on these values, the position and velocity deviation

between the zero-torque trajectory ~φ(t) and the actual joint

angle trajectory ~θ(t) were calculated. With the specified K

and B matrices and the gravity compensation torque ~τG, the

resultant torque values were calculated and applied to each

torque actuator.

F. The Whip Task and Optimization

The objective of the whip task was to minimize the

value L [m], the distance between the tip of the whip and

a target. To avoid chaotic behavior due to the model whip

colliding with a target, the target was located at a distance

just 0.01 m beyond the combined length of the upper limb

and whip. The minimum value of the distance L reached

with a single discrete (i.e. rest-to-rest) upper limb movement,

L∗ [m], was a quantitative measure to assess performance.

The distance L was calculated for each time step, by calling

the Cartesian positions of the target and the tip of the

whip from the simulation. Four variants of the whip model

were tested: short, medium, long and experimentally-fitted.

Detailed values of the whip parameters (N, l, m, k, b) are

listed in Table II.

For each whip model, the optimal 5 movement parameters

(φ1,i, φ2,i, φ1, f , φ2, f , D) which minimized L∗ were identi-

fied with the nlopt (nonlinear optimization) C++ tool box.

Within the global derivative-free optimization algorithm, the

DIRECT-L (DIviding RECTangles, Locally biased) algo-

rithm was chosen for the optimization [26]. The optimization

process comprised 600 iterations.

III. RESULTS

A. Numerical Dissipation of the MuJoCo Simulator

The energy of a lossless N-node whip model should

remain constant after the excitation ended (Eq.1). However,

using the (semi-implicit) Euler method as the numerical

integrator in the MuJoCo simulation, a gradual decrease

of total energy was observed. For models with more than

one degree of freedom (N > 1), the simulated energy loss

was pronounced (Fig. 1). This apparent dissipation of total

energy, due to the accumulation of numerical error, acted as

an “innate damper” in the simulation.
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