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Abstract The potential consequences of global

warming for ecosystem carbon stocks are a major

concern, particularly in high-latitude regions where

soil carbon pools are especially large. Research on soil

and plant carbon responses to warming are often based

on short-term (\ 10 year) warming experiments.

Furthermore, carbon budgets from boreal forests,

which contain at least 10–20% of the global soil

carbon pool, have shown mixed responses to warming.

In this study, we measured carbon and nitrogen

budgets (i.e., soil and understory vegetation carbon

and nitrogen stocks) from a 13-year greenhouse

warming experiment in an Alaskan boreal forest.

Although there were no differences in total above-

ground ? belowground pools, the carbon in the moss

biomass and in the soil organic layer significantly

decreased with the warming treatment (- 88.3% and

- 19.1%, respectively). Declines in moss biomass

carbon may be a consequence of warming-associated

drying, while shifts in the soil microbial community

could be responsible for the decrease in carbon in the

soil organic layer. Moreover, in response to warming,

aboveground plant biomass carbon tended to increase

while root biomass carbon tended to decrease, so

carbon allocation may shift aboveground with warm-

ing. Overall these results suggest that permafrost-free

boreal forests are susceptible to soil carbon loss with

warming.

Keywords Boreal forest � Carbon budget � Field

experimental warming � Global climate change �
Nitrogen budget

Introduction

Global warming is expected to alter the amount of

carbon stored in soils and plants; however, it is unclear

whether warming will lead to a net loss or gain of

carbon (C) (Crowther et al. 2016; van Gestel et al.

2018). Soil C stocks are the balance of inputs and

outputs (Melillo et al. 2011; Lu et al. 2013). The effect

of warming on soil C stocks, especially in high-

latitude areas (above 60�N) with large C pools (Dixon

et al. 1994; Hobbie et al. 2000), depends on the
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magnitude of change associated with these C fluxes

and on their temperature sensitivity (Knorr et al. 2005;

Sistla et al. 2013). Soil carbon losses can occur due to

increased microbial and enzyme activity (Schimel

et al. 2004; Davidson and Janssens 2006). On the other

hand, soil C may increase with warming through

increased litter inputs and root production (Majdi and

Ohrvik 2004; Rinnan et al. 2008). Further complicat-

ing predictions of C gain or loss under warming are

changes in soil moisture (Lavelle et al. 1993; David-

son et al. 2000; Saleska et al. 2002; Xu et al. 2015). For

example, while warming may stimulate decomposi-

tion and plant production, warming-associated drying

may decrease decomposition and plant growth. This

type of interaction complicates predictions of net C

gains and losses (van Gestel et al. 2018).

Determining how boreal forests will respond to

warming, and associated drying, is of particular

interest. Boreal forests contain at least 10–20% of

global soil C (Jobbagy and Jackson 2000; Allison and

Treseder 2011; Pan et al. 2011), and their high latitude

distribution makes them especially vulnerable to

climate change since warming in these regions is

expected to occur faster (Chapin et al. 2000; Shukla

et al. 2019). Here, we took advantage of a 13-year

greenhouse warming experiment in an Alaskan boreal

forest to examine aboveground and belowground C

and N budgets. Previous studies at this site have shown

that, when compared to control plots, warmed plots

have reduced fungal abundance and increased fungal

diversity (Allison and Treseder 2008; Treseder et al.

2016). Fungal decomposers tend to dominate under

warming and drying because of their drought-resistant

growth forms (Barnard et al. 2013; Treseder and

Lennon 2015) and their ability to decompose recalci-

trant compounds (e.g., cellulose and lignin), which

may become more abundant with warming due to

changes in the plant community (Mcguire et al. 2010;

Fontaine et al. 2011; Xiong et al. 2014). Fungi tend to

specialize on recalcitrant compounds that may have

higher temperature sensitivities for decomposition,

thus conferring an advantage over bacteria which tend

not to target recalcitrant compounds (Romero-Oli-

vares et al. 2017). Warmed plots at this site were also

found to have slower litter decomposition (Romero-

Olivares et al. 2017), increased cellulose- and starch-

degrading enzyme production (German and Allison

2015), and lowered respiration rates (German and

Allison 2015). However, no studies have determined

whether any of these changes in decomposition

dynamics have elicited measurable changes in soil

and plant C and N pools. A fuller understanding of the

relationship between aboveground and belowground

C and N dynamics will provide better insight into

whether or not ecosystem C gains or losses should be

expected with warming in this critical ecosystem.

We hypothesized that the greenhouse warming

treatment would reduce soil C storage owing to greater

activity of recalcitrant C decomposers and decrease

above- and below-ground plant biomass owing to

water limitation (Hypothesis 1; Fig. 1a). Warming-

associated drying could also increase soil C storage by

inhibiting decomposer activity, while the warming

itself could augment above- and below-ground plant

biomass by alleviating temperature or nutrient limita-

tion of plants (Hypothesis 2; Fig. 1a). Alternatively, if

decomposer activity and plant biomass inputs simul-

taneously increase or decrease, or if previously

reported changes at our site are ephemeral, soil C

storage would remain the same (Null Hypothesis). To

test these hypotheses, we compared changes in

understory aboveground and belowground C and N

pools from greenhouse warmed and control plots in

order to better understand boreal forest ecosystem

response to long-term warming treatment.

Methods

Our study site is located in a mature black spruce

(Picea mariana) boreal forest on the Fort Greely

military base near Delta Junction, Alaska, USA

(63�550N, 145�440W). The understory vegetation is

dominated by mosses, lichens, and shrubs (Vaccinium

uliginosum, V. vitis-idaea, Ledum groenlandicum,

Empetrum nigrum, and Betula glandulosa) (Treseder

et al. 2004). The soil is an Inceptisol (German and

Allison 2015), with an average organic horizon of

9.8 cm (King et al. 2002) and pH of 4.9 (Hanson et al.

2008).

In 2005, a greenhouse warming experiment was

established with five pairs of 2.5 9 2.5 m plots within

a 1 km2 area in the open canopy forest, as described in

Allison and Treseder (2008). In each pair, one plot was

covered with a wood frame structure covered in

greenhouse plastic film in order to warm the plots.

Gaps between the frame and the plastic allowed air to

circulate, and gutters and tubing allowed water to flow
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in; the other plot was left unmanipulated as a control

(Allison and Treseder 2008). All plots excluded large

trees. Air temperature increased by an average of

1.6 �C and Onset HOBO data loggers recorded an

average of 0.5 �C increase in soil temperature at 5 cm

depth (Table S1; Allison and Treseder 2008). As a

result of the greenhouse warming treatment, soil

moisture also decreased by an average of 22% in the

warmed plots (Table S1; Allison and Treseder 2008).

Passive warming approaches, such as this one, not

only warm and dry but can also alter temperature

variation, light intensity, CO2 concentration, wind

speed, snow cover, and herbivory (Kennedy 1995;

Aronson and McNulty 2009; Bokhorst et al. 2011).

However, in remote areas where line power is not

available, greenhouse warming is a practical and cost-

efficient way to elevate temperature. Passive warming

treatments are also good at minimizing soil distur-

bance compared to other approaches like heated cables

(Aronson and McNulty 2009). Here, when we refer to

the warming treatment, we are referring to the

collective change in the microclimate which includes,

but is not limited to, warming and drying.

In July 2017, two 0.6 9 0.6 m subsamples of

aboveground biomass were collected from each plot.

The two subsamples were combined in the field and

the contents were sorted into different bags by moss

and plant type. Two soil cores (7 cm in diameter 9

12 cm in depth) were taken from each plot and divided

into three fractions: lichens, O (organic) horizon, and

A (mineral) horizon. Depth of the soil organic layer is

reported in the supplement (Table S2). We then

combined fractions of the same type in the field.

Samples were kept cool during transportation and

subsequently stored at - 20 �C until processing at the

University of California, Irvine. In the lab, we

separated the vegetation samples into herbaceous

(leaves and stems) and woody biomass (see Table S3

for list of plant species and for how plant types were

categorized). The O and A soil horizons were sieved

and separated manually into root biomass, soil, and

other organic matter biomass components. We esti-

mated bulk density of the soil horizons by calculating

soil volumes and dry weights. We separated the lichen

fraction into lichen biomass, litter, and soil compo-

nents (see Table S4 for approximate percentages).

However, since it was difficult to disentangle these

components precisely, the lichen fraction was treated

as a single unit in subsequent analyses. After final

partitioning of each of the plant, moss, and soil

samples, all samples were dried at 60 �C, weighed for

biomass, and subsamples were finely ground using a

Warming

Drying

+Greenhouse 
warming treatment

Belowground carbon pool 
(soil and roots)

Aboveground carbon pool
(plants, moss, and lichen)

Decomposer 
ac�vity

Water 
availability

-

Temperature and 
nutrient limita�on

+

-

-

+/-

-

+

+/-

Hypotheses Results

Belowground carbon pool (-): 
soil (-) 

roots (-)

Aboveground carbon pool (+):
herbaceous veg (+)

woody veg (+)
moss (-)

lichen (+)

(a) (b)

Fig. 1 a Hypothesized positive and negative effects of the

greenhouse warming treatment on aboveground and below-

ground C pools in a permafrost-free boreal forest. In this

experiment, we measured aboveground and belowground

carbon pools (black, solid-lined boxes). Grey, dashed boxes

indicate mechanisms that were not measured in this experiment

but were observed in prior experiments at our study site (Allison

and Treseder 2008; German and Allison 2015; Treseder et al.

2016; Romero-Olivares et al. 2017). Depending on which

mechanisms dominate, we predicted different responses for

aboveground and belowground C pools. b Inlay of changes to

aboveground and belowground C pools found in our experi-

ment. Positive and negative signs indicate increases and

decreases in pool size with the greenhouse warming treatment.

Bolded text (soil and moss) specifies significance (P B 0.05)

123

Biogeochemistry (2020) 150:345–353 347



ball mill. The subsamples were then combusted for

C:N using a Thermo Scientific FlashEA 1112 Nitrogen

and Carbon analyzer. Pool size for each aboveground

and belowground component was estimated using the

biomass, bulk density (when applicable), and elemen-

tal analysis data. It was not possible to estimate pool

size for the mineral horizon because, unlike the

organic horizon, we did not sample the entire horizon.

Data were tested for normality and log-transformed

if needed. Two-tailed, paired t-tests at a\0.05 were

conducted to test for differences between the paired

control and warmed plots. We also used a generalized

linear model, weighted by mass, to check for differ-

ences in plant community composition in the plots and

treatments in R version 3.4.1 (R Core Team 2017).

Correlations were tested (also in R) to identify

relationships between the aboveground and below-

ground variables measured. Because our sample size

was relatively small (five pairs of plots), we conducted

a power analysis in G*Power (Erdfelder et al. 2009) to

determine the sample size needed to achieve a power

of 0.80.

Results

After 13 years of the greenhouse warming treatment,

soil C in the organic layer decreased by 19.1% in the

warmed treatment (Table 1; P = 0.048), while under-

story aboveground biomass trended towards C stocks

increasing by 1.5- to 4-fold (except for moss). Total

aboveground biomass C was higher under the warmed

plots, but the difference was not statistically signifi-

cant (Table 1; P = 0.236). However, separating the

data by vegetation type, we observed that moss

decreased by 88.3% with greenhouse warming

(Table 1; P = 0.034). In contrast, the C biomass of

herbaceous vegetation, woody vegetation, and lichen

increased with the warming treatment, although these

trends are only marginally significant at most (P =

0.166, P = 0.069, and P = 0.285, respectively). Based

on the power analysis, we suspect that we may have

detected significance with a larger sample size

(Table S5). In terms of aboveground biomass of

individual plant species, there were no significant

differences between the treatments (Table S6). In

addition, soil organic horizon depth did not change

with the warming treatment (P = 0.922).
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The greenhouse warming treatment increased allo-

cation of aboveground vegetative C by 13%. Root

biomass decreased in the warming treatment by nearly

a third, albeit non-significantly (P= 0.595), while total

aboveground vegetation increased (Table 1). There

was also a positive relationship between root biomass

C and moss biomass C (R = 0.698; P = 0.025;

Table S7). However, no other significant relationships

between aboveground and belowground C pools were

evident (Table S7).

Percent C was higher for herbaceous and woody

vegetation in the greenhouse warmed plots, but this

trend was not statistically significant (Table 2; P =

0.270 and P = 0.108, respectively). Percent N was

significantly lower in warmed plots for both herba-

ceous and woody vegetation (Table 2; P = 0.044 and

P = 0.028, respectively), resulting in higher C:N ratios

in the warmed plots (Table 2; herbaceous P = 0.055;

woody P = 0.118). Percent C and %N in the soil layers

did not change significantly with the warming treat-

ment (Table 2).

Discussion

To our knowledge, this work is the first to directly

measure how C and N pools respond to long-term

warming in an Alaskan, permafrost-free boreal forest.

We found that the long-term greenhouse warming

treatment significantly reduced soil C in the organic

layer and moss biomass C (Fig. 1b). At the same time,

aboveground plant biomass C tended to increase while

root C tended to decrease. Altogether, the distribution

of C stocks within this ecosystem tended to shift from

belowground to aboveground in response to the

warming treatment.

These results are important because permafrost-

free boreal forests are understudied, yet represent

approximately 45–60% of all boreal forests (Allison

and Treseder 2011). Forests cover over 30% of Earth’s

land surface, with more than a third of that coming

from boreal forests (Bonan 2008). Understanding the

uncertainties associated with these systems’ responses

provides greater clarity for biogeochemical model

parameterization. These findings also corroborate

other permafrost-free boreal forest studies (Niinisto

et al. 2004; Bronson et al. 2008), which find that CO2

fluxes from boreal forest soils increase with warming. T
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Altogether, these results suggest that warming can

alter C pools in boreal forests lacking permafrost.

We found that the soil organic layer experienced a

19.1% reduction in C with the warming treatment,

supporting Hypothesis 1. Declines in soil C are

consistent with results of a prior study at this site

predicting soil C loss with warming due to shifts in the

fungal community, which could improve breakdown

of recalcitrant C (Treseder et al. 2016). In contrast,

other studies from this site found that warming and

drying during the growing season suppressed micro-

bial activity and decomposition (Allison and Treseder

2008; Romero-Olivares et al. 2017), suggesting a

delay in soil C loss. However, in the context of our

results, this suppression of microbial activity may be

reflective of only the short-term or seasonal response

(Schmidt et al. 2007). This could be due to the

relatively quick successional changes of the microbial

community (Schmidt et al. 2007; Voriskova and

Baldrian 2013) or depletion of the labile organic

matter (Knorr et al. 2005). Microbial activity may

return to pre-disturbance levels or increase once the

community is adapted to the new environmental

conditions (Allison et al. 2010; Karhu et al. 2014).

Since aboveground C biomass increased with the

warming treatment, it is unlikely that lower above-

ground litter production was responsible for the

decline in soil C.

Declines in soil C in the organic layer with long-

term warming are common (Kane and Vogel 2009;

DeAngelis et al. 2015). However, a recent study from a

boreal forest in Eastern Canada contrasts our results.

They found no change in soil C stocks with 9 years of

warming treatment (Marty et al. 2019). This discrep-

ancy could be due to differences in topography, C

quality, soil depth, or experimental design between the

Eastern Canadian study and ours.

Also in support of Hypothesis 1, moss biomass C

decreased with warming by 88.3%. This considerable

decline in moss could potentially be attributed to

greater susceptibility to water loss with warming

(Charron and Quatrano 2009) since moisture declined

in our warmed plots by 22% (Allison and Treseder

2008). However, in support of Hypothesis 2, the

herbaceous and woody vegetation increased with the

warming treatment (Fig. 1b). This increase in above-

ground vegetation could be due to removal of

temperature limitations (Hobbie et al. 1999) or the

ability to produce deeper roots to acquire water

(Comas et al. 2013; Lindh et al. 2014). These increases

in aboveground vegetation could also be an unin-

tended consequence of the greenhouse warming

treatment, such as decreased herbivory (Aronson and

McNulty 2009). In contrast, the greenhouse warming

treatment reduced photosynthetic active radiation by

30–40% (Allison and Treseder 2008), yet we found an

increase in photosynthetic biomass. Perhaps with a

different warming technique, the aboveground C

response to warming would be more pronounced.

The decrease in moss and increase in herbaceous and

woody vegetation may neutralize the effect of the

warming treatment on total aboveground C pools.

In addition to these changes in aboveground

biomass pools, root biomass C declined with the

warming treatment, although not significantly

(Table 1). Furthermore, root and moss biomass C

were positively correlated (Table S7). These results

are surprising given our predictions about moisture

structuring the vegetation response. However, since

aboveground vegetation %N decreased with the

warming treatment (increasing aboveground vegeta-

tion C:N), perhaps N limitation plays a role. While

warming is typically thought to decrease N limitation

owing to increased N mineralization (Rustad et al.

2001), low soil moisture can slow N mineralization

(Beier et al. 2008). Perhaps warming and drying

resulted in a deeper rooting system to acquire water

and nitrogen that was not captured in our experiment.

Inclusion of deeper soil horizons, and their roots, may

provide additional clarity, especially since C and N

stocks in boreal forests can be substantial in these

deeper layers (Kane et al. 2005; Vogel et al. 2005;

Marty et al. 2015, 2017). Additionally, we only

measured understory aboveground biomass. Inclusion

of trees may further explain the relationship between

aboveground and belowground pools in this critical

ecosystem.

In conclusion, we did not find that warming led to a

net loss or gain of C. However, our results suggest that

permafrost-free boreal forests are susceptible to C loss

from soil and moss with warming. Carbon losses from

soil and moss represent approximately 9% and 4% of

the total C stock calculated in our experiment,

respectively. These changes could contribute to

climate change if increases in herbaceous and woody

biomass no longer compensate for these losses.

Furthermore, if vegetative C continues to transfer

from belowground to aboveground, we might expect
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habitat shifts and future changes to C stocks. Above-

ground pools may be less stable than belowground

pools for storing C (Zhou et al. 2006), so an increase in

the proportion of aboveground C could cause addi-

tional C losses with disturbance. Knowledge of

individual warming responses from different C pools

improves mechanistic understanding of ecosystem

responses to climate change, which is especially

important for this vulnerable forest system.
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