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Dynamic Primitives Facilitate Manipulating a Whip
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Abstract— Human dexterity far exceeds that of modern
robots, despite a much slower neuromuscular system. Under-
standing how this is accomplished may lead to improved robot
control. The slow neuromuscular system of humans implies
that prediction based on some form of internal model plays a
prominent role. However, the nature of the model itself remains
unclear. To address this problem, we focused on one of the most
complex and exotic tools humans can manipulate—a whip. We
tested (in simulation) whether a distant target could be reached
with a whip using a (small) number of dynamic primitives
whose parameters could be learned through optimization. This
approach was able to manage the complexity of an (extremely)
high degree-of-freedom system and discovered five optimal
parameters of a single movement that achieved the task. An
internal model of the whip dynamics was not needed for
this approach, thereby significantly relieving the computational
burden of task representation and performance optimization.
These results support our hypothesis that composing control
using dynamic motor primitives may be a strategy which
humans use to enable their remarkable dexterity. A similar
approach may contribute to improved robot control.

I. INTRODUCTION

Tool-use is a hallmark of human behavior. The dexterity
required to handle a broad range of tools has been widely
recognized as a distinctively human characteristic [1]-[5].
Despite extensive research attempting to realize comparable
dexterity in robots, the remarkable performance of humans
has yet to be replicated, and a comprehensive theoretical
framework remains to be established. A paradox emerges
when we recognize that humans vastly out-perform modern
robot technology despite low-bandwidth actuators, a high
level of noise, and long latencies in neural communication
within the neuromuscular system [6].

How does the human system perform so well despite its
limitations? Rather than achieving motor skills based on real-
time supervision and intervention from the central nervous
system (CNS), the slow neuromuscular system implies that
prediction based on some form of “internal model” plays a
prominent role in human motor control [7]-[11]. In robotics,
optimization is widely used for task planning, and optimiza-
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tion based on an internal model has successfully accounted
for the coordination of simple reaching movements.

Although prediction is widely accepted as a key aspect
of human motor control, the nature of the internal model
itself remains unclear. To address this problem, we focused
on one of the most complex and exotic tools which humans
can manipulate—a whip. A whip is a flexible object with
non-uniform mechanical properties that interacts with a
compressible gas up to the supersonic regime. A compe-
tent engineering-style model to describe the whip dynamics
requires nonlinear partial differential equations of infinite
order [12], [13]. Due to what Richard Bellman called the
“curse of dimensionality”, the computational complexity of
using optimization with an engineering-style model of whip
dynamics is essentially unmanageable, taxing even modern
super-computers. Nevertheless, apparently indifferent to this
daunting complexity, humans can learn to manipulate a whip,
sometimes with apparent ease, with some experts reaching
an impressive level of spatial and temporal accuracy with the
tip of the whip [14], [15].

This observation suggests that the CNS employs a fun-
damentally different approach than optimization based on
an engineering-style model. Specifically, we suggest that
humans simplify the task by composing motor control using
dynamic motor primitives [16]-[20]. This term refers to
dynamic behaviors that manifest as stable attractors of the
(nonlinear) neuromechanical system. They are conceived as
dynamic “building blocks” that may be combined to produce
complex behavior. Three classes of dynamic primitives have
been identified—submovements, oscillations and mechanical
impedances, the latter to manage physical interaction—
though there may be others.

We hypothesize that human motor control uses an internal
representation that is solely encoded in terms of the pa-
rameters of dynamic primitives. Encoding motor tasks via
parameterized dynamic primitives may dramatically simplify
the control of complex object manipulation. Using opti-
mization as a model of learning, this parameterization may
enable convergence (or accelerate it) without encountering
limitations due to the “curse of dimensionality”.

This study tested (in simulation) whether a target could
be reached with a whip using a (small) number of dynamic
primitives, whose parameters were learned through optimiza-
tion. We found that this approach was able to identify a
single upper limb movement which approximated a distant
target with a whip. This result supports our hypothesis that
composing actions using dynamic motor primitives may be a
strategy underlying human’s remarkable dexterity. A similar
approach may contribute to improved robot control.
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II. METHODS

The research presented in this paper used the simulation
software MuJoCo [21], which provided a controlled environ-
ment to test our working hypothesis. For all of the MuJoCo
simulations, the semi-implicit Euler method was chosen as
the numerical integrator with a time step of 0.1 millisecond.

A. Modeling

The model used in the MuJoCo simulation consisted of
two main parts: an N-node model of a whip (the object being
manipulated) and a model of the human upper limb (the
manipulator).

1) Model of a whip: An N-node “lumped-parameter”
model was developed to approximate the continuum dy-
namics of a whip. It consisted of a finite sequence of
serially-connected planar sub-models. Each sub-model was
composed of three lumped-parameter elements: an (ideal)
point mass, a linear torsional spring and a linear torsional
damper. The point-mass m [kg] was suspended from a single
degree-of-freedom pivot with length [ [m]. The pivot, a
rotational joint, was equipped with a linear torsional spring
and a linear torsional damper, with coefficients k [N -m/rad)]
and b [N -m-s/rad], respectively. N of these identical planar
sub-models were serially connected to comprise the N-node
whip model. The parameters (N, I, m, k, b) will be called
the “whip parameters” of the model.

2) Model of the human upper limb: The human upper
limb was modeled as a two-bar open-chain linkage. The
fingers, hand and wrist (everything distal to the wrist joint)
were excluded from this model. The shoulder and elbow were
modeled as single degree-of-freedom rotational joints. The
shoulder joint axis was fixed in space, and the movement
of the upper limb model was confined to the sagittal plane.
Independently controlled torque actuators were mounted co-
axially with the shoulder and elbow joints. The two limb
segments were taken to be non-uniform cylinders, i.e. the
center of mass and the geometric center of the segment were
not identical. Assuming right-handedness, the geometrical
and inertial parameters for each limb segment were derived
from a computational model by Hatze [22], and detailed
values are presented in Table 1.

3) Combined model (whip + upper limb): The discretized
N-node whip model was planarly connected to the two-
segment upper limb model with a single degree-of-freedom
rotational joint. No stiffness or damping elements were
included for this rotational joint, i.e. a freely-rotating hinge
was used for the connection. Summarizing, the combined
model simulated a sequential open-chain planar mechanism
with N +2 degrees-of-freedom.

B. Validation of the MuJoCo Simulator

To assess the reliability of the MuJoCo simulator, the total
(kinetic+potential) energy of a lossless N-node whip model
was computed. The lossless model was created by setting
the torsional damping coefficient b to zero for the N sub-
models. The simulation started with the whip in an equilib-
rium configuration, at rest hanging vertically downward. A
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single degree-of-freedom linear actuator, driven by a position
controller with high proportional gain, moved the top of the
modeled whip in a horizontal motion from rest with the
following movement profile p(r):

(D

where A [m] is the amplitude of the motion profile, 1 [s] is
the time when the motion started and w [s] is the duration of
the motion; ¢ [s] is the time variable defined in the domain
[f0, fo + w]. For times before and after this interval, the top
of the whip remained at rest, i.e. p(t) =0.

For 5 minutes, the total energy of the lossless whip model
was computed at each time step. The potential and kinetic
energy of the whole system were called using innate MuJoCo
functions.

C. Analysis of a Linearized Whip Model

Nonlinear Euler-Lagrange equations of motion were lin-
earized about rest in the vertically-downward position, yield-
ing the following state-space representation:

= — On><n In><n q
X = Ax = _ _ KX 2
-M,, ! (Kw + GW) -M,, le q @

where M,,,B,,,K,,,G,, € R"™" are matrices of inertia,
damping, stiffness and gravitational effects, respectively;
Onxns> Inxn € R™™ are the zero and identity matrices, respec-
tively; the vector § € R" denotes joint angles in relative
coordinates; dots denote derivatives with respect to time;
A € R¥™2" is the state matrix and X € IR?" is the state vector.

To study the effect of damping b on the whip dynamics,
the real (dissipative) and imaginary (oscillatory) components
of the eigenvalues of matrix A were evaluated for different
values of damping b. To check whether the dynamic behavior
of the whip shown in the simulation of Sec. II-B was
consistent with the eigenvalue analysis, the angle data of
the N joint (i.e. the angle of the last sub-model of the
whip model) were extracted with a sampling frequency of
500Hz. Using the Fast Fourier Transform (FFT) of the
Numpy python library, a spectral analysis was conducted on
a segment of the data.

D. Experimental Estimation of Realistic Whip Parameters

Physical parameters of a commercially available 6-foot
bullwhip were identified. The distal parts of the whip (fall
and cracker) were removed, and 10 customized reflective
markers were mounted at equal distances along its main part,
a thong of 1.8m length. The top of the handle was attached
to a pivot, and the whip was freely suspended. The tip of
the whip was manually displaced 20cm horizontally from
equilibrium and released to initiate small oscillations. Twelve
Oqus cameras (Qualisys, Goetheborg, Sweden) recorded the
3D position of whip markers for 20 seconds at a sampling
rate of S00Hz.

The 2D horizontal position of those markers was used to
measure the frequency f [Hz] of the oscillation. All analyses
were conducted using MATLAB (Mathworks Inc., Natick,
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MA). The dominant frequency values were averaged across
markers. With the identified frequency f, the exponential de-
cay time-constant Tgecqy [s] of the oscillation was calculated,
using the position of the marker at the tip of the whip.
Since the trace of oscillation was not aligned with the x
and y axis of the Qualisys Cartesian coordinate frame, the
position data were rotated so that the starting position of
the marker resided on the x axis. The rotated x position vs.
time was curve-fit with the following function c(¢) to find
the coefficient of exponential decay Tjecqy:
c(t) = Ce™"/Tecay in (27 ft + ) 3)
where C [mm] is the amplitude and ¢ [rad] is the phase offset
of the sine function. The values of C, Tj.cqy and ¢ which
minimized the sum of squared errors with the experimental
data were searched. The mass m and length [ parameters of
the whip model were derived from the measured mass f [Hz]
(0.3kg) and length (1.8m) of the actual whip. Based on the
frequency f and the exponential decay time-constant Tjecqy,
the stiffness k and damping b values of the whip model were
computed to yield the same damped oscillation. The whip
model with parameters derived from the experimental data
will be called the “experimentally-fitted” whip model.

E. Control of the Upper Limb

1) Impedance controller: To account for physical inter-
action between the upper limb and the whip, the model
included an impedance controller. The two-joint manipulator
muscle model from Flash [23] was adopted and reconfigured:

T=K(¢—6)+B(9—0)+7 )
In this equation, K € R?*? is a constant joint stiffness
matrix, B € R?*? is a constant joint damping matrix, both
representing the neuromuscular mechanical impedance of the
upper limb [24]; vector Z(¢) = [11(¢), T2(¢)]7 denotes the net
torque input on each joint; subscripts 1 and 2 denote shoulder
and elbow, respectively; vector Z(t) = [T1.6(t), T.6(1)]"
denotes the torque required for gravity compensation; vector
6(r) = [61(1), 6:(r)]” denotes the actual joint angle trajec-
tory defined in relative angle coordinates; vector (5([) =
[01(2), ¢2(¢)]” represents a motion command from the CNS
as a “zero-torque” trajectory, i.e. neglecting gravitation ef-
fects, if the actual joint angle trajectory 6 exactly matches
the zero-torque trajectory (3 , no torque will be exerted by the
actuators. Gravitational effects were compensated with g,
so that the actual upper limb posture 6 could exactly match
the zero-torque posture (B when the whole model is at rest.
The neuromuscular mechanical impedance parameters K and
B were chosen to be positive definite symmetric matrices,
and joint damping B was chosen to be proportional to joint
stiffness K, such that B = BK where 3 is a time-constant.
Detailed values for K and B were borrowed from Flash [23],
and are listed in Table 1.

2) Zero-torque trajectory: The zero-torque trajectory of
the upper limb model followed a rest-to-rest minimum-jerk
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profile [25] in joint coordinates:

O1(t) =01+ (d1.r—1,0) (1073 — 157* + 67°)
$o(t) = ¢+ (§o,7 — $2) - (107° — 157* +67°)

where 7 :=1t/D is a normalized time variable defined
on the domain [0, 1]; D is the duration of a single upper
limb movement; ¢ is time and subscripts i and f denote
the initial and final postures, respectively. For times greater
than the duration D (i.e. t > D), the zero-torque trajectory
of the shoulder and elbow joint remained at ¢; r and ¢, r,
respectively.

3) Implementation: In the simulation, ¢(r) was deter-
mined by 5 movement parameters: (@1, ¢2, ¢1,7, ¢2.r, D).
At every time step, the actual joint angle 6 and angular

(&)

velocity 6 for each joint were called from the simulation.
Based on these values, the position and velocity deviation
between the zero-torque trajectory (75 (¢) and the actual joint
angle trajectory 6(t) were calculated. With the specified K
and B matrices and the gravity compensation torque Tg, the
resultant torque values were calculated and applied to each
torque actuator.

F. The Whip Task and Optimization

The objective of the whip task was to minimize the
value L [m], the distance between the tip of the whip and
a target. To avoid chaotic behavior due to the model whip
colliding with a target, the target was located at a distance
just 0.01 m beyond the combined length of the upper limb
and whip. The minimum value of the distance L reached
with a single discrete (i.e. rest-to-rest) upper limb movement,
L* [m], was a quantitative measure to assess performance.
The distance L was calculated for each time step, by calling
the Cartesian positions of the target and the tip of the
whip from the simulation. Four variants of the whip model
were tested: short, medium, long and experimentally-fitted.
Detailed values of the whip parameters (N, [, m, k, b) are
listed in Table II.

For each whip model, the optimal 5 movement parameters
(016> 920, 91,7, 92,7, D) which minimized L* were identi-
fied with the nlopt (nonlinear optimization) C++ tool box.
Within the global derivative-free optimization algorithm, the
DIRECT-L (Dlviding RECTangles, Locally biased) algo-
rithm was chosen for the optimization [26]. The optimization
process comprised 600 iterations.

III. RESULTS
A. Numerical Dissipation of the MuJoCo Simulator

The energy of a lossless N-node whip model should
remain constant after the excitation ended (Eq.1). However,
using the (semi-implicit) Euler method as the numerical
integrator in the MuJoCo simulation, a gradual decrease
of total energy was observed. For models with more than
one degree of freedom (N > 1), the simulated energy loss
was pronounced (Fig. 1). This apparent dissipation of total
energy, due to the accumulation of numerical error, acted as
an “innate damper” in the simulation.
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TABLE I: Parameters for Upper Limb Model [22], [23]

Description Notation Values Unit

Mass of Limb Segment My, M» 1.595, 0.869 [kg]

Limb Inertia Length of Limb Segment Ly, L, 0.294, 0.291 [m]
Parameters Length from proximal joint to Center of Mass Lei, Lo 0.129, 0.112 [m]
Moment of Inertia of Limb Segment w.r.t. Center of Mass L, b 0.012, 0.005 [kg-mz]

Neuromuscular  Stiffness Matrix K Elements K11, K12, K2 29.50, 14.30, 39.30 [Nm/rad]
Impedance Damping Matrix B Elements By1, Bi2, By 2950, 1.430,3.930  [N-m-s/rad]

Subscripts denote the shoulder and elbow joints, numbered proximal to distal.
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Fig. 1: Numerical dissipation of total energy over time with different lossless
whip models. Values for mass m, length /, torsional stiffness coefficient k
and torsional damping coefficient b were fixed and different values of node
number N were tested. Whip parameters: (I, m, k, b) = (0.1, 0.02, 0.05, 0);
displacement function parameters: (A, 79, w) = (0.02, 1.5, 0.1).

B. Eigenstructure Analysis of the Whip Model

With the same damping coefficient b for all segments
of the whip model, eigenvalues located further from the
origin of the complex plane had proportionally larger real
(dissipative) components. This pattern was observed for
different values of b (Fig. 2a) . As a result, (eigen)modes
with higher frequency decayed faster than (eigen)modes with
lower frequency. In other words, high-frequency oscillatory
behavior of the damped whip model quickly faded, and
the whip was dominated by (eigen)modes with the lowest
frequencies.

This theoretical result was confirmed by spectral analysis
of the numerical simulation of a 3-node whip model. When
a non-zero damping coefficient value b was included in the
whip model, the dominant dynamic behavior was a single
frequency of oscillation, which is shown as a single dom-
inant peak in the power spectrum (Fig. 2b). The dominant
frequency value of the numerically-simulated damped whip
model was 1.175Hz, which was in reasonable agreement with
the theoretical value for this parameter set, 1.168Hz. This
result confirmed that, despite its limitations, with modest
values of damping the simulation yielded plausible results.

C. Experimentally Identified Whip Parameters

The experimentally-observed frequency of whip oscilla-
tion f was 0.45Hz, and the exponential decay time-constant

Tdecay Was 29.24s. Choosing the number of nodes N as
25, the whip model parameters which reproduced the same
oscillation frequency and exponential decay time-constant
were determined. Detailed parameters of the experimentally-
fitted whip model are presented in Table II.

D. Optimization Result

For each whip model, the DIRECT-L algorithm converged
to an optimal set of five movement parameters which yielded
the minimum value of distance L* for the corresponding
whip model. Detailed values of the optimal parameter set
(914, 024, 91,5, 92, D), and its corresponding output L*,
are presented in Table II. Representative movement profiles
generated by the simulation with the optimal movement
parameters are shown in (Fig. 3).

IV. DISCUSSION

This study examined whether a target could be reached
with a simulated whip using a (small) number of dynamic
primitives, whose parameters could be learned through op-
timization. Because of the dynamic complexity of the whip
model, this simple task is anything but trivial. It was not a
priori obvious that the optimization would even converge,
let alone produce a meaningful result. By encoding upper
limb action using the parameters of dynamic primitives, the
acquisition of the motor skill to achieve this task was greatly
simplified. Simplifying the motor task via parameterized
dynamic primitives dramatically reduced the computational
complexity of the optimization problem, providing a way to
work around the “curse of dimensionality”. This approach
successfully managed the complexity of an (extremely) high
degree-of-freedom system (a 54" order model for the highest
degree-of-freedom whip model). In fact, a minimum distance
from the target was achieved with a single discrete move-
ment, defined by five parameters.

A. Relation to Prior Work

A growing body of evidence indicates that the human
sensory-motor control system relies on a composition of
primitives [16], [27]-[33]. In addition, dynamic movement
primitives have successfully been used in robotics [34], [35].
Schaal et al. used movement primitives to learn from a
demonstrated trajectory [36], and Peters and Schaal showed
that a robotic arm was able to learn baseball via movement
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Fig. 2: (a) Plot of the eigenvalues of matrix A in the complex plane. The radial grids are numbered in ascending order of distance from the origin. Whip
parameters: (N, [, m, k) = (3, 0.1, 0.02, 0.05). (b) Spectral analysis of a 3-node whip model. First row: time vs. 3" joint angle plot; second row: power
spectra of the corresponding joint angle.The excitation of the whip model started at 1.5s. Within the 5 minute long data, spectral analysis was conducted
on a segment of joint angle data from 20s to 60s. Columns show results with different values of joint damping; left to right, » = 0, 0.0005 and 0.001,
respectively. Note the rapid convergence to a low-frequency oscillation with modest values of damping. The vertical dotted lines indicate the theoretical
frequencies of the eigenmodes. Whip parameters: (N, [, m, k) = (3, 0.1, 0.02, 0.05).

TABLE II: Whip Type, Whip Parameters and Optimization Result

Type of Whip

Whip Parameters

Optimal Movement Parameters

Minimum
Distance L*

N 1 m k b 01, 02, O1.f (% D
Short whip 10 0.10 0.10 0.05 0.005 —1.312 1.670 1.565 0.000 0.667 0.032
Medium whip 15 0.10 0.10 0.05 0.005 —1.447 0.368 1.562 0.121 0.833 0.048
Long whip 20 0.10 0.10 0.05 0.005 —1.496 0.505 1.570 0.506 0.803 0.122
Experimentally-fitted 25 0.072 0.012 0.242 0.092 —-1.367 0.015 1.571 0.054 0.810 0.015

primitives [37]. Stulp et al. used a reinforcement learning
algorithm and motion primitives to improve the robustness
of grasping and pick-and-place tasks [38].

This prior work mainly focused on comparatively simple
objects with few degrees-of-freedom, which do not fully
account for the true complexity of objects that humans
can handle. Flexible objects with highly complex internal
dynamics remain particularly challenging for robots. The
only comparable study, to our knowledge, demonstrated
whip-cracking with a robot manipulator [39]. However, in
that study the motion trajectory of the robot was determined
by replicating experimental observations of actual human
performance. Planning using optimization based on dynamic
motor primitives was not considered.

The work reported here also represented the command
from the CNS as a stereotyped primitive motion profile but in
addition included a simplified (but reasonable) representation
of the mechanical impedance of the neuromuscular system.
This distinction is important; recent results have shown
that humans appear to tune their neuromuscular mechanical
impedance when manipulating objects with complex internal
dynamics [40].

Biological observations from previous studies were con-
sidered in determining the model of the upper limb controller.

Although muscle force production is a complex function of
many factors, its dominant behavior can well be described
by a function of muscle length and its rate of change [23],
[41], [42]. The joint torques resulting from activation of
relevant muscles were assumed to depend upon the position
and velocity deviation between the actual upper limb posture
and a “zero-torque” posture. As the upper limb controller
was described in relative angle coordinates, the stiffness
matrix K was taken to be constant, since it was previously
shown that joint stiffness is (approximately) constant in joint
coordinates [43]. Based on reports showing that the stiffness
field of the upper arm is nearly curl-free and predominantly
spring-like, stiffness matrix K was chosen to be symmetric
[44]. Consistent with a single time-constant characterizing
neuromuscular interactive dynamics, values for the joint
damping matrix B were assumed to be proportional to joint
stiffness matrix K [23]. This set of observations served as
the basis for the upper limb controller used here, yielding
a motion which resembled the actual motor behavior of the
upper limb.

It is worth noting that the upper limb controller was
“ignorant” of the complex whip dynamics. While it is
straightforward (albeit tedious) to derive the equations of
motion of the N +2 degrees-of-freedom model, optimization
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Fig. 3: Time sequence of the simulation of the whip models. (A) Short whip (B) Long whip (C) Experimentally-fitted whip. Each upper limb movement
was generated with the optimal movement parameters, which yielded the minimum distance L*.

using such a complex mathematical model seems impracti-
cal, challenging even with modern computational resources.
Using dynamic motor primitives, the whip-targeting task was
achieved without the need to store or recall any detailed
mathematical representation of the whole system dynamics.
This approach may be a key simplification required to learn
complex motor skills, since only a small set of parameters
are acquired and retained. To the extent that dynamic motor
primitives offer a simplified solution to complex and flexible
object manipulation, this approach may facilitate robotic
manipulation of flexible materials, which is presently a major
challenge.

B. Limitations

It is notable that the minimum distance for the longest
whip was greater than for the short, medium and the
experimentally-fitted whip model. This result suggests that a
single dynamic primitive may not be sufficient in this case.
Adding a second dynamic primitive may improve perfor-
mance. In fact, observations of a skilled human performer
indicate that one action (sometimes rhythmic) is used to
“energize” the whip, while a second action (e.g. a “wrist
flick”) serves to propagate a wave along it [14]. Studying
this possibility is a topic of ongoing work.

Simulating the continuous whip dynamics with a finite
number of lumped-parameter sub-models enabled a com-
promise between ease of analysis and fidelity of reproduc-
ing essential behavior. Since numerical dissipation acted as
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intrinsic damping within the simulation, dissipation in the
whip model is the sum of the numerical dissipation and the
model dissipation (due to non-zero b). Carefully choosing
the damping value b may compensate for the numerical
error intrinsic to the simulation, such that the combination
provides a reliable approximation of actual whip behavior.

In this simulation study, the wrist joint was neglected
for simplicity, since it is always better to start simple and
slowly add complexity, rather than the other way around.
Anecdotally, the wrist appears to play a prominent role in
skilled whip manipulation. However, at this time the role of
the wrist remains unclear. Future work, extending the arm
model to three or more degrees of freedom and extending
the whip model to three dimensions, may clarify the role of
the wrist.

V. CONCLUSION

Despite the significant limitations of our neuromuscular
system, humans manipulate objects of prodigious dynamic
complexity with apparent ease. The simulations presented
here showed that encoding control via the parameters of dy-
namic primitives enabled optimization to identify actions that
led to successfully handling an extremely complex dynamic
object—a whip. Understanding how this was accomplished
may facilitate endowing robots with comparable dexterity.
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